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We discuss the algebra and the interpretation of the anomalous Zeeman effect and the spin-
orbit coupling within the Dirac theory. Whereas the algebra for the anomalous Zeeman effect is
impeccable and therefore in excellent agreement with experiment, the physical interpretation of
that algebra uses images that are based on macroscopic intuition but do not correspond to the
meaning of this algebra. The interpretation violates the Lorentz symmetry. We therefore reconsider
the interpretation to see if we can render it consistent also with the symmetry. The results confirm
clearly that the traditional physical interpretation of the anomalous Zeeman effect is not correct. We
give an alternative intuitive description of the meaning of this effect, which respects the symmetry
and is exact. It can be summarized by stating that a magnetic field makes any charged particle
spin. This is even true for charged particles “without spin”. Particles “with spin” acquire additional
spin in a magnetic field. This additional spin must be combined algebraically with the pre-existing
spin. We show also that the traditional discussion about magnetic monopoles confuses two issues,
viz. the symmetry of the Maxwell equations and the quantization of charge. These two issues define
each a different concept of magnetic monopole. They cannot be merged together into a unique all-
encompassing issue. We also generalize the minimal substitution for a charged particle, and provide
some intuition for the magnetic vector potential. We finally explore the algebra of the spin-orbit
coupling, which turns out to be badly wrong. The traditional theory that is claimed to reproduce the
Thomas half is based on a number of errors. An error-free application of the Dirac theory cannot
account for the Thomas precession, because it only accounts for the instantaneous local boosts,
not for the rotational component of the Lorentz transformation. This runs contrary to established
beliefs, but can be understood in terms of the Berry phase on a path through the Lorentz group
manifold. These results clearly reveal the limitations of the prevailing working philosophy to “shut
up and calculate”.

I. INTRODUCTION

When Uhlenbeck and Goudsmit presented the concept of spin, Lorentz pointed out that the idea could not account
for the magnetic dipole moment of the electron. Even if one were to put all the charge of a spherical electron
on its equator, the current produced by the spinning motion would not be enough to match the magnitude of the
anomalous Zeeman splitting observed. The algebra of the Dirac theory accounts very well for the measured values of
this anomalous Zeeman splitting, but in the present paper we point out that the traditional physical interpretation
of the mathematical formalism in terms of a magnetic dipole moment associated with the spin is at variance with the
meaning of the algebra itself as it violates the built-in Lorentz symmetry. It interprets a vector as a scalar, which
is a transgression that is similar to interpreting a tensor as a vector. The importance of such distinctions based on
symmetry is well known. In relativistic quantum mechanics one discusses e.g. that the only bilinear Lorentz covariants
that exist are one-component scalars, four-component vectors, six-component tensors, four-component axial vectors
and one-component pseudo-scalars. Confusing a covariant of one type with a covariant of an other type is violating
its symmetry. Using group theory we will propose an approach that respects the symmetry.
Section II contains an introduction to some aspects of the representation SU(2) for the rotation group and of the

Dirac representation for the homogeneous Lorentz group, which will be used in the paper. This is a subject matter
that is considered to be “well known”. But we cover it from a very different, geometrical perspective than in its
traditional treatment given in textbooks, which is far more abstract and algebraic. The insight gained from this
different perspective will permit us to discern the error in the interpretation of the anomalous g-factor we mentioned
above, and which we discuss in Subsection VIA. Apparently this problem has escaped attention for more than 80
years, suggesting that the group theory is not as well understood as routinely assumed.
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II. GROUP REPRESENTATION THEORY

A. SU(2) and the rotations of R3

1. Principal idea

The general form of a SU(2) rotation matrix is:

R =

�
α0 −α∗

1
α1 α∗

0

�
, with detR = α0α

∗
0 + α1α

∗
1 = 1. (1)

These matrices work on spinors:

ξ =

�
ξ0

ξ1

�
, with ξ0ξ

∗
0 + ξ1ξ

∗
1 = 1, (2)

according to:

ξ� = Rξ. (3)

The natural question is of course what the meaning of such a spinor is. In SO(3), the 3 × 3 rotation matrices of R3

are working on 3 × 1 matrices that represent vectors of R3, but in SU(2) the situation is different. Here the 2 × 1
matrices, i.e. the spinors, represent rotations. The idea can be illustrated by considering the group multiplication
table for an arbitrary group (G, ◦):

◦ g1 g2 g3 · · · gj · · ·
g1 g1 ◦ g1 g1 ◦ g2 g1 ◦ g3 · · · g1 ◦ gj · · ·
g2 g2 ◦ g1 g2 ◦ g2 g2 ◦ g3 · · · g2 ◦ gj · · ·
...

...
...

...
...

gk gk ◦ g1 gk ◦ g2 gk ◦ g3 · · · gk ◦ gj · · ·
...

...
...

...
...

← gk◦,

(4)

which illustrates that the group element gk defines a function gk◦ : G → G; gj → gk ◦ gj . The notation gk◦ for
this function is somewhat arcane, but it has the advantage that the way it acts on a group element is obtained
by mere juxtaposition of the symbols. In the specific case of the rotation group, we define then a rotation gk no
longer by all its function values gk(r), ∀r ∈ R3, but by all function values gk ◦ gj , ∀gj ∈ G. More rigorously, an
arbitrary group element gk ∈ G is identified with the function Tgk ∈ F (G,G) that maps G to G according to
Tgk : gj ∈ G → g�j = Tgk(gj) = gk ◦ gj , where Tgk is just a more standard notation for the function gk◦ (We use here
F (S1, S2) as a general notation for the set of functions from S1 to S2). This identification implies that Tgk ∈ F (G,G)
represents gk ∈ G. Let us call this representation Tgk of gk the automorphism representation. The non-standard
notation gk◦ permits writing gk◦ : gj ∈ G → g�j = gk ◦ gj and grasping more easily the idea of interpreting a rotation
as a function that works on other rotations rather than on vectors. If we represent gj by the SU(2) matrix X, gk by
the SU(2) matrix R, and g�j by the SU(2) matrix X� then we have:

g�j = gk ◦ gj g�j = Tgk ( gj )�

�

� or

�

�

�
X� = R X X� = R X

(5)

We see thus that we can represent Tgk also by R: In other words, the SU(2) matrices represent from this viewpoint
two types of mathematical objects, viz. group elements gj ∈ G and group automorphisms Tgk ∈ F (G,G). This
translates the fact that the automorphism group (F (G,G),◦ ) (where ◦ is the composition of functions) of a group
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(G, ◦), is isomorphic to (G, ◦) under the mapping T ∈ F (G,F (G,G)) : gk → Tgk . In SU(2) it is possible to remove
this ambiguity between the representations of group elements and automorphisms by rewriting the second diagram
in Eq. 5 as:

gk ◦ gj = Tgk (gj)�

�

�
ξ� = R ξ

by using the substitution:

X� = R X�
�

�
ξ� = R ξ

, (6)

where we recover Eq. 3 by defining the spinor ξ as just a short-hand for the SU(2) rotation matrix:

X =

�
ξ0 −ξ∗1
ξ1 ξ∗0

�
, with ξ0ξ

∗
0 + ξ1ξ

∗
1 = 1, (7)

by taking its first column. In fact, all the information of the matrix X is already given by its first column. When we
know the first column we know everything we need to know to write the second column. Moreover the first column
of RX will be Rξ. If we note the second column of X as η, then the second column of RX will be Rη and it
will be possible to derive Rη from Rξ in the same way as we could derive η from ξ, viz. (Rη)0 = −((Rξ)1)∗ and
(Rη)1 = ((Rξ)0)∗, as the SU(2) matrices constitute a group. A spinor ξ in SU(2) can thus be considered as a set of
parameters that define a rotation, i.e. a set of coordinates for a rotation. This rises the question how the information
about the rotations occurs inside the parameter set ξ.

2. Constructing the representation

The answer is that it is done by using the fact that any rotation can be obtained as a product of two spatial
reflections in R3. The reflections with respect to the planes through the origin of R3 generate a group of rotations and
reversals, of which the rotation group is a subgroup. It is easy to figure out how we write a 2 × 2 reflection matrix,
and once we know the matrices for the reflections we can calculate the matrices for the rotations and reversals by
making products. A reflection A is defined by a unit vector a that is normal to its reflection plane. The coordinates
of a can be expected to occur as parameters in the 2× 2 matrix A that defines the reflection A but we do not know
where. We therefore write the reflection matrix A heuristically as A = axσx + ayσy + azσz. The matrix σx will tell
us where and with which coefficients ax appears in A. The same is true, mutatis mutandis for σy and σz. To find
the matrices σx, σy, σz, we express that A2 = 1. We find that we can meet this requirement when the matrices σj

satisfy the conditions σjσk + σkσj = 2δjk1. In other words, identifying them with the Pauli matrices will give us
the representation searched for. By expressing a rotation as the product of two reflections, one can then derive the
well-known Rodrigues formula:

R(n,ϕ) = cos(ϕ/2)1− ı sin(ϕ/2) [n·σ ], (8)

for a rotation by an angle ϕ around an axis defined by the unit vector n. To derive this result it suffices to consider
two reflections A (with matrix [a·σ]) and B (with matrix [b·σ]) whose planes contain n, and which have an angle
ϕ/2 between them, and to use the algebraic identity [b·σ] [a·σ] = (b · a)1 + ı(b ∧ a)·σ. There is an infinite set of
such pairs of planes, and which precise pair one chooses from this set does not matter.

3. A parallel formalism for vectors

By construction, this representation contains for the moment only group elements. Of course, it would be convenient
if we were also able to calculate the action of the group elements on vectors. This can be done by developing a parallel
formalism for the matrices A, wherein A takes a different meaning and obeys a different kind of algebra. As the
matrix A contains the components of the vector a we can conceive the idea of taking the matrix A also as the
representation of the unit vector a. This idea can be generalized to a vector v of arbitrary length, which is then
represented by V = vxσx + vyσy + vzσz. We have then V2 = −(detV)1 = v21. This idea that within SU(2) a vector
v ∈ R3 is represented by a matrix v·σ according to the isomorphism:
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v = vxex + vyey + vzez ←→ vxσx + vyσy + vzσz =

�
vz vx − ıvy

vx + ıvy −vz

�
=̂v·σ. (9)

was introduced by Cartan [1]. From V2 = v21 it follows that: V1V2 + V2V1 = 2 (v1·v2)1. To find out how the
group acts on these representations of vectors, it suffices to observe that the reflection A, defined by the unit vector
a, transforms v into A(v) = v − 2(v · a)a. Expressed in the matrices this yields: V → −AVA. We see that this
transformation law for vectors v is quadratic in A in contrast with the transformation law for group elements g,
which is linear: G → AG. Vectors transform thus quadratically as rank-2 tensor products of spinors, whereas spinors
transform linearly.

Both in the representation matrices A = a·σ for reflections A and V = v·σ for vectors v, σx, σy and σz are thus
the Pauli matrices, and the symbol =̂ serves to flag the introduction of a (rather confusing) stenographic notation
σ = (σx,σy,σz). The Pauli matrices are thus the images of the basis vectors ex, ey, ez in the isomorphism (ej ↔ σj)
defined by Eq. 9. The drawback of the convenient convention to use the shorthand σ for (σx,σy,σz) is that it may
create the misleading impression that v·σ represents a scalar, which it does not. It just represents the counterpart in
the isomorphism of what would be a pedantic notation (vx, vy, vz)·(ex, ey, ez) for vxex + vyey + vzez = v.

The reader will notice that the definition V = v·σ with V2 = v21 is analogous to Dirac’s way of introducing
the gamma matrices to write the energy-momentum four-vector as Eγt + cp·γ and postulating (Eγt + cp·γ)2 =
(E2 − c2p2)1. In other words, it is the metric that defines the whole formalism, because we are considering groups
of metric-conserving transformations (as the definition of a geometry in the philosophy of Felix Klein’s Erlangen
program). For more information about the calculus on the rotation and reversal matrices, we refer the reader to
reference [2]. Let us just mention that as a reflection A works on a vector v according to V → −AVA = −AVA−1, a
rotation R = BA will work on it according to V → BAVAB = RVR−1 = RVR†. The identity R−1 = R† explains
why we end up with SU(2).
In summary, there are two parallel formalisms in SU(2), one for the vectors and one for the group elements. In both

formalisms a matrix V = v·σ can occur but with different meanings. In a formalism for group elements, v fulfills the
rôle of the unit vector a that defines the reflection A, such that we must have |v| = 1, and then the reflection matrix
V = A transforms according to: A → GA under a group element g with matrix representation G. The new group
element represented by GA will then no longer be a reflection that can be associated with a unit vector like it was
the case for A. In a formalism of vectors, |v| can be different from 1 and the matrix V (that represents now a vector)
transforms according to: V → GVG−1 = GVG†. Here GVG† can be associated again with a vector.

4. Other approaches

The approach outlined above is non-standard. The standard treatment follows in general a linearization procedure.
One starts the development by establishing the quadratic formalism V → −AVA and V → RVR† for vectors. The
way back to a linear formalism X → RX (for group elements) or ξ → Rξ (for their spinors) is then tricky and
shrouded in mystery. It amounts so to say to defining a spinor as a kind of a square root of an isotropic vector.
This runs for instance as follows. One first considers a triad of normalized, mutually orthogonal basis vectors

(ex, ey, ez). One then observes that (e�x, e
�
y, e

�
z) = (R(ex), R(ey), R(ez)) defines R unambiguously. There is a one-

to-one correspondence between the rotated triads (e�x, e
�
y, e

�
z) and the rotations R that produced them by acting on

the chosen reference triad (ex, ey, ez). In a second stage, one considers that there is also a one-to-one correspondence
between isotropic vectors e�x + ıe�y and triads (e�x, e

�
y, e

�
z). By separating the real and imaginary parts in e�x + ıe�y one

can reconstruct e�x and e�y, while e�z = e�x ∧ e�y.
The isotropic vector is thus a parameter set that defines a rotation in a one-to-one fashion. It is thus a set of

complex coordinates for a rotation. The coordinates of the isotropic vector (x�, y�, z�) = e�x+ ıe�y are thus not position
coordinates but rotation coordinates. They do not define a position in R3 because they were not introduced to do
so. The only real point (0, 0, 0) ∈ R3 that belongs to the isotropic cone and could define a position does not define
a triad. The complex coordinates define nevertheless an object in real Euclidean space, viz. the triad. Therefore
spinors, which (as we will see) represent the information about these isotropic vectors and the corresponding triads,
do turn in Euclidean space, despite the widespread opinion that they should be considered as defined in some abstract
internal space like in the example of isospin [3][20].

As e�x + ıe�y is a vector it transforms according to the rule V → RVR†. One can then discover spinors by noting
that det [ (e�x + ıe�y)·σ ] = 0 because (e�x + ıe�y)

2 = 0. The rows and columns of [ (e�x + ıe�y)·σ ] = 0 must therefore be
proportional. This permits us to write:
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[ (e�x + ıe�y)·σ ] =
√
2

�
ξ�0
ξ�1

�
⊗ (−ξ

�
1 ξ

�
0)

√
2, (10)

where

�
ξ�0
ξ�1

�
= R

�
ξ0

ξ1

�
and (−ξ

�
1 ξ

�
0) = (−ξ1 ξ0)R

†
. (11)

The numbers
√
2 in Eq. 10 are introduced to satisfy the normalization condition ξ0ξ

∗
0 + ξ1ξ

∗
1 = 1. This way one

linearizes the quadratic formalism V → RVR† for vectors in terms of a linear formalism ξ → Rξ for spinors. This
is then analogous to the way Dirac linearized the Klein-Gordon equation. The approach enhances our understanding
of the formalism, as it permits us to see how the information about the rotated basis that defines the rotation is
hidden inside the spinor. But by using it as the starting point for deriving the formalism, a spinor in SU(2) remains
a mysterious object, a kind of square root of an isotropic vector, while the essential point, that it is just a rotation,
remains hidden. It is conceptually much easier to understand the idea that a vector is a tensor quantity of rank 2
in terms of spinors according to our approach, than to grasp the idea that a spinor would be a kind of square root
of an isotropic vector, according to the standard approach. There are several other instances where the standard
approach keeps the reader at bay in puzzlement on a sidetrack. This renders the presentation abstract and purely
algebraic, while the simple underlying geometrical ideas are lost. This unsatisfactory situation is just copied into
quantum mechanics, which relies on the group theory. As we will see, in quantum mechanics we pay cash for the loss
of geometrical insight that results from using the group theory as a black box of abstract algebra. We may mention
that there is yet a third approach to spinors, based on the stereographic projection. As discussed in reference [2], this
derivation also tends to conceal the geometrical ideas by installing a confusion between spinors and vectors, as it may
make the reader believe that the information content of a spinor would be that of a position vector of a point of the
unit sphere.

B. The homogeneous Lorentz group

Also here the basic idea is that a spinor should be a set of coordinates for a group element. The conditions the
analogues of the Pauli matrices will have to satisfy are now γµγν +γνγµ = 2gµν1. There is no fourth 2×2 matrix that
would anti-commute with all the Pauli matrices and therefore could be used to represent all reflections in Minkowski
space-time and to generate in a second stage all Lorentz transformations. This problem can be overcome in the 4× 4
representation based on the Dirac matrices, where aµγ

µ represents the four-vector (at,a) and γt �= 1. We have then
to postulate (

�
aµγ

µ)2 = a2t − a · a. The simplest representation of the Dirac matrices is the Weyl presentation:

(at,a) ←→
�

at1+ a·σ
at1− a·σ

�

= atγ
t + axγ

x + ayγ
y + azγ

z = aµγ
µ =̂ (at,a)·(γt

,γ). (12)

This representation is much more easy to manipulate than the traditional text book representation, as due to the
block structure of the Weyl representation the formalism reduces to two sets of calculations with 2× 2 matrices. We
can write them as A = at1 + a·σ and A� = at1 − a·σ. These matrices occur as blocks on the secondary diagonal.
They are both matrices that represent four-vectors in a SL(2,C) representation, but in two different types of SL(2,C)
representation. Each of the two vector matrices can be used as starting point to set up a representation SL(2,C)
of the Lorentz group [4]. The matrix A� is obtained from A by the parity transformation a | − a. The SL(2,C)
representations that are working on the vector matrices are tricky. The formalism does no longer permit using a unit
four-vector (at,a) to define a general reflection in SL(2,C) as there is no fourth Pauli matrix to represent reflections
with respect to et. Instead of that at is associated with 1.

The SL(2,C) representations do thus not permit a clear distinction between et and the identity element 1 of the
Lorentz group, which are both represented by 1. This difficulty is removed by the introduction of the gamma matrices
where clearly γt �= 1. Nevertheless, if one contents oneself with describing only true Lorentz transformations which
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are products of an even number of space-time reflections, we can see by following the faith of the matrices within
the Weyl representation that the 2 × 2 formalism builds a representation, whereby the four-vector A = at1 − a·σ
transforms according to A → LAL†, where L† �= L−1. In the other SL(2,C) representation, A� transforms according
to A� → L−1A�L−1†. We see that in the Weyl formalism the 2 × 2 blocks are just sequences where the presence
and absence of the symbol � alternates, e.g. V�

2nV2n−1 · · ·V�
2V1. The algebra in the other block is just given by

inverting the presences and absences of the � symbol. Everything that happens in one 2× 2 block is thus defined by
what happens in the other 2× 2 block, such that we can use the 2× 2 blocks as a shorthand for what happens in the
4× 4 formalism. We may note that V� has the meaning of (vt,−v) in the representation without stars. This justifies
the use we will make of the 2× 2 matrices in the following sections.

It is no longer possible to cram all the information about a general Lorentz transformation that is coded in a
one-to-one fashion within a SL(2,C) matrix into a single 2× 1 spinor like it was the case in SU(2). Fortunately, will
not have to bother about this technicality in this paper. Once again, we refer the reader to reference [2] for more
details about the solution of this problem and the group calculus.

We must finally point out that a representation has always its own internal self-consistent logic, such that there
can be no ground to question any result correctly derived within a given representation by drawing in considerations
from outside the context of that representation.

III. LORENTZ SYMMETRY OF ELECTROMAGNETISM

A. Some simple algebra in SL(2,C)

1. The fields

In view of the facts outlined in Subsection II B, in SL(2,C) the four-gradient ( ∂
∂ct ,∇) is represented by ∂

∂ct1−∇·σ.
Analogously, the four-potential (V, cA) is represented by V 1 − cA·σ. We can now check what will happen if we
“multiply” these two matrices. Using the identity [a·σ ] [b·σ ] = (a · b)1+ ı [ (a ∧ b)·σ ] we find:

[
∂

∂ct
1−∇·σ ] [

V

c
1−A·σ ] =

[
1

c2

∂V

∂t
+∇ ·A ]1

� �� �
− 1

c
[ (∇V +

∂A

∂t
)·σ ]

� �� �
+ ı[ (∇∧A)·σ ]� �� �

Lorentz gauge 1
cE·σ ıB·σ

(13)

With the Lorentz gauge condition 1
c2

∂V
∂t +∇ ·A = 0, we obtain thus:

[
∂

∂ct
1−∇·σ ] [

V

c
1−A·σ ] =

1

c
[ (E+ ıcB)·σ ]. (14)

We recover thus automatically the expressions for the Lorentz gauge condition, and for the electric and magnetic fields
in terms of the potentials. The term E + ıcB is the electromagnetic field tensor. The presence of ı in an expression
can be seen to signal that it is a pseudo-vector or a pseudo-scalar[21]. The vector E and pseudo-vector B are the
symmetric and anti-symmetric three-component parts of the six-component field tensor. We see thus that symmetry
is enough to recover all the definitions. It summarizes in a sense the reason why we need the theory of relativity by
showing that Lorentz symmetry is the symmetry that is compatible with the structure of the Maxwell equations. A
whole text book development is here elegantly summarized in one line of calculation. With this formalism, one can
also write the four Maxwell equations jointly in one, very simple, matrix equation. It seems that this approach was
first discovered by Majorana, but most of the time the presentation is less concise than here.

2. The interactions

The charge-current four-vector (ρ, j/c) for a moving point charge q with velocity v is (up to the Lorentz factor
γ = (1 − v2/c2)−1/2) given by (q,−qv/c), which is represented by q1 − q

cv·σ. Let us now couple this quantity with
the electromagnetic-field tensor and calculate[22]:
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[ q1− q

c
v·σ ] [ (E+ ıcB)·σ ]. (15)

We obtain then:

− [
q

c
v ·E ]1+ q(E+ v ∧B)·σ − ı [ qv ·B ]1+ ıcq [B·σ ]− ı

q

c
[ (v ∧E)·σ ] (16)

The whole paper is devoted to the meaning and the consequences of this single equation. Again, the presence of
ı signals here pseudo-scalars and pseudo-vectors, while the real terms correspond to scalars and vectors, as can be
checked from the behaviour of the various terms under a parity transformation. We recognize here the Lorentz force
F = q(E + v ∧ B) and the power-related term qE · v/c. In fact, the term F · v = qE · v represents the power
corresponding to the work F·dr done against the force F during an infinitesimal displacement dr over a time interval
dt. It is well known that the four-vector generalization of the force three-vector F is (F · v/c,F), which contains this
additional power-related term (up to a constant c). As the term qE · v is here divided by c, the result has again the
dimension of a force. We will call such terms therefore scalar force terms. The other terms in Eq. 16 are all imaginary
and they may at first sight look less familiar.

IV. MAGNETIC MONOPOLES

A. Symmetry issue

There is a surprise in Eq. 16 in that it is seen to exhibit a complete symmetry between the electric and magnetic
force terms. Each of the imaginary terms in Eq. 16 corresponds to a term that is a relativistic counterpart of a term
in (F · v/c,F) obtained by using the substitution E → cB, cB → −E. The addition of these terms is necessary to
obtain full relativistic symmetry for the total result, just like adding ıcB to E is necessary to obtain an expression
with full relativistic symmetry. Such a perfect symmetry in the forces is something that is believed to occur only
if magnetic monopoles were to exist. In such an overall symmetry, the magnetic monopole would be the symmetric
counterpart of the electric monopole. It will also not have escaped the attention of the reader that the imaginary
three-component quantities that occur in Eq. 16 describe exactly the force exerted by an electromagnetic field on a
magnetic monopole qm:

Fm = qm [B·σ ]− qm

c2
[ (v ∧E)·σ ], (17)

provided we take qm = cq.[23] The one-component quantity −ı [ qv ·B ]1 is the corresponding power-related term
that completes the force four-vector. It looks therefore as though we get magnetic monopoles out of Eq. 16, while at
face value we have not introduced any magnetic monopoles in Eq. 15. All we have introduced is the charge-current
four-vector of one single moving point charge within a formalism that automatically accounts for Lorentz symmetry.
The terms in Eq. 16 are all forces as Eq. 15 actually generalizes a term [ q 1 ] [E·σ ] in a rest frame to a moving
frame by Lorentz covariance. Eq. 16 gives us thus the most general possible expression for an electromagnetic force.
It is obvious that one can find a frame wherein such a most general situation is realized. It therefore looks as though
invoking magnetic monopoles as a mechanism to obtain the symmetry exhibited by Eq. 16 could be a bit far-fetched.
All terms in Eq. 16 are referring to phenomena that are occurring to a single particle, not to various different particles.

B. Point-like rotational motion

We will discuss in Subsubsection VIA3 how the whole theory of electromagnetism just resumes to the description
of interactions of charges and currents with other charges and currents. A magnetic field is produced by moving
charges. A constant magnetic field is thus a mathematical expedient to describe moving charges as a static non-
moving phenomenon. It will be argued along similar lines that a magnetic monopole is just a mathematical construct
to treat a moving electric charge as a static non-moving quantity.

This may look an absurd statement if we think about the charges as performing a uniform rectilinear motion, that
can be described by an appropriate Lorentz transformation. However a charge that is in uniform circular motion in
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the laboratory frame, whereby the radius of the circle is very small such that it would look like a point to the naked
eye, could indeed correspond intuitively to a phenomenon at rest with respect to the laboratory frame. As we will
argue, this is the seed of the idea behind identifying the force terms that occur in Eq. 17 as forces acting on magnetic
monopoles. Pushing the idea of a motion that cannot be detected to the extreme, a monopole can be imagined as
the limit of a charge traveling on a circular orbit whose radius tends to zero such that the orbit shrinks to a point. It
will then just become a charge that is rotating in a fixed position. In considering such a limit we are defining a new
mathematical object, somewhat in the same way as Laurent Schwartz [5] defined the mathematical distribution that
would correspond to a point-like dipole. This idea of shrinking the orbit to a point will be further elaborated below
in Subsection IVE and in Subsection VIIB.

From this point of view, magnetic monopoles and magnetic fields are both just theoretical constructions to describe
confined motion as a static phenomenon. Coining such mathematical quantities might look like a stroke of genius, but
history shows that this was done unwittingly, as magnetic fields were just introduced as a phenomenological tool to
describe the observations in terms of static quantities before their physics were truly understood in terms of motion.
They were thus defined based on a visual illusion of rest. Of course, the idea to treat motion as a phenomenon at rest
is a kind of tricky and beyond guessing. If not clearly spelled out, it may thus easily lead to confusion.

C. Quantization issue

We may note that Dirac’s argument that the existence of monopoles would lead to the quantization of charge
amounts to postulating:

qqm

2π�0�c2
∈ Z. (18)

For an electron with charge q and its associated magnetic monopole charge qm = cq, the quantity that is required to
be an integer becomes then:

qqm

2π�0�c2
= 2α, where: α =

q2

4π�0�c
is the fine-structure constant. (19)

As α ≈ 1/137, the prediction 2α ∈ Z is way off, but by rewriting Eq. 19 as:

qqm

2πα�0c2
= �, (20)

and considering α as a constant of nature, Dirac’s argument could perhaps be saved. In fact, as orbital angular
momentum occurs in multiples of �, charge would have to come in multiples of q. However, in particle physics, α is
not considered to be a constant.

D. Refining the concepts

There are several attitudes one can adopt with respect to these considerations. The first one would be to reject them
all together with contempt, on the grounds that they seem to question the official viewpoint of hard-won “established
science”. However, an alternative attitude is possible. Before we can address it we must first further develop our
Weltbild for the magnetic monopole.
In the Appendix we show that an electron traveling at a velocity v can be associated with a singular current (that

has not to flow along a closed loop). It will become obvious from this approach that a single moving charge can indeed
be considered as a “magnetic charge” with a magnetic moment. This magnetic moment could be called a monopole
moment because there is only one charge in motion, in contrast with the macroscopic situation in e.g. a circular
current loop where there are many such charges and we talk about a dipole moment. The main difference is that one
cannot really claim that there exists a torque pulling on a single charge on a circular orbit described as a loop, while
one can when there is more than one charge traveling around the loop. In this respect, the magnetic moment of a
single magnetic charge can be called a “magnetic monopole moment”, where it has to be emphasized that there is
no hyphen between “magnetic” and “monopole” because “magnetic” refers to a magnetic moment, not to a magnetic
monopole.
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A magnetic monopole is an all-together different and unrelated concept. Not all single “magnetic charges” can be
considered as magnetic monopoles. Only the magnetic charges that correspond to point-like rotational motion will be
considered as true magnetic monopoles. Magnetic monopoles will thus not be new physical particles one would have
to search for to confirm Dirac’s predictions. They will appear to be just a mathematical means to deal with moving
charges whose motion remains hidden to the eye by remaining confined “inside a point”, with the effect that we think
that we are dealing with a purely static situation. There is then a confusion that has to be avoided. The “magnetic
monopole moment” of a magnetic monopole could be called a magnetic-monopole moment (with a hyphen), where
the latter would be an ellipsis for a magnetic-monopole’s magnetic monopole moment.

There is an important reason for making the distinction between “magnetic charges” corresponding to currents qv
and true point-like magnetic monopoles. If we associated magnetic monopoles with the visible, not point-like currents
qv, then the classification of the interaction terms would be wrong. The criterion to classify the terms would then
be if some term j = qv occurs in them or otherwise. The part q(v ∧ B) would then be due to the interaction of
the magnetic monopole with the magnetic field, while it is conventionally attributed to the interaction of the moving
electric charge with the magnetic field. On the other hand, the part cqB would be due to the interaction of the electric
charge with the magnetic field, while it is conventionally attributed to the interaction of the magnetic monopole with
the magnetic field.

The classification must rather be based on a distinction between point-like hidden and not point-like visible currents.
We will show in Subsection VIIB that the terms in Eq. 17 are related to precession. Such a precession can be mentally
visualized as a kind of point-like hidden motion and it has hidden energy we must account for if we want to get our
calculations right. The terms in Eq. 17 correspond thus to hidden rotational motion rather than to translational
motion (which is conceptually always visible). These rotational effects can be described also in terms of a vorticity
(as will be discussed in Subsubsection VIIB 3). The duality between the force in Eq. 17 and the Lorentz force is
thus rather based on a duality between non point-like visible (rotational and translational) and point-like invisible
(rotational) motion than on a duality between electric charges and magnetic charges.

E. Disentangling the two unrelated issues of symmetry and quantization

On the basis of all this, we can and must now also make a further distinction between two concepts of magnetic
monopoles. They should not be confused because they address two completely unrelated issues. The first issue is
symmetry in the equations describing electromagnetism. As Eq. 17 shows, we get it for free. We do not need to
postulate the existence of a true magnetic monopole to obtain the symmetrical counterpart of the Lorentz force in the
form of Eq. 17. These terms are already there and we will show that they have already been experimentally observed
in the form of the anomalous Zeeman effect and the spin-orbit coupling. Our first concept of magnetic monopole is
thus only a mathematical hype. We rewrite cq as qm just to enhance the symmetry, rendering it more evident. We
obtain then a shiny interpretation for the symmetry revealed by the existence of the terms in Eq. 17, but as the
derivations show, it is also possible to describe everything in a less glittering way that only calls for electric monopoles.
There is no new physical quantity, the only truly existing physical quantity is q.
The second issue is the quantization of charge, which we do not get for free at all, which is why Dirac introduced his

magnetic-monopole concept. Dirac’s argument does not explain everything, as it hinges on the quantization of angular
momentum which is also just an empirical fact. We know very well to describe the quantization of angular momentum
by quantum mechanics but our intuition about it is not any better than our intuition about the quantization of
charge. In fact, quantization of charge is conceptually a less difficult concept than quantization of angular momentum
because charge is a fundamental quantity. Its definition does not rely on the definition of other quantities which are
themselves not quantized like r and p in the definition r ∧ p of angular momentum. Of course, it is eventually just
experimental evidence that can tell if Dirac’s construction is justified. If Dirac’s monopole existed then it would lead
to a second equation that is completely analogous to Eq. 16, with q replaced by Qm/c for some value of Qm �= qm.

The two different issues lead to two distinct concepts of magnetic monopoles, as we do not need Dirac’s monopole
to get the symmetry between the electric and the magnetic force terms, while the monopole qm, which accounts
for that symmetry does not tally with the prediction based on Dirac’s construction needed to obtain quantization.
Traditionally the two issues are mentioned in one breath. If in following this tradition however, we merge the two a
priori completely unrelated issues into a single one, then it would appear as though Dirac’s construction misses the
point underlying the introduction of qm = cq in the first issue, which is that a magnetic monopole just serves to
describe rotational motion confined to a point. In fact, Dirac’s monopole is a current (called a string) that stretches
from some point to infinity, which is all but confined (Why this is wrong will be further discussed in Subsubsection
VIII F 2). If we blend the two issues, the existence of two equations, one with qm and one with Qm will also raise
the question why we use only Qm and not also qm in Dirac’s argument. If we do not confuse them, then one might
perhaps think of an argument why we only use Qm, based on the idea that qm is not a “true monopole” in Dirac’s
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sense.

V. ANOMALOUS ZEEMAN EFFECT AND SPIN-ORBIT COUPLING AS PURELY CLASSICAL
PHENOMENA

A. A striking similarity

There is an alluring way to interpret Eq. 16 completely differently as follows:

− [
q

c
v ·E ]1

� �� �
−ı [ qv ·B ]1� �� � +q(E+ v ∧B)·σ� �� �

power term dual power term Lorentz force F

+ıcq [B·σ ]� �� � −ı
q

c
[ (v ∧E)·σ ]

� �� �
looks similar to looks similar to

anomalous Zeeman effect spin-orbit coupling

(21)

We have labeled here the magnetic-monopole terms from Eq. 17 as “looking similar” to the anomalous Zeeman effect
and to the spin-orbit coupling. What we want to refer to with the terminology “looks similar”, is that the imaginary
terms on the second line of Eq. 21 correspond to force terms which are up to the proportionality factor − �

2m0c
equal

to the energy terms derived from the Dirac theory for the anomalous Zeeman effect and for the spin-orbit coupling,
but without the correction for the Thomas precession.[24]
As will be explained in Subsection VIII, Eq. 21 is obtained from Eq. 15 which just expresses the product of the

three terms [ q1 − q
cv·σ ] [ ∂

∂ct1 − ∇·σ ] [ V
c 1 −A·σ ], while the correct physics for the anomalous Zeeman effect and

the spin-orbit coupling are obtained by considering a variant − �
2m0c

[ ∂
∂ct1−∇·σ ] [ q1+ q

cv·σ ] [ V
c 1+A·σ ], wherein

the three types of terms are occurring in a different order.
For the derivation of the anomalous Zeeman term − �q

2m0
[B·σ ], the change of order has no incidence, such that the

algebra that leads to the term ıcq [B·σ ] in Eq. 21 is exactly the same as the one that occurs in the derivation of the
anomalous Zeeman effect from the Dirac equation. That we obtain the expression for the anomalous Zeeman effect
up to the factor − �

2m0c
in Eq. 21 is thus not a coincidence. Also for the calculation of the spin-orbit term the order of

the three terms in the product does not matter. For both orders of the three terms the calculation does not account
for the correction due to the Thomas precession.

There is a classical rationale for the correct calculation of the spin-orbit coupling that runs as follows. As can
be seen e.g. from Eq. 22, the total magnetic field experienced by the electron in its co-moving frame is (to first
approximation, whereby one neglects the factors γ) given by B� = B − 1

c2v ∧ E = B +Bn. The electric field of the
nucleus gives thus rise to a magnetic field Bn = − 1

c2 (v∧E)·σ in a frame that is co-moving with the traveling electron.

The interaction of the electron with the magnetic field Bn gives rise to an anomalous Zeeman term − q�
2m0

[Bn·σ ] =
�

2m0c
× q

c [ (v∧E)·σ ]. This leads finally to an interaction energy �
2m2

0c
2
1
r
∂U
∂r . This has to be corrected for the Thomas

precession ωT = 1
2c2v ∧ a = q

2m0c2
v ∧ E of the electron in its orbit around the nucleus (see Eq. 30). According to

Subsection VIIC, the corresponding energy is �ωT /2 = �
4m2

0c
2
1
r
∂U
∂r which has to be subtracted from the Zeeman term.

The absolute value of the correction for the Thomas precession is half that of the Zeeman term, which is the reason
why it is referred to as the Thomas half. Both terms on the second line of Eq. 21 are thus anomalous Zeeman terms
due to magnetic fields in the rest frame of the electron, while the Thomas precession is a relativistic correction in the
laboratory frame.

As mentioned above in Footnote XC, it is claimed in text books that the exact spin-orbit coupling term including
the correction for Thomas precession can be derived from the Dirac theory (see e.g. [6]). We will show that this
is a falsehood. The calculations claimed to derive the spin-orbit coupling with its correction for Thomas precession
from the Dirac equation are wrong algebra leading to a correct physical result. The traditional Dirac theory is in in
reality unable to derive any of the two terms containing v∧E, described above from the Dirac equation with minimal
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coupling. It only succeeds in deriving the correct result by introducing logical errors. Our approach is thus superior
to the traditional approach. By using the Dirac equation with the correct physical coupling, it is able to derive one
of the two terms. The term it fails to derive is the correction for Thomas precession.

We may note that even an electron at rest within a magnetic field is subjected to the anomalous Zeeman effect.
But in the absence of motion there is no Thomas precession, such that the anomalous Zeeman effect does then not
require a correction for Thomas precession. Of course, Thomas precession occurs in any type of motion. There exists
thus also a correction for Thomas precession in the case of a particle that is moving in a magnetic rather than in an
electric field. However, the non-relativistic correction term for Thomas precession during the motion of an electron
in a magnetic field B is given by ωT = 1

2c2v ∧ a = q
2m0c2

v ∧ (v ∧B), which remains very small in the non-relativistic

limit due to the presence of the factor v2/c2.
As we want to discuss the anomalous Zeeman effect and the spin-orbit coupling in the rest of the paper, the

similarities exhibited in Eq. 21 seem to be a good way to make the transition between the two parts of the paper.
That we can derive the anomalous Zeeman effect and the spin-orbit effect this way from a variant of the calculation
leading to Eq. 16 and Eq. 21 is a major upheaval, because these two phenomena are traditionally considered as purely
due to the electron spin. Just as it looked as though we obtained magnetic monopoles from Eq. 16 without having
introduced them in Eq. 15, here it looks as though we now obtain spin-related effects without having introduced spin
in the variant of Eq. 15.
It is extremely important to note that the matrix calculations one performs in going from Eq. 13 to Eq. 21 or from

the variant to the more correct equation are not quantum mechanical. They are independent of any context of wave
equations and entirely classical as all we have used is a group-theoretical formalism that automatically accounts for
Lorentz symmetry. Very obviously, these derivations also do not contain spin. We have only introduced the charge-
current four-vector of a single moving point charge. The algebraic expressions for the anomalous Zeeman effect and
the spin-orbit coupling must thus be considered as purely classical and not spin-related.

We might indeed have been convinced that these terms are quantum mechanical rather than classical because they
fitted nicely into quantum mechanics after their experimental discovery, while they were not covered by classical
mechanics. But they become quantum mechanical only by the way we use them in quantum mechanics, where they
lead to quantized discrete energy levels, rather than to a continuum of energy values. This is indeed a feature of
the experimental data that we are unable to understand classically. Due to this quantization and due to the fact
that quantum mechanics looks so inscrutable to classical intuition, there was perhaps not too much incentive to ask
oneself if - at least in principle - the existence of these supplementary imaginary terms could not have an analogous
counterpart within a purely classical relativistic context. As also the normal orbital Zeeman effect is quantized and
has a well-known classical counterpart, it would have been legitimate to ask that question. In Section VI we will
discuss the physics of the anomalous Zeeman effect and the spin-orbit coupling in further detail.

B. The Pauli equation

We must now give the reader a first glimpse of the reason why the fact that the anomalous Zeeman effect and the
spin-orbit coupling (without the correction for Thomas precession) seem to occur in Eq. 21 with a factor �

2m0c
is not

a coincidence. The Dirac matrices just contain the SL(2,C) matrices cp̂·σ = −ıc�∇·σ and −qcA·σ in their block
structure. Squaring the Dirac equation will lead to a term [ cp̂·σ ] [−qcA·σ ]. And from this product we will obtain a
term −c2�qB·σ. Squaring the Dirac equation also leads to a term c2p̂2, which has to be divided by 2m0c

2 to reduce it
to the operator p̂2/2m0 which is used in the Schrödinger equation in the non-relativistic limit. In fact, the transition
from relativistic to classical mechanics is obtained by putting E = m0c

2 + Ecl. Then E2 − c2p2 = m2
0c

4 leads to
E2

cl + 2m0c
2Ecl +m2

0c
4 − c2p2 = m2

0c
4. The terms m2

0c
4 can be dropped on both sides. After dividing both sides by

2m0c
2 and neglecting the term E2

cl/2m0c
2 based on the observation that Ecl � 2m0c

2, one obtains then Ecl =
p2

2m0
.

The quantum mechanical version of this argument is arguably obtained by introducing E = m0c
2 + Ecl in the wave

function through ψ = e−ım0c
2t/�ψcl in the complete Dirac equation including the minimal substitution (but we will

discover later on that this procedure can contain a major pitfall).
This way one can derive the Pauli equation from the Dirac equation[25] and due to the division by 2m0c

2 this
equation contains now the anomalous Zeeman term − �q

2m0
B · σ. As Eq. 21 contains cB this explains the conversion

factor �
2m0c

. The Pauli equation does not contain a term that looks like the spin-orbit interaction, because it does
not use the correct “minimal” substitution. We postpone the discussion of this point to Section VIII, because it is
rather intricate and raises several subsidiary issues.
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VI. PROBLEMS WITH THE TRADITIONAL INTERPRETATION OF THE ANOMALOUS ZEEMAN
EFFECT

A. The anomalous Zeeman effect

1. An inconvenient truth: The physical imagery violates the symmetry

The anomalous Zeeman effect − �q
2m0

[B·σ ] is traditionally attributed to a coupling between the magnetic field

B and the spin �
2σ. In reality B·σ is not a scalar product but just the way the vector B is written in the group

theory. Traditionally one interprets the term − �q
2m0

[B·σ ] indeed as analogous to the orbital Zeeman term − qB
2m0

L̂z1

= − q
2m0

(B·L̂)1,[26] whereby one would have to replace L̂ by Ŝ = �
2σ in the shorthand notation − q

2m0
(B·L̂). This

is done by rewriting − �q
2m0

[B·σ ] as − 2q
2m0

[B·�2σ ], where �
2σ is postulated to be the operator Ŝ corresponding to

the “spin vector” S, such that the term becomes then −B· 2q
2m0

Ŝ yielding an energy eigenvalue −B· 2q
2m0

S = −µe·B,

where µe = 2µB . It is because the eigenvalues of Sz of Ŝz are ±�
2 , that one is then obliged to introduce a factor

g = 2 into the algebra to recover the correct value − �q
2m0

[B·σ ]. This interpretation tries thus to represent the term

− �q
2m0

[B·σ ] as corresponding to the potential energy µe·B of a (spin-induced) magnetic dipole µe within a magnetic

field B. But as we have explained in connection with Eq. 9 in Section II, the quantity − �q
2m0

[B·σ ] represents a

pseudo-vector, not a scalar like − q
2m0

(B·L̂)1, whose scalar character transpires very clearly from the presence of
the unit matrix 1 in it. The picture of the magnetic dipole µe that would be proportional to a “spin vector” S is
based on the misleading notation a·σ we warned against above. The quantity σ is in reality the set of the three
vectors ex, ey, ez. In the analogy one replaces thus wrongly the scalar quantity BzL̂z 1 = −ı�Bz(x

∂
∂y − y

∂
∂x )1

by the vector quantity BzŜz = Bz
�
2σz (with analogous substitutions for BxL̂x 1 and ByL̂y 1). The notation �

2σ

stands for a set of three vectors while the quantity L̂1 stands for a set of three scalars. In fact, the three scalars
L̂ = −ı�(y ∂

∂z − z
∂
∂y , z

∂
∂x − x

∂
∂z , x

∂
∂y − y

∂
∂x ) are represented in matrix form in the group theory by multiplying them

with the unit matrix, such that L̂1 becomes a set of three matrices. But despite their matrix form the quantities
L̂j 1 continue to represent scalars in the group theory, with an all together different symmetry than the matrices �

2σj

which represent vectors. The term that is interpreted as −µe·B just cannot be a potential energy as it is a pseudo-
vector. Whereas the algebra used to calculate the anomalous g-factor is exact, such that it correctly reproduces the
experimental results, the physical interpretation proposed is thus mathematically unsustainable, even if it might be
intuitively appealing.

Of course these considerations clash ignominiously with accepted notions. We must therefore insist that the SL(2,C)
and Dirac representations are completely self-consistent formalisms and that their algebra is a closed system that
contains all it needs to contain, such that it is pointless to attack the conclusion by drawing in considerations that
are external to SL(2,C). In view of the strong resistance this conclusion might provoke, we give further arguments to
back it and make a strong case for it (while we will give the correct interpretation of the term − q�

2m0
B·σ in Section

VII).
(1) As we explained above, the quantity �

2σ in the term − �q
2m0

[B·σ ] does not represent the spin in SU(2). It is

thus not the spin operator Ŝ, and it is not correct to transform the term − �q
2m0

[B·σ ] into − q
m0

B·Ŝ = −g
q

2m0
B·Ŝ,

with g = 2. We may note that in the context of the Dirac equation the presence of the term − �q
m0

[B·σ ] is due to the
minimal substitution used to derive the Dirac equation in an electromagnetic field from the free-space Dirac equation.
But this is a substitution for a point charge, which is why it is called minimal in the first place (As pointed out in
Subsection VIII B, it does not even account for the motion of the electron in the laboratory frame). If we had wanted
to account for a potential energy within the magnetic field, of a magnetic dipole µe associated with the spin, we should
have introduced a more complicated substitution, with a term expressing how µe couples to the electromagnetic field,
or how it couples to the charge or magnetic dipole moment of another particle that is also present in its neighbourhood
within the magnetic field. As we have not put such spin-related dipole effects into the formalism, they cannot come
about by magic.
(2) That there is no spin-related dipole effect in the term − �q

2m0
[B·σ ] can also be appreciated from the fact that

Eqs. 14-21 and their variant have been derived without introducing any considerations about spin. As the terms that
occur in these calculations are the same ones as those that occur in the Dirac theory, none of the operators in the
Dirac theory contains the spin. The physical origin of the terms we recollect from the squared Dirac equation is not
the presence of spin. The terms only come about because we treat the problem in full rigor by using relativistic group
theory. Within the Dirac equation, the spin occurs only implicitly, viz. inside the spinor wave function (as clearly
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explained in [2]). It is the requirement that the spinor wave function must be an eigenstate of a vector operator K·σ
or a pseudo-vector operator like − �q

2m0
[B·σ ] (or their four-dimensional analogous expressions in terms of gamma

matrices), that forces the spin to align itself with the vector K or pseudo-vector B in the calculations and is this way
responsible for the occurrence of the up and down eigenstates.

(3) We may also appreciate that it would be extremely puzzling if it were true that we can calculate a magnetic
dipole moment µe produced by the electron spin with fantastic precision in quantum electrodynamics, without having
to specify anything in the calculations about the internal charge-current and mass distributions inside the electron. In
fact, the presence of such current distributions is intuitively the only mechanism we know to account for the existence
of a magnetic dipole µ. The remark of Lorentz we quoted above shows that using this mechanism to explain the
anomalous Zeeman effect could be wrong despite the fact that it is intuitively appealing.

(4) As will be pointed out in the Appendix, the interpretation of the orbital Zeeman term −µ·B, on which one
tries to build here intuition about the anomalous Zeeman term by analogy, is itself flawed, because there does not
exist such a thing as a potential energy with respect to a magnetic field. The correct interpretation of −µ·B will be
given in Subsubsection VIIB 1.

(5) We may further note that a three-component expression for the spin can never be a complete description within
a fully relativistic context, due to the theorem about the bilinear covariants mentioned in the Introduction. Only
covariants with 1, 4 or 6 components exist. Therefore, either one or three components must be missing in the three-
component description. In our work [2], the expression for the relativistic generalization of the spin operator �

2 [s·σ ]
in SU(2), becomes a four-component quantity �

2 [st1+ s·σ ] within SL(2,C).
(6) As we have not introduced spin in Eq. 15 or its variant, all “dipole” effects we can expect to obtain from Eq.

15 or its variant are orbital effects due to moving point charges. In fact, we introduce magnetic moments into the
formalism through the term − q

c [v·σ ] in Eq. 15 or its variant. This can be understood from our calculation of a

magnetic moment produced by a current presented in the Appendix. The anomalous Zeeman term − �q
2m0

[B·σ ] can
thus not involve any magnetic dipole moment for the electron that we are studying: It cannot contain a spin-induced
“intrinsic” magnetic dipole moment as it can be derived in a context without spin. It also cannot contain any orbital
magnetic “dipole” moment as it does not contain v. The anomalous Zeeman effect does indeed not depend on the
velocity of the electron. In the measurements of the anomalous g-factor within a Penning trap [7], we can reduce the
velocity of the electron such that one practically reaches the limit v → 0. The anomalous Zeeman effect would still
exist.

(7) We may note that the exercise of rewriting − �q1
2m0

[B·σ ] as −(µ̂e·B)1 is not only mathematically flawed but
also physically futile. The wrong interpretation of the algebra is used to introduce by brute force an intuitive classical
image, while the facts of the non-interpreted algebra will eventually force us to give up on that classical image anyway.
The presence of a scalar product −µe·B conjures up the image of an operator with a continuous spectrum, due to
the continuum of possible angles between µe and B, while eventually this classical picture of a magnetic dipole in a
magnetic field has to be abandoned as only the up and down states are observed experimentally.

(8) To readers who may still feel reluctant to accept the arguments formulated under points (1)-(7) because they fly
in the face of the accepted notions, we may perhaps ask to consider how the inherent profound difficulty of quantum
mechanics forces us to teach it a little bit like a religion. A nice example of a quasi-religious mystery is the concept
of particle-wave duality. With some misplaced irony one could compare it with the Christian dogma of the mystery
of the Holy Trinity. Three different persons (the Father, the Son and the Holy Ghost), are claimed to be only one
God, and one is invited to accept this puzzling postulate as a factual truth, for which will not be given any further
explanation because it is a mystery. In complete analogy, an electron is postulated to be both a particle and a wave.
This is also quite puzzling a notion, for which we are told that we should accept it as a quantum mystery [8]. One
could claim sarcastically that the two mysteries resemble one another as two peas in a pod. Of course, there is a very
essential point that makes all the difference between the quantum mystery and the religious mystery, and justifies
why we can postulate that one has to accept the quantum mystery without further asking and just “shut up and
calculate”. That point is the agreement of the theory with experimental evidence. Quantum mechanics passes the test
of the comparison with experimental data with flying colors by grinding out all the correct answers with impressive
precision.

Asking if a physical theory provides the correct answers is indeed a crucial criterion to assess its value. But a
formalism that turns out the correct answers is a far cry from a theory if it is mathematically flawed. The points
(1)-(7) show that with respect to the criterion of mathematical self-consistency, the traditional interpretation of the
anomalous g-factor of the electron in quantum mechanics is not even an option. What is wrong in this respect is not
the algebra itself, which is correct, such that it indeed turns out the right answers. It is the interpretation routinely
given to that algebra that is absurd as it violates the mathematics, even if the algebraic expression − �q

2m0
[B·σ ]

correctly accounts for the anomalous Zeeman effect. On this and countless other occasions quantum mechanics has
time and again overruled the logically peremptory, true geometrical meaning of the group theory explained in Section
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II in favour of a self-cooked parallel interpretation [2]. The argument that we should accept this because the theory
turns out the right answers does not hold sway. What is confirmed by the experiments is just the algebra, not the
interpretation of that algebra. The real anathema resides in interpreting − �q

2m0
[B·σ ] as a scalar, not in questioning

the traditional orthodoxy.
Of course these observations also raise the question how we must define the spin operator if it is not given by

Ŝ = �
2σ. We may mention that it is possible to preserve the physical image of the spin as a vector �

2 s, by using a

different definition �
2 [ s·σ ] for the spin operator than Ŝ = �

2σ. This approach can be developed without changing a
iota to the results of Pauli’s spin calculus, such that it leads to an identical agreement with experimental data. It even
presents less problems of interpretation, but the issue entails a whole domino chain of related questions and answers,
whose development and discussion are beyond the scope of any paper of reasonable length [2].

2. Difficult questions

The problem with this discussion of the anomalous Zeeman effect is that without the traditional interpretation,
the physics related to the non-relativistic Zeeman term − �q

2m0
[B·σ ] become mysterious. The problem is two-fold.

There is a classical enigma, as the interaction exists in principle already within classical electromagnetism, as the
calculations given in Eqs. 14-21 or their variant clearly illustrate. The question is then of course what the classical
meaning of this classical effect is supposed to be. There is also a quantum mechanical enigma. In fact, the two energy
levels observed in the anomalous Zeeman splitting are traditionally interpreted as corresponding to the spin-up and
spin-down states. But how can we explain the anomalous Zeeman splitting if the derivation of the term − �q

2m0
[B·σ ]

does not rely on a notion of spin?

3. Not a dipole-dipole but a charge-dipole interaction symmetry

The first step in our attempts to make sense of this puzzling situation is as follows. The Lorentz transformation
for the electromagnetic field under a boost with velocity v can be written as:

E�
� = E�, B�

� = B�, E�
⊥ = γ(E⊥ + v ∧B⊥), B�

⊥ = γ(B⊥ − 1

c2
v ∧E⊥). (22)

Here the indices ⊥ and � are with respect to v. Starting from a rest frame without magnetic field (B = 0), we obtain
a magnetic field (B� �= 0) in a moving frame, such that a magnetic field can be viewed (schematically) as a relativistic
byproduct of the electric field. One could introduce the philosophy that only the Coulomb field really exists and
that the magnetic field is just an optical illusion. By adopting this viewpoint, we can see that it is the macroscopic
quantity B that contains a set of terms qvj whose sum can be associated with a macroscopic magnetic dipole moment
µ. The whole of Eq. 21 would in essence just be due to a calculation:

( q11+
q1

c
[v1·σ ] )

�

j

( q2j1− q2j

c
[vj2·σ ] ) =

�

j

( q1q2j1+
q1q2j

c
[v1·σ ]− q1q2j

c
[v2j·σ ]− q1q2j

c2
(v1·v2j)1− ı

q1q2j

c2
[ (v1 ∧ v2j)·σ ] ). (23)

Here q1 and v1 are the parameters of the electron we are studying, after putting it in the electromagnetic field (E,B),
which is generated by a distribution of charged particles described by the parameters q2j and v2j . The many terms v2j

are hidden (with their coupling terms) in the macroscopic quantity B, and the terms q2j in E or B. The macroscopic
quantities E and B are only tools to express interactions of charges and currents with other charges and currents. We
can then “derive” the structure of Eq. 21 from the backbone of Eq. 23, by replacing

�
j q2jv2j → cB and for the

remaining terms q2 → E. The term q1q2j
c [v1·σ ] will lead to two contributions q

c (v ·E)1 and q
c (v ∧E)·σ, because E

will be defined by r2j−r1. To make a rigorous derivation one would of course have to weight the various contributions
with their coupling terms.

It can be seen this way that it is much more logical to consider the anomalous Zeeman effect as a term that accounts
for the interaction of the charge of the electron with the magnetic dipoles produced by the current loop of the moving
electrons which generate the magnetic field. That such an effect exists is shown by the classical derivation of Eq. 21
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wherein the term containing B·σ does not allow for any “intrinsic” magnetic dipole moment on behalf of an electron
of charge q we subject to the magnetic field. It does not make sense to invoke another physical mechanism for the
same term in the Dirac equation. The origin of the term containing qB is obvious. We might initially just consider the
force [ q1 ][E·σ ] instead of Eq. 15 and then generalize both terms independently by Lorentz symmetry. We recover
then the general expression of Eq. 15, wherein B is no longer zero. We must thus conclude that there is in general
an interaction between an electric point charge and a magnetic field. The pre-factor − �q

2m0
in the anomalous Zeeman

term − �q
2m0

[B·σ ] has been used to attribute a non-classical magnetic dipole moment µe to the charge q, while in

reality the term − �q
2m0

[B·σ ] corresponds to a charge-dipole interaction of a point charge q with the macroscopic
dipole µ corresponding to the current loops that produce B. We can see that the anomalous value g = 2 is just
due to the introduction of �

2 with the aim to recover �
2σ as described above. In reality, if we take the liberty to

continue to use the textbook misnomer “magnetic dipoles” for the magnetic moments of single moving electrons, then
all “magnetic-dipole” effects in the formalism are orbital, and there is no spin-induced magnetic dipole moment in
the algebra. The term in the Dirac equation that gives rise to the anomalous Zeeman term belongs to the symmetric
counterpart cqB·σ+ q

c (v∧E)·σ, of the Lorentz force q(E+v∧B)·σ where the rôles of the electric and magnetic fields
have been exchanged. Within the expression cqB·σ+ q

c (v∧E)·σ itself, the term cqB·σ is the symmetric counterpart
of q

c (v ∧E)·σ wherein the rôles of charge and “magnetic dipoles” have been exchanged. Within cqB·σ the charge of
the electron interacts with the “magnetic dipoles” of the moving electrons that generate the magnetic field. In the
term q

c (v ∧ E)·σ the “magnetic dipole” generated by the moving electron interacts with the charges of the electric
field. The symmetry of the anomalous Zeeman effect is intrinsically different from that of the orbital Zeeman effect, as
the latter depends on two velocities, rather than one velocity. In other words, the orbital Zeeman effect corresponds
to a “dipole”-dipole interaction, while the anomalous Zeeman effect stems from a charge-dipole interaction and the
spin-orbit coupling to a “dipole”-charge interaction. This shows clearly that the anomalous g-factor should not be
visualized in terms of a “dipole”-dipole interaction, as Dirac has done.

VII. THE PHYSICAL MEANING OF THE ANOMALOUS ZEEMAN EFFECT

A. Introduction

Of course, getting a feeling for the anomalous Zeeman effect and explaining why it leads to two Zeeman levels is
more complicated, even if it follows very clearly from the algebra. All terms in Eq. 21 we “understood” classically
are in reality facts of life that we had to accept after discovering them experimentally and to which we got used. The
anomalous Zeeman effect and the spin-orbit coupling should thus be considered on the same footing. However, the
spin-orbit term can be understood in terms of precession, as explained in Subsection VIIIA. It is a current-charge
interaction, and therefore the symmetrical counterpart of the anomalous Zeeman effect, which is of the charge-current
type. Let us therefore check if we can also interpret the anomalous Zeeman effect in terms of precession. To do this
we need a more detailed understanding of the magnetic potential and its vorticity.

B. The magnetic potential

1. Derivation

How do we deal with the kinetic energy of a moving charge in circular motion when we describe it as a stationary
magnetic phenomenon? As we will show, it is done by expressing the kinetic energy in terms of a fake potential energy
U . Potential energy is a scalar. As the moving charge corresponds to a current qv, which is a vector quantity, the only
way to create a scalar quantity out of this current is to combine it with another vector quantityA into a scalar product,
e.g. U = −q (v ·A). For the moment we consider A as a general vector that has not yet been specified any further. In
a constant magnetic field B = Bez, with B > 0 the moving charge q < 0 whose velocity v = vey, v > 0 corresponds to
a current qv, will perform a uniform circular motion at the cyclotron frequency ωc > 0, which in the non-relativistic
limit is given by ωc = − qB

m . The velocity is then v = − qBr
m . Let us rewrite −qv ·A as −qA · v = − q

m0
A·p. To make

this correspond to the kinetic energy p2/2m0 we must thus have − q
m0

A = p/2m0 = v/2 = − qB
2m0

rey. From this it

follows that A = 1
2rBey = − 1

2r ∧ B. This is exactly the magnetic vector potential that corresponds to a constant
magnetic field B as can be checked by calculating B = ∇∧A. Using A = − 1

2r∧B it is easy to rewrite U = −q (v ·A)
as U = µ·B, where µ = − q

2m0
L. This derivation does not require any consideration of a current loop. We see thus

that the intuitive picture we use for this term in terms of a true potential energy is wrong, as anticipated under point
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(4) in Subsubsection VIA1.
The sign used in the expression −qv ·A may surprise, but we must remind here the reason why we introduce the

minimal substitution. In the absence of a magnetic field, the correct parameters to write the Lorentz transformation
would be (E − qV (r), cp). In a first non-relativistic approximation the quantity E − qV we want to obtain becomes

E − qV ≈ m0c
2 + p2

2m0
− qV = m0c

2 + T − U , just like in Lagrangian dynamics, where one justifies its introduction
merely by showing that it makes things work. In the case of a purely magnetic field, there is no electric potential,

such that this expression becomes then m0c
2 + p2

2m0
in a frame wherein the centre of the orbit is at rest, such that it

can be considered as a “static” magnetic situation. The expression we want to obtain requires thus adding the kinetic
energy, and this can be achieved by subtracting the “potential energy” of the current, which is the negative kinetic
energy, as defined above.

Of course the preceding lines only explain the case when v � A, and not the cosine term in U = −q (v ·A). It
is less easy to grasp the meaning of the cosine term in U = −q (v ·A). In principle, in a constant magnetic field v
must be parallel to A. Therefore, if v �� A, the motion of charged particle must be a forced motion with respect to
the magnetic field. Let us therefore consider a charge in uniform motion on a circular orbit with a velocity v in a
constant magnetic field B = Bzez +Bxex. This motion takes place in a plane perpendicular to B. We will then have
A = − 1

2r ∧B = − 1
2r ∧ Bzez − 1

2r ∧ Bxex. Put A1 = − 1
2r ∧ Bzez, A2 = − 1

2r ∧ Bxex, such that A = A1 +A2. It
is then obvious that A · v = A1·v + A2·v. This explains why the part of the kinetic energy corresponding to the
velocity v that one can attribute to B1 = Bzez is given by A1·v. If we consider B1 and we observe the circular orbit
with velocity v, then only the part A1·v of the kinetic energy can be attributed to B1. The rest must be attributed
to the second force which forces the charged particle to follow an orbit in a plane that is not perpendicular to B1,
and which in this analysis is based on B2. But in other situations, the origin of the force could be a different kind
of field than a magnetic field B2, e.g. an electric field. It is only in such cases that a negative cosine term (leading
to a “negative kinetic energy”) can have physical meaning. The field could also be varying with time rather than a
constant field as in our example of B2.

The magnetic vector potential A is often presented as a meaningless mathematical quantity that has just been
introduced to simplify the calculations and whose use is justified because it makes things work. After the discovery
of the Aharonov-Bohm effect, this viewpoint has been challenged by Feynman [12] who stated that A is for quantum
mechanics more significant than B. In relativity, cA builds a four-vector with V , such that its meaning should be as
physical as the meaning of V , and conceptually related to it. Despite all this, the vector potential has remained a
concept that is not very intuitive. Here we have discovered a clear meaning for it. As often pointed out, A is only
defined up to a constant, just like V . Its meaning is thus indeed as clear as the meaning of V , and both quantities
are quite intuitive. Several authors [13]-[14] have tried to make a case for this viewpoint, based e.g. on an experiment
by Blondel [15].

2. Larmor frequency

The kinetic energy p2

2m0
= 1

2m0ω
2
cr

2 of the electron on the circular orbit can also be written in terms of the angular

momentum L = m0ωcr
2 as p2

2m0
= 1

2ωcL. To express the kinetic energy for a particle with an angular momentum L in
the form Lω, we must thus not use the true cyclotron frequency ωc for ω, but the fictive Larmor frequency ωL = ωc/2.
This quantity pops up in all quantum mechanical calculations. One may feel tempted to infer from spotting this
quantity in the equations that the orbital rotational motion in the physical problem studied is happening at the
frequency ωL instead of ωc, which is quite puzzling. One might ask oneself why the electron is turning slower on its
orbit than one might expect based on classical mechanics. Is this just one more quantum mystery? The solution to
this riddle is thus that ωL is only an auxiliary quantity to simplify the notations.
There is another way to highlight this point that the Larmor frequency is just an auxiliary concept. Larmor’s

construction starts from the calculation of the fictitious forces in a rotating frame. In this frame there will be a
fictitious centrifugal force and a fictitious Coriolis force. He then expresses that there should be a frequency of
rotation where the magnetic field is completely canceled by the fictitious forces. This is the Larmor frequency. The
Larmor frame “erases” the magnetic field. In this frame there will be no position and no velocity that make the
particle feel the presence of the magnetic field or the fictitious Coriolis and centrifugal forces because all these forces
cancel each other exactly. Of course in every point of the inertial frame the particle is not at rest but moving at a
velocity v(r) rather than being at rest with a velocity v� = 0. The relation between the velocities in the two frames
is v(r) = v�(r) + ω ∧ r.

It looks contradictory that the orbital motion of a particle in a magnetic field takes place at the cyclotron frequency,
while we state that the particle does not feel the magnetic force in the frame that is rotating at the Larmor frequency.
Following the idea that the particle does not feel the magnetic force it would appear that the particle could be at
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rest in the Larmor frame, while following from what we know in the inertial frame, the particle should appear to be
moving at a residual frequency ωL = ωc − ωL = ωc/2 in the Larmor frame. If the particle has a residual velocity in
the Larmor frame, should it then not have to feel an attractive force that ensures that it stays on the circular orbit at
this residual velocity? As Larmor’s construction shows, the answer from Newtonian mechanics, would have been no.
This would lead to a contradiction. But relativity shows that there is also an electric field in the Larmor frame, due
to the local Lorenz transformation (with boost vector v�(r)) of the magnetic field in the inertial frame (see Eq. 22).
This electric field exerts a local attractive and central force on the particle. It is this electric field that is responsible
for the fact that the particle that is in cyclotron motion in the inertial frame is not at rest in the Larmor frame but
moving at the residual frequency ωL = ωc − ωL.

That the Larmor frequency appears in the equations is due to the fact that we must divide all terms that occur in
the squared Dirac equation by 2m0c

2 to be able to reduce it to the Pauli equation. We see here the same factor of 2
entering the calculations as the one that occurs in the derivation of the expression of the magnetic potential. It is the

factor 2 that occurs in the expression p2

2m0
. And in both cases, the true frequency of the motion is ωc. An analysis

of the original meaning of the Larmor frequency shows that drawing the conclusion that the true frequency would be
ωL rather than ωc, just because this is the quantity that comes to the fore in the calculation, is wrong because it fails
to discern that the rotating frame introduces an electric field.

3. Larmor precession as the vorticity of the magnetic potential

The traditional minimal substitution is given by:

E → E − qV, p → p− qA. (24)

Non-relativistically we can write

p− qA = m0(v − q

m0
A). (25)

From this we can appreciate that − q
m0

A(r) behaves as a velocity field v∗(r). For a constant magnetic field B we

have A = − 1
2r ∧ B. On a first contact this looks a bit mysterious, because we can choose the origin at will and

calculate r with respect to this origin, the result will always be correct and independent from the choice of origin. But
this fact is well known under the name of gauge invariance and expresses the fact that the vector potential is defined
up to an arbitrary constant. As the scalar potential and the vector potential are related to each other by Lorentz
transformation, it is evident that we cannot choose both arbitrary constants simultaneously at will, which is why they
are related through a gauge condition. We will further discuss this arbitrary constant later on in our discussion. For
the constant magnetic field, the velocity field − q

m0
A(r) is of the type:

v∗(r) = +r ∧ q

2m0
B = −r ∧ ωL, (26)

where we have introduced:

ωL = − q

2m0
B. (27)

In other words, in the non-relativistic approximation, the velocity field is the same as the one we would observe in a
frame that is rotating at an angular velocity ωL corresponding to the Larmor frequency. According to the thoughts
described above, we can consider this as a fictive auxiliary quantity. The rotating frame we discover here would then
be rotating at a fictive frequency, while the true rotational motion would be the cyclotron frequency.

Let us now consider the velocity field v(r) of a liquid and imagine that we would put a paddlewheel inside this
liquid. The velocity field has vorticity and it will be make the paddlewheel turn as discussed in [16]. In this reference
Auroux considers a circular path of radius r on which he calculates the average velocity v of the paddlewheel. He then
takes the limit r → 0. The paddlewheel becomes then infinitesimal. According to this calculation, the infinitesimal
paddlewheel will rotate at a frequency:

ω =
1

2
∇∧ v(r). (28)
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When v = ω ∧ r, such that the liquid bodily rotates with the frequency ω, the paddlewheel will locally spin with the
same frequency as the rotation of the liquid body. We have a daily-life confirmation of this idea on a merry-go-round.
Such a merry-go-round is actually a better realization of the idea of a liquid that bodily rotates at a constant frequency
than a real-life liquid where the angular frequencies might be radius-dependent. Let us associate the merry-go-round
with a global rotating frame. When you are on a merry-go-round your personal local frame will not describe a circular
motion with the directions of its axes x, y, z fixed. The axes of your local frame are also rotating: Your local frame
exhibits precession. Most of the time we gloss over of this fact by using a reference frame based on a local basis eφ, er
in a symmetry-adapted system of curvilinear coordinates, which already incorporates this effect. But the fact that
this is a varying basis must be taken into account in the mathematics, and motivates the introduction of covariant
derivatives. The argument of the merry-go-round just expresses Berry’s phase [17] on a circular orbit which is a
geodesic.

Imagine now that you have a point-like charged particle without spin that is put into circular orbital motion within a
magnetic field. It is then conceivable that the merry-go-round effect could give it spin, whereby the angular frequency
of that spin would be the cyclotron frequency. That spinning motion would have a kinetic energy Lωc/2 = LωL, where
again the Larmor frequency is an auxiliary quantity. The spinning motion is intrinsic and if we wanted to describe the
spinning point particle geometrically, we would have to describe it as a spinning point. But in geometry, points are
not spinning. However, we can describe the spinning motion in terms of vorticity. We can treat the Larmor frequency
geometrically by using the same reasoning on v∗ as on v. We see thus that the “vorticity” of the velocity field of a
constant magnetic field is such that a charged point-like particle will spin in the field at the cyclotron frequency. Any
energy calculations that could be based on the equation E = �ω will have to be done using the Larmor frequency and
this Larmor frequency can be calculated from:

ωL =
1

2
∇∧ v∗(r) = −1

2
∇∧ q

m0
A(r) = − q

2m0
B. (29)

Of course, in the case of a magnetic field, there is no real liquid that would push on the charge like on a paddlewheel,
but we can obtain the results also without assuming the presence of a liquid. The idea of a liquid is only introduced
to obtain a velocity field. As we have already a velocity field − q

mA, we can dispense with the introduction of a
liquid to obtain the mathematical result derived. The idea is to describe precession induced by circular motion. Such
precession is certainly considered in magnetism, and one even calculates relativistic corrections for it in terms of
Thomas precession.

Within a frame in global rotation, the physical effects of rotation that affect the paddlewheel or the charge are
independent from the choice of the origin for the local frame. This corresponds to the notion that the magnetic
potential is defined up to a constant. Of course, the force that is needed to counterbalance the “centrifugal force” of
the rotating frame is provided by the Lorentz force, and this “centrifugal force” will indicate what the true centre of
the rotation is. For the calculation of the physical effects of precession however, it does not matter where the centre of
the fictive merry-go-round is. We could take any point as the centre of rotation, it would not make any difference. We
may also note that in the limit r → 0, we reduce the circular current qv to a point-like monopole, exactly according
to the idea introduced above.

Let us further explore these ideas we used to define monopoles and vector potentials and make the radius of the
circular motion of the charged particle in the magnetic field shrink to zero. What will happen then? As the non-
relativistic cyclotron frequency is independent from the radius of the circular motion, this will leave us with a point-like
spinning motion, even for a spin-less charged particle at rest! A charge in circular motion on an orbit with a diameter
that is so small that we cannot see it with the naked eye will be a hidden motion. This hidden motion can be treated
by the previous arguments, which lead to the idea that a magnetic field could make a spin-less particle with charge
q at rest spin at an angular frequency ωc = − q

m0
B. The point-like hidden motion can be treated as the interaction

between the scalar charge q and the vorticity of magnetic potential A, such that we end up with an interaction of the
electric charge with the magnetic field B. Energy calculations have to be done however with ωL = − q

2m0
B. However,

this energy �ωL will not be the kinetic energy of the orbit shrunk to zero because this is also zero. It is the energy due
to the precession. The moment of inertia that intervenes in the precession is not related to a mass distribution that
corresponds to a point mass at a distance r from the centre of the circular orbit. It is the moment of inertia of the
mass distribution inside the spinning top that visualizes the spinning electron (see Subsection VIIC). Simultaneously,
a point-like monopole is not the magnetic charge of a circular current loop whose radius shrinks to zero. In taking this
limit, v → 0, such that there is no current or magnetic charge left, and no true magnetic monopole. As also L → 0,
there is also no magnetic moment left. It is the precession that corresponds to the magnetic monopole. The quantity
cq can be symbolically identified with a monopole qm, like we have done. The concept of the magnetic monopole is
useful to distinguish a geometrical point modeling a point charge from a spinning point charge. We may note that the
precession terms which correspond to the anomalous Zeeman effect and the spin-orbit coupling are thus both related
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to the hidden rotational energy of the hidden rotational motion. This explains thus why the terms in Eq. 17 exist
and how they can be associated with magnetic monopoles, such that their classification is correct.

We may finally note why the merry-go-round metaphor fails for the spin-orbit term. In fact, for a circular motion
in a central Coulomb field F = q1q2

4π�0r3
r, the rotational frequency ω(r) is not a constant, but depends on r, such that

the image of a liquid that is bodily rotating no longer holds. The consequence hereof is that the paddlewheel will no
longer rotate at the same frequency as the liquid.

C. Precession

Precession changes the rest mass of a particle. In [2] we have shown that the Dirac equation can be derived from
the Rodrigues equation (Eq. 8 in Section 9) by putting ϕ = ω0τ in the rest frame of the electron and making the
assumption �ω0

2 = m0c
2. The assumption was introduced in a hand-waving way by assuming that the rest mass of

the electron would correspond to the kinetic energy stored in its spinning motion.
The derivation proposed in [2] of the Dirac equation is entirely classical, which is a very surprising fact, as the Dirac

equation is the core of the whole machinery of quantum mechanics. The Schrödinger equation can be derived from it.
How can these equations then possibly be classical? It is explained in [2] that the properties of quantum mechanics
that make it different from classical mechanics are only due to the way we use the Dirac and Schrödinger equations in
the calculations when we apply them to specific problems. In fact, in following the motto “shut up and calculate” we
introduce unwittingly features into the algebra that are meaningless from the viewpoint of the classical meaning of
the algebra. One of those features that are puzzling is the superposition principle. Just as adding rotation matrices
does not lead to a new rotation matrix, adding spinors has a priori not a clear meaning. Another of the weird things
that we cannot understand classically is the quantization of spin and angular momentum. The algebra of the Dirac
equation forces the spin and the angular momentum to align with the magnetic field, as discussed above, and it is
difficult to understand classically why it could not be otherwise.

Let us here thus just accept the fact that the spin must be aligned with the magnetic field, like quantum mechanics
tells us. In fact, when we consider in the calculations the possibility that the spin or the angular momentum are not
aligned, we find that the spin or angular momentum must precess, but that this does not lead to a constant energy.
To recover a constant energy, one must introduce another force, and the motion becomes then forced with respect to
the magnetic field. If we do not draw this force into the calculations, they are incomplete and it is then vain to try
to understand them. What it would imply that the spin is not aligned without forcing, such that the energy is not
constant is not clear, but this problem is in a sense eluded by the alignment condition. We may thus assume that the
treatment ceases to be classical at the moment we are accepting the alignment condition.

We must now point out that we already know the physical meaning of the anomalous Zeeman effect. In fact, it
is now time to remember that the Larmor precession term ωL·σ = − q

2m0
B·σ we obtained from the discussion in

Subsection VIIB is identical to the term obtained from quantum mechanics in the non-relativistic limit of the Dirac
equation for an electron in a magnetic field. When the particle is rotating in its rest frame the precession frequency
ωc will add up algebraically to the rotation frequency ω0 of the particle, changing the apparent frequency of its
rotation, which is why it eventually entails a correction for the energy E = �ω0

2 → E = �(ω0 ± ωc)/2 = m0c
2 ± �ωL,

where the ± sign is due to the existence of spin up and spin down states. This gives a very neat explanation for the
anomalous Zeeman splitting for an electron at rest. The very important point that follows from this argument is that
the amplitude of the anomalous Zeeman effect in the Dirac theory must be strictly identical to that of the orbital
Zeeman effect, because on orbit the precession is in phase with the orbital motion due to the merry-go-round effect,
and the precession for the particle at rest is obtained from the precession during the orbital motion by letting the
radius of the orbit shrink to zero. Moreover the anomalous Zeeman effect is not due to the spin of the electron, but
due to the additional spin given to the electron by the interaction of its charge with the magnetic field.

D. Conclusion about the anomalous Zeeman effect

We see thus that the theory is able to calculate the energy values of the two equilibrium states m0c
2 ± �qB

2m0
of

the spinning electron in terms of a charge-dipole interaction, without associating a magnetic dipole with the spin.
The idea is thus that a magnetic field makes any charge turn at a frequency ωc = − γq

m0
B, and with a kinetic energy

described by the length of the pseudo-vector �ωL = − �γq
2m0

B, independently from the issue if it already has spin or
otherwise. But when the particle has spin, only the two states wherein the precession vector and the intrinsic-spin
vector are aligned give rise to well-defined energies. The force that makes the particle spin should not be confused with
a torque, already for reasons of dimension only. The reason for its existence is purely due to relativistic symmetry.



20

We did not introduce spin in Eqs. 15-21. The only quantity in the Dirac equation that contains the spin is the wave
function. This is also very clear from reference [2]. This also explains why we can calculate the g-factor so accurately
in quantum electrodynamics: We just do not use a dipole moment µe due to the electron spin in the calculation of the
equilibrium state. Simultaneously this copes with Lorentz’s objection that the hypothetical magnetic dipole moment
of the electron is too large to allow for an explanation in terms of a current loop inside the electron: There is simply
no spin-associated magnetic dipole moment in the formalism.

We may note that the correct theory for ferromagnetism also does not rely on magnetic dipoles, but on Heisenberg’s
mechanism of an exchange interaction which is based on the Pauli principle and the Coulomb interaction. In the
Dirac formalism, charge and spin occur in mere juxtaposition, without blending into a more complex quantity like a
dipole. The interaction is just defined by the charge, while the formalism shows that the spin s has to line up with
the magnetic field B, because the wave function must be an eigenstate of the pseudo-vector operator B·σ or B·γ.

The mere juxtaposition of spin and charge in the Dirac equation looks similar to that in the exchange mechanism.
The image of a dipole moment is just not present in the algebra of the Dirac equation. One may speculate about
defining a magnetic dipole moment µe, because it flatters our intuition of a little magnet, but this idea that − q

2m0
B·σ

must willy-nilly correspond to a magnetic dipole moment is a preconceived notion that is just flawed mathematically.
As already pointed out above, the appropriate interpretation is that there are three types of interaction: charge-charge,
dipole-dipole, and charge-dipole. The anomalous Zeeman effect is a charge-dipole interaction and one should refrain
from identifying this charge-dipole interaction with a dipole-dipole interaction. There is thus always a precession
energy associated with the presence of a charge q in a magnetic field B, which is the reason why we find this term
already in Eq. 21, which does not contain spin.

After all this, there is yet another argument in favor of the interpretation of the term − q
2m0

B·σ proposed in
this paper. Dirac’s theory works only well for the leptons [18], as the true value of g for the electron is given by:
ge = 2.00231930436153(53). It works almost as well for the muon gµ = 2.0023318416(13), and much less well for the
neutron (gn = 3.82608545(90)) and the proton (gp = −5.585694713(56)). It is tempting to assume that in the cases
of the proton and the neutron, a true dipole moment µ due to internal currents might intervene and give rise to some
term −µ·B, while this is just not the case for the electron, which is truly a point particle or is so small that the effect
of such currents, if they exist, can be neglected, and only the charge term − �q

2m0
[B·σ ] plays a significant rôle.

VIII. PROBLEMS WITH THE TRADITIONAL DERIVATION OF THE SPIN-ORBIT COUPLING

A. Preliminary remarks

The spin-orbit term 1
m0c

1
r

∂U
∂r L·σ is easily shown to be equal to q

c [ (v ∧ E)·σ ]), where U = qV is the potential
energy.[27] Following the discussion in Subsubsection VIA3 the spin-orbit interaction is of the “dipole”-charge type,
due to the presence of the term qv ∧ E. Here qv represents the “dipole” and E contains the charge. Also here the
interpretation of σ in L·σ in terms of a “spin operator” S = �

2σ is not appropriate. The term L·σ within 1
m0c

1
r

∂U
∂r L·σ

just represents the angular momentum. Imaging the spin-orbit coupling as a “dipole”-dipole interaction containing a
term L · S is in conflict with the symmetry. First of all 1

m0c
1
r

∂U
∂r L·σ is a vector rather than a scalar. Secondly, its

“dipole”-charge interaction symmetry is not compatible with a “dipole”-dipole interaction symmetry. An analogous
problem of an over-interpretation of an operator that violates the symmetry occurs in the definition of helicity u·σ,
with u = p/p for neutrinos in particle physics.
The frequency ωT of the Thomas precession correction is given [9, 10] by:

ωT =
γ2

γ + 1

1

c2
v ∧ a. (30)

In an electric field E, this can be written as γ
γ+1

1
m0c2

v ∧ qE. For γ ≈ 1 this corresponds to 1
2m0c2

v ∧ qE. To
correct the spin-orbit term for the Thomas precession we must subtract �ωT from its absolute value. This has thus
absolutely nothing to do with an electric dipole moment induced by the relativistic motion of a magnetic dipole
moment associated with the spin of the electron, as has often been claimed [11]. As we have argued all along, such
a hypothetical magnetic dipole moment does not even exist in the context of the Dirac equation. The Thomas
precession is a relativistic correction term that contributes to the global spin-orbit precession along the orbit. The
global expression is equal to the Thomas precession with the reversed sign.
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1. Simple derivation of the expressions for the Thomas precession

For what will follow it might be useful to explain carefully what Thomas precession is. There are actually two
equations for the Thomas precession that one can prove. The first one summarizes the conceptual definition of
the effect, which is that the composition of two boosts is a composition of a boost and a rotation: B(v2)B(v1) =
R(n,ϑT )B(v). The rotation axis n is here perpendicular to both v1 and v2, such that it is just the rotation angle
ϑT and the boost parameter v that have to be calculated. But specifying the Thomas precession requires only the
calculation of ϑT . The second equation formulates the effect of Thomas precession on an orbit, and states that
dϑT
dt = γ2

(γ+1)c2v ∧ a.

The following derivation of the first equation follows the argument in Subsection VIII D of [9]. We note γ = coshw,

βγ = sinhw, β = tanhw. We have then cosh w
2 =

�
γ+1
2 , sinh w

2 =
�

γ−1
2 , tanh w

2 =
�

γ−1
γ+1 . In SL(2,C), a boost with

velocity v = vu is given by B(v) = cosh w
2 1 − sinh w

2 [u·σ ]. Here u is the unit vector parallel to v. We must now
calculate B(v2)B(v1). For simplicity, we can take u1 = ex, u2 = cosα ex + sinα ey. We find then:

B(v2)B(v1) = (cosh
w2

2
cosh

w1

2
+ sinh

w2

2
sinh

w1

2
cosα)1

− ı sinh
w2

2
sinh

w1

2
sinα [ ez·σ ]− cosh

w2

2
sinh

w1

2
[ ex·σ ]

− sinh
w2

2
cosh

w1

2
[ (cosα ex + sinα ey)·σ ]. (31)

This must be equal to the product R(ϑT , ez)B(v) = ( cos ϑT
2 1 − ı cos ϑT

2 [ ez·σ ] ) (cosh w
2 1 − sinh w

2 [u·σ ]) of a
rotation around the z-axis and a boost:

R(ϑT , ez)B(v) = cos
ϑT

2
cosh

w

2
1− ı sin

ϑT

2
cosh

w

2
[ ez·σ ]

− cos
ϑT

2
sinh

w

2
[u·σ ]− sin

ϑT

2
sinh

w

2
[ (ez ∧ u)·σ ]. (32)

By identifying the parts containing the unit matrix 1 and the parts containing ı[ ez·σ ] one obtains:

tan
ϑT

2
=

tanh w1
2 tanh w1

2 sinα

1 + tanh w1
2 tanh w1

2 cosα
, (33)

which is Eq. 145 in reference [9].

The second equation can be derived from this equation. But one can calculate the identity dϑT
dt = γ2

(γ+1)c2v∧ a also

directly, by considering the identity: B(dv⊥)B(v) = R(n, dϑT )B(dv ⊕ v⊥), where v ⊕ w denotes the boost vector
associated with the composition of boostsB(w)◦B(v). We are considering here only dv⊥ as collinear boosts do not lead
to Thomas precession. By using Taylor expansions one can show that to first order B(dv⊥) = 1− 1

2c dv⊥ [ (ez ∧u)·σ ].

One obtains then B(dv⊥)B(v) =
�

γ+1
2 1 − 1

2c

�
γ+1
2 dv⊥ [ (ez∧u)·σ ] −

�
γ−1
2 [u·σ ] − ı

2c

�
γ−1
2 dv⊥ [ ez·σ ]. Here γ is

the Lorentz factor that corresponds to v. The identification of this result with Eq. 32 yields then : dϑT
2 = 1

2cdv⊥

�
γ−1
γ+1

(whereby we have replaced of course θT by dθT ). From this one obtains dϑT
dτ = γ

γ+1
1
c2v ∧ a in the co-moving frame,

i.e. the rest frame of the electron. Here τ is the proper time of the electron, i.e. the time in the co-moving frame.

Taking into account the time dilatation this yields dϑT
dt = γ2

γ+1
1
c2v ∧ a in the laboratory frame. Here a⊥ takes the

same value in the laboratory frame and in the co-moving frame because it is perpendicular to v. This is presumably
the simplest derivation possible of the expression for the Thomas precession. It avoids using hyperbolic geometry to
derive this result, as was done in reference [9]. We can also see from this derivation why the Dirac equation with
the minimal substitution cannot be used to derive the Thomas precession. As discussed in Subsection VIII B (and
explained in reference [2]), the minimal substitution accounts for the instantaneous value of B(v) in (r, t), but does
not take care of a⊥ or R(ϑT , ez).

B. Generalization of Dirac’s minimal substitution for the case of a moving charge

As already stated in Subsection VB, Dirac’s minimal substitution is not general enough as it does not account for
the interactions of the current qv of the moving electron with the electromagnetic potential. It is explained in [2]
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that in the context of the Dirac equation, the minimal substitution must not be seen as an abstract rule that one
copies mechanically from Lagrangian dynamics and that one can justify with hindsight by the fact that it works.
The goal of the minimal substitution is to introduce the true instantaneous kinetic parameters (γ, γv/c), that will
permit us to write the true instantaneous Lorentz transformation for the time. As explained in [2], the primary idea
is that the the transformation of the time ct� = γ(ct − v · x/c) under a free-space Lorentz boost can also be written
using the parameters (E, cp) = m0c

2(γ, γv/c) and m0c
2 instead of (γ, γv/c). In fact, the Dirac equation is derived

from the Rodrigues equation by transforming ( d
dcτ , 0, 0, 0) →

∂
∂ct ,

∂
∂x ,

∂
∂y ,

∂
∂z ) according to the boost that transforms

(m0c
2, 0, 0, 0) → (E, cp).[28] But in a potential V , the rest energy of a particle is no longer m0c

2 but m0c
2+ qV , such

that the parameters (E, cp) of a moving particle are no longer the correct set of kinetic parameters to describe the
instantaneous Lorentz transformation, because E is no longer purely kinetic. To be able to write the correct Lorentz
transformation, one must know the “true kinetic energy”, i.e. that part of the total energy that is not potential
energy. This leads to the substitution E → E − qV , p → p − qA. The idea is that for an electron at rest in an
electric potential, the equation is −�

ı
d
dτ γtψ = (m0c

2 + qV )ψ, where τ is the time in the rest frame. By generalizing
this to a general frame by Lorentz covariance we obtain then arguably the general Dirac equation with the minimal
substitution E → E − qV , p → p− qA.
The problem is here that (qV, cqA) is not exactly what one would obtain from (qV,0) by transforming it to a

general frame. Whereas the four-potential (V, cA) is Lorentz covariant, the quantity q is not, because q is part of
a charge-current four-vector (γq, γqv/c). Therefore (qV, cqA) is not the correct Lorentz covariant generalization for
the expression that must be used in the most general substitution. In the most general substitution we would need
in stead of qV and qA the terms that we can obtain by considering: [ γq 1 + γ

q
cv·σ ] [V 1 + cA·σ ]. The result will

lead to two terms qV and qcA with the same sign. This is needed because the terms qV and qcA are used with
the same signs in the traditional minimal substitution. Furthermore, we obtain a term γq (v ·A)1, which after the
substitutions E → E − qV,p → p − qA, will lead to a term −γq (v ·A)1, whose sign is in conformity with the
discussion in Subsubsection VIIB 1. It may look confusing that in the derivation of Eq. 13 and Eq. 34 we have not
used the strategy of alternating signs as would follow from the rules that prevail for SL(2,C). For Eq. 13 this may be
due the way the magnetic potential has been historically defined. For Eq. 34, we note that we can make juxtapostions
like [ γq 1 + γ

q
cv·σ ] [V 1 + cA·σ ] with any number of terms and any choice of signs. The goal is to check to what

kind of multi-vectors this leads. This is more the case here and the choice made here leads to the correct results for
the further use. These considerations lead to:

[ γq1+ γq
v

c
·σ ] [V 1+ cA·σ ] =

γqV 1+ γqcA·σ + γ
q

c
V v·σ + γq (v ·A)1+ ıγq(v ∧A)·σ. (34)

These are the quantities that one would have to use in the substitution that generalizes the minimal substitution.

C. How we obtain the spin-orbit-coupling term from the Dirac equation with the generalized substitution

The generalized substitution was given in Eq. 34. The term γ
q
cV v·σ in Eq. 34 is a vector and cannot contribute

to the potential energy. However, after squaring the Dirac equation, which will produce the announced variant
[ ∂
∂ct1 − ∇·σ ] [ γq1 + γq

v
c ·σ ] [V 1 + cA·σ ], it will lead to a term containing [∇·σ ] [ γ q

cV v·σ ]. For A = 0, this
will lead in the non-relativistic limit to a term q

c (∇·(V v))1 and a term ı
q
c (∇ ∧ V v)·σ. The first term leads to

− q
c (v ·E)1 + qV

c ∇ · v 1. In the former term we can recognize the power term in Eq. 21. The calculation of the term
ı
q
c (∇ ∧ V v)·σ yields ı qc [V (∇ ∧ v) + v ∧E ]. For uniform circular motion ∇ ∧ v = 2ω. The term V (∇ ∧ v) becomes
then 2V ω = −2v ∧ E. In total we have thus V (∇ ∧ v) + v ∧ E = −v ∧ E, such that ı

q
c (∇ ∧ V v)·σ = −ı

q
cv ∧ E.

After multiplication by − �
2m0c

the term that goes with ı becomes �
2m2

0c
2 (

1
r
∂U
∂r )L, which is the spin-orbit precession in

an electric field, but without the correction for Thomas precession.

D. Apparent failure with respect to the traditional derivation

If we derive the Pauli equation from the Dirac equation with the generalized substitution, it will thus also contain
the spin-orbit term, with the correct sign, but without the correction for Thomas precession. Traditionally, the spin-
orbit term is derived from the Dirac equation with the minimal substitution E → E − qV,p → p − qA. This seems
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to entirely discredit our approach as it makes it look as though it contradicts our criticism that this substitution does
not take into account the velocity of the electron. By combining the traditional approach with the present approach
it may even seem that we get the result for the spin-orbit coupling twice. But as already stated previously, all this is
not true because the traditional approach is wrong and it is not possible at all to derive the spin-orbit term from the
Dirac equation based on the traditional minimal substitution. Let us now explain why.

E. Errors in the traditional derivation

1. How a change of basis offers a first hint about the existence of an error

Let us point out in which way the traditional derivation is based on flawed mathematics. The way we are writing
the Dirac equation in this paper is different from the traditional one. In the Weyl representation we have:

et ↔ γ
t =

�
1

1

�
, e5 ↔ γ

5 =

�
1

−1

�
, (35)

while in the traditional representation we have:

e5 ↔ γ
5 =

�
1

1

�
, et ↔ γ

t =

�
1

−1

�
. (36)

The difference just corresponds to a change of basis in R5 provided with a metric x2
4 + x2

5 − x2 − y2 − z2, whereby
we change the orientation of the ct-axis between the axes Ox4 and Ox5 in the Ox5x4 plane, e.g. by a rotation over
π
2 . We can consider space-time as embedded into the five-dimensional space, and its mathematical properties do not
depend on the way it is embedded: Meaningful mathematical properties do not depend on a choice of basis. The two
representations are therefore equivalent by a similarity transformation. This argument actually indicates how one can
try to prove Pauli’s theorem that all choices of gamma matrices are equivalent. Equivalent choices of gamma matrices
correspond just to different choices of a basis. Now, in the Weyl representation, the Dirac equation for an electron in
a Coulomb field will be:

�
(−�

ı
∂
∂ct −

qV
c )1+ �

ı∇·σ
(−�

ı
∂
∂ct −

qV
c )1− �

ı∇·σ

��
ψ1

ψ2

�

= m0c

�
ψ1

ψ2

�
. (37)

We have thus:

[ (−�
ı

∂

∂ct
− qV

c
)1+

�
ı
∇·σ ]ψ2 = m0cψ1,

[ (−�
ı

∂

∂ct
− qV

c
)1− �

ı
∇·σ ]ψ1 = m0cψ2, (38)

which leads to:

[ (−�
ı

∂

∂ct
− qV

c
)1+

�
ı
∇·σ ] [ (−�

ı

∂

∂ct
− qV

c
)1− �

ı
∇·σ ]ψ1 = m

2
0c

2
ψ1,

[ (−�
ı

∂

∂ct
− qV

c
)1− �

ı
∇·σ ] [ (−�

ı

∂

∂ct
− qV

c
)1+

�
ı
∇·σ ]ψ2 = m

2
0c

2
ψ2. (39)

The point is now that these equations are completely decoupled. The terms that do not contain V are e.g. [ (−�
ı

∂
∂ct )1+

�
ı∇·σ ] [ (−�

ı
∂
∂ct )1 − �

ı∇·σ ]ψ1 = [ �2(∆ − 1
c2

∂2

∂t2 )1 ]ψ1, for the first equation. The terms that combine (−�
ı

∂
∂ct )1

and qV
c 1 give rise to: 2�

ı
qV
c2

∂ψ1

∂t , where we have assumed that V does not vary with time. The interesting terms
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with vector symmetry are those that combine �
ı∇·σ and qV

c 1. They give rise to �
ı
q
c [E·σ ]ψ1. There is thus a term

[E·σ ]ψj , but no term containing [ (E∧p)·σ ]ψj . There is even not a term containing [p·σ ]ψj , because the two terms
containing qV

c
�
ı [∇·σ ] have opposite signs and cancel in the algebra. This is an exact result. There is here no fuss

about approximations or series expansions. The vector operators working on ψj are all based on vector quantities in
the plane of motion, while (E ∧ p)·σ is perpendicular to it. The term (E ∧ p)·σ can thus never occur in the algebra
if it is carried out correctly.

The operator 2�
ı

qV
c2

∂
∂t 1 will admittedly lead to a vector term that is perpendicular to the plane of motion, that

becomes equal to −ı [ω·σ ] = −ıω [ s·σ ] for a particle at rest. Here s is the spin axis, which is in general identified
with ez, while the plane of motion is identified with the Oxy plane. After the necessary algebra this term will lead
to a change m0 → m0 + qV/c2 for the rest mass or �ω0 → �ω = �ω0 + qV for the rest energy of the particle in a
potential. As explained in Subsection VIII B, the purpose of the minimal substitution was exactly to reproduce this
result. Also the term 2�

ı
qV
c2

∂ψ1

∂t does thus not incorporate the spin-orbit coupling.
As the traditional representation is equivalent to the Weyl representation up to a similarity transformation, this

conclusion must also be valid in the traditional representation. Note that the difference between the Weyl represen-
tation and the traditional interpretation does not affect the coordinates (x, y, z), as it corresponds only to a change of
the orientation of the time axis in the (x4, x5)-plane. The two representations must thus lead to the same results and
to the same expressions for the results. This suggests that something with the traditional derivation of the spin-orbit
term must be wrong.

We can further argue that the only way to derive the terms for the spin-orbit coupling correctly from a Dirac
equation is using the extended substitution we introduced in Eq. 34. In fact, to obtain a term [ (E ∧ p)·σ ]ψj one
needs a succession [∇·σ ]V [p·σ ]ψj . This can never be obtained from a succession of two 2 × 2 SL(2,C) operators
like the one that occurs in Eq. 39. A succession of three such operators is needed. With the extended substitution
one obtains the succession [∇·σ ]V [v·σ ]ψj after squaring the Dirac equation, and this will lead to the required
spin-orbit term. The traditional approach is unable to accomplish this because it misses the presence of γ [ qV

c v·σ ]
in the minimal substitution.

2. The origin of the error: the solutions are mixed states

Nevertheless, the traditional approach presents a derivation of the spin-orbit term whereby it even seems to account
correctly for the Thomas precession. This traditional derivation of the spin-orbit coupling is a piece of wrong algebra
that by good fortune produces the correct physical result desired. As explained in the preceding lines, it starts from
the wrong minimal substitution which can never yield the desired result because it does not contain the interactions
with the current. It then introduces a second error to obtain the result that agrees with the experimental observations
by brute force. What the second error is can be discovered by considering the Dirac equation for an electron at rest
in the absence of any electromagnetic field. In the Weyl representation this leads to:

[ (−�
ı

∂

∂ct
)1 ]ψ2 = m0cψ1,

[ (−�
ı

∂

∂ct
)1 ]ψ1 = m0cψ2, (40)

and after “squaring” to:

[ (−�2 ∂2

∂c2t2
)1 ]ψ1 = m

2
0c

2
ψ1,

[ (−�2 ∂2

∂c2t2
)1 ]ψ2 = m

2
0c

2
ψ2, (41)

A viable simultaneous solution of Eqs. 40 and 41 is:

ψ1 = ψ2 = e
−ım0c

2t/�
�
1

0

�
. (42)

In the traditional representation, the Dirac equation becomes:
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[ (−�
ı

∂

∂ct
)1 ]ψ1 = m0cψ1,

[ (−�
ı

∂

∂ct
)1 ]ψ2 = −m0cψ2. (43)

This needs no further squaring as the equations are already decoupled. One possible solution is:

ψ1 = e
−ım0c

2t/�
�
1

0

�
, ψ2 = e

+ım0c
2t/�

�
1

0

�
. (44)

What transpires from the solution in the traditional presentation is that the spinor is a mixed state. It contains two
pure states that lead to the same rest energy m0c

2 for the electron, one with the electron spinning counterclockwise
and one with the electron spinning clockwise around the z-axis:

ψ = e
−ım0c

2t/�





1

0

0

0




+ e

ım0c
2t/�





0

0

1

0




. (45)

The mixed state must of course still be normalized. In the mixed state each pure state has thus the same probability 1
2 .

In fact, the rotation angle ω0t is an algebraic quantity. Feynman found out also that one has to use such mixed states
composed of pure states with opposite sign and equal probabilities in quantum electrodynamics. In following the
tradition to associate negative-energy states with anti-particles, the mixed state contains particles and anti-particles
with equal probabilities.

Feynman wondered what the meaning of this would be. The solution of that riddle is that the mixed states describe
statistical ensembles of electrons. Negative frequencies already occur in SU(2), which is just Euclidean geometry and
does not contain anti-particles. There is therefore absolutely no necessity to associate negative frequencies with anti-
particles. It is more appropriate to associate negative frequencies with particles that spin the other way around than
those that give rise to positive frequencies. Both signs of the frequency will however yield the same kinetic rotational
energy, and therefore the same rest mass and energy for the electron. Considering such a mixed state makes thus
perfect physical sense, while the mixed state based on antiparticles is puzzling.

Of course, the interpretation of the negative frequencies we are proposing here clashes once more acrimoniously
with currently accepted notions. But in reference [2] we give a derivation of the Dirac equation, that does not rely at
all on the existence of anti-particles. Charge conjugation symmetry is just not part of the picture. As we explain in
reference [2] we can consider anti-particles in a later stage, and then the traditional arguments can be used to show
that we should associate them with negative frequencies. But this is then a different representation than the original
one. The situation is a little bit like that with the two different versions of SL(2,C). Just as the two versions of SL(2,C)
are related one to another by parity transformation and should not be merged into a single SL(2,C) formalism, the
two particle and anti-particle representations are related by charge-conjugation and should not be merged into a
single formalism, because a negative frequency would then acquire two different, mutually exclusive interpretations.
Moreover in the merged formalism, the rest energies of a positron and an electron are truly considered as opposite, such
that they would add up to zero, while they should add up to twice 511 keV. Of course, the alternative interpretation
of the negative frequencies puts the whole discussion about Majorana and Dirac neutrinos in a different context.

Also in the case of the Weyl representation the states are mixed, even if it is less obvious here because the two pure
states carry the same sign for ω0t. But in the Weyl representation, the equation for the pure state of a single electron
in its rest frame is:

�
−�

ı
∂

∂cτ 1

−�
ı

∂
∂cτ 1

��
Ψ

Ψ−1†

�
= m0c

�
s·σ

s·σ

��
Ψ

Ψ−1†

�
. (46)

Here the Ψ is a two-column SL(2,C) matrix representing the spinning electron, while Ψ−1† represents the spinning
electron in the SL(2,C) representation of opposite handedness; τ is the proper time. The block-diagonal 4× 4 matrix
D(g) with the blocks Ψ and Ψ−1† on the diagonal is the Weyl representation of a group element g obtained from an
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even number of reflections and represents the spinning electron. This equation can never lead to the Dirac equation,
because the right-hand side can never be simplified according to:

m0c

�
s·σ

s·σ

��
Ψ

Ψ−1†

�
= m0c

�
Ψ

Ψ−1†

�
. (47)

In fact, let us divide out m0c on both sides. Then on the left-hand side the non-zero blocks are off-diagonal, while
on the right-hand side they are diagonal. The two sides have different symmetries and they can therefore never be
identical. In the traditional representation this kind of observation becomes hidden by the fact that there are no
longer vanishing blocks. Due to the fact that the simplification expressed in Eq. 47 is not possible, one is forced
to adopt a linear combination of single-electron states to obtain the Dirac equation. This linear combination is (see
reference [2]):

M = D(g) +

�
s·σ

s·σ

�
D(g), (48)

and we will have then:

�
s·σ

s·σ

�
M = M. (49)

This shows that also in the Weyl representation the solutions of the Dirac equation are mixed states.
Mixed states do not have a direct obvious meaning in the pure group theory. E.g. the sum of two rotation matrices

is not a rotation matrix, and therefore the sum of two spinors is a priori not a new spinor. Group elements cannot be
added, they can only be multiplied. Linear combinations of representations of group elements do not represent new
group elements. They belong to the so-called group ring. One can give such a mixed state however a meaning by
considering it as defining a statistical ensemble, just as is done in the traditional interpretation of such mixed states in
quantum mechanics. We can thus consider the free-space solution as degenerate, and the presence of electromagnetic
fields can lift this degeneracy.

We may note that in the simpler formalism of SU(2), the solution of the eigenvalue equation �
2 [ s·σ ]ψ = ±�

2ψ

for a spin aligned with the unit vector s is also a mixed state. The not normalized “spinor” ψ is the first column
of the sum S = 1 + s·σ of the two group elements 1 and s·σ. For this sum, we will have [ s·σ ]S = S. In other
words: ψ = (1 + s·σ)ψ1, where ψ1 is the first column of s·σ. This leads indeed to ψ = [ s·σ ]ψ. When s = ez, the
mixed nature of ψ becomes concealed after normalization by the fact that ψ1 and [ s·σ ]ψ1 accidentally take the same
numerical values. This is also further discussed in reference [2].

3. Problems in taking the Schrödinger limit of the mixed states

Now, the non-relativistic Schrödinger limit is obtained by removing the rest mass from the equation. If we want to
get rid of the rest mass in the Weyl representation, we can define the classical wave function:

�
ψcl
1

ψcl
2

�
= e

ım0c
2t/�

�
ψ1

ψ2

�
. (50)

After such a substitution, the rest mass will be removed from the calculations. But using the same trick in the
traditional representation (see e.g. [6], page 65) will lead to a meaningless statistical ensemble containing states with
rest masses 0 and 2m0. The correct substitution to be used in the traditional representation is thus:

�
ψcl
1

ψcl
2

�
=

�
eım0c

2t/�

e−ım0c
2t/�

��
ψ1

ψ2

�
, (51)

rather than Eq. 50, because this is the substitution that leads to a meaningful statistical ensemble. This substitution
would look absurd if we thought that the state given by Eq. 45 is a pure state. But for the mixed state, this
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substitution does make sense. This difference between the substitutions needed in Eqs. 50 and 51 just reflects the
difference between the choices γ4 and γ5 for the gamma matrix that has to be associated ∂

∂ct in the algebra. It is
actually much more logical to write the Dirac equation in the traditional representation as:

�
−�

ı

∂

∂ct

�
1

−1

�
+

�
�
ı∇·σ

−�
ı∇·σ

��
ψ = m0cψ, (52)

thereby considering −�
ı

∂
∂ct γt rather than −�

ı
∂
∂ct as the energy operator that generalizes the prescriptions that are

valid in the context of the Schrödinger equation. All this is of course a major watershed because it invalidates
the whole philosophy of small and large 2 × 2 representations in the Dirac equation. However, there are just two
SL(2,C) representations in a 4×4 representation based on gamma matrices, and these two SL(2,C) representations are
mathematically of “the same size”. As can be seen from Subsection II B, they are defined in a completely symmetrical
way. They are just of different handedness. If we refuse to accept this, then the Weyl representation would have two
representations that are equally large, while the traditional representation would have a small and a large one. Why
should such differences all at once pop up in the application of the mathematics if the physics in the two choices of
gamma matrices must be the same?
It is further very important to realize that it is absolutely not necessary to make the substitution of Eqs. 50 or 51

in order to obtain the non-relativistic limit, as we showed above. One can do the calculations fully relativistically. It
suffices then to consider afterwards the limit whereby v becomes small and to subtract m0c

2 from the final result.
But when we do the calculations that way, we will never get a term 2m0 into the algebra. It is the division by the
term 2m0 in the equations that one obtains from the wrong substitution which leads to the illusion that the algebra
can describe the Thomas half correctly. This shows that it is not possible to obtain the Thomas half from the Dirac
formalism, and that this is true both in the Weyl and in the traditional representation!
Of course it could be argued that we could solve Eq. 43 by taking another solution than Eq. 44, whereby we keep

ψ1 and put ψ2 = 0. We would then obtain a pure state. But this solution will also no longer lead to a term 2m0 in
the algebra, and it could only be used for an electron at rest.
Finally, the traditional approach suggests that up to a certain order the expression for the Thomas precession in

terms of the quantity v ∧E would be generally valid and not depend on the geometry of the orbit, while the further
developments will show that it is in many instances necessary to assume that the motion is uniform and circular.

4. Methodological remarks

The conclusion that the traditional calculation of the spin-orbit coupling is wrong is very unsettling. The reason
why it has not been noticed that this error crept in, is that in the traditional approach the Dirac equation has been
guessed. This means that we use it without knowing on what kind of precise assumptions it is built. In the approach
described in reference [2], the equation has been derived. This enables discerning a number of issues that in the
traditional approach are not even suspected. It is very hard to suspect that the solutions of the Dirac equation have
to be mixed states. And it remains difficult to spot that this leads to errors creating the illusion that the spin-orbit
coupling would be treated correctly by the Dirac equation, even when one knows the underlying assumptions. All
this reveals the limits of the nonchalant advice that one should just “shut up and calculate” because it would “work”.
But contrary to the claims, it does not work. As seen here, following the advice in a blindfolded way can lead to
errors of appreciation. Spotting such errors and teasing out their consequences can prove a very difficult task.
Of course it is not easy to decide which approach is correct and which one is wrong when we pit two different

approaches one against another. It is in this respect always better to give several arguments in support of a conclusion,
in order to prove the internal consistency of the logic. Here we have given three arguments.
(1) The first one is based on the fact that the solutions of the Dirac equation are mixed states. This may be less

convincing to the reader because he does not know the results derived in reference [2], but again these results have
an internal consistence.
(2) The second one is based on the fact that the approach based on the Weyl representation should yield the same

result as the approach based on the traditional representation. This is the argument that should be really clear to all
readers.
(3) A third one is based on the fact that the derivation of the Dirac equation ignores instantaneous accelerations.

One should indeed not be surprised that the calculation does not take into account the Thomas precession. As
mentioned above and in Subsubsection VIIB 1, the Dirac equation is derived by using only boost parameters, like e.g.
(E, cp) in the case of the free-space equation. It considers only instantaneous boosts, not instantaneous accelerations.
The equation makes sure that we get the instantaneous local boost correct in every point (r, t). Thomas precession can
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only occur in a sequence of non-collinear boosts. It is thus the result of an instantaneous acceleration perpendicular to
the velocity. An instantaneous boost as used to derive the Dirac equation can thus not account for Thomas precession.
This is also discussed in further detail in [2].

(4) One can appreciate the point that the Dirac equation with a four-potential only treats boosts and not Thomas
precession also as follows. Defining a general Lorentz transformation requires six independent parameters. The
electromagnetic four-potential is defined by four parameters, but they are linked by the Lorentz gauge condition,
such that the four-potential contains three independent parameters. These three parameters define the boost part of
the Lorentz transformation, while the three remaining independent parameters of the general Lorentz transformation
correspond to the rotational part of it. These can thus not be defined by the Dirac equation with a four-potential,
because there are just no parameters in the equation that would permit defining them.

A weak point of the Dirac equation is thus that it is covariant with respect to boosts, but not with respect to
instantaneous accelerations that are perpendicular to the instantaneous velocity.

F. A more physical approach to the spin-orbit coupling

1. Road map

Thomas precession is by definition an effect in the co-moving frame. It is a mis-appreciation of the correct clock
rate of the electron due to the fact that the co-moving frame is rotating. According to Purcell’s calculation of the
Thomas precession [10] the Thomas precession corresponds exactly to the difference of the merry-go-round effects
in the laboratory frame and in the co-moving frame. The two merry-go-round effects are different due to Lorentz
contraction (or time dilatation). Of course effects of the motion on the rest mass must be made in the co-moving
frame, as it is in this frame that the electron is at rest. These effects must then be transformed back to the laboratory
frame. But whereas Purcell’s calculation gives the correct algebraic result, it does not tell us why we can make the
calculation the way he does. Why do we need to consider the difference between two merry-go-round effects?
A similar problem exists for the other part of the spin-orbit effect, the part that occurs (up to a proportionality

factor) in Eq. 21 and is not corrected for Thomas precession. In our derivation of Eq. 21 it is mere algebra. As
this is not satisfactory, one would like a physical explanation for it. Such a classical derivation for it has been
proposed in Subsection VA. But also here the argument developed leads to the correct algebraic result, while it is
not completely explained what the idea is behind the calculation. We may wonder e.g. why one should consider
the magnetic field experienced by the electron in the co-moving frame in the first place, while we want to calculate
results in the laboratory frame. Is it not possible to make a calculation in the laboratory frame right ahead? In
the calculation only the magnetic part of the electromagnetic field in the co-moving frame intervenes. Due to our
previous discussion of the anomalous Zeeman effect, we understand very well the effects of the magnetic field on the
electron in its rest frame. In this calculation we only consider the instantaneous boost. This result must of course be
back-transformed to the laboratory frame. What remains to calculate, is the effect of the accelerations perpendicular
to the instantaneous velocity, and this is the Thomas precession. The Thomas precession due to the magnetic field
can to a first approximation be neglected. What remains is thus the effect of the component of the electric field that
is perpendicular to the instantaneous velocity, and that will be the Thomas precession.
In the following we will talk a lot about phases corresponding to the merry-go-round effect as opposed to Berry

phases. We will however not consider such phases accumulated over a whole loop, but rather the instantaneous rates
of change of them, because these correspond to the idea of precession. What we want to explain are the following
points:
(1) One can consider two types of precession, a merry-go-round effect in position space R3 (which is not curved)

and a precession in velocity space. The velocity space is curved and helps actually to visualize the group manifold.
The precession on this curved space yields the Berry phase after an integration over a closed loop.

(2) The instantaneous rate of change in phase due to the merry-go-round effect in position space corresponds to
the part of the spin-orbit effect without Thomas precession. It is the part that occurs in Eq. 21.

(3) This instantaneous rate of change in phase due to the merry-go-round effect in position space does not correspond
to the exact rate of change of the geometrical phase due to parallel transport. The exact calculation of the latter can
be made by first considering the merry-go-round effect in position space and then making a correction to it.

(4) The correction we have to carry out to obtain the correct rate of change of geometrical phase is the Thomas
precession. According to Purcell’s calculation, it is the difference between the merry-go-round effects in velocity
space in the co-moving frame and in the laboratory frame. Perhaps it is worth pointing out that there is no real
merry-go-round effect on the group. When we make a closed orbit on the group, we are getting back to a Lorentz
transformation that is identical to the one we started from, such that the phase difference can only be a multiple of
2π. That we have to worry about the Thomas precession is due to the fact that we are dealing with a closed orbit in
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R3 rather than on the group and that we have constructed the Dirac equation by only taking into account the boost
part of the Lorentz transformations (see Footnote XC).

In a merry-go-round calculation one basis vector of the co-moving frame remains always aligned with the instanta-
neous velocity. The problem is thus that such a continuous alignment with the tangent to the orbit in position space
does in general not correspond to parallel transport. It is possible to get a feeling for this by an analogy with the
motion of a triad of basis vectors along a closed loop on the surface of a sphere. The closed loop could e.g. be a small
circle. Let us assume we have defined spherical coordinates (r, θ,φ) and local frames with basis vectors er, eθ, eφ as
usual, such that the z-axis corresponds to θ = 0. In a trip with uniform velocity v along a small circle defined by
θ = θ0 �= 0, the geometrical phase will not be given by 2π as one could be tempted to conclude from the permanent
alignment of eφ with the instantaneous velocity v. This permanent alignment corresponds to the merry-go-round
effect, and does not account correctly for the value of the geometrical phase. As shown by the Gauss-Bonnet theorem,
the geometrical phase will be given by Ω = 2π(1 − cos θ0), where Ω is the solid angle subtended by the small circle.
Only when θ0 = π

2 will the procedure of aligning eφ with v yield the correct result, because then the path is a geodesic.
The calculation Ω = 2π(1−cos θ0) reproduces exactly what happens e.g. in Foucault’s pendulum. This will be further
developed in Subsubsection VIII F 2.

We may note that the calculation of the global Wigner rotation over a closed path in reference [9] is based on a
theorem of hyperbolic geometry that just rephrases the Gauss-Bonnet theorem. This shows very clearly that the
angle built up by Thomas precession along a path in velocity space is the Berry phase. As the hyperbolic geometry
is the geometry of velocity space, we are getting here a first clue for the existence of two precession effects. One in
the hyperbolic velocity space, and one in position space. Instead of a path in a curved space of positions, Thomas
precession occurs on a path in a curved space of velocities. This curved space represents actually the parameters that
define an element of the Lorentz group. The velocities are the boost parameters and correspond to the boosts, the
Berry angles correspond to the rotations.

In summary, we can state that the Dirac equation is wrong because it does not account properly for the parallel
transport, such that it gets the Berry phase wrong. The reason for this is that the Dirac equation just calculates the
merry-go-round effect in position space. This idea is already present in reference [2], but I was just unable to find
the appropriate words to verbalize it. In reference [2], it was also discussed how strange it is to postulate that the
wave function is a function. It means that the Berry angle over a given path must be multiple of 2π and it is this
feature that leads to quantization. But phases differences that are a multiple of 2π occur only on geodesics. Hence,
quantum mechanics postulates that the orbits must be geodesics with respect to the spinning motion on the group
manifold, and are therefore quantized. General relativity postulates that orbits must be geodesics with respect to
displacement motion. This also implies rotations to a certain extend, but it does not consider the rotation due to
the spin. The fully correct picture would thus imply that the orbits must be geodesics with respect to the combined
effect of rotation and translation.

2. The Berry phase on the surface of a sphere

The merry-go-round effect on a circle with radius r in the Oxy plane can obtained by considering the infinitesimal
angle ∆θ = ∆r⊥/r. In vector form this can be rewritten as ∆θ ez = r ∧∆r⊥/r2. This leads to ω = dθ

dt ez = 1
r2 r ∧ v.

But such a calculation corresponds only to the correct value for the geometrical phase in flat space (which is here the
Oxy plane). It is no longer true if we consider the geometrical phase along a small circle with radius r on the surface
of a sphere with radius R, as it does not account for the curvature of the surface of the sphere.
How the correct calculation of the geometrical phase runs in curved space can be illustrated on this example of a

motion along a small circle with radius r on a sphere with radius R. This case study corresponds exactly to description
of Foucault’s pendulum. Let us take the rotation axis of the Earth as the z-axis. The locally vertical direction on
the surface of the sphere is given by the vector eR. The precession of Foucault’s pendulum can be trivially calculated
from (ω·eR) eR, which is the component of ω = ωez along eR. This shows that the calculation in curved space cannot
be made by using 1

r2 r ∧ v, whereby r would be the position vector of the pendulum with respect to the centre of the
small circle.

In the calculation one must take dr = dr eφ where r = R cos θ, and dr = r dφ. The term dr/r must then be
multiplied by eφ∧R/R = eθ, rather than r/r, because what one wants to calculate is the rotation in the local tangent
plane spanned by eφ, eθ. This is a rotation around the local vertical defined by the vector eR. This calculation
leads to eθ ∧ eφ dφ = dφ eR. The integral over the circle of this quantity yields 2π cos θ ez. The de-phasing is then
∆φ = 2π − 2π cos θ, or 2π(1 − cos θ) ez in vector form. This is equal to

�
1
R2 eR·dS, where dS = R2 sin θ dθ dφ eR,

in agreement with the Gauss-Bonnet theorem. The quantity ∆φ is the Berry phase, which can be expressed as�
A·dr, where the vector quantity A is analogous to a vector potential. Putting 1

R2 eR = ∇ ∧A permits to rewrite
∆φ =

�
(∇ ∧A) ·dS =

�
Adr. Here dr = R sin θ dφ eφ, such that one must thus take A = 1−cos θ

R sin θ eφ to obtain the
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correct result. Using the general expression for ∇ ∧ A in spherical coordinates one can verify that this value of A
leads indeed to ∇∧A = 1

R2 eR. As A is a vector, one is tempted to interpret it as a vector potential.
The vector A shows many similarities with a magnetic vector potential. But of course it is not a magnetic vector

potential, because there are no magnetic fields in our problem. The vector A does thus not define a magnetic
monopole. This can be seen from the theorem of Gauss for an electric field:

� q
4πε0R2 eR·dS = q

ε0
=

�
ρ(r) dr. Here

ρ(r) = qδ(r). This is the sum of two surface integrals
�

S1
E·dS = q

ε0
2π(1 − cos θ) and

�
S2

E·dS = q
ε0
2π(1 + cos θ)

over the two areas S1 and S2 on both sides of the small circle, and which together make up the full sphere. The
result for one of the two areas is then perfectly analogous with the calculation we have performed above. As there is
by definition only an electric field E = q

4πε0R2 eR within this problem, the quantity A = q
ε0

1
R tan θ

2 eφ, which leads

to ∇ ∧A = E, is not a magnetic potential. We have always ∇ ·E = ρ(r)
ε0

, with ρ(r) = qδ(r). For all points different
from the origin, the fact that E = ∇∧A leads to ∇·(∇∧A) = 0. It can be checked indeed that ∇ ·E = 0 for r �= 0
by using the general expression for the divergence in spherical coordinates. The pitfall is now to conclude from this
that

�
(∇∧A)·dS =

�
∇ · (∇∧A) dr = 0. In fact, one expects ∇ · (∇∧A) = 0 by analogy with a·(a∧ b) = 0, but

this is not true at the origin where A has a singularity. In putting ∇ · (∇∧A) = 0, we forget the singularity in ∇ ·E
at the origin. As

�
(∇ ∧ A)·dS =

�
∇ ·E dr, we obtain the correct result when we use ∇ ·E = ρ(r)

ε0
. The same

reasoning can be applied to the magnetic charge qm δ(r) = cq δ(r) following the analogy developed in Footnote XC.
The mathematical difficulties that arise here are due to the abstraction of representing the charge distribution by

qδ(r). The delta “function” can be described as a limit of test charge distributions limλ→λ0 ρλ(r). The problem
is that for integration and differentiation we are not allowed to assume that the derivative of the limit will be
the limit of the derivative, or the integral of the limit will be the limit of the integral: limλ→λ0

�
f(r)ρλ(r)dr �=�

[ limλ→λ0 f(r)ρλ(r) ] dr, and limλ→λ0 D[ f(r)ρλ(r) ] �= D [ f(r) limλ→λ0 ρλ(r) ]. Changing the order of the operations
is in general not a valid procedure. This error occurs in Dirac’s definition of the “delta function”, and now also here
in the differentiation procedure, where it gives rise to the confusion that ∇ · (∇∧A) would be zero at r = 0. The
limits must be defined in the sense of distributions, and then these difficulties will disappear. In fact, ∇ · (∇∧A)
is not zero at the origin, even though limr→0 ∇ · (∇∧A(r)) = 0. The correct result for the example of the electric
monopole is ∇ · (∇∧A) = ∇ ·E = q

�0
δ(r).

In complete analogy, there is another solution to the existence of a magnetic monopole than inventing a Dirac
string. It suffices to accept that ∇ ·B = 0 is no longer generally valid. It is ∇ ·B �= 0 when there is a monopole, and
∇ ·B = 0 when there is no monopole. This tallies then exactly with the meaning of the equation ∇ ·B = 0, which
expresses that there are no magnetic monopoles.

The introduction of the Dirac string is illogical and runs contrary to the principle of Occam’s razor. Based on
symmetry reasons one wonders if magnetic monopoles could exist. As we have shown in Section IV, the equations
contain already for each term its symmetric counterpart. The fields and potentials of the electric and the magnetic
monopoles have exactly the same mathematical structure. In the further development one stumbles then on a result
∇ ·B = qm µ0 δ(r) �= 0, where it had been∇ ·B = 0 without the monopoles. This result presents a golden opportunity
to enhance the symmetry even further by rendering this completely analogous to ∇ ·E = q

�0
δ(r) �= 0. But instead of

accepting this tried and proved solution one rejects it and postulates that ∇ ·B = 0 should remain universally valid.
This choice is mathematically wrong, it breaks the symmetry, and to cover up for the error, one is then forced to
introduce the stunning concept of a Dirac string. It is all together an egregious procedure and boils down to inventing
“new physics”, just to explain away a trivial mathematical paradox inherent to the use of singular distributions.

3. Spin-orbit coupling without Thomas precession

There are several steps in the following demonstration that the merry-go-round effect is equivalent to the part of
the spin-orbit coupling that occurs in Eq. 21. We will neglect here often the relativistic γ-factors, relativistic effects
on the mass and consider only uniform circular motion. From the treatment it will transpire that for non-circular
motion the calculations could be off the mark.

(1) According to Subsubsection VIIB 1, ∇ ∧ p0

2 = ∇ ∧ qA = qB. Furthermore Eq. 28 shows that in continuing to

neglect relativistic modifications in the mass, we have ∇∧ p0

2 = m0ω. Combining the two we obtain ω = qB
m0

.

(2) For circular motion in cylinder coordinates we have ∇∧ p0

2 = 1
2r

dL
dr ez.

(3) For uniform circular motion we can put dφ
dt = ω. We have then L = m0ωr

2. From this it follows that
1
2r

dL
dr = m0ω = L

r2 .
(4) The calculation of the merry-go-round effect yields ω = 1

r2 r ∧ v, such that m0ω = 1
r2 r ∧ p0.

(5) From (1)-(4) it follows that the merry-go-round effect leads to m0ω = qB = ∇ ∧ qA. In deriving the Pauli
equation we divide this by 2m0, such that the frequency that intervenes in the energy calculations is the Larmor
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frequency qB
2m0

.
(6) When there is no magnetic field in the laboratory frame, the electric field will yield a magnetic field in the co-

moving frame which is given by B� = γ
1
cv ∧E. We neglect here the factor γ. The calculation of the merry-go-round

effect in the co-moving frame for an electron that has a relative velocity dw with respect to it, does not depend on
dw and is just given by m0ω = qB� = q

cv ∧ E, as derived above. By taking the limit dw → 0, we obtain then the
merry-go-round effect in the moving frame. The corresponding Larmor frequency is q

2m0c
v ∧ E. Transforming this

frequency to the lab frame involves a factor γ which we neglect again. This way we have shown that the merry-go-
round effect corresponds to the part of the spin-orbit coupling that appears in Eq. 21. Of course this calculation
neglects the radial contribution of γE in the co-moving frame, but as the electron is at rest in the co-moving frame,
this electric field will not lead to precession. This shows that the reason we transform to the co-moving frame is that
we want to eliminate the effects due to the radial part of E from the calculation. The radial part still plays a rôle in
the Thomas precession.

4. Thomas precession as the Berry phase on the velocity space hyperboloid

We will consider motion in the Oxy plane. We can drop then the z-coordinate from the velocity four-vector
(γ, γvx/c, γvy/c, γvz/c). We have then γ2 − (γvx/c)2 − (γvy/c)2 = 1. This the equation of a hyperboloid in R3.
In formal analogy with what has been done for the calculation of the Berry phase on a sphere, we will introduce
here hyperbolic coordinates (R, u,φ) for points (X,Y, Z) in R3. The transformation between the Cartesian coor-
dinates (X,Y, Z) and their corresponding hyperbolic coordinates is given by: Z = R coshu, X = R sinhu cosφ,
Y = R sinhu sinφ. This can be considered as an abstract change of coordinates, whereby the real meaning of
(X,Y, Z) is irrelevant. This change of coordinates is not a 1-1-mapping between R3 and R3 as for spherical coor-
dinates, as it implies that Z2 − X2 − Y 2 = R2 > 0. The coordinate transformation is thus only defined for points
inside the cone Z2 −X2 − Y 2 = 0. For the special choice (X0, Y0, Z0) = (γvx/c, γvy/c, γ), we have then: γ = coshu,
γvx/c = sinhu cosφ, γvy/c = sinhu sinφ such that the velocity space is just the surface Z2 − X2 − Y 2 = 1 (corre-
sponding to R = 1) in the vector space R3 with coordinates (X,Y, Z). We can define eR, eu and eφ as usual. Note
that eR is here no longer orthogonal to eu and eφ in the Euclidean sense as the metric of the velocity space is not Eu-
clidean. The basis vectors are rather mutually orthogonal with respect to the metric Z2−X2−Y 2. Calculation of the
Jacobian matrix shows that the volume element is given by R2 sinhu du dφ dR. The oriented surface element on the
revolution hyperboloid R = 1 is given by: dS = sinhu du dφ ez.[29] The surface surrounded by the closed loop defined
by γ = coshu0 is thus 2π (coshu0 − 1). From vy/vx = tanφ, one can calculate (1 + tan2 φ) dφ = (vxdvy − vydx)/v2x,

which leads to dφ = γ2

c2(γ2−1)v∧a. As the Thomas precession along the closed loop u = u0 is given by (coshu0−1) 2π,

along a part dφ of this closed loop it is therefore given by dϑT = (coshu0 − 1) dφ = γ2

c2(γ+1)v ∧ a. This is completely
analogous to what we did for the small circle on a sphere. The coordinate lines φ = φ0 correspond to accelerations
a � v. The contributions du do therefore not contribute to the Thomas precession. The integration of the Thomas
precession over a closed loop of any shape will give the total Berry phase according to the Gauss-Bonnet theorem.
No taking into account the contribution a � v is here just analogous to the way we define an integral as the limit of
a procedure whereby we use the Simpson rule with ever smaller meshes.[30]

5. A critical remark

After all this a critical question remains. In the fully relativistic solution of the hydrogen problem, the spin-orbit
coupling terms do not show up in the calculations. Where are they? And why do we get the correct solutions from
the minimal substitution if it is incomplete? The answer is that by solving the problem in cylindrical or spherical
coordinates, without introducing covariant derivatives[31], we actually introduce the spin-orbit effect (without the
correction for Thomas precession) for circular orbits.

As a matter of fact, the transition between Cartesian coordinates and cylindrical coordinates is given by the entirely
geometric transformation:

∂f

∂r
er +

1

r

∂f

∂φ
eφ +

∂f

∂z
ez =

∂f

∂x
ex +

∂f

∂y
ey +

∂f

∂z
ez, (53)

which shows that ∇ ≡ ∂
∂rer +

1
r

∂
∂φeφ + ∂

∂zez. But when we perform dynamical calculations and calculate tempo-

ral derivatives, we must take into account the fact that (er(t), eφ(t), ez(t)) are functions of time. In the dynami-
cal calculations we must correct for this temporal dependence by introducing covariant derivatives. When we use
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(er(t), eφ(t), ez(t)) in dynamical calculations of the position r(t) of a particle, (er(t), eφ(t), ez(t)) will be a precessing
frame. Let us now consider a co-moving copy of this frame at the position P (r(t)) of the particle rather than at
the origin O. By making the calculations in cylindrical coordinates without introducing the covariant derivatives,
this co-moving frame will for uniform circular motion carry out exactly the merry-go-round motion in position space.
We have seen that this corresponds to the part of the spin-orbit coupling that occurs in Eq. 21. This is fortunate,
as the Dirac equation based on the minimal substitution does not correct for the merry-go-round effect. The Dirac
equation Lorentz transforms ( ∂

∂τ , 0) to ( d
dt ,∇) in (r, t) by using the local instantaneous boost with parameter v(r, t)

and without considering the Thomas precession part of the Lorentz transformation. In these instantaneous boosts,
the triads remain just all the time parallel to the (ex, ey, ez), such that any kind of spin-orbit effect remains ignored.
By introducing cylindrical coordinates without introducing covariant derivatives, we are thus making up for this
shortcoming of the Dirac equation in the case of uniform circular motion, as we are including the merry-go-round
effect in the laboratory frame. But as we already pointed out, this fails to account for the Thomas precession and it
is thus not completely exact, even for uniform circular motion.

We see thus that the solution of the problem of the hydrogen atom is based on a completely different approach
than the one that tries to calculate the various contributions to the spin-orbit coupling explicitly, as attempted in our
approach. By not introducing the covariant derivatives we take a short cut to a part of the calculation. We are making
an error by using the minimal substitution in the Dirac equation, with the result that we fail to take into account the
spin-orbit effect (without the correction for the Thomas precession). But by making a second error when we forget
to use covariant derivatives we finally get a result that includes all effects, except the Thomas precession. We may
finally note that aligning the reference frame with v will not be correctly be accounted for by introducing symmetry-
adapted coordinates when the orbit is no longer circular. There will then be a further error in the calculation of
the spin-orbit coupling. The problem of the spin-orbit coupling could be addressed perhaps more conveniently by
a completely different approach whereby one tries to write d

dτ in the presence of a potential in a moving frame by
introducing Christoffel symbols and following the approach Einstein used to write dynamical equations of motion in
general relativity.

G. Can one correct the Dirac equation for the errors?

Of course one could ask how one should modify the Dirac equation to take into account the Thomas precession
correctly. But treating the Thomas correction with exacting rigor is not a simple matter. The mass does no longer
change only by translation (i.e. displacement) but also by rotation (i.e. spin). Let us explain this more in detail. The
expression given in Eq. 30 is correct. From qE = dp

dt = ma + v dm
dt , it follows that v ∧ qE = mv ∧ a. However, due

to the Thomas precession and the presence of the potential, m is no longer given by m = γm0. Let us assume that
m = γm0 + (γqV ± �ωT

2 )/c2. As m > 0 does no longer contain the sign of ω, the sign ± must be taken as negative if
the Thomas precession takes place in the same sense as the spin, and as positive otherwise. Hence we have:

ωT =
γ2

γ + 1
· v ∧ qE

γm0c
2 + γqV ± �ωT

2

(54)

We would like to solve this equation for ωT . To do so, we must first eliminate all reference to v and v from the equation.
As explained in Footnote XC, v cannot be calculated from a conservation law between kinetic and potential energy like
in classical mechanics, because the electron might have emitted radiation. However, quantized emission of radiation
can be taken into account in the value of L, if we admit that the emission of radiation conserves total angular
momentum. One can thus use v ∧ qE = 1

m
1
r
∂U
∂r L, where mc2 = γm0c

2 + γqV ± �ωT
2 . When r ⊥ v we can also use

L = r ∧mv to put v = Lc2/(r(γm0c
2 + γqV ± �ωT

2 )) and solve this as an equation of v in terms of ωT and r. This
expression for v must then consistently be used to replace all occurrences of v in the equation that results from Eq. 54
after the replacement v ∧ qE = 1

m
1
r
∂U
∂r L. This way we obtain a complicated equation for ωT , with r as a parameter.

If the degree of this equation is larger than 4 it will only be possible to solve it by numerical methods.
It is not obvious that it would be a correct procedure to add this term to the Dirac equation, because after

squaring it will lead to new terms. The other contributions to the spin-orbit coupling only enter the scene after
squaring. This raises the question if m = γm0 + (γqV ± �ωT

2 )/c2 is actually the correct ansatz. Should we perhaps
not just use E = mc2, where E is the total energy, to calculate the mass? At first sight, it seems that the equation
m = γm0 + (γqV ± �ωT

2 )/c2 seems to account for all corrections on the rest mass in the co-moving frame after a
subsequent transformation to the laboratory frame, provided we introduce spherical or cylindrical coordinates in the
solution of the Dirac equation obtained by a minimal substitution. When we solve the equation rather in Cartesian
coordinates, then we must use the generalized substitution in order to get the spin-orbit coupling correct.
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H. Further remarks on the generalized substitution

The purely magnetic part of Eq. 34 is:

γcqA·σ + γq (v ·A)1+ ıγq(v ∧A)·σ. (55)

When we use Eq. 34 in its full generality to make the correct substitution in the Dirac equation, it will lead to a
staggering amount of algebra after squaring the Dirac equation, even when the electromagnetic fields are not varying
with time, because the quantities v(r, t) and γ(r, t) will in general still depend on space and time. There will in any
case also be a term with a·σ due to the combination [ ∂

∂t1 ] [v·σ ] in the SL(2,C) matrices. We have therefore just
discussed the anomalous Zeeman effect and the spin-orbit coupling in the non-relativistic limit. Some further aspects
of Eq. 55 will be discussed in the Appendix. We will give there e.g. an extremely simple derivation of the term −µ·B
that occurs in the literature. This derivation is exact, in contrast with wishy-washy derivations based on a treatment
of a current loop.

IX. CONCLUSION

The traditional interpretation of the anomalous g-factor in the Dirac theory might be physically attractive as it
corresponds to our macroscopic intuition, but it does not agree with the true meaning of the algebra and it violates
the Lorentz symmetry. We have shown this by developing an alternative approach to the physics of the anomalous
g-factor by just respecting the correct geometrical interpretation of the algebra, a feat that the traditional approach
is not able to accomplish as illustrated by the symmetry violation mentioned. We have proposed an interpretation
that respects the Lorentz symmetry. We have thereby stuck to the working philosophy that the algebra should remain
strictly the same such that only the geometrical interpretation of the algebra can be changed (in such a way that it
agrees with the given geometrical meaning of the algebra) and agreement with experiment is automatically preserved.

However, this working philosophy fails when we try to apply the same methods to the algebra of the spin-orbit
coupling. In searching an explanation for this failure we discover that it is not our approach but the traditional
approach that contains a number of flaws. A similar analysis of Dirac’s theory of the magnetic monopole raises also
some troubling issues. The origin of these problems can be traced back to a craze for abstraction whereby any feeling
for the original geometrical meaning of the algebra used in the group representation theory is lost.
The whole study presented in this paper just ensues from the natural wish to make sense of Eq. 16/Eq. 21 which

was obtained from a few lines of algebra based on group representation theory. This group representation theory
provides also all the necessary tools to solve the many problems encountered along this search for better insight. In
conclusion we think that this work shows what a powerful tool group theory can be in the quest of trying to make
sense of quantum mechanics.
Acknowledgements. I wish to thank Prof. Dr. J.-E. Wegrowe for fruitful discussions.
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X. APPENDIX. ADDITIONAL CALCULATIONS

A. Criticism of the calculation of the energy −µ·B of a magnetic moment µ based on a current loop

Many text books propose that the potential energy of a current loop within a magnetic field would be given by
Udipole = −µ·B. This is really problematic for several reasons:

(1) The force of a magnetic field B on a moving charge q with velocity v is F = q(v ∧B). As F·d� = F·vdt = 0,
a magnetic field cannot do work on a moving charge. It is therefore puzzling how we could define a potential energy
Udipole with respect to a magnetic field.

(2) Some textbooks argue that the magnetic field exerts a torque on the loop and on the dipole moment µ of the
loop. But the torque is calculated in a special pair of points of the loop without discussing what happens in all the
other pairs of points. The special points correspond to the maximal value of the torque. By analyzing what happens
in other pairs of points, one can find a pair of points where the torque is zero. This is the minimal possible value for
the torque. For all other intermediate values of the torque, one can find a corresponding pair of points. That one
has to select the pair of points with the maximal torque to obtain the correct value for the “potential energy” of the
current loop with dipole moment µ makes the calculation look hand-waving. Moreover, a torque is not a force such
that it is not clear what its relation with a potential energy ought to be.

(3) In both cases where one applies these arguments to a single electron in circular orbit around the nucleus of an
atom, one has to assume that the charge q of the electron is smeared out over the whole loop. The very definition of
µ used in all the atomic calculations is built on this idea, which is certainly not correct. Such a single electron is not
a true current loop and not a true dipole. Moreover, only one force is acting on it, not a torque. One needs thus at
least two electrons to define a dipole moment and a torque as for a macroscopic current loop. The correct definitions
must thus be based on the analysis of a single electron. After that, one can put several electrons on the same orbit
as one can define for a single electron to obtain the macroscopic quantities in terms of dipole moments and torques.

B. Magnetic moment of a current carried by a single electron

We will try to remove here these weird conceptual problems by a better description of the problem. First we address
the recurring issue that the charge of the electron is not smeared out over a loop. In an atom, the charge density will
not be uniform but singular ρ(�) = qδ(� − �0), where �0 is the position of the charge, and � denoted the curvilinear
length along the orbit. This leads to a singular current loop, which we can use to describe the real situation of the
moving charge. The singular loop will have a singular magnetic moment. Relativistically, we will have I = γI0.

µ =

�
γI0

1

2
r ∧ dr =

�
I0

1

2
r ∧ γv dt =

�
1

m0

1

2
r ∧ p dq =

q

2m0
r0 ∧ p0 =

q

2m0
L0. (56)

We have used here I0 dt = dq. We can consider r0 as the centre of the circular orbit that defines the loop that can be
associated with it. In an atom, it would be the position vector of the electron with respect to the nucleus. While it
is obvious that I is singular, and that also the charge distribution dq = ρ(�)d� = qδ(�− �0)d� is singular, it is obvious
that

�
dq =

�
qδ(�− �0)d� = q. We obtain then µ = − q

2m0
L0. We can replace L0 by L as L is a constant of motion.

We may note that it is also possible to define µ classically such that it does not account for γ in L. One must then
write γµ instead of µ. The quantity µ is not a dipole moment, because there is only one moving charge. It is a
monopole moment.
This calculation of µ is exact, while from most presentations one gets the impression that it would a back-of-the-

envelope calculation that is only a rough estimation. It may be noted that we do not need the loop. All we have to
do is to integrate over a small segment dr. In fact, in the reasoning followed above, the singular magnetic moment
was only defined for a line segment dr and we could choose the loop at will. The rest of the loop that one may add
can be chosen arbitrarily as it will give a zero contribution to the contour integral. And this is true at any moment.
But taking the orbit for the contour integral has the advantage that we never have to change the arbitrary choice
and that the definition will be valid over the whole orbit. It will then be a definition that suits the description of a
stationary situation. The further manipulations introduce L which is a constant. And in the end we integrate dq. In
conclusion, with the necessary provisos, the current density of a moving single charged particle is singular and can
always be considered as giving rise to a magnetic charge µ which is a magnetic monopole moment (without hyphen).
As explained by Griffiths and Hnizdo [19], in Gilbert’s description a magnetic dipole moment consists just of two

monopole moments. When we consider the current loop from the viewpoint of a moving Lorentz frame, the symmetry
between the two monopole moments becomes broken, which leads to a “hidden momentum”. The conclusions reached
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in our approach are completely in line with these ideas and show that a single electron in circular motion corresponds
to a magnetic monopole moment.

We still have to address the issue (1). The solution of this conundrum is that −µ·B does not represent the potential
energy, but the kinetic energy as already pointed out in the main text. The following subsection will show how we
get it into the formalism by applying the correct substitution for the coupling of the charge to the free-space Dirac
equation.

C. Further discussion of Eq. 55 and the origin of the term −µ·B

We consider the terms in Eq. 55 with the opposite sign, such that the signs will be those that will appear in the
equation after making the substitution E → E − qV,p → p− qA. The term −γqA·σ has already been discussed in
terms of a velocity field with a vorticity. As it is a vector, it can not contribute to the potential energy. However
the vorticity of this term can affect the energy. The term −γq (v ·A)1 can be rewritten as −j ·A, such that it can
be understood as the “potential energy” of a current, while in reality it describes its kinetic energy, as verified on
a simple example in the main text. By introducing A = − 1

2r ∧ B, the term −γq (v ·A)1 can also be written as

−L· qB
2m0

1, where L = r ∧ γm0v. This angular momentum L is defined with respect to an arbitrary origin, as r is

defined with respect to an arbitrary origin. The term −L· qB
2m0

has the dimension of an energy. We can write it in
terms of the “potential energy” term considered above:

−Udipole = − q

2m0
L·B = γµ·B = −L·ωL. (57)

The term γ associated with µ·B is motivated by the fact that µ has been defined with L = m0r ∧ v. The minimal
substitution will lead to E → E+Udipole = E−γµ·B. This quantity Udipole is determined up to an arbitrary constant
just like a Coulomb potential is determined up to an arbitrary constant. The arbitrary constant is related to the fact
that we can define r in A = − 1

2r ∧ B with respect to an arbitrarily chosen origin. The constant can be fixed by
choosing an origin. When we choose an origin to calculate the Coulomb potential, this will simultaneously determine
an origin for the potential −µ·B. If there is no Coulomb potential, then we must find a different criterion to define
the origin. The term q

2m0
L can be rewritten as L

2m0c
qm. Here L

2m0c
contains r as a position vector with respect to the

arbitrary origin, such that µ is the monopole moment of the magnetic charge with respect to this origin. Magnetic
moments can be defined with respect to arbitrary points, just like angular momentum is in principle defined with
respect to an arbitrary origin. This magnetic moment is just the product of the magnetic charge qv with a position
vector r. Just as only differences of potential energy make physical sense, only differences of magnetic moments make
physical sense. These differences will occur from the moment on we have two magnetic charges. It is thus when we
have two moving charges in points r1 and r2 that the arbitrariness disappears because r2 − r1 does then no longer
depend on the choice of the origin, such that we then can really define a magnetic dipole moment. It is because it
consists of many magnetic moments that a macroscopic current loop can be identified with a magnetic dipole moment.
But the singular magnetic moment of a single moving charge is not a magnetic dipole moment. One could call it an
arbitrary magnetic monopole moment (which is not the same as a magnetic-monopole moment). One can split the
magnetic dipole moment into two such magnetic monopole moments, just as we can split a dipole into two monopoles.

Finally, −ıγq(v ∧ A)·σ = ıγ
q
2 ((r · v)B − (B · v)r)·σ. This term is also determined up to an arbitrary constant.

While it has here the dimension of an energy, it’s pseudo-vector character precludes using it as a potential energy.
For a circular motion of the charge due to the Lorentz force exerted by the magnetic field, this term reduces zero if
we choose the origin at the centre of the circle. In fact, r, v, B are then all mutually orthogonal. Once again, the
case v �� A can only have meaning in a context of forced motion. In the non-relativistic limit, where we can neglect
γ, the force term [∇·σ ] [−ıγq(v ∧ A)·σ ] will lead to four terms: two pseudo-scalar terms and two vector terms.
One of the vector terms will be the Lorentz force q(v ∧ (∇ ∧ A))·σ. This will lead to the torque on a non-aligned
current loop considered by many authors, from the moment on we consider two or more charges rather than one in the
current loop. The other vector term will be q((∇∧ v) ∧A)·σ. The two pseudo-scalar terms can be written together
as −ıq∇·(v ∧A)1 = ıq (v ·B)1 −ıqA·(∇∧ v)1.
We can analyze this non-aligned situation again in terms of two mutually orthogonal fields B1 and B2. The motion

of a single charged particle in the field B will then just be a circular motion in the field B = B1 +B2. It will take
place in the plane orthogonal to B with velocity v. We can decompose A = A1+A2. The global term −ıγq(v∧A)·σ
will be zero, as v � A. However, the two terms −ıγq(vj ∧A)·σ will both be different from zero, with their sum adding
up to zero. The terms γq(v ∧A1) and γv ·A1 have norms γvA1 sinχ and γvA1 cosχ, where χ is the angle between
v and A1. The term γq(v ∧A1) accounts thus for that part of the energy that can be associated with v, other than
the kinetic energy γv ·A1 which has to be attributed to the motion in the field B1.
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To conclude, we can state that in the absence of an electric field we obtain in the non-relativistic limit for the
substitution required:

E → E − µ·B, cp → cp− cqA. (58)

This calculation is exact and the picture is clear. We do not understand why the electron spin must be aligned (such
that the energies are quantized and the imaginary terms become zero), because we do not understand the electron
spin. The real vector term cqA in cp → cp− cqA corresponds in principle to the minimal substitution for a spin-less
particle but its vorticity yields the frequency of a spinning motion that after multiplication by �/2 can represent
energy pumped into the spin. Finally, we can see from all this that in the non-relativistic limit the Zeeman effect is
given by: (L+ 1 + 2S) qB

2m0
, where L ≥ 0.
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we normally use are for vectors, which are rank two in the spinors. Hence, asking for the covariant derivative of a spinor
under a usual coordinate transformation, is like asking for the covariant derivative for vectors when we have defined a
transformation for a rank-two tensor. That is a difficult question that may even be ill-conceived and not always have
an answer. E.g. not every linear transformation in R5 will be compatible with a transformation of the tensor of the five
spherical harmonics of degree two, because a number of symmetry requirements have to be satisfied. Spherical harmonics
of degree two are obtained by taking the tensor product (x, y, z) ⊗ (x, y, z) of the spherical harmonic (x, y, z) of degree 1
with itself and taking into account the symmetry constraint. Presumably the most eloquent illustration of such constraints
occurs in elasticity theory, where transformation matrices need to satisfy a number of symmetry requirements. The correct
approach would thus be to define first a coordinate transformation for the spinor parameters, and to work further from
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Incorporating also changes in ϕ within the transformation corresponds to a gauge transformation. The whole problem of
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compatible with a coordinate transformation for the spinors, since in a coordinate transformation for a spinor the phase
will be unambiguously defined on the whole group. We are thus taking a shortcut to a lot of algebra and conceptual
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problems in neglecting covariant derivatives.


