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ABSTRACT

Missions such as WMAP or Planck measure full-sky fluctuations of the cosmic microwave background and foregrounds, among
which bright compact source emissions cover a significant fraction of the sky. To accurately estimate the diffuse components, the
point-source emissions need to be separated from the data, which requires a dedicated processing. We propose a new technique
to estimate the flux of the brightest point sources using a morphological separation approach: point sources with known support and
shape are separated from diffuse emissions that are assumed to be sparse in the spherical harmonic domain. This approach is compared
on both WMAP simulations and data with the standard local χ2 minimization, modelling the background as a low-order polynomial.
The proposed approach generally leads to 1) lower biases in flux recovery; 2) an improved root mean-square error of up to 35%;
and 3) more robustness to background fluctuations at the scale of the source. The WMAP 9-year point-source-subtracted maps are
available online.
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1. Introduction

Missions such as Planck and WMAP provide high-resolution
full-sky maps of microwave emissions. The primary goal of
these missions is to measure the fluctuations in the cosmic mi-
crowave background (CMB), the relic radiation of the big bang,
and hence provide key information about the birth and evolution
of our Universe. These missions also provide full-sky informa-
tion on the Galactic and extragalactic emissions in a frequency
range that has not been probed before. One of the main scientific
challenges in the CMB data analysis consists of accurately sep-
arating the CMB, the various Galactic emissions (synchrotron,
free-free, dust and Galactic compact-source emissions, to name
a few) as well as the contribution from extragalactic sources. In
particular, bright compact-source emissions cover a significant
fraction of the sky (Planck Collaboration VII 2011; Wright et al.
2009), even at high Galactic latitudes, where the CMB is less
affected by other diffuse foregrounds. These emissions there-
fore need to be carefully dealt with for CMB or Galactic data
analysis.

From a source-separation perspective, these emissions are
difficult to model since the compact sources display both spec-
tral and temporal variability. As reported in Wright et al.
(2009), at least one-third of the extragalactic WMAP sources
display temporal variability with high confidence, with more
than a 2:1 range in fluxes. On the other hand, extrapolating
the fluxes from catalogues obtained at lower frequency than
that probed by WMAP or Planck is erroneous for radio sources
(Planck Collaboration XIV 2011): flat-spectrum emissions from
the core of extragalactic sources are dominating for Planck or
WMAP channels, whereas steep-spectrum lobe emissions dom-
inate at lower frequencies. Finally, their high spectral variability
makes it very difficult to estimate their flux with generic source-
separation techniques that implicitly rely on the factorization of

spatial and spectral information (Tegmark & de Oliveira-Costa
1998; Vielva et al. 2003; López-Caniego et al. 2006). This means
that each CMB data set needs to be processed independently to
accurately estimate the compact-source fluxes in this data set.

The most distinctive information for separating compact and
diffuse emissions is based on morphology, in particular for point
sources where the shape of the emission is the point spread
function (PSF) of the instrument at the wavelength considered.
Consequently, specific pipelines were developed based on this
information in the CMB data analysis; the compact sources are
first detected and flux-estimated and then are either masked or
their contribution subtracted before component separation is per-
formed (Planck Collaboration XII 2014).

Numerous approaches based on the morphology of the
sources have been proposed to address the initial problem
of source detection in the CMB data: morphological image-
processing such as Sextractor (Bertin & Arnouts 1996), matched
filters (Tegmark & de Oliveira-Costa 1998; Barreiro et al. 2003;
López-Caniego et al. 2006), wavelet-based techniques (Cayón
et al. 2000; Vielva et al. 2001; Martínez-González et al. 2003;
Barreiro et al. 2003; López-Caniego et al. 2006), and Bayesian
detection (Hobson & McLachlan 2003; Savage & Oliver 2007;
Carvalho et al. 2009; Guglielmetti et al. 2009; Argüeso et al.
2011). Multichannel techniques, which take into account either
an estimate of the power spectrum of diffuse emissions (Herranz
& Sanz 2008) or the alleged spectral signatures for the point
sources (Lanz et al. 2011; Vio et al. 2013) have also been de-
vised. Other multichannel techniques detect the point sources by
cancelling the CMB contribution in the data by a weighted sum
of the channels (Wright et al. 2009; Ramos et al. 2011; Scodeller
et al. 2012). We refer to Paykari & Starck (2012) for a brief re-
view of the techniques. Some compact-source catalogues have
been published for the WMAP (for instance, Wright et al. 2009;
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Chen & Wright 2009; Ramos et al. 2011; Scodeller et al. 2012;
Bennett et al. 2013) or Planck (Planck Collaboration VII 2011;
Planck Collaboration XXVIII 2014) missions.

When bright sources are detected, their contribution can be
removed from the data. Several strategies have been proposed.

– Masking: this is a standard approach where a point-source
mask is applied to the data map before it is analysed. This so-
lution is very efficient for CMB power spectrum estimation,
and the price to pay is only a small loss of sensitivity at low
multipoles (Nolta et al. 2009; Larson et al. 2011). However,
for CMB non-Gaussianity analysis the mask may create spu-
rious features in the non-Gaussianity estimators. In addition,
masking complicates the Galactic diffuse emission analysis

– Masking and inpainting: to avoid artefacts caused by the
mask on large scales, the masked data can be interpolated
using inpainting techniques. Several methods have been pro-
posed, such as diffuse inpainting (Zacchei et al. 2011),
CMB-constrained realization inpainting (Bucher & Louis
2012; Kim et al. 2012), or sparse inpainting (Abrial et al.
2007, 2008; Starck et al. 2013b). It was shown that sparse
inpainting, based on the sparsity of the CMB in spherical har-
monics, does not significantly impact non-Gaussianity mea-
sures such as the skewness and kurtosis of the CMB data
(Abrial et al. 2007) or the integrated Sachs-Wolfe signal
(Dupé et al. 2011) and the weak-lensing signal (Perotto et al.
2010). These inpainting approaches are, however, expected
to be inaccurate in estimating the CMB in the masked re-
gions, which would also be detrimental to Galactic studies.

– Fitting: a more progressive approach is to first model the
background due to diffuse emissions, then model the shape
of the compact sources by modelling the instrument PSF, and
finally estimate the flux by aperture photometry or PSF fit-
ting. This is typically performed when the flux and the po-
sition are not jointly estimated in the detection algorithm,
as performed in the Bayesian detection approaches (where
the background can be modelled through a covariance ma-
trix or described by a low-order polynomial). This method
was adopted by the Planck and WMAP teams to estimate
the point-source flux (Planck Collaboration VII 2011; Planck
Collaboration XXVIII 2014; Wright et al. 2009; Bennett
et al. 2013), where the background was modelled as a low-
order polynomial (baseline or linear background). The few
background parameters and the point-source flux were then
estimated locally by χ2 minimization.

Scodeller & Hansen (2012) showed that removing the point-
source fluxes instead of masking them provides similar results
on the final CMB power spectrum estimation with no biases on
higher order statistics. A cleaned CMB map is much easier to
analyse than a masked CMB map, since there is no need to han-
dle the point-source mask anymore. Another advantage is that
it provides a CMB estimate at the point-source positions in the
mask (or a point-source-free channel estimate if applied on a
channel instead of on the reconstructed CMB map), useful in
particular for Galactic studies, while inpainting techniques only
try to fill the gaps without destroying the statistical properties of
the map.

In this paper, we propose a new approach for point-source
removal that is based on a morphological source-separation
method, assuming the sources have already been detected. We
use a more flexible (and potentially more complex) model for
the background to capture its fluctuations more accurately at
the scale of the sources. In this approach we assume that the
diffuse emissions are sparse in the spherical harmonic domain,

while the point sources are sparse in the direct domain, and re-
solved compact sources are sparse in the wavelet domain. In
Sect. 2, we describe this method along with the proposed algo-
rithm, which is adapted from recent convex-optimization tech-
niques that solve the corresponding inverse problem. Results on
compact-source removal in full-sky WMAP realistic simulations
are presented in Sect. 3, where our approach is compared with
the standard flux-fitting or low-order polynomial background-
fitting as performed by WMAP and Planck consortia (Planck
Collaboration VII 2011; Planck Collaboration XXVIII 2014;
Wright et al. 2009; Bennett et al. 2013). Sparse point-source
removal is then applied on WMAP data in Sect. 4, code infor-
mation is given in Sect. 5, and conclusions and perspectives are
drawn in Sect. 6.

2. Sparse point-source removal

2.1. Modelling of the sky

We modelled microwave-channel data over the full sky y ∈ RNe

(i.e. the channel map is composed of Ne real-valued pixels) com-
posed of three components {x1, x2, x3} ∈ RNe : the point sources,
the extended compact sources, and the diffuse emissions. In
this decomposition, the diffuse background is composed of the
CMB itself and the synchrotron, free-free, dust diffuse emissions
as well as all the sources with flux below the detection cut. The
forward model can be cast as

y = x1 + x2 + x3 + n, (1)

where n ∈ RNe is an additional noise, assumed to be a real-
valued Gaussian random field (but not necessarily stationary).
In the associated inverse problem, we need to estimate three un-
knowns from one equation, which is not possible without ad-
ditional constraints/information. We now discuss these assump-
tions and constraints on each of the components.

– Point-source catalogues are available for WMAP and Planck
data sets. Using these catalogues, x1 can be modelled as a
set of Dirac functions {δp}p convolved by the instrumental

beam b: x1 =
∑Np

p= 1 fpδp ∗b, where Np is the number of point
sources that need to be removed and fp is the flux of the pth
point source. The source fluxes are expected and enforced to
be positive.

– In case of extended compact sources, the morphological in-
formation is weaker. Several extended sources were detected
and flagged in the Planck data set, mostly located close to the
Galactic centre, while in the WMAP data such sources were
not considered (detection was performed outside a Galactic
mask). In this work, we assumed that these emissions can
be modelled through a sparse decomposition in the undec-
imated isotropic spherical wavelet dictionary (Starck et al.
2006): x2 =

∑Ne

k1

∑Ns

j=1 w jkθ jk, where Ns is the number of
wavelet scales, θ jk corresponds to a wavelet atom at scale j
and position k, and we have overall Nw = NeNs wavelet coef-
ficients at all scales. Assuming sparsity of this Galactic com-
ponent, only a few wavelet coefficients w jk at selected loca-
tions k close to the Galactic centre are assumed significantly
away from zero.

– The background emission x3 is much more complex to
model accurately. It is usually represented as a local low-
order polynomial background (either baseline, or first order)
because of its local smoothness, and in this work it is charac-
terized by its sparsity in the spherical harmonic domain. This
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assumption of sparsity in CMB applications is motivated in
Starck et al. (2013a). x3 is also assumed band-limited be-
cause of the beam effect.

These components can only be separated if the components are
sparse enough in mutually incoherent dictionaries, such as a
dirac basis and a spherical harmonic basis (Donoho & Huo 2001;
Donoho & Elad 2003). Said differently, compact-source emis-
sions are expected to decrease the sparsity level of the data mea-
sured on spherical harmonics, which will be the key ingredient
driving the separation process in our approach.

2.2. Associated inverse problem

Using all these hypotheses and constraints, we consider the fol-
lowing inverse problem:

minimize
f∈C, w∈RNw , a∈D

γ||a||1 + β||w||1s.t.

||y − (B f +MWw + Sa)||2,Σ < ε, (2)

where

– f ∈ RNp is a vector containing the flux of the Np point
sources, C is the positive orthant of RNp to enforce the pos-
itivity constraint, and B ∈ RNe×Np is a matrix operating on
fluxes and implementing the local projection of the beam at
the location of the point sources;

– w =
{
w jk

}
j,k
∈ RNw is a vector containing the Nw wavelet co-

efficients at all scales, W represents the matrix implement-
ing the spherical wavelet transform (containing each wavelet
atom as a column), M corresponds to a binary mask equal to
one where compact extended sources are expected. We pro-
mote sparsity of x2 by making use of the �1 norm of w as a
penalization term;

– a ∈ CNl contains the Nl complex spherical harmonic coeffi-
cients of x3 andD is the space of band-limited signals on the
sphere (up to a chosen multipole �max depending on the reso-
lution of the channel). S ∈ CNe×Nl is the matrix describing the
orthogonal spherical harmonic transform: x3 = Sa. Sparsity
of x3 is enforced through the use of a �1 norm penalization
term on a, which is computed as the sum of the modulus of
the complex multipole as in the sparse inpainting described
in Starck et al. (2013a)

– Σ is the (non-stationary) noise covariance matrix and
||x||22,Σ = xTΣ−1x denotes the square of the �2 norm weighted
by Σ−1.

The reconstructed point-source-free map ỹ can be obtained by
ỹ = y − B f . The problem described in Eq. (2) is a convex prob-
lem and is related to a constrained morphological component
analysis (Starck et al. 2004, 2005) or a basis pursuit denois-
ing problem (Chen & Donoho 1998) with a deconvolution step.
The principal advantage of this constrained formulation lies in
having only a few hyperparameters to set, which are easily in-
terpretable: the expected noise level ε; the balance between �1
norm in the wavelet and spherical harmonic domains. More ex-
plicitely, the higher the ratio (γ/β), the sparser the solution for x3
is in the spherical harmonic domain, and conversely, the lower
the ratio, the sparser the estimate of x2 in the wavelet domain.
Setting them equal would lead to penalize both non-sparse solu-
tions for x2 in the wavelet domain and x3 in the spherical har-
monic domain, as performed in morphological component anal-
ysis (Starck et al. 2004, 2005). Note that once the ratio is set,
changing their modulus does not change the inverse problem.

The main difficulty here lies in controlling the interplay be-
tween sparsity and data fidelity constraints: how can we effi-
ciently estimate a sparse solution (more precisely with mini-
mal �1 norm), knowing that many combinations of x1, x2 and x3
can satisfy the data fidelity constraint?

In the next section, we propose an algorithm to solve this
problem.

2.3. Proposed algorithm

Inverse problems as described by Eq. (2) can be solved us-
ing primal-dual approaches (e.g. Chambolle & Pock 2011;
Briceño Arias & Combettes 2011; Becker et al. 2011; Combettes
& Pesquet 2012). The proposed algorithm was derived from
Chambolle & Pock (2011), it requires only one application of
the costly spherical harmonic and wavelet transforms and one
application of their adjoint per iteration and does not require sub-
iterations. The algorithm is set as follows:

morphological component analysis with a primal-dual ap-
proach (SPSR)

1- Choose (a0, f 0, w0, t0) ∈ CNl ×RNp ×RNw ×RNe and ā0 = a0,
f̄ 0 = f 0, w̄0 = w0.

Choose also the hyperparameters γ, β and τ, σ s.t. τσ <
1
3

(assuming normalized ||S ||2 = ||MW ||2 = ||B||2 = 1).
2- Iterate (n ≥ 0):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rn
d = tn + σΣ−1/2(B f̄ n + Sān+

MWw̄n − y)

tn+1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if ||rn

d ||2 ≤ σε

(1 − εσ
||rd ||2

)rd otherwise

an+1 = ST τγ
(
PD(an − τS†Σ−1/2†tn+1)

)
f n+1 = PC

(
f n − τB†Σ−1/2†tn+1

)
wn+1 = ST τβ(wn −W†MΣ−1/2†tn+1)

f̄ n+1 = 2 f n+1 − f n

ān+1 = 2an+1 − an

w̄n+1 = 2wn+1 − wn

(3)

where PC is the projection onto the positive orthant (i.e. sets to 0
negative fluxes) and PD is the projection onto the set of con-
sidered band-limited signals (i.e. sets to 0 all multipoles greater
than the chosen �max); ST τβ is the standard soft-thresholding op-
erator applied component-wise:

[
ST τβx

]
i
= xi

[
1 − τβ
|xi|

]
+

, (4)

where |xi| is the complex modulus of xi for complex vectors.
From Chambolle & Pock (2011), the sequence (( f n, an, wn), tn)
converges to a saddle point of the primal-dual problem with a
restricted dual gap decreasing asO(1/n) (first-order method). We
initialised the algorithm with null images.

The sparse-source-removal (SPSR) algorithm has four pa-
rameters to set: β, γ, τ, and σ. The last two are the primal and
dual steps, respectively, and drive the convergence speed of the
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algorithm. The ratio of the first two parameters is the hyperpa-
rameter that controls the balance in the sparsity of the decom-
position of the extended compact sources and the diffuse back-
ground as discussed in the previous section. The choice of their
modulus also affects the convergence speed of the algorithm: a
high modulus leads to a slowly built sparse approximation, or
said differently, the algorithm would provide very sparse solu-
tions at the beginning of the algorithm that are far from satis-
fying the data fidelity constraint, however; a low modulus, in
contrast, leads to building approximations that satisfy the data
fidelity constraint early in the iterations, but are not as sparse.
In practice, several values need to be experimentally tested to
obtain an algorithm with reasonable convergence speed and to
derive the required number of iterations.

To assess the relative performance of the proposed approach,
flux estimates obtained with SPSR were compared with the low-
order polynomial fitting approach (Bennett et al. 2013; Planck
Collaboration VII 2011; Planck Collaboration XXVIII 2014).
Fluxes were estimated in a 3.5σ region as previously recom-
mended in Wright et al. (2009) using a Levenberg-Marquardt
algorithm with local χ2 minimization (using the C++ library
ALGLIB (www.alglib.net), Sergey Bochkanov and Vladimir
Bystritsky). The local background was either modelled with a
baseline or a first-order polynomial (FIT-C and FIT-L in the fol-
lowing) and a positivity constraint was applied on the fluxes.
Clustered point sources with overlapping fitting regions were
jointly fitted for. However, in practice, such situations were
scarce in the WMAP simulations reported.

3. Results on synthetic WMAP simulations

3.1. Planck Sky Model simulations at WMAP frequencies

The Planck Sky Model (PSM) software (Delabrouille et al.
2013) was employed to simulate WMAP-like data. Each one of
the five WMAP frequency channels included the following:

– A diffuse component, comprised of a Gaussian CMB, gener-
ated from a six-parameter Λ-CDM model (with default val-
ues from WMAP 7-year data combined with BAO and the
Hubble constant measurements, and with added C� lensing)
and synchrotron, free-free, thermal-dust and spinning-dust
emissions, simulated with default PSM parameters.

– A compact component, constituted by radio, infrared, and
strong ultra-compact HII region emissions, as well as a far-
infrared background (model jgn2005 in the PSM). More
specifically, radio sources are essentially derived from ob-
servations conducted between 0.85 GHz and 4.85 GHz. Each
one of these ∼2 million simulated sources possessed its own
spectrum, composed of power laws with spectral indices
varying across pre-defined bands of electromagnetic fre-
quencies. As reported in Delabrouille et al. (2013), this cata-
logue is expected to faithfully reproduce the clustering prop-
erties of the radio sources and the observed/modelled source
number counts at 5 and 20 GHz. In the PSM, the infrared
sources were derived from the IRAS point-source catalogue
and faint-source catalogue, with assumed modified black-
body emissions to extrapolate the flux at lower frequencies.
Simulated sources were also added near the Galactic plane
and in IRAS gaps to obtain the same mean surface density
as a function of flux (down to 80 mJy) as in the regions well
covered by IRAS. Emissions from ultra-compact HII regions
were also derived from IRAS, with flux extrapolated accord-
ing to a modified blackbody fit with added low-frequency

Table 1. Characteristics of the point-source catalogue generated from
simulations.

Channel Flux cut (mJy) Source number
K 111 1094
Ka 183 1093
Q 217 1037
V 383 683
W 687 330

flux with a free-free spectral index when a radio-counterpart
is found. Note that compact emissions from the Galaxy
were also simulated as part of diffuse emissions. Finally, the
simulated far-infrared background is composed of realistic
distribution of clustered point sources with assumed flux-
dependent spectral indices and reproduced Planck observa-
tions reasonably well.

– Noise modelled as a non-stationary Gaussian random field,
with variance in each pixel derived from the WMAP 9-year
hit maps; the channel bandpasses were modelled as diracs
located at the centre frequency, and the beams were assumed
Gaussian with a full-width at half maximum given by the
beam size provided by the WMAP consortium.

Overall, the PSM simulations reflect the complexity in estimat-
ing the strong point-source fluxes (which is essential to test
the robustness of the proposed approach), with complex diffuse
background, unresolved sources with clustering properties be-
low the detection limit, strong compact emissions in the Galactic
plane, and non-stationary noise. A more comprehensive descrip-
tion of the PSM is provided in Delabrouille et al. (2013). A
patch extracted from these WMAP 9-year simulated data is rep-
resented in Fig. 1 at each of the five WMAP frequency channels
to illustrate the complexity of the source separation, because the
resolution, noise, and background change in each of the chan-
nels. At low-frequency channels, the background fluctuates at
the scale of the point sources, and noise contribution to the flux
estimates are lower than in the high-frequency channels, where
noise becomes important at the scale of the source, as reported
in Wright et al. (2009).

3.2. Flux recovery in noise-limited catalogue

3.2.1. Catalogue generation

First, a catalogue of point sources was independently generated
from the simulations for each WMAP channel by retaining the
sources with flux above 5σ of the estimated radiometer noise
(Wright et al. 2009). The number of sources retained for each
channel and the flux cut are displayed in Table 1. This sce-
nario reflects an optimistic situation where only noise would be
a limiting factor for source detection (and not the background).
Consequently, it allows us to investigate how well point sources
can be estimated even when their flux is similar to the back-
ground levels. Note that the cut in flux increases with frequency
(because of the increasing level of the noise) and our sources are
mainly radio sources (i.e. with flux decreasing with increasing
frequency). Consequently, fewer sources are detected at higher
frequency channels.

3.2.2. SPSR working conditions

The working conditions of SPSR were chosen as follows: the
noise hyperparameter ε corresponds in the following to the 95th
percentile of a χ2(Ne) distribution according to the whitened
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Fig. 1. Patch of the simulated sky centred on two detected point sources at the WMAP wavelengths.

Fig. 2. Evolution with the number of iterations of the normalized �2 norm of the residuals (left) and normalized �1 norm of the diffuse and compact
component for channel Ka and for various values for the modulus of β = γ. Reaching the upper limit of the data-fidelity constraint leads to a
normalized residual �2 norm of 1. The �1 norm was normalized to the �1 norm of the input data in direct space (sum of the absolute values of the
pixels in the frequency map). M corresponds to the highest modulus of the spherical harmonic coefficients in the input image.

noise statistics. For all channels the hyperparameter ratio was set
to β/γ = 1 to favour both sparsity of x2 in the wavelet domain
and x3 in the spherical harmonic domain, as discussed before.

A range of values for the modulus of β = γ was first tested
and turned out to be crucial for the convergence speed of the al-
gorithm. This is illustrated in Fig. 2, where SPSR was run with
a high number of iterations for channel Ka. Setting the modu-
lus too high (or too low) leads to many iterations necessary to
fulfill the data-fidelity constraint (or minimizing the �1 penalty
for components that satisfy the data-fidelity term). For instance,

for values of β = 0.001M (or β = 0.005M) the data-fidelity
constraint is satisfied in the first one thousand iterations, but
the sparsity-penalty term decreases very slowly and has not
converged after 50 000 iterations. Conversely, β = 0.1M (or
β = 0.05M) leads to very sparse approximations that do not sat-
isfy the data-fidelity constraint even after 50 000 iterations. We
chose the value β = 0.01M for all channels, which led to the best
convergence properties among the tested values.

Finally, the number of iterations needs to be set. In addi-
tion to the modulus of β = γ, the convergence speed of the
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Fig. 3. Flux recovery with the proposed approach as a function of the number of iterations. After 13 350 (1350) iterations, the flux estimates
have converged for channel K (W). Note that the fluxes are displayed in logarithmic scales to visualize the convergence speed for both low- and
high-flux sources.

Table 2. Statistics on the recovered flux for each channel for the three approaches and for various flux bands (in mJy).

Flux <1 Jy 1 Jy ≤ Flux < 5 Jy Flux ≥5 Jy

Channel Method Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD

K

FIT-C 114.1 392.9 292.6 112.4 384.9 292.2 67.6 650.71 404.92

FIT-L 114.8 380.9 286.0 96.0 471.3 298.7 90.0 518.5 317.9

SPSR 41.5 334.8 260.4 47.1 362.6 272.6 –16.9 364.7 247.0

Ka

FIT-C 70.8 357.4 283.0 50.4 392.6 312.7 –26.9 548.1 356.3

FIT-L 69.4 349.4 281.1 38.7 468.4 313.7 30.6 508.5 378.9

SPSR 25.7 259.0 205.8 6.6 292.5 220.9 1.3 369.5 289.0

Q

FIT-C 36.8 319.9 259.0 29.5 356.0 284.8 –38.1 380.5 292.2

FIT-L 38.5 332.2 258.9 10.8 400.8 290.0 13.0 310.10 249.2

SPSR 11.0 217.3 171.4 10.2 254.6 184.7 21.9 242.8 192.8

V

FIT-C –9.1 287.7 235.7 34.7 296.5 241.5 37.0 281.5 200.1

FIT-L –0.55 321.3 240.4 16.0 353.8 245.0 42.6 304.5 214.4

SPSR –1.41 263.9 208.9 13.8 265.2 208.2 1.8 231.3 167.5

W

FIT-C –56.1 281.7 224.2 18.0 266.8 207.6 2.6 346.8 254.3

FIT-L –54.7 280.1 222.8 20.0 265.9 206.9 13.6 283.6 224.4

SPSR –62.0 296.5 229.6 30.4 273.8 208.6 11.7 257.6 202.4

Notes. The best results are displayed in bold.

algorithm depends on the conditioning of the beam matrix B.
The number of iterations therefore varies from channel to chan-
nel, requiring more iterations for lower resolution. The flux esti-
mates at several stages of the proposed algorithm are illustrated
in Fig. 3 for channels K and W, which correspond to the low-
est and highest resolution and to the highest and lowest noise,
respectively. In practice, 13 350 iterations were chosen for chan-
nel K and 9750 iterations for all other channels as a compromise
between processing time and level of convergence. We also en-
sured that the statistics measured were marginally changing with
respect to the relative difference between methods when reach-
ing this number of iterations. Generally, the large number of iter-
ations in both cases is caused by the absence of regularity in the
inverse problem of Eq. (2), which leads to first-order algorithms

such as SPSR. To give a pratical example of the computational
cost of SPSR, 9750 iterations for the channel Ka represent∼80 h
of processing in a cluster with 20 Intel Xeon 2 GHz proces-
sors, essentially spent in the spherical harmonic and wavelet
transforms.

3.2.3. Flux recovery and point-source subtraction

We compared point-source flux recovery in different flux bands
for the FIT-C, FIT-L, and SPSR approaches in the simulated
channels. The bias, root-mean square errors (RMSE), and mean
absolute deviation (MAD) (less sensitive to outliers) are dis-
played in Table 2. For all methods, the RMSE or MAD varies
from channels K to W as a consequence of increasing noise
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Fig. 4. Statistics on error flux using the various approaches for the five channels for five different flux bands (flux <500 mJy, 500 mJy ≤ flux <1 Jy,
1 mJy ≤ flux <2 Jy, 2 Jy ≤ flux <5 Jy, flux ≥5 Jy). Quartiles and extreme values are plotted.

Fig. 5. Point-source residuals with noise for the various approaches in a projected region of channel Q, illustrating the lower bias obtained for
this channel with the proposed approach. These maps were obtained by subtracting the diffuse component from the point-source-subtracted map.
In the first two maps, three negative regions can be visually detected because of the overfitting of the point-source flux in the FIT-C and FIT-L
approaches, which is different from the SPSR residual map. This does not display biases that are significantly higher than the noise level.

contribution and decreasing background fluctuations at the scale
of the point sources, as previously observed in Wright et al.
(2009). When the noise contribution to flux uncertainty is pre-
dominant (in channel W), FIT-C and FIT-L have generally lower
biases, RMSE, and MAD than SPSR. Note, however, that the
improvement is very small (at most 6% difference in RMSE,
bottom row of Table 2). Therefore, it seems that in the noise-
dominating case, fitting a few local parameters for the diffuse
background, as in FIT-C and FIT-L, gives slightly more robust
flux estimates than SPSR, where many more global parameters
are estimated. The situation is the opposite when background
fluctuations are the foremost contribution as in the first four
channels: SPSR now leads to much lower RMSE and MAD
than FIT-C or FIT-L, as well as lower biases (for the first three
channels). In particular, point sources with flux lower than 1 Jy

are better recovered by about 12%, 26%, 32% and 8% in terms
of RMSE for channels K to V, with much lower biases for the
first three channels (more than 70 mJy better for channel K, for
instance).

Statistics on the distribution of the error in the different flux
bands are displayed in Fig. 4. In these box-plots both quartiles
(three horizontal bars making the “box”) and extreme values (up-
per and lower horizontal bars) are represented for the various
approaches and the different channels. First, the same conclu-
sions can be drawn as in Table 1 by focusing on the interquartile
range and median for the different channels: SPSR outperforms
FIT-C and FIT-L, except for channel W, where results are only
slightly degraded. In particular, Fig. 5 illustrates that the bias in
the lowest frequency channels is higher than the noise level in
the residual maps for FIT-C and FIT-L, but not for SPSR.
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Fig. 6. Projected regions with large discrepancy between the proposed approach and the local low-order polynomial background modelling.
Images correspond to the simulated data, the diffuse component with noise, and the point-source-subtracted data with the three approaches. SPSR
in this case allows a better subtraction of the point-source contribution because the local variations in the background are not captured by the other
two approaches.

These box-plots also illustrate that the proposed approach
leads to lower extreme errors, while FIT-L or FIT-C can both
fail with large flux errors. An example of such an incorrect flux-
fitting is illustrated in Fig. 6 for channel K, where FIT-C and
FIT-L lead to overestimated flux in a complex background re-
gion that cannot be accurately modelled with low-order polyno-
mials. In contrast, SPSR successfully estimates the background
and therefore gives a better flux estimate.

3.3. Flux recovery with internal multichannel catalogue
derived from simulations

The noise-free catalogue is useful to assess whether the more
flexible background model in SPSR indeed better captures the
background fluctuation than low-order local polynomials, in par-
ticular, to recover low-flux sources. However, in practice detec-
tion is performed internally for each channel, and a catalogue
is built by combining these multichannel detections. The flux-
recovery problem is slightly different in this case, since the cata-
logue is first subject to Eddington bias (excess detection in posi-
tive fluctuations of the background, which translates into higher
biases in estimating the flux and impacts low-flux sources), and
then the task is also to recover as accurately as possible the spec-
tra of sources that can be lower than the detection level in some
of the channels (e.g. in higher frequencies for radio sources).

3.3.1. Catalogue generation

As was previously done for the WMAP official point-source cat-
alogue, we therefore constructed a catalogue by first applying

a matched filter to each channel, taking into account second-
order statistics of CMB and noise in spherical harmonic space
(Bennett et al. 2013; Tegmark & de Oliveira-Costa 1998).
Sources were considered detected if the value in the filtered
map was higher than 5σ of the filtered background (com-
puted locally). This resulted in 689 (442, 415, 248, and 172)
sources for channel K (Ka, Q, V, and W). Compared with
the results obtained in Table 1, a sub-population of the pre-
vious catalogue is essentially considered at this step: sources
with sufficiently high local contrast to the diffuse background
that they can be internally detected. After merging of the
sources, the final simulation-derived multichannel catalogue
contained 724 sources, and we processed these in the same way
as desribed in the previous paragraph. However, after merging,
the sources considered for a channel with this approach are no
longer a sub-population of the previous catalogue: sources de-
tected in other bands are considered as well.

3.3.2. Flux recovery and point-source subtraction

The same working conditions were set for SPSR as in the
previous simulations. The statistics obtained as in Table 2 are
presented in Table 3. The values reported for medium- or high-
flux point sources in the first channels are similar if not identical,
because this sub-population did not change from the previous
catalogue. However, significant discrepancies from Table 2 can
be noted. First, the biases have increased for all methods for low-
flux sources, an indication for Eddington bias. Note, however,
that the bias has increased less for SPSR than for FIT-C or FIT-L
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Table 3. Statistics on the recovered flux for each channel using the multichannel internal catalogue for the three approaches and for various flux
bands (in mJy).

Flux <1 Jy 1 Jy ≤ Flux < 5 Jy Flux ≥5 Jy

Channel Method Bias RMSE MAD Bias RMSE MAD Bias RMSE MAD

K

FIT-C 171.3 437.7 311.7 112.8 385.1 292.9 68.4 650.6 404.2

FIT-L 168.5 422.6 305.3 97.5 472.6 300.1 90.0 518.5 317.5

SPSR 70.3 337.6 257.7 46.6 364.3 274.1 0.4 380.1 275.0

Ka

FIT-C 115.5 381.0 296.0 50.4 392.6 312.7 –26.9 548.1 356.3

FIT-L 115.5 371.7 296.7 38.7 468.4 313.7 30.6 508.5 378.9

SPSR 49.3 268.2 210.7 6.6 293.9 221.9 11.9 376.0 289.2

Q

FIT-C 75.4 334.1 267.1 30.0 355.9 284.4 –26.2 373.7 280.3

FIT-L 79.1 354.7 269.5 11.5 400.6 289.3 22.6 305.6 239.6

SPSR 30.4 227.2 177.1 6.9 255.5 185.1 22.4 236.9 191.5

V

FIT-C 27.3 286.4 228.4 37.9 300.0 243.5 21.1 248.2 178.0

FIT-L 32.8 314.8 230.8 16.3 353.7 245.3 53.5 312.8 224.0

SPSR 17.6 259.6 202.8 7.1 274.0 211.8 –23.3 230.1 172.8

W

FIT-C 33.8 289.1 201.5 –11.0 357.2 230.0 4.4 346.1 254.3

FIT-L 32.3 286.6 200.7 –10.7 353.8 227.2 13.7 285.6 225.4

SPSR 30.2 277.7 210.3 10.3 302.8 220.3 –8.3 253.7 198.1

Notes. Again, the best results are displayed in bold.

Fig. 7. Statistics on error flux computed from internal catalogue and using the various approaches for the five channels for five different flux bands
(flux <500 mJy, 500 mJy ≤ flux <1 Jy, 1 mJy ≤ flux <2 Jy, 2 Jy ≤ flux <5 Jy, flux ≥ 5 Jy). Quartiles and extreme values are plotted.

in absolute values, leading to even larger differences between the
methods (SPSR leads to the lowest biases for all channels, with
a bias now up to more than 100 mJy lower for sources lower
than 1 Jy in channel K). This is also true for the RMSE of these
low-flux sources, which essentially did not change for SPSR and
was slightly degraded for FIT-C or FIT-L. Note that most of the
low-flux sources in the catalogue are not detected in the W band,

which might explain why SPSR gave better RMSE for medium-
flux sources than FIT-C or FIT-L, while this was not the case in
the noise-limited catalogue. The proposed approach in this mul-
tichannel scenario therefore leads to the lowest errors, even for
flux estimated in channel W.

The distribution of errors is reported in Fig. 7. SPSR seems
as robust to large flux errors in the internal catalogue as in the
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Fig. 8. Projected region in channel V of the WMAP 9-year data showing the largest discrepancy between SPSR and FIT-C or FIT-L estimated
fluxes for two fitted sources. Images correspond to the WMAP data, the point-source-subtracted data with FIT-C, FIT-L, and SPSR approaches,
and point-source-estimated data using SPSR. The differences here between the approaches are a fraction of noise and the diffuse component levels.

noise-limited case with respect to FIT-C or FIT-L. Note the dis-
tribution of errors for channel W for low-flux sources (lower
than 500 mJy), which were indeed not detected in this chan-
nel (compare with Fig. 4). Large flux errors are observed for all
methods, but are less pronounced for SPSR than for FIT-C or
FIT-L.

As a summary for the internal catalogue, the most striking
difference compared with the noise-limited catalogue occurs in
low-flux sources that are now subject to Eddington bias, whereas
for high-flux the results are essentially similar. Better relative
performance in this situation in terms of bias and RMSE or
MAD may be attributed to two different phenomena: the pro-
posed approach would be less affected by Eddington bias and/or
lead to better estimates for sources not detected in the band.

4. WMAP 9-year processing

The proposed approach was then applied to subtract point-source
emission from WMAP 9-year data. The maps were processed as
follows: the differential assemblies data deconvolved with the
asymmetrical part of the beam were averaged to obtain 9-year
frequency band data (Bennett et al. 2013). The beam considered
for each channel was obtained as the mean over all axisymetric
beams provided for the differential assemblies at that frequency.
A catalogue was then built by merging the two catalogues pro-
vided by the WMAP collaboration, resulting in 628 considered
point sources.

The same processing (with the same working conditions)
as for the simulations was then performed for both SPSR and

the local low-order polynomial minimization. In the absence of
ground truth, it is obviously difficult to quantitatively assess the
relative performance of the algorithm as in the simulation. Only
extreme cases that visually illustrate the performance of the ap-
proaches are therefore presented in Figs. 8 and 9.

Figure 8 represents a patch centred on the source with the
strongest difference between SPSR and FIT-L for channel V.
Because the difference between the approaches is only a frac-
tion of the background fluctuations at larger scales than the
sources, visually no difference can be observed for that chan-
nel. However, Fig. 9 illustrates an extreme case for channel K,
suggesting some over-estimation of the flux in a complex back-
ground scenario with FIT-C and FIT-L, but not with SPSR, as
reported in Fig. 6 in the simulation.

5. Reproducible research

In the spirit of participating in reproducible research, we make
all codes and resulting products that constitute the main results
of this paper public. In Table 4 we list all products that are made
freely available as a result of this paper, and which are available
at http://www.cosmostat.org/Products.

For the five WMAP 9-year channels, SPSR was applied us-
ing the following command line in the open source package
iSAP software1:
>map_psfree =

mrs_sparse_pointsource_removal(Map, GalMask,
BeamInfo, StdMap, Niter=Niter).

1 http://jstarck.free.fr/isap.html

A100, page 10 of 12

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201322706&pdf_id=8
http://www.cosmostat.org/Products
http://jstarck.free.fr/isap.html


F. C. Sureau et al.: Sparse point-source removal for full-sky CMB experiments: application to WMAP 9-year data

Fig. 9. Projected region in WMAP 9-year data showing the large discrepancy in between SPSR and FIT-C or FIT-L estimated fluxes for two
fitted sources. Images correspond to the WMAP data, the point-source-subtracted data with FIT-C, FIT-L, and SPSR approaches. The positive ring
around two the fitted regions as well as a negative peak inside these regions seem to indicate that FIT-C or FIT-L are here over-fitting. The same
phenomenon is absent for SPSR.

Table 4. List of products made available in this paper in the spirit of reproducible research, available at http://www.cosmostat.org/Products.

Product Name Description
WMAP 9-year products:
WMAP9_data_chanK_ptsub.fits SPSR point-source-free WMAP 9-year K channel
WMAP9_data_chanKa_ptsub.fits SPSR point-source-free WMAP 9-year Ka channel
WMAP9_data_chanQ_ptsub.fits SPSR point-source-free WMAP 9-year Q channel
WMAP9_data_chanV_ptsub.fits SPSR point-source-free WMAP 9-year V channel
WMAP9_data_chanW_ptsub.fits SPSR point-source-free WMAP 9-year W channel
Software products (IDL):
mrs_sparse_pointsource_removal.pro removes point sources from a spherical map

(requires HealPix and iSAP).
WMAP9_DATA_routines.pro routines to obtain the WMAP 9-year maps

and beams required by SPSR (requires HealPix and iSAP).
wmap9_remove_point_sources.pro script that applies SPSR to all WMAP 9-year channels

(requires HealPix and iSAP).

For Ka to W maps, Niter was fixed to 9750, and to 13 350
for the K channel. Galmask is the WMAP point-source cata-
logue mask2, StdMap is the map containing the standard devi-
ation of the noise per pixel, and BeamInfo is a structure con-
taining the WMAP 9-year beam at each point-source position.
The code WMAP9_DATA_routines.pro can be used to obtain

2 http://lambda.gsfc.nasa.gov/data/map/dr5/ancillary/
masks/wmap_point_source_catalog_mask_r9_9yr_v5.fits

the required maps and beams and to call the mrs_sparse_
pointsource_removal routine to derive the final products, as
illustrated in the script wmap9_remove_point_sources.pro.

6. Conclusions

We proposed a new approach for detected point-source flux es-
timation and subtraction. Compared with the standard approach,
which estimates point-source flux according to local low-order
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polynomial models of the background, the proposed technique
is based on a global modelling of the background, which is as-
sumed to be sparse in spherical harmonics to better capture its
fluctuations. Bright point-source emissions decrease the sparsity
of this background, which is the key phenomenon driving the
separation process. An algorithm was adapted from recent con-
vex optimization developments to solve the corresponding in-
verse problem.

We evaluated the proposed technique as well as techniques
used in WMAP and Planck collaboration on realistic simulations
of the WMAP microwave sky. In a noise-limited catalogue, ex-
cept for channel W, where noise leads to faint differences be-
tween the estimates and a slightly poorer estimate for the pro-
posed approach for low-flux sources (about 6%), our approach
out-performs local polynomial fitting. In the internally derived
catalogue, SPSR also consistently leads to

– the lowest biases in the first three channels (up to 100 mJy
lower bias for sources <1 Jy in channel K)

– the lowest RMSE in all channels and all flux bands (with
values decreased by at least 5%, 25%, 28%,7%, and 3% and
up to 35%, 28%, 32%, 9%, and 14% for channels K to W)

– more robust point-source subtraction in complex back-
ground, as illustrated in specific examples

– consequently better multichannel estimates of the point-
source fluxes, which is useful to estimate more accurate
spectra.

This technique was finally applied to the WMAP 9-year data
deconvolved with the beam asymmetries and the resulting point-
source-subtracted maps are available on-line. We focused in this
paper on point sources. Even if the proposed model for extended
compact sources is rather simple in SPSR, it is sufficient to de-
rive a background accurate enough to improve on point-source
flux recovery compared with FIT-C or FIT-L. However, better
modelling of the extended compact sources is still required if
they need be subtracted from the data. We left this task for fu-
ture work.
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