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Rational differential systems, loop equations, and application
to the ¢-th reductions of KP

Michel Bergére', Gaétan Borot?, Bertrand Eynard®

Abstract

To any solution of a linear system of differential equations, we associate a kernel, correlators
satisfying a set of loop equations, and in presence of isomonodromic parameters, a Tau function.
We then study their semiclassical expansion (WKB type expansion in powers of the weight % per
derivative) of these quantities. When this expansion is of topological type (TT), the coefficients
of expansions are computed by the topological recursion with initial data given by the semiclassical
spectral curve of the linear system. This provides an efficient algorithm to compute them at least when
the semiclassical spectral curve is of genus 0. TT is a non trivial property, and it is an open problem
to find a criterion which guarantees it is satisfied. We prove TT and illustrate our construction for
the linear systems associated to the ¢-th reductions of KP — which contain the (p,q) models as a
specialization.

1 Introduction

Let L(x) be a d x d matrix with entries being rational functions of x, and P the set of poles of L. We

consider matrix W¥(x) (whose columns form a basis of solutions) of the differential system:
ho,¥(z) = L(x)P(z), (1-1)

i.e. U(x)is a d x d invertible matrix solving (1-1). It is well-known that ¥(z) is locally holomorphic
in (@\73 The matrix L (and thus ¥) may depend on £, and on extra parameters t,. The goal of this
article is to establish a set of loop equations satisfied by some quantities built out of ¥, and analyze
their consequences, especially for small i expansions — whether at the formal level, or at the level of
asymptotics. Very often, if one wishes to study the asymptotic behavior in some parameter x or t,, of
a differential system, one can introduce by hand a parameter h to put the system in the form (1-1),

so that the asymptotic regime of interest correspond to & — O.
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1.1 Outline

The paper is organized in three parts.

Firstly, in Section 2, we associate to any d x d invertible matrix ¥(z) solution of a linear differential
system:

e ad x d matrix K(z,y), called kernel.

e an infinite family of functions Wy (21, . ..,%%), indexed by integer ai,...,ax € [1,d], called

k-points correlators, or shortly, correlators.

and we show that the k-point correlators satisfy a set of linear equations (Theorem 2.1) and a set
of quadratic equations (Theorem 2.2). We use the name loop equations to refer collectively to those
set of equations. We also introduce a notion of ”insertion operator” (Definition 2.5) allowing the
derivation of k-linear loop equations for k < d (the size of the differential system) from the master
ones. These results are of purely algebraic nature and hold for any system (1-1). When L depends
on a set of parameters ¢ preserving the monodromy of the solutions, we can also associate to W(x, f}
a Tau function 7 (Z), defined up to a constant prefactor.

Secondly, in Section 3, we study the semiclassical expansion in powers of i and describe in detail
the monodromy of its coefficients (Section 3.2-3.4). We introduce in Definition 3.3 the notion of
”expansion of topological type” — also referred to as the T'T property — and show that the expansion
can be computed by the topological recursion of [EO07] when the TT property holds. In practice, the
main consequence of our theory is Theorem 3.1, and in presence of isomonodromic times, this also
allows the computation of the expansion of In T (£) (Corollary 4.2).

Finally, in Section 5, we apply our theory to the linear system associated to the g-th reduction of
KP, and illustrate it more specifically with examples of the (p, ¢) models (Section 6). As a motivation,
those hierarchies are believed to describe the algebraic critical edge behavior that can be reached in
the two hermitian matrix model, and universality classes of 2d quantum gravity coupled to conformal
field theories [M0090, DS90, GM90, dFGZJ94]. In any ¢-th reduction of KP, we show (§ 5.6-5.8) that
the TT property holds, and that our Theorem 3.1 can be applied.

1.1.1 Comments

The earlier work [BE09a] described the construction of Section 2 for general 2 x 2 rational systems,
but implicitly assumed the TT property. It was illustrated for (2m + 1,2) systems in [BE09b], and
entails a rigorous proof — modulo checking the TT property, which had not been performed so far — of
an equivalence between the three usual approaches of quantum gravity, namely topological gravity (in
relation with intersection theory on the moduli space of curves), random maps, and (2m+ 1,2) models
(see [dFGZJ94] for a review on those equivalences in physics). Again taking the TT property as an
assumption, [CM11] treated the models (2m, 1), in relation with the merging of two cuts in random
matrix theory. The TT property was made explicit and checked by integrability arguments in [BE10]
for a 2 x 2 linear system associated to the Painlevé II equation [FN80], justifying the computation of
asymptotics of the GUE Tracy-Widom law by the topological recursion. The same approach — with
a justification of the TT property — was applied more recently [BEM13] to the 2 x 2 linear system of
associated to Painlevé V [JMUSI], relevant to get the GUE sine kernel law. So far, this concerned
only 2 x 2 systems.

The present work aims at presenting a complete theory for general d x d rational systems, and

developing tools to study the TT property. Its application to the (p,q) models can then be used to



establish rigorously the equivalence between the three quantum gravities for all (p,q) models. For
clarity, this will appear in a separate work [BE].

In [BE12], the two last authors have made a conjecture to construct an integrable system out of
the topological recursion of a given spectral curve. The present work aims at the converse: showing
that the semiclassical expansion of linear differential systems satisfying the TT property are computed
by the topological recursion of their semiclassical spectral curve.

The TT property is neither expected to hold in general — even among integrable systems — nor
obvious to establish for a given system. Our proof that it holds for the g-th reduction of the KP
hierarchy depends in an essential way on the integrability of the latter, i.e. on the existence of another
system h0;®(x,t) = M(z,t)¥(z,t) with rational coefficients in z, which is compatible with (1-1),
but also on the specific form of M(x,¢). This is clear from the technical results of Section 5.7 and 5.8.

Within the TT property, the structure of the asymptotic expansion of correlators is identified in

Theorem 3.1, but when the semiclassical spectral curve has genus g > 0, it features an unknown

”holomorphic part” H,(Lg)(zl, ..+, 2n), which are basically the moduli of the space of solutions of loop
equations. A given solution ¥(x) knows which HY )(zl, ..., 2p) is chosen. It thus remains to investi-

gate which conditions have to be added to the loop equations to determine completely the holomorphic
part. They probably should take the form of period conditions. Actually, for many interesting so-
lutions ¥(z), we expect the TT property to breakdown if the semiclassical spectral curve has genus
g>0.

We stress that, even when the TT property does not hold, the loop equations of Theorem 2.1 and
2.2 are still satisfied and provide some constraints on the asymptotic expansion of ¥(z). In particular,
the existence of a non-trivial moduli space of solutions of loop equations — which, in the context of
expansion in powers of /i, can be parametrized by a ”"holomorphic part” at each order in i — can be
responsible for the breakdown of expansion in powers of £, since the moduli may depend on % in a
complicated way. This mechanism explains for instance the oscillatory asymptotics in matrix models
[Eyn09, BG13b]. It is also implicit in [BE12], where the candidate Tau function is constructed as a
sum over a lattice of step /& in the moduli space of solutions of the loop equations: the interferences
between the terms of the sum create in general an oscillatory i — 0, described by Theta functions
evaluated at an argument proportional to 1/f. This suggest that in general when i — 0, the ”fast
variables” live in the moduli space of solutions of loop equations, whereas the dependence in the
”adiabatic variables” is captured by the loop equations themselves.

An important, open problem, would be to show that the asymptotics of (bi)orthogonal polynomials
are given by certain Baker-Akhiezer functions of an integrable system, which depend on the universal-
ity class. Around a point where the density of zeroes vanishes like a power p/q, the integrable system

should be related to the (p,q) models. This remains beyond the scope of the present investigation.

2 Linear differential systems and loop equations

2.1 Kernel, determinantal formulae and correlators
Definition 2.1 The kernel is a d x d matriz depending on two variables x1,xo € @\”P, defined by:

Pyl v
K(z1,22) = M7 (2-1)
X1 — To
1t is often referred to as the ”parallel transport” operator, because it satisfies ¥(xy) = (x1 —
29) U(x1) K(x1,22), i.e. it transports W(x1) to ¥(x2).



It obviously satisfies a replication formula:

T1 — I3

K(.Tl, $2>K($27 .’1?3) = (Il — 1’2)(132 — ;L‘g) K(a:l, 56‘3), (2-2)
and it has a simple pole at coinciding points:
1
K(z1,72) ~ d (2-3)

T1—>T2 L1 — X9

Definition 2.2 The n-point correlators are a family of symmetric functions in n variables, indexed

by ay,...,an € [1,d], defined as follows:

a . 1
W) = Im (Ka,au,x')—x_x,), (2.4)
V=2, Wa(r,....zh) = (D" YT [ [Kapaw @6 Tog), (2-5)

o=n-cyclesi=1

and the "non—connected” n-point correlators by:

IAT An,

Wn(%ll, oy y) = "det” Ko, o, (24, 75), (2-6)

where “det” means that each occurrence of K, 4, (i, x;) in the determinant should be replaced by

Wi (25).

For instance, we have for any a,b € [1,d], with a # b:

Wi(z) = —h (T Y (2)L(z)®(2)), (2-7)
Wa(21,15) = Ko 0, (21, 22)Ka, a0, (22, 21), (2-8)
. a b _ _ _
zlllglz Wa(z1,2) = —h 2 (¥ 1(I)L(I)W(I))a,b (® 1(z)L(x)\Il(x))b7a. (2-9)
We may give another representation for the correlators, by:
Definition 2.3 We define the projectors on state a:

P(%) — ¥(2) B, ¥ (), (2-10)
where E, = diag(0,...,0, tll, 0,...,0) denotes the diagonal matriz with a'"-entry 1, and zero entries
elsewhere.

We observe that P(%) form a basis of rank one projectors:
. d
P()P() = 0,y P(2),  TrP(@) =1,  } P()=1q4 (2-11)
a=1
which satisfies a Lax equation

ho,P(w) = [L(z), P()]. (2-12)

Proposition 2.1 The correlators can be written:
Wi(t) = —h 'TrP(2)L(x), (2-13)
a1 a Tr P (1) P (5 Tr (P(21) — P(73))? 1
W2($11,SL'22) _ r (‘Tl) ('2772) _ ( (371) (2372)) + 5 (2_14)
(21 — 32) 2 (21 — x2) (z1 — x2)



and forn =3

Ay (1) A52(1) Apn—1(1)

’I‘FP(.”(Ll'll)P(x”(l))P<:L‘02(1)) e P(xan—1(1))

Walidd, ... &) = (=1)" = (2-15)
a=n§ycles Hi:l(xi - xo(i))

]

For instance, we can deduce if a1 # as:
lim Wo(#.83) = —h > TeP(#h)L(a2)P()La2), (2-16)

T1 -T2
Tr P(21)[P(Z53), P (&5

WS 2 88y _ rP(z1)[P(z2), P(z3)] (2-17)

(21 — 22) (22 — 23) (23 — 21)
Although it is not clear from the definition, the n-point correlators do not have poles at coinciding

points when n > 3. If I = [1,n], (2;)ic; and (a;); € [1,d], we denote Z7 the family (Z})e;.

Proposition 2.2 For anyn >3, any a1,...,a, € [1,d], and 1 <i+# j <n, Wn(%fr) is reqular when

Ty —=> Ty
Proof. By symmetry, it is enough to consider ¢ = 1 and j = 2. The definition of Wy (z7") implies
that it can have at most simple poles when x; — x5. Let us compute its residue from (2-15):

as Ao (2) ao.n73(2) ag'n72(2)

Tr P(Z%IQ)P(.’,CQ)P((EO-(Q)) cee P(xgn,—3(2))P($[,n—2(2))

(Tgn-2(2) = T2) (T2 — To(2)) =+ (Tgn-3(2) — Ton-2(2))

Res Wy (27) = (—1)"“{ Z

xr1—T
! 2 o=n—cycle
o(1)=2

ay A2 (2) Aon—2(2) An—1(3)

_ oy Tr P(23)P(22)P(z02(2)) - - P(2gn—2(2) ) P(gn-1(2)) }

(xa"*1(2) - -132)(372 - 3702(2)) o (xa"*Z(Q) - xa"*1(2))

(2-18)
o=n—cycle

o 1(1)=2

Using the relation P(%IQ)P(,%ZQ) = 6a1,a2P(3%§), we can rewrite:

Ao (2) aan—B(z) aon—2(2)

Tr P(23)P(2,(2)) -+ P(xgn-s(2) )P (Tgn—2(2))

Res Wn(%II) = (*1)n+15017a2{ Z

T1—T2 o=n-cycle (J,‘Un—z(g) - .’L‘g)(xg - xg(g)) s (.Z’Un—z(g) - Jign—z(g))
o(1)=2
az 952 (2) Gon=2(2) Gen—1(2)
_ Z Tr P(xQ)P(.Z‘Jz(Q)) ce P(mon—z(Q))P(afo-n—l(Q)) } (2_19)
(Ton-1(2) — T2) (T2 — To2(2)) ** (Tgn—2(2) — Tgn-1(2))

o=n-cycles
o t(1)=2

The two sums range over the set of (n — 1)-cycles, and are actually equal. We conclude that Wy (27)

is regular when z; — 5.

2.2 Loop equations

We first show that the correlators satisfy a set of linear equations.

Theorem 2.1 (Linear loop equation) For anyn > 1, any ca,...,c, € [1,d], we have:
d 5
a mn —_ n
Z Wn,(xa§227"'7?jn) = 75n,1h 1TI'L(I’)+ 7722 (2_20)
a=1 (:E - y2)



Proof. We first address the cases n = 1,2 by direct computation starting from (2-13)-(2-14), and use
the properties (2-11) of the projectors:

d

M Wi@) = - Tr(ZP ))L(z) = ' TrL(a), (2-21)
a=1

d ¢ c

ZW2<%’§) _ T (Yo, P(@)PY) TP 1 (2:22)

(z —y)? S @-y)? (@)

For n > 3, combining the representation (2-15) and the fact that Z P(Z) = 14, we find that:

Co (1) Con—1(1)

d
1 TrP(y, P(yom-
Z G = (ot Y Wo(1)) - PWon-1(1)) (2.23)
a=1 o=n-cycle (@ = Yo) Wory =) []75] (Yoi(1) = Yoi+r(1))

is a rational function of x, which vanishes in the limit x — oo. Singularities can only arise as simple
poles at © = y; for ¢ € I, but their residue is 0 according to Proposition 2.2. Hence, the left hand side
vanishes identically. ]
Theorem 2.2 (Quadratic loop equations) For anyn > 1, any ¢, ..., c, € [1,d],

a c b CnJg c
> (Wn+1($ 1)+ > Wi (@, 97) an\J|(fU,yz\J)) = Py(x;y1) (2-24)

1<a<b<d JcI

is a rational function of x, with possible poles at x = x; for i € I and poles of L.

As illustration, we give the formulas for P, up to n = 3:

Pile) = g~ L) +[L@)P), (2:25)

ey - M 1) =

el IT[PEPER) - PGPGOILE) | (51— ) Walip) +1
Polepog) = = @y - u2) M

Proof. Notice that the left hand side makes sense even if n = 1, because the function Ws (%,%) =
limy W2(§,3%) is well-defined when a # b, and given by (2-9). When a # b, Wn(%,g,ff]) can be
computed from Definition 2.2, using K, y(z,z) = —h~}(¥~1LW), ,(x). We introduce a new quantity

~ a b

Wi (z, x, 511), as follows:

e when a = b, it is computed from Definition 2.2 where each occurrence of K, ,(x, ) is replaced
by —h~'(T~IL®), ;(x) (which is also equal to W, (1)),

b
e when a # b, it is equal to Wn(%,x, CII)
We claim:

Lemma 2.1

a CnJg

Vn=1, Vae [[]wdﬂa Wn+1 '%7'%316/11 Z W|J|+1 Wn |J|('r yI\J) = 0. (2_28)
Jcr



The proof of the lemma will be given below. We deduce that:
d

d
Py(a;y7) = % b1Wn+1(%75;, JZI ( 2 Wi (& )) <bZ1W —\J|(§"7yKIJ))' (2-29)

The last term is given by the linear loop equations (Theorem 2.1): it vanishes when n > 5, and is a
rational function of x with poles at x = x; for some i € I, or at poles of L. We now focus on the first

term, which is by definition:

d d
c 1 o~ a b n
Qk(w;yn) = 5 Wi (&, 2, Y1 > { (2-30)
a,b=1 a,b=1
(T'LW)4,(2) T
o h Z K. —1(1),a(y0—1(1)7x)Kb,Ca(m (xvyo(Q)) H ch,i(g),cai+1(2) (yai(2)vyoi+1(2))
o=(n+1)-cycle i=1
o(1)=2
(O'LW), () T
— h Z Ka,Co-(l) (x7y(7(1))ch,1(2), (ya- 1 H 01<1),C i+1(1y (yo'l(l) yo_l+1( ))
o=(n+1)-cycle i=1
o(2)=1

+ Z Ka,c”(l)(xvyo(l)) o .KCJ*I(Q),b(yU_1(2)7l‘)Kb,CO-(Q) (9573/0(2)) c 'Kca,l(l),a(ya—l(lﬁx)}'
o=(n+1)-cycle
a(1)#2, o(2)#1

The two first lines are equal by symmetry. Performing the sum over a and b, and replacing the kernels

involving the variable x by their definition, we find:

Qn(x:91) (2-31)
[\Il*l(;1;071(1))L(l-)l:[l(xg(2))]%71 1):Co(2) n—3
= (—1) +1{ Z _ p @) n Kcoi(2)760i+1(2) (yo.i(2)7yo-i+1(2))
o=(n+1)-cycle i=1
o(1)=2

2 H ya’ 1(5) — o*( ))Kf —1¢;)¢ a(])(yo 1) Yo (5 ))

+
(T = Yo1 ) (T = Yo(s))

o=(n+1)-cycle j=1,2
o(1)#2, o(2)#1

n—2
X 1_[ chi(l),caiﬂ(l)(xai(l),x0i+1(1))}.
0”11(21)1;&1,2
This expression is a rational function of x which can have poles only at z; for ¢ € I, and at poles of
L. Therefore, we proved that P, (x; gC/II) is a rational function of x which can have poles only at those

very points.
Proof of Lemma 2.1. We have the analog of (2-30) for a = b:

Wis1 (2,2, 1f7) = (—1)”{ A L;LI’)“’“(:C) (2-32)

X Z K, 1Co(2) 37 y Yo (2) [ 1_[ Coi(2):Coitl(2) (yai(Q)v yai+1(2))]Kcan—l(m,a(yanfl(2)ﬂ :ZZ)

o=(n+1)-cycles i=1
o(1)=2

Jj—1

+ Z Z K%Ca(l)(x’yf’(l))[Hchj(l)vcoiﬂu)(yffi(l)’yoi“(l))]Kcaj(l)’“<y‘7j(1)’x)

1<j,k<n o=(n+1)-cycles =1
j+k=n oI t1(1)=2

k—1
X Kll,Cc-(g) (l‘, ya(Q)) [ 1_[ KCai(2)7CUVi+1(2) (ya’i(Q)a y(r”l(2))]chk(2),a(yak(2)7 .13)}

i=1



We recognize in the first line —2W,; (%)Wn(%, ;éII) Besides, the two last lines amounts to a sum over
two disjoint cycles of length (j + 1) and (k + 1), and we recognize each term correlators up to a sign
factor. Namely:

e a a a a a c a c a CnJg
W7L+1($7xax11) = _QWI(‘%)Wn(l'vy{T) - Z W|J\+1(xay:,])anw\(xayI\J)' (2_33)
gcJcl
The first term completes the sum with the terms J = @ and J = I, hence the result. |

Detailed example. Let us redo the computation in the case n = 1 to illustrate the method of the
proof. We have:

Pz) = — > —(\I'_IL'I')a,b(x)(\Il_lL\Il)b,a(x)+(\II_IL\I') (\Il_lL\Il)b7b(x).(2—34)

a,a

Notice that the summand vanish if a = b. We can thus write:

d
1 _ _ _ _
P (z) = 57 —(® 1L‘Il)a’b(x)(\11 1L\Il)b,a(x) + (¥ 1L‘Il)a’a(a:)(\Il 1L\Il)b’b(x)
a,b=1
1
= ﬁ( — TrL*(z) + [TrL(2)]?). (2-35)
]
2.3 Spectral curve
Definition 2.4 The spectral curve is the plane curve S of equation det(y — L(z)) = 0.
The eigenvalues of L(x) are algebraic functions.
Proposition 2.3 The spectral curve can be expressed in terms of correlators:
d ey a a
det(y — L(z)) = > y** > Wie(Z, ..., ). (2-36)
k=0 1<ai<...<ap<d
Proof. We first write the coefficients of a characteristic polynomial as a sum over minors:
det(y — L(z)) = det(y — ¥~ (2)L(2)®(x))
d
_ d—k et
- Yy Z 1<(113tsk[ \II L‘IJ]CL{,,CLJ' ($)
k=0 1<ai;<...<ap<d
d
_ d—k 3k £ ~
= Z y“ " h Z 1<%S‘tsk Ko, o, (z,2), (2-37)
k=0 I<a)<...<ap<d

where we have defined IN{ayb(:v,:r) = —h }(TTILW), ,(x). Notice that I~(a7b(ac,x) = K, (z,z) when
a # b, whereas IN(aya(x,x) = Wi (). And, the specialization of the definition of non-connected
correlators (2-6) to x; = x for i € [1,d] and a; < ... < ay, yields:

Wi(Z,..., %)= det K, (z,2), (2-38)

1<i,j<k

whence the announced formula. O

We remark that the coefficients of y?~2 was already identified in Eqn. 2-25.



2.4 Gauge transformations

If ¥ is a solution of (1-1), and G is a matrix depending on z, ¥ = G¥ will also be solution of similar

equation, with:
L = (hd,G)G™'+GLG™ .

Any two arbitrary d x d matrices ¥ () and ¥(z) can be related by a gauge transformation G(z) =
W (z)®(x)~!. Therefore, the concept of gauge transformations is only meaningful if we impose some
restriction on the form of G(x). Here, the natural restriction to impose is that (hd,G)G ™! is rational,
and its poles should occur at poles of L with a lower (or equal) degree than in L.

Gauge transformations in general completely change the kernel and the correlators. However, there
are two special gauge transformations under which the correlators do not change. If G is independent
of x:

L=GLG!, P=GPG!, K=K, W,=W,. (2-39)

(where, for bookkeeping, we included the gauge transformation of matrix I" defined in section 3.6). If
G depends on z but is scalar G = G14:

L=L+ho,InG, P =P, K(z,y) = g’éi; K(z,y), Wi = Wi, (2-40)

2.5 Insertion operator

Let (C(x),d,) be the differential ring generated by rational functions. We consider a Picard-Vessiot
ring B of the differential system 70, ¥ (z) = L(x)®(z) [dPS03]. It is is a simple extension of (C(z), 0, )
by the matrix elements of ¥(z) and (det \Il(:r))fl. Let B, the m-variable analog of B, i.e. the
differential ring generated by rational functions in n variables x1,...,z, and by the matrix elements
of ¥(z;) and (det \Il(xi))_l. We denote the projective limit By, = lim, 4 B,,. By construction, the
matrix elements of P(Z) or of L(z) are in B, those of K(z1,x3) are in By, and the n-point correlators
Wn(%ll, . ,g::;,) are in B,,.

Definition 2.5 An insertion operator is a collection of derivations (J;)i1<a<d over By, commuting

with 0,, with the following properties:
e 67(By) S By
e 67(C(z;)) = 0.

o there exists matrices U(ZZ) with entries in B, so that:

() = (12 + U () (o) (2-41)
and such that U satisfies
57U() — 60U(H) = [U(H), UW)]. (2-42)



Lemma 2.2 If & is an insertion operator, for any n > 1, any a,b,a1,...,a, € [1,d],

5;K(IE1, ‘r2) = _K(xlv y)EaK(y7 x2)7 (2-43)
oy _ [PO) e oo
SeP(r) = [H +U@),PE),
PE) |yl P(i)
(lL — L
L) = o=+ U)@] - o
1
“TrL =
oI L) (z—y)*
a det ‘I/(SC) 1 1
2Indet ¥ = T 1 = — 2-44
4y Indet W () x—er rU(Y), 6yn(det\Il(z)> el (2-44)
FWn(Th, . 0) = Wi (8,81, 25). (2-45)
Proof. Easy computations, done in appendix A. O

The fact that the insertion operator sends W, to W, 11 justifies the name ”insertion operator”. We
remark that equations (2-43) and (2-45) are independent of U.

Remark. Because of relation (2-44), det ¥ is not constant regarding the action of the insertion
operator. Notice that in general, up to a scalar gauge transformation, one can always chose det ¥(x)
to be a constant. What this means here, is that the insertion operator dy doesn’t commute with gauge
transformations.

Let us define the semi-connected correlators:

(1)
b b ar, by,
Wk;n(%lh%éa"'w%,;c; y1177yn) = Z Z HW\I7|+|J7‘(QZ‘IJJ7yJJJ) (2-46)
I+[1,k] Jlk'J-“L'JJg(M):[[l,’nﬂj:l

Here, [ is a partition of [1, k], i.e. a set of £(I) non-empty, pairwise disjoint subsets I; < [1, k] whose
union is [1, k], whereas the subsets J; < [1,n] could be empty.
ope . b by,
Proposition 2.4 (Most general loop equations) For every k < d and every {yi,...,yn},
b by a ar b by
Pk,n(x7y11a7yn): Z Wk,n(x}aaxkaylla7yn) (2-47)
I<ai<as<-—-<ap<d

is a rational function of x, with poles at x = y; for some j and at poles of L.
Proof. The case n = 0 is Proposition 2.3. The cases n > 1 are obtained by recursively applying 62‘2,
for any insertion operator . ]

3 Asymptotics and topological expansion

Loop equations form an infinite system of equations, in general difficult to solve. In many applications,
correlators have an asymptotic expansion (or are formal series) in powers of ki, and if this expansion
is of "topological type” (Definition 3.3 below), loop equations can be solved recursively in powers of
h, by the topological recursion of [EOO07]. This claim is justified in this section.

We assume that L(z) has an asymptotic expansion in powers of f, of the form:

L(z) = ) ¥ LW (a), (3-1)

k=0
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which is uniform for  in some domain of the complex plane, or alternatively, L(x) € C[[A]] is defined

as a formal power series in A. Let us denote
A(z) = diag(A1(x), ..., Aqa(x)) (3-2)

the diagonal matrix of eigenvalues of L(x) counted with multiplicities and ordered arbitrarily. A(z)

also has an expansion in powers of f:

Afz) = > 0F AlF(2). (3-3)
k=0

3.1 The semiclassical spectral curve
The semiclassical spectral curve is the locus of leading order eigenvalues:

Definition 3.1 The semiclassical spectral curve is defined as:

S = {(z,y) € C?| det(y 14 — L0 (z)) = 0}. (3-4)

It can be seen as the immersion of a compact Riemann surface SI% into C x C, through the maps
z: S0 - Candy : S - C. If 2 is of degree d (the degree in 3 of the algebraic equation defining
SO i.e. the size of the matrix LI°l(z)), then the preimage of 2 € C is denoted:

a ({zo}) = {z%(x0),..., 2 H(zo)} < SO (3-5)

In other words, SI% is realized as a branch covering of C of degree d by the projection z : S — C.
The zeroes of dz in S are the ramification points, and their z-coordinate are the branchpoints.
Branchpoints §; € C occur when z%(3;) = 2°(8;) for at least two distinct indices a and b, and we then
denote 7; = 2%(8;) = 2°(B;). Let us call r the set of ramification points.

A (z) are the eigenvalues of LI%1(z), i.e. by definition they are the y coordinates of points of S,
i.e. they are the y image of some z%(x):

{y(z*(z)) ac[l,d]} = {Ago](x) a€[1,d]}. (3-6)

Double points «; € C occur where two or more eigenvalues collide, i.e.
y(=" (@) = AP (a) = A (@) = y(="(a)

for at least two distinct indices a # b, but dz(2%(a;)) # 0 and dz(2°(;)) # 0 — a fortiori, 2%(a;) and
2b(a;) must be distinct points in S

The space H'(SI%) of holomorphic 1-forms on S[% is a complex vector space of dimension g,
where g is the genus of SI%. In particular, if g = 0, H*(S%)) = {0} and a meromorphic form on C is
completely determined by the singular behavior at its poles.

Definition 3.2 Let B(SI%) the set of fundamental bidifferentials of the second kind, i.e. B(z1,22)
which are symmetric 2-form in (8[01)2, with no residues, and a double pole at z1 = zo with behavior

in any local coordinate &:

__dé(z1) d€(22)
2= (E(z) — €(22))”

Since one can add to B any symmetric bilinear combination of holomorphic forms, B(S [O]) is an affine

B(z1, 2) o(1). (3-7)

space, whose underlying vector space is Sym?[H'(S[%)], so it has complex dimension g(g + 1)/2.
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3.2 Expansions in powers of

We now assume that S is a regular plane curve, i.e. dz and dy do not have common zeroes.
Therefore, L% (z) has simple eigenvalues for any « which is not a branchpoint or double point, hence
is diagonalizable. So must be L(z) at least when % is small and = stays away from the branchpoints

or double points. We can thus find a matrix of eigenvectors V(x):
L(z) = V(z)A(2) V! (2), (3-8)
which admits an expansion in powers of A:
= Y V(). (3-9)
k=0
Such a matrix is defined up to transformations V(z) — V(z)D(z)X, where D(z) is a diagonal matrix
and ¥ a permutation matrix. We can use the first freedom to impose:

Ya e [1,d], (V7(z) 0:V(x)),, =0 (3-10)

and we then say that V(z) is a normalized matrix of eigenvectors. Any two such matrices are related
by a transformation V(z) — V(2)DX, where D is a constant diagonal matrix and ¥ a permutation
matrix.

We would like to study solutions of (1-1) which have an expansion in powers of /. For this purpose,

we fix a base point o, an invertible matrix of constants C, and introduce a matrix \/I\l(:c) such that:
~ 1 (®
P(z) = V(x)¥(z)exp (ﬁj A(ac')dx’)C. (3-11)

W(x) is a solution of (1-1) if and only if:

~

ho,¥(z) = —hT(z)¥(x) + [A(z), ¥(z)], (3-12)
where T(z) = V(2)~10,V(x) also has an expansion in powers of A derived from (3-9):
z) = > Tl (). (3-13)
k=0
Proposition 3.1 Egn. 3-12 has a unique solution which is a formal power series in h of the form:

v) =1+ . F Bl () (3-14)
k=1

up to transformations l’I\l[]‘“](x) — Wik (x) + é[k], where CF s q diagonal matriz of constants. A
priori, the entries of Ul#] (x) are multivalued functions of x with monodromies around branchpoints,

double points, and poles at the poles of (LU(x)) 0.

Proof. Inserting the ansatz (3-14) in (3-12) and collecting the terms of order A**! yields, for any
a,be[1,d]:

kol

k
Z TG, 4+ (A — AP B T Z (A= A @l (3-15)

Since we assume that SI% is regular and x is away from a branchpoint or a double point, we have
AL ]( ) # )\[O]( ) when a # b, which allows to write:

k

= [k+1 ]. k ~ o kil 2[4

Gl T (0 + §0 TG, — A - A el ). (3-16)
a b 1=
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This equation determines the off-diagonal part of W[**1] in terms of ¥l for j € [0,k]. For a = b in
(3-15), we rather find:

2, q,[k+1 _ Z Taoc‘i’ k1] Z T, . (3-17)

We took into account the normalization* (3-10), so that the right hand side involves only off-diagonal
entries of Wk or the entries of ¥ for j € [0, k.

We proceed by recursion starting from the initial condition wlol — 14. Assuming that Wil are
completely known for j € [0, k], we obtain the off-diagonal part of Wl+11 from (3-16), and solving
the first order differential equation (3-17) we then obtain the diagonal part of ylk+1] up to a diagonal
matrix of integration constants Clk+11, Tt is clear that the singularities of Tlk can only occur at
singularities of A (z) and Tl (2), i.e. either at semiclassical branchpoints or poles of (LU(x));>0,
or at double points where )\,[10] = /\LO]. |

Proposition 3.2 (Analytic continuation) The matrices V(z), A(z) and ¥ (z) = V(az)\il(:c), all
have a power series expansion in h, whose coefficients are such that their a™-column vector is the
evaluation of meromorphic function on S at 2%(x). In particular, there exists a vector YUkl (2) such
that:

Bio(o) = (V@) B(@) = 3 00 @), (3-18)

k=0

Proof. For the diagonal matrix A, we have already seen in (3-6) that AL (x) = y(z%(x)). Solving
det(Aq(7) 14 — L(x)) = 0 with L(z) = >}, oo h* L¥(z) and A\, (z) = im0 BF ALM (z), by recursion on
k, shows easily that each ALH (z) is a meromorphic function A[*I(2¢(z)) for all k. Similarly, Kramers
formula for computing the eigenvectors of L(z), shows that up to a normalization factor, the eigenvec-
tor corresponding to the a'-eigenvalue )\, (z), has also a power series expansion in / whose coefficients
are meromorphic functions of z%(x) at each order. In other words, one can chose a matrix \Af(ac) of

eigenvectors of L(z) satisfying

L(z) = V(2)A(z)V ™! (z) (3-19)
of the form
V)= Y iVvE@) V@), = ol (0 (@), (3-20)
k=0
Then, notice that any symmetric meromorphic function of (2*(z), ..., z%(z)) is a meromorphic function

of z, and thus a meromorphic function of any z*(z). And, any symmetric meromorphic function of
(zY(x),...,2%x))s (i.e. all 27(x)’s except 2%(x)), is a meromorphic function of z and of z%(z), and
thus is a meromorphic function of z%(z). In particular, this implies that the determinant of V(z) is a
power series of i whose coefficients are meromorphic function of z*(z), and the inverse matrix V-1 (x)
takes the form:

Ha) = Y iF ol (20 (). (3-21)

k=0

This implies that

(A Y2) 0,V (a ) = SR (3-22)

k=0

where each #[¥1(2) is a meromorphic function on the semi-classical spectral curve S

4Notice that we only need (3-10) at leading order here.
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We chose to normalize our basis of eigenvectors V(z) = V(z) D(z) where D(z) is some diagonal
x)

matrix, so that (3-10) is satisfied, i.e. we have to choose D(x) satisfying:
D4 (2) 0. Dya(e) = = (V@) V(@) == 3w il (). (3-23)
a,a kZO

This shows that D, ,(x) also has a power series expansion in s whose coefficients are meromorphic
functions of z%(x). Finally, this shows that V(x) has the form:

Via(z) = Y m ol (z0(2)), (3-24)
k=0

[¥]

where each v; " (z) is a meromorphic function on the semi-classical spectral curve.

If we choose C to be diagonal, we see that:

~

F(2) = V(z) ¥(z) = (z) C ! exp ( - ”: A2) dx') (3-25)

obeys:
ho, ¥ (z) = L(z) ¥(z) — ¥ (z) Az). (3-26)

The equation for the a™-column of W(z) involves only A, (), and thus is order by order in h
analytical in 2*(z), and since we know that ¥(z) has only meromorphic singularities, we see again
that the column vectors of \Tl(:c) have an A expansion such that the coeflicients are meromorphic

functions of z*(z). ]

Corollary 3.1 The coefficients 1/~)Z[k] (z) appearing in the expansion of \iliva(cc), are meromorphic
functions of z € S whose poles occur only at values of z such that 3a # b and x € C with
z = 2%(x) = 2%(x), or at poles of LM(x) for I < k. In other words, qﬁl[k](z) can be singular only
at ramification points, at preimages in S\ of double points, or at poles of LI on the semi—classical
spectral curve SO,

Proof. \il(x) was constructed so that it has at most meromorphic singularities at poles of L(x). Then,
one can see in (3-16) that singularities can occur only when AL (z) = )\go] (z) for some a # b, i.e. at
branchpoints or double points. O

3.3 Expansion of the correlators

In this section, we consider the projectors, the correlators, etc. (see Section 2.1) associated to the
solution ¥(z) deduced from Proposition 3.1 via (3-11).

Lemma 3.1 Assume that the constant matriz C in (3-11) is diagonal. Then, the projectors have an

expansion in powers of h, of the form:

P(r) = > h*PH(Z), (3-27)
k=0

and there exists a sequence of matrices p[k](z) of meromorphic functions in z € S with poles at

ramification points, at preimages in SI°1 of double points, and at poles of (LUI (2))j=0, such that
plH(2%(x)) = PH(z).
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Proof. Since we assume C to be diagonal, the exponentials — which might have prevented the

existence of an expansion in powers of i — disappear:

P(%) = V(2)¥(z)exp (% J mA(az’)dx’)CEaC_lexp<— % L mA(x’)dx’)@_l(x)V_l(x)

()% (@)E, ¥ (@) V()
E

~

A
U(2)E, ¥ (z). (3-28)

From Proposition 3.2, \il(x) has an expansion in A, so P(a%) has an expansion in h. Moreover,
U(z) E,¥ () involves only the a™ column of W(z) and the a'® line of W~1(z), i.c. the coeffi-
cients of the expansion are meromorphic functions of z*(z). From Corollary 3.1, those meromorphic
functions can be singular only at ramification points, at preimages in S of double points, or at poles
of L(z) in SI°. O

Notice that to leading order, ¥ (z) = 14 + O(h) and:
PI(2) = (VIO (2) "B, VI (2) (3-29)

is the projection on the a-th eigenspace of L[0! (x). From the expression of the correlators in terms of

the projectors, we deduce:
Corollary 3.2 For any a € [1,d], Wl(%) has an expansion in powers of h, of the form:

wi@) = 3 Bwf@), (3-30)
k>—1
and there exist meromorphic functions wgk](z) in z € SO with poles at the ramification points, or at
preimages in SI° of double points, or at poles of (L(z));50, so that wgk] (z%(z)) = Wl[k] (%)

For example we have:

will(&) = —Al0(x), (3-31)
Corollary 3.3 For any n = 2, any aq,...,ay € [1,d], the correlators have an expansion in powers
of h:
Wa(@, ... ) = > BEWIR@@, 2 (3-32)
k=0
and there exist symmetric meromorphic functions wT[Lk](zl, oy Zn) i (21, ..., 2n) € (SO, with poles

when z; is at a ramification point or at a double pole or at a pole of (LU(x));=0, and so that

An,

wF (2 (21), ..., 2 () = W (L, . 20).
On top of that, wgo] (21, 22) has a double pole at zy = 23, and behaves as:

w2, ) = 2 (21)2"(22)

_rla)rlm) o), (3-33)
77 (2(21) — 2(22))

3.4 Expansion in A with poles assumptions

Many interesting systems have the property that their leading asymptotic behavior at the poles of
L(z) is governed by the A — 0 limit, i.e. in some sense that LU (z) for j > 0 is somewhat ”smaller”
than L°l(x). When this holds, only Wl[o] () can have poles at the poles of L(z), all other W have

no poles at the poles of L(z). Let us make it precise.
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Assumption 3.1 Let us assume that L(z) = >, 1 LUY(z) has the property that for any j > 0 the

poles of LUl (z) are a subset of the poles of L% (), and the expansion of its eigenvalues

No(@) = 3 WAL (a) (3-34)
j=0
is such that, for any j > 0, )u[zj](z) — 0 when x approaches a pole of L(x). Equivalently, this means
that the characteristic polynomial of L(x) satisfies

Qla,y) = det (y 14— L(x)) = 31 Q) (a, ), (3-35)
=0

where the coefficients, for j > 0, are such that:

D[O] (.Z‘) Q[J] (J;7 y) — Z Qg@,n—l ™ yn—l7 (3-36)

(m,n)€einterior(N)
where DIO] (x) is the common denominator of all coefficients of Q! (z,y), N is the envelope of the
Newton’s polytope of DO (z) QO (z, ).

Corollary 3.4 When assumption 3.1 is satisfied, only W{O] (:(11?) can have poles at the poles of L(zx),
all other W are reqular at the poles of L(x).

Corollary 3.5 wéo)(zl,zg) = wgo](Zj,ZQ)d.T(Zl)d.T(Zg) defines an element of B(SI1) (see Defini-
tion 3.2).

For instance, we have from Proposition 2.1 and (3-29):

W2[0] (%117.%22) _ [(V[O])—l(x1>v[0] (x2>](<;1412[;‘/)[z])_l(mQ)V[o] (ml)]az,m ) (3_37)

3.5 Expansion of topological type and topological recursion

Definition 3.3 (TT property) We say that the correlators have an expansion of topological type
(or have the TT property) when they have:

o the h & —h symmetry: Whp)—n = (=1)" Wy )n-

e the h"~2 property: for any n = 2, W,, € O(h"~2). When these two properties are satisfied, the

h expansion of the correlators looks like:

V=1, W, = > R, (3-38)

g9=0

e the pole property: when (g,n) # (0,1),(0,2), the wT(,t‘]) have poles only at the ramification points.
In particular they must have no pole at the preimages in S of double points, or at the poles of

L (z). And wéo)(zl, z9) has a double pole at z1 = z3, and no other pole.

In the Section 4, we shall study some sufficient conditions (related to integrable systems) to have
the TT property, and in Section 5, we shall show that g-th reductions of the KP hierarchy, have the
TT property. We believe that the T'T property is closely related to integrability, but we do not have
a proof of such a statement. Let us just mention that the A”~2 property is a highly non-trivial one.

For example large random matrices, it is related to the ”concentration” property [BG13a].
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When the TT property is satisfied, one can plug the i expansion (3-38) into the loop equations
to obtain a set of equations satisfied by Wff). The key point is that those equations can be solved
recursively on 2g —2+mn. The prototype of such a result is known since [ACM92, ACKM93, ACKM95].
The solution is given by the topological recursion developed in [EO09]. The topological recursion as-
sociates to a plane curve (S[%, z,y) (algebraic in our case) and wéo) € B(S[%), a sequence of symmetric
meromorphic n-forms wﬁlg) on (S, defined by a recursion on 2g — 2 + n in terms of the geometry
of the curve SO, Tt was first presented under the assumption that ramification points are simple
[EO07], and extended to arbitrary ramification points in [BHL"13]. Then, it was shown [BE13] that
the general formula of [BHL"13] is a limiting case of the formula of [EO07] for simple ramification
points. For instance, the semiclassical spectral curve of r-KdV has one ramification point of order r.
For readability, we present now the case of simple ramification points, and refer to [BE13] for the case

of arbitrary ramifications.

Theorem 3.1 If the correlators have an expansion of topological type, and dx has only simple zeroes
on the semiclassical spectral curve SI° : det(y14 — LI (z)) = 0, then the coefficients of (3-38) are
given by:

WOz, ..., an)dey - - day, = 09D (2% (1), ..., 2% (2,)) (3-39)
and wﬁLg) satisfy:
w9 (21,20, .., 2) (3-40)
/
—1 h 1%
= 2 ZREE Kr(zlaz) [W7(19+1)(Zaar(z)wz%'-'vzn) + Z w§+)|1|(27ZI)W§+‘)I/|(UT(Z)7ZI’)]
TEr hih'—g
10T =[2,n]
+HD (z1,...,z0), (3-41)
where HY(z1,...,2,) is some symmetric holomorphic n-form on (SI°N" 3 means that we exclude

(h,I) = (0,8) and (W,I') = (0,), r are the ramification points (i.e. the zeroes of dx), o, is the
local Galois involution near the ramification point r, i.e. the holomorphic map defined in the vicinity

of r, such that x o 0, = x and o, # id. And, the recursion kernel is:

% Sj’,.(z) Wéo) (21,)

~0l0(2) — ¥ (00(2))

(3-42)

where wgo) = —ydx on SV,

Corollary 3.6 If furthermore S has genus 0, Hflg) = 0 (since there are no holomorphic 1-forms
on S[O]) and w,(,g) are ezactly given by the topological recursion of [EO07] applied to the initial data
wio) = —ydz and wéo) (see Corollary 3.5).

Proof. The proof is essentially done in [EO07, BEO13]. To be self-contained, we redo it in Ap-
pendix B. 0

3.6 Symmetry h <~ —h

Here we give a sufficient condition for the existence of an & <> —h symmetry. We do not know whether

this criterion is also a necessary condition.
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Proposition 3.3 Assume there exists an invertible matriz T', independent of x, such that:
TLf ()T~ = L_(x). (3-43)

Then, if ¥ is a solution of (1-1), ¥_ = T(¥ N7 is a solution of (1-1) with h — —h. The
projector associated to the two solutions are related by P = TPTT ™1, and the correlators by W), =
(=)™ W)= for any n = 1.

Proof. The relation between the projectors is an easy computation, and given Proposition 2.1 for the
n-point correlators, we deduce W)+ = (—1)"(W,,)— for any n = 2. For n = 1, we check it directly:

WM)-(@) = AP (@) Lop(2) ¥ (2)]aa
= ATr O ' (2)L_p(2)¥_(2)E, = Tr P_(2)L_s(2)
= ATeTPL ()07 'Ly(2) = Tr PL(2)LE (2)
= hTrP(z)Ly(x) = —(W) 4 (). (3-44)

4 Case of isomonodromic integrable systems

We believe that integrable systems is the good setting to have the TT property satisfied. We give
some arguments here, and then show in section 5 that the special case of ¢g-th reduction of KP fits in

our framework.

4.1 Behavior at the poles and isomonodromic times

In this paragraph, we review classical results from the theory of linear differential systems. A d x d
invertible matrix ¥(x) solution to A0, ¥(x) = L(xz)¥(x) can have singularities only at poles of L(x).
For any p € P, it can be put locally around x = p in the form®:

mp
(@) = Fyla)exp (B, ol =) + Ay())Cp Agle) = 3 T Tyla) x 1a (1)
k=1
where A, (z) and B, are Jordanized matrices. Such asymptotics can only be valid in an angular sector
near x = p, and the constant matrix C, depends on the sector. B, describes the monodromy around
p of the right hand side of (4-1).

Imagine that L(x) depends smoothly on parameters £ = (t,)a, generically called ”times”. One
can always define a matrix My (z) = ho;, ¥(z) ®(x)~!, so that ¥(x) satisfy on top of (1-1) the
compatible systems:

Va, oy, W(x) = My (2)P(z). (4-2)

Requiring that M, (z) be rational is equivalent to requiring that the local monodromies do not depend
on . If 0:, B, =0 for any p € P, we say that t, is an isomonodromic time. Integrable systems in Lax
form provide examples of such rational compatible differential systems. A second realization of this
setting in the realm of formal series in £ can be achieved by deformation of any given L(x) and solution
W(z) (independent of parameters) [BBT02, Chapter 5]. The latter might not be the restriction of an
integrable system in Lax form (for W(z,#) might not be defined as a function of £). Our formalism

applies equally well to the two cases.

5When p = o0, the factors (x — p) should be replaced by 1/z.
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4.2 Isomonodromic Tau function

In this section, we assume that L(z) depends on a family of isomonodromic times t = (t4)q. If there

is more than one time, we first need a remark. Let us define:

Yolf) = — )] ResdaTr[® " (2)(0,(x)) e Ar() (0, R0 ()]

peP r

= =3 Res oo [&, (@) (0T, () e A7) (0, €20 ())]
peEP r

d a

= — Z Res 2 (Wi () (e*AP(w)GthAP(m))aa]. (4-3)

pep U P a1 ’
Lemma 4.1
Vo, B, (’%Ta(t—} = 01, T (8). (4-4)

Proof. The definition of T, and this result is due to Jimbo, Miwa and Ueno for integrable systems in
Lax form and diagonal A, i (see also [BBT02]). It was generalized to non-diagonal A, ; in [BM09].
The proof is essentially the same. O

Definition 4.1 We define the isomonodromic Tau function as a function T (t) (or as a power series
in t), such that:
Or, T (1) = To(1). (4-5)

It is defined up to a constant independent of t.

Tau functions play an important role in the theory of integrable systems and its applications, and
they have been extensively studied, we refer to [BBT02] and references therein.
4.3 Case of an integrable system: expansion of the Tau function

If L depends on isomonodromic times , an isomonodromic Tau function 7 () has been defined in
Definition (4.1). It is a consequence of Corollary 3.2 and the formula (4-3) for the isomonodromic Tau
function that:

Corollary 4.1 If A, = Rt Al[jo] is diagonal for any pole p, we have an expansion of the form:

In7(E) = Y, hFFR ), (4-6)

k>—2
where: }
k [k+1] 2
O, FM(E) = = Res D [de Wi (@) o, (A (2)) 0.0 (4-7)
peP a=1
]
Corollary 4.2 In particular, if the TT property holds, then only even powers of h appear:
7@ = Y h2=2 FO (), (4-8)
g=0
where
O, FO(D) = = 3 Res [wi”(2) fa(2)], (4-9)
peP =r
with dfa(2)
a(2)
() &tay(z)‘l_(z). (4-10)
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Proof. Indeed, when there is an expansion of topological type, we have Wl[zgfl] (:%) dr = w§g) (z%(x)).

O

4.4 Compatibility of the insertion operator with isomonodromic deforma-
tions

The definition of Picard-Vessiot rings is easily generalized to a family of compatible differential systems
7o, ¥ (x) = L(z)¥(x) and idy, ¥(x) = My (z)¥(z). We amend Definition 2.5 of insertion operators:

Definition 4.2 We say that an insertion operator § is compatible if it commutes with all 0;_, i.e. if
it satisfies:

s [Mel2)=Mol) ) (a11)

a
hde, U(Y) = 6;Ma(z) + [Ma(z), UY)] + pra—y
The existence of an insertion operator compatible with all times is not something obvious, but if it
exists it is quite useful. For the g-th reduction of KP, we construct in § 5.7.3 a compatible differential
operator, which enables to prove the O(h"~2) axiom of the TT property.

5 Application to finite reductions of KP

In this section, we show an important application of the former formalism, namely to the g-th re-
ductions of the KP hierarchy. They are related to the Drinfeld-Sokolov hierarchies [DS85], and they
contain as a more special case the (p,q) models exemplified in Section 6. They appear in one of the
formulation of 2d quantum gravity [DS90], and conjecturally describe the algebraic critical points
which can arise in hermitian multi-matrix models. In physics, the (p,¢) models are expected to de-
scribe thermodynamic observables in the coupling of Liouville theory to the (p, ¢) minimal models of
conformal field theory [dFGZJ94], the latter corresponding to the classification of finite representa-
tions of the conformal Virasoro symmetry of central charge ¢ = 1 — 6(p — ¢)?/pq [AFMS99]. The g¢-th
reduction of KP is related to perturbations of this coupled theory by primary operators.

5.1 Pseudo-differential approach to the ¢-th reduction of KP

Let t be a 1-dimensional variable, and C* denote an algebra of smooth functions of t. Let D =
C®[hés, h~'0; '] be the graded algebra of pseudodifferential operators. Let D, = C®(R)[hd;] its
subalgebra of differential operators, graded by the degree. We say that D € D is monic of degree r > 0
if
r—1
D=waf+ Y. a(t)(hd)*.
k=—o0
We then recall that there exists a unique pseudodifferential operator denoted D", which is monic of
degree 1 and satisfies (Dl/T)T = D. We denote D, the projection of any D € D to D, .
The string equation is a relationship

[P,Q] = h (5-1)

between differential operators P and . It can be written as the compatibility condition of two

differential equation for a function ¥ (z,t):

I’?/}(.T,t) = Qi/f(%t)v 7harw(z7t) = Pd}(xat) (5_2)

We call (5-2) the associated linear system.

20



Let (p,q) be a couple of positive integers distinct from (1,1). The (p,q) model is a hierarchy of
1-dimensional nonlinear differential equations for a sequence of functions u(t), u(t) for k € [1,p — 3],

and v;(t) for [ € [1,q — 3], ensuing by looking® for a solution of a string equation of the form:

pP= Z v (t) (hy)F, vp=1, 0,1 =0, vp_2 = —pu, (5-3)
k=0
Q= Z w(t) (hoy)!, Ug =1, ug—1 =0, ug_2 = —qu. (5-4)
1=0
We thus have:
[ P-Gar—mO(ar SO0 55
Q = (hén)? — qu(t) (hd)17% + X125 uk(t) (héy)!

When P and @ assume the form (5-3), it is well-known that:

Theorem 5.1 [DS85, dFGZJ94] The most general solution of (5-1) is of the form:
P a
Z QY1) 2 t (PR/PY, (5-6)

for some constants t; and Ty, (with t, = 1 and th =1).

For coprime (p,q), the (p,q) model is defined by the choice P = (QP/4),. The string equation

[P, @] = K usually implies a non-linear equation for wu(t).

Example of PDEs for the (p,q) = (3,2) model. Let us denote u(t) = dyu(t). We have:
= (hoy)® —3uhd, +v Q= (hoy)* —2u (5-7)

and the string equation implies

3. .
v=—Shith (5-8)

for some constant t1, and the Painlevé I equation for u(¢):
Lo 2
_ih i+ 3u” = t. (5-9)

5.2 Constructing the Lax pair by ”Folding”

In this paragraph we show that the associated linear system is an integrable system in Lax form, i.e.
it can be written:

ho, ¥ (z,t) = Lz, t)P(z,t), ho ¥ (x,t) = M(z,t)®(x,t), (5-10)
for a matrix
gl(xﬂt) e g)q(x’t)
h t 1\Z, h t q\ T,
By | COED et | -
(ho) T pi(a,t) - (R0 T g(a,t)

where the ;(z) are independent solutions of the associated linear system (5-2).

6The choice uq—1 = vp—1 = 0 can always be achieved by a redefinition of the variable t. And then uq—2/q = vp—2/p
follows from the string equation, and we denote u = —uq—2/q = —vp—_2/p.

21



It is easy to achieve the second equation with the companion matrix:

1
1
M(x,t) = (5-12)
1
r—uo(t) —ui(t) - —ug—2(t) —ug-1(?)
where we recall that uq,_2 = —qu, and up to a redefinition of time ¢ we can chose uq_; = 0. We

now construct the matrix L(z,t) to realize the first equation. Naively, 0,0F can be expressed by
the action of a differential operator of order (p + k) on . But, if we want to write an equation like
(5-10) with L(x,t) having coefficients which are functions of x — and not differential operators —, only
derivatives of order smaller than (¢ — 1) are allowed. To bypass this restriction, we can use the first
member of (5-2) to express any g-th order derivative of ¢ in terms of derivatives of lower order. This

can be systematized with the notion of folding operators.

Definition 5.1 We define for any integer | the folding operators:

Fy(z,t) = Y. Fj(x,t) (ho) € D [x], (5-13)
J=0
by the following recursion:
Fo(z,t) =1, Fiii(z,t) = (o) Fi(z,t) + F g—1(x, t)(x — Q). (5-14)

They have the property that for every solution vy, of (5-2)

q—1

Vie Z+a Vi= la -4, (hat)l wl(x7t) = Z Fi,j(x7t) (hat)J ¢l($,t) (5_15)

j=0
in other words they express any time derivative in terms of only up to order g — 1 derivatives.

Notice that Fy(x,t) = (hd,)! for [ € [0,q — 1], but:

Fy(z,t)=(hd)! +o—Q =2 —qu(t) (hd)? Z_] ) (R o))", (5-16)

Lemma 5.1 For any integer [, Fy ;(x,t) = 0 whenever j > q. Besides, for every solution v of (5-2)

1=

= Bo(a,t) = Py(a,t) = (Y ul)Fi(e,0) ) b(a,t) (5-17)

0

Proof. Since @ is monic of degree ¢, the last term in (5-17) prevents Fj(x,t) to have terms of degree
higher than (¢ — 1), as one can show by recursion. Then, recall that (z — Q)¥(x,t) = 0, so these
operators satisfy (h ;)b (x,t) = Fy(x,t)(x,t), hence (5-17). .

Definition 5.2 For any integer k, we define the operators:

Li(z,t) = > Ly j(x,t) (hd;)) € D [z] (5-18)
j>0
by the following recursion:
==Y u)F(x,t),  Lisi(w,t) = (hé)Lp(x,t) + Ly g1 (z,t)(z — Q). (5-19)
=0
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We have similarly:

Lemma 5.2 For any integer k, Ly j(x,t) = 0 whenever j > q. O

We are now in position to conclude:

Proposition 5.1 The first equation of (5-10) is achieved with L(z,t) = (Ly ;(x,t))o<k,j<q—1- O

In particular, the string equation is equivalent to the compatibility condition of this system:
[M(z,t),L(z,t)] = hoiL(z,t) — ho,M(z, t). (5-20)

By a gauge transformation, one can chose u,—1(t) = 0, i.e. M(z,t) traceless and therefore det ¥(z,t)

independent of ¢. If an initial condition ¥(z, %) is invertible, ¥(x,t) remains invertible for all .

Example of folding for the (3,2) model. We have:
: 3.
P = (ho})? — 3uhd; — 5 hi+t Q = (hoy)?* — 2u. (5-21)

for which the string equation [P, Q] = h implies the Painlevé I equation for u(t): —3 A%t + 3u? = ¢.
The first folding operators are

Fy=ho; , Fy=x+2u , F3 =xhd;+2uhd;+2hi , Fy = 2* +4ux +4u® + 4120 0+ 2h%i. (5-22)
This gives
3.
Ly = —F35+ 3uF; +(§ hu—tl)Fo,
. 3. 3 5.
L = —Fy+3uFs+ 30k + (5 i — t1)Fy + §h2uF07 (5-23)

and consequently

—Lnu — t1 —r+u
= 2 )
Lot = (L e s 2 b0 dnae o
and
01
M) =, %, o) o)

5.3 Semiclassical spectral curve and formal / expansion

We consider formal solutions of the string equation, i.e. u; and v; which have a formal series expansion

in h. Let us denote:

wr(t) = Dm0, w) = Y o). (5-26)

m=0 m=0

Lemma 5.3 u,[CO] (t) and vl[o] (t) can be obtained by replacing hé, by a variable z € C. Namely, one

defines

{ X = Bhoud: (5-27)
Y(z) := P ov () 2*
(which are the i — 0 semiclassical limit of @ and P). The leading order in h of the string equation
becomes a Potisson bracket:

0,Y (2)0: X (2) — 0, X (2)0:Y (2) =1, (5-28)

which gives an algebraic constraint on u,EO] and vl[o],
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Proof. The leading order of [P, Q] is:

h=[P,Ql =Y nlvfaf of 1=t — Nkl o of 1 4+ O(h2), (5-29)
k,l k,l

i.e. this means that
Y'(2)X(2) — X'(2)Y (2) = 1. (5-30)

Lemma 5.4 A solution of (5-28) is obtained as follows
X(z) = @22 p @72y v(z) = @) g (2 (W) T2, (5-31)
where ul®) = (t/p)ﬁi*l , and the functions [ and g satisfy:

af(€)g'(¢) = pg(Q)f'(¢) = (p+a—1)p, (5-32)
and p is chosen such that at large ¢ the solution of (5-32) behaves as f(¢) = ¢9(1—qul®¢=24+0(¢73))
and g(¢) = Cp(l —puldl¢—2 4 O(C_?’)), We call it the homogeneous solution.

Proof. The result is claimed in [dFGZJ94]. Let us prove it directly. If we assume the form (5-31),
and write ¢ = z (ul®)=1/2, then we have

0:X = (VR (), aX = %atum (a @He=272 £(Q) = @2 Q) (5-33)

0.Y = W2 G(Q), 8y = Sowl® (p(l)E2 6(0) - @O (). (530

It follows: )
1=0X0.Y —aY 0.X = o ol (WO PHa=3)/2 (g 5o’ — pg ), (5-35)
which is satisfied if ul®) = (t/p)wzfl and ¢fg’ —pgf' = (p+q—1)p. O

Lemma 5.5 If p+ q > 4, this implies when ( — oo that:
- afp _ P s1-p 1 [0] _9 2 ~2 L O(¢3
10 = aerr = Le (e (p-2s 2 )P 0c).

9¢) = f<<>P/Q—Z;<l-q (1+u[0] (q—2+ )<-2+0<<-3)).

q p+qg+1

In particular:
F=06")s o g=0" (5-36)
Proof. Write f = g?/? h, the equation then gives:
K (p+tg—1p (+g—1p

RS e o (L@ 0C), (5-37)
and upon integration:
P e (P+a)p+q—Du s
Inh == P=q4 (1 4 0] . 5-38
wh= e ( oY) (5-39)
Then, using p + ¢ > 4 to ensure that 2(p + ¢ — 1) > p+ ¢ + 1, we can exponentiate:
P e P+ap+g-—1ul” _, s
h=1+=¢"P7(1+ +0 . 5-39
Pt A ) (5-39)
We then multiply by ¢%/7 = ¢(?(1 — qul®l¢c=2 + O(¢™?)) and get
_gir L P -r (g 24+ — 2 a2 L o). 5-40
Feg? D (1t (24 e ul P 1 0CY) (5-40)
We have the same proof for g. O
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5.3.1 Special solutions

In the (p, q¢) model, we have P = (QP/%), and similarly Q = (P9?), . Therefore, at the semiclassical
limit, we find Y (2) = (X?/9(2)); and X(2) = (Y%¥P(2)),. The relation (5-28) can be solved explicitly
in the case p = (2m + 1)g £ 1 for some integer m [dFGZJ94]:

fQ) = Z:Lnof(p/q+15)(?:;11)p/q+l) p—2nq(C) -9 5-41
{g@ T T o

where T;(2cosf) = 2cos(l6) are the Chebyshev polynomials of the first kind. In particular, for the

9

so-called 7unitary” models p = ¢ + 1, we find:

{ Jngg _ %&)(O o p=2(g+ 1) (5-42)

5.4 Semi-classical spectral curve

Proposition 5.2 In the semiclassical limit h — 0, the eigenvalues of M(z,t) and L(z,t) are given
by the functions x(z) and y(z) defined in (5-27), by:

q
z = eigenvalueof Ml%(z,t) «— z=X(2)= 2 u,[CO] (t) 2~ (5-43)
k=0
P
y = eigenvalueof LI%N(X (2),1) «— y=Y(z)= Z vl[o] (t) 2~ (5-44)
1=0

The leading order spectral curve, i.e. the locus of eigenvalues of L% (z(2),t), is a genus 0 algebraic

plane curve.

Proof. Since M(z,t) is a companion matrix, its characteristic polynomial is
q
0=det(z1; — M(z,t)) =z — Z u (t) 2%, (5-45)
therefore in the limit / — 0, the eigenvalues of M[°l(z,t) are the 2’s such that X (z) = a:

Zq: u,EO] (t)2F =z = X(2), (5-46)
k=0

where X (z) is the function introduced in (5-27). It follows that in the limit A — 0, hdpb(z,t) ~
z(x,t) (1 + O(h)). The eigenvalues y of L(x,t), by definition are such that

d

yU(z,t) = —hogp(z,t) = 2 ) (o) (s, t), (5-47)

and thus in the A — 0 limit, the eigenvalues of LI (z,t) are such that

- i (1) 2L (5-48)
=0

The spectral curve P(z,y) = det(y 1, — L%(z,)) is a polynomial of z and y, monic of degree ¢ in y,

which vanishes if and only if y is an eigenvalue of LI?l(2), i.e. if and only if there exists some z such
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that x = X(z) and y = Y (2). Therefore P(z,y) is proportional to the resultant of the polynomials
X(z) —x and Y(2) —

(=1D)?P(z,y) = Resultant(X(z) —z,Y(2) —y)
1 u([IO_]1 u%o_]Q - ugo] u([)o] -
0 0 0 0

1 qul u([F]2 . ug ] u([) 12
0 0 0 0

. 10 %i[z_]l u([l_]2 . ug l ug L

— et |1 o o Ty

1 Uz[>0—]1 UP] U([JO] -y

1 v[(ﬂl vgo] ’U([)O] Y
As mentioned above, it admits a parametric solution:
P(X(2),Y(2)=0 (5-49)

with = and y polynomials of z. This means that there is a holomorphic map z — (X (z),Y(z)) from
the Riemann sphere C to the spectral curve (the locus of P(z,y) = 0 in C x C). In particular this

implies that the spectral curve is an algebraic plane curve of genus g = 0. O
5.5 Asymptotic expansion and TT property
As in Section 3.2, we look for asymptotics of the form:
W(z,t) ~ V(z,t)®(z,t) en SED, (5-50)
where:
o S(z,t) = diag(S(2a))1<a<q 18 such that 0;5,(2)|x(z)=x = 2' are the eigenvalues of M%) (z,¢),
where z = z, is related to x by
= X(z) = 29 — qul(t) 2272 + Z uk . (5-51)
Thanks to (5-28), it also satisfies:
0:54(2) =Y (24) (5-52)
where Y'(z,) are the eigenvalues of L% (z,t).

e V(z,t) is a matrix whose columns are eigenvectors of both M(%(z, t) and Ll (z, t), normalized
such that V=19,V (z,t) has a vanishing diagonal. Since Ml%(z,t) is a companion matrix,

V(z,t) can be found rather explicitly, as a Vandermonde matrix, with columns normalized by

a factor 1/4/X’(z,):

Vas(st) = P oo s = X() = 31l (1) 2 (5-53)
X'(za k=0
Its inverse is (0]
—b q k—b
V1), — KCalDa@ ) S0 ) 55
X'(za(z)) X'(za(z))



It satisfies:

. X'(z) 1 _

fa#b V-10,V), = O(z~Y9), 5-55
ifa ( Jab (o) 72 (™9 (5-55)
ifa=b (V10 V)ea =0, (5-56)
ifa#b (V10 V)as 0 X (z) LI O(z=%1), (5-57)

X'(24) X' (23) Za — 2
, 1 X'(z,) _
= -1 = _Z ol _ 2/q .

ifa=5 (V710 V)ea > X7(20) O(z=71). (5-58)

The matrix ¥(z,t) = 1, + O(h) has a formal asymptotic series as i — 0. From ho,® - ¥—! =
M = M —e,(u—ul®H7 where e, = (0,0,...,0,1) and u = (ug, . ..,u,_1), we get the equation
for ¥ involving the diagonal matrix Z = dlag(zl, ..., 2q) of eigenvalues of Mol

[Z, %] =V le,(u—ul) V& +V1h,V ¥ + ho, ¥, (5-59)

i.e.

q— 2 [0]

q

3 (ur — uy, )zl

( —Zb\Il E k=0 \I/b-l-hg V at )l‘I’lb+ﬁat‘I/b (5—60)
2 X (20) X' (2) P ¢ ¢

This equation uniquely determines T = 1, + O(h) as its asymptotic expansion in powers of A.
In fact it also uniquely determines ¥ = 1, + O(z~1/9) as an asymptotic series at large z, in
powers of z'/9. From ho, ¥ - ¥~! = L we also get an ODE for ¥:

VILVE - WAL — V=15,V ¥ + 1o, 0. (5-61)

We observe that the semiclassical spectral curve has genus 0. Therefore, we will be able to apply

Theorem 3.1 if we can show:

the existence of a i <> —h symmetry. This is a technical but simple check done in § 5.6.

that the n-point correlators W, (z1, ..., x,) are O(h"~2) after a suitable gauge transformation.
This is a non-trivial property of (p,q) models, that we establish in § 5.7 by constructing an

insertion operator d¢ which is compatible with ;.

(9)

the pole property, i.e. that wy;, ' have poles only at ramification points, established in § 5.8.

The consequences of Theorem 3.1 for the (p,q) models are gathered in Section 5.10.

5.6

h < —h symmetry

The goal of this subsection is that the (p, ¢) models admit conjugated solutions in the terminology of

§ 3.6:

Theorem 5.2 For any invertible solution W(x,t) of (5-10) with coupling constant h, there exists a
solution ®(xz,t) of (5-10) with coupling constant —h, such that y(x,t) = ®(x,t)®7T (z,t) is independent

of x.

This theorem is proved below, but in order to do so, we need some intermediate results and definitions:

We first introduce a conjugation operator:
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Definition 5.3 There is a unique antilinear operator ¥ : D — D, such that:
e forany feC® <D, fl = f.
o (ho))" = —(ho,)".
e for any D1, Dy e D, (D1 D)t = DEDI.

In particular, if P,Q € D satisfy [P, Q] = &, then [P, Q] = —A. Moreover, if P and Q are differential
operators of the form (5-5), so are Pt and Q. To summarize, 1 puts in correspondence the models
with coupling constant A and —#h.

The linear system associated to (PT,QT) is:

zp(x,t) = QTp(x,t),  hd.o(x,t) = Plo(z,t). (5-62)
If ¢ (2,t), ..., ¢q(x,t) denotes a family of solutions of (5-62), we can define a matrix:
¢1(x, ) e Gq(, 1)
(o1) = (ﬁﬁt)él(x,t) e (hﬁt)?q(x,t) | (5-63)
(B0 Lor(,t) - (h2) b4 (a,1)

As before, we can represent (5-62) in Lax form, and we denote L_p(z,t) and M_;(x,t) the corre-

sponding Lax matrices:
—hé,®(x,t) = L_p(x,t)®(x,t), —h0;®(z,t) = M_p(z,t)®(x,t). (5-64)

The following result gives a correspondence between solutions of the associated linear systems of (P, Q)
and (PT, Q7).

Proposition 5.3 Let 11,...,¢, be a basis of solutions of (5-2), W(x,t) as defined in (5-11), and
define:

Alz) = det¥(z,1), (5-65)
Aigrjo(m,t) = det[(ha) ™ o(w, )] 20 177, (5-66)
(Zj(xj) = Aqfl,j(xvt)' (5-67)

then (ggj(x,t))lgqu is a basis of solutions of (5-62).
The proof of this proposition relies on a technical result:

Lemma 5.6 Let j € [1,q]. With the convention A_1; =0, we have for any i€ [0,q — 1],
h&tAi,j (x, t) = Ai—l,j (Z‘, t) + (—l)qij (Ui(t) — 5170$)Aq_1,j (I, t), (5—68)

and for any k € [1,q + 1],

k
o Dgr(@,) (Z D (10,) " g m(t)Aq,Lj(x,t)]) + Opgr1 (1) 121 (2, 1).  (5-69)
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Proof. By multilinearity, we can differentiate the minors A, ; line by line:

Ym
Y Y :
: : (R E)* 24,
(ho) b 02 | a2 | (R0
hoA; ; = det (ROL) +det | (hop) by, + Z det (h0y) ¥t . (5-70)
: (h )T 2,
—1 .
(ho)"™ m /., (RO W/ s (7 00)7 Y4py

m#j

The non-zero contributions arise only from the terms where:
o the i-th line is differentiated. We then recognize the definition of D;_; ;(z,t).

e the (¢ — 1)-th line is differentiated. Since 91, ...,1, are solutions of (5-2), we can replace
(Br) W)y, by a xthy, — Zq o wi(t) (hd)*. By subtraction of the other lines, we may keep in the
latter only the term involving a derivative of order i-th, which was absent from the minor. We
thus recreate a minor Dy ;(z,t), with a prefactor (z8;0 — u;(t)), and up to a sign (—1)4~"

taking into account the ordering of the lines.

We therefore arrive to (5-68), and (5-69) follows by recursion. In particular, we obtain at the last step
of the recursion (k = ¢+ 1):

q+1
0=A_y (z,t) = (Z 1)+ (hoy) g Hl(t)+(-1)%)Aq_1,j(x,t)
=1
= (~1)%a - QA t). (5-71)

Accordingly, ggj(x, t) = Ay_1,j(z,t) provides a solution of (5-62) for any j € [1,¢]. To show that (qwﬁj)j
is a basis, we define the matrix ®(z,t) = [(h 0)i*1$j]1gi7j<q and compute its determinant. Thanks to

(5-68), we may write:

Aq—l,m Aq—lam
~ h&tA —1,m A —2,m + (U _1(t) — 1‘5 71)A —1,m
det & = det ! —det | ° - o . (5-72)

(hat)q_lAq—l,m (hat)q_lAq—l,m

1<m<y

and upon subtracting the first line in the second line, we can replace the second line by [Ag—2 m]1<m<q-

<

We find recursively that the 4-th line can be replaced by Ag_; ,,, and thus:

~ JAVER
= . q j—12k=1,j
det & det[Ag_jl1<jneq = (det B)7 det [( e ]KM@
= (det )7t (5-73)
So, (ng)j is a basis of solutions of (5-62) if and only if (¢;); is a basis of solutions of (5-2) O

In order to obtain Theorem 5.2, we exploit the freedom to choose a normalization of ¢;(x,t)

depending on x. As we shall see, an appropriate choice is:

oant) = (-1 2D - (B et o), (571
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and we define the matrix:

¢1(:E,t) e ¢q(ﬂf,t)
—ho , —ho ,
&(z,1) = tqfl(x " td?’(x A (5-75)
(ha)i61(z,t) - (~hy)idy(z,t)
It remains to show that:
q
2 [(h o) r(w, O] [(ho) " br(x, 1)), i,je[l,q] (5-76)

does not depend on x. For this purpose, we first observe:

q
Viellql, Cuij= D (-1} W= (-1)""5,. (5-77)
k=1

Besides, from the very structure of (5-76), we observe:
Vi,je[l,q-1], hotCij = Cij+1 — Citry, (5-78)

and when j = ¢, we use the fact that v, is solution to the system (5-2) to write:

q—2

Vie[l,q—1], h0yCi g1 = —Cit1,4-1 — 2 (w(t) = 61,0%)Ci 41 (5-79)
=0

Considering (5-77) as an initial condition for (5-79), we obtain by recursion that C; ; = 0 whenever
i+ j < q. Hence, Z?;OQ 01,0C;,1+1 always vanish. This implies that the recursion relation (5-79) does
not depend on z. Since C;; is determined uniquely from (5-79) with the constant initial condition
(5-77), we conclude that C does not depend on x, which completes the proof of Theorem 5.2.

5.7 The h" 2 property

We are going to construct a suitable insertion operator allowing to prove the 2”2 property.

5.7.1 A useful decomposition

The very special form (5-12) of the matrix M(z,t) in (p, ¢) models allows a decomposition:

Lemma 5.7 P(2) = A(Z) + 2B(Z) + hC(z) where A and B do not depend on h and have the
properties:

[A(%,0), AW, 0] = 0 (5-80)
[B(Z,1),B(1,1)] — 0, (5.81)
(A5 0, B@W,)] = [A®W0),BE 0] (5-82)

and C depends on h, is O(1), and is expressible in terms of matriz elements of P(x,t) and their time
derivatives.

Proof. The projectors P satisfy the evolution equation:

hatP(‘%vt) = [M(x,t),P(%,t)]. (5-83)
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We have:
Ml,m(xa t) = 6m,l+1 + 5l,q (.T,‘ 5m,1 - um—l(t))a (5‘84)

hence: .
[M(Z‘,t) P(‘%vt)]l, = Pl+1 n(x t) + 0 d(x Py n .’E t Z Um—1 Pm n (E t))
m=1
[P(2,t) M(2,)]10 = Prn1(Z,t) + (2001 — un_1(t)) PLy(,1).

Omitting to precise the variables, (5-83) implies the relations:

I<i<d hoyPy = P11 — (v —uo)Pg,
I<i< da l<n<d hath,n = Pl+1,n - ]Dl,nfl + Up—1 -Pl,qa
1<n<d h@thm =P, — Z U1 P p— Py — (.’L‘ 5n,1 - Un—l)Pq,q-

=1

These relations give an expression of the elements P, ,, in terms of the elements Py, 4 of the last column

and their time derivatives. If we introduce:
' =T,=0, Iy =Py if ke[2,q-1], (5-85)

we find for elements above and on the diagonal:

qg—1 qg—n—1
I<li<n< da Plﬂ'L = Fq-‘rl—n + Z Um Fm-‘rl—n - Z hatPl-Fm,n-‘rm-‘rla (5'86)
m=n m=0
and for elements below the diagonal:
n—1 n—
l<n<li<q, Pon=2Tin— Y unTmsin+ > WP tnom. (5-87)
m=0 m=0
Consequently, we may write:
P=A+2B-hC, (5-88)
with:
q—1
1<l<n<gq At =Tgsion + O, UmTmiion, (5-89)
1<n<lI<gq A == ) um Tt (5-90)
1<i,n<d Bl,n =1_,, (5—91)
qg—n—1
1<li<n<d Cin= Z Ot M4 ntm+1s (5-92)
m=0
1<n<<l<d Cin =Y. M1 pnm- (5-93)
m=0

We now prove the commutation relations. We claim that, for any 6 € C generic, the matrix
Gy(z,t) = A(T,t) + 0B(T, 1) (5-94)
has a basis of eigenvectors which independent of x and a. This will imply:

[Go ('%7 t), Gy (Zl;, t)] =0, (5-95)
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from which the relations (5-80)-(5-82) can be deduced by identification of the coefficients of 6. Let

(¢i)1<i<q be the roots of:
q—1
X4 > uy XM =0. (5-96)
m=0
For generic 0, the roots are simple, so that the column vector v;(z) = (Cg)OSqu—l form a basis of C9.
Let us set:

q
Ai = (Govi)i = Y. Arm (. (5-97)
m=1

Considering the second line:

q q
(Govi—Aivi)a =0Ban + Y Ao ("1 = D Ay (7, (5-98)
m=1

m=1

but since By = I'1, A1 = —uel's and Ay 4 = I'1, using the polynomial equation (5-96) for ¢;, it

must vanish. If we proceed to the k-th line, we have:

k-1 q q
(Govi—Aivi)k = 0> Bem " 4 > Aem V= Y Arn (TR (5-99)
m=1 m=1 m=q—k+2
k—1 q
= (9 Bk,m + Ay m) mel + Z (Ak,m - Al,m—k+1)zm7
m=1 m=k
a
- Z Al,m Czrn+kf2
m=q—k+2
Using:
m—1
l<m<k<gq 0 Bim + Akn = 0Tk — D tn Thmmons (5-100)
n=0
k—1
l<k<m<g A = Alm—ks1 = — D, Umin—i Tn, (5-101)
n=1
q—m
1<m< q Al,m = ]-—‘dfm+1 + Z Um+n—1 Fn7 (5-102)
n=1
we may collect the terms relative to a given I';,, and we obtain:
k—1 q—1
(Govi — \ivi)p = ( My, gf*”*l) (9 - - gf) - 0. (5-103)
n=1 m=0
This concludes the proof. O

5.7.2 Main argument of the proof

Thanks to the decomposition of Lemma 5.7, we can prove:

Corollary 5.1 If we choose U(Zj) = B(ig,t) + hV(?it) to define an insertion operator, then
)
6,P(x,t) € O(h), (5-104)

and is expressible in terms of V(Z(;,t), and matriz elements of P and their time derivatives.
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Proof. From (2-44), we have:

P(E) = - i ; [A(é‘/, t)+ 2B, t) + hC(WU,t), A(Z,t) + 2 B(&,t) + hC(ob:,t)]

+h V(1) P(z,1)], (5-105)

and using the commutation relations (5-80)-(5-82), we obtain:

5P = - f y{ — [P(,1), C(,1)] + [P, 1), C(&, )]} + h [B(H, 1), C(,1)]
(gjy)z [C(2,1), (U, )] + A[V(U, 1), P(%,0)]. (5-106)

O

Corollary 5.2 If 0, is a compatible insertion operator such that U(ﬁ,t) = B(l(},t) + hV(ﬂ) and V
depends on h, is of order 1 and is expressible in terms of matrix elements of P(%) and their time

derivatives, then:
1 a k
6;1 5Z:P(x) e O(R"), (5-107)

and:
Wi (21, ..., 20) € O(h"2). (5-108)

Proof. If 6§ commutes with 0;, we also have for any &k > 0:
52k P () € O(h). (5-109)

Since d;; itself is expressible in terms of elements of the matrices P and their time derivatives, we can
apply repeatedly (5-109) to show that each application of the insertion operator to P(:%) increases at
least by one the order in A. Now, starting from the expression (2-14) of Ws and by successive appli-
cations of the insertion operator to compute W, according to (2-45), we obtain that W,, € O(A"~2).

(]

5.7.3 Existence of a compatible insertion operator
It is possible to construct explicitly an insertion operator which commutes with 0;:

Theorem 5.3 The choices:

k—m—1
a m+1—1 a a
U, em = Z ( I )(h (9t)lPk,m,l’q(a:,t) = Bi.m(x,t) + O(h), (5-110)
1=0
a a g a
5;uk(t) = Plyk(y, t) — 5k’1Pq,q(y, t) + 2 um(t) Um+1,k(y, t)7 (5—111)
m=k
where we used the convention uq(t) = —1, define the unique insertion operator which commutes with
Ot

Proof. The commutativity of J; and 0; is equivalent to:
0y 0¥ (z,t) = 06, ¥ (x,1), (5-112)

that is:

?j , M(l'vt) _M(yvt)]’ (5_113)

rT—y



With the expression (5-12) of M(z,t) for (p,q) models, we compute:

M(‘T7 t) - M(yv t)
r—y
S M () = —O g 0%t 1 (£). (5-115)

E, 1 (5-114)

The equation (5-113) gives a strong constraints upon the matrix U(QZ, t). For instance, it cannot be

zero since:
[Eq’17P(y7t)]k’m = (5k’qP1,m(y,t) — (5m’1Pk,q(y,t). (5—116)
We compute:
(U@, M@, )km = Ukma(08) + (201 — 1 () U g (9, 1) = Ugcs1 m (8,1)
+6m ,q(a: Urn(9.t) Zul L (8) U (4, t)) (5-117)

The condition (5-113) is an affine function of . With the choice Uy 4 = Uy, = 0 for any k,m € [1, g,

the coefficient of x vanish. The remaining constraint reads:

- 6k:,q5;umfl(t) = Uk:,mfl(y; t) Uk+1 m y t 6k,q Z Up— 1 Ul m y t)

1o Uk (U,1) — kg Prom (U, 1) + 6y Peg (U, 1) (5-118)
Omitting the dependence in y, a and ¢, we have for k # ¢:
Uis1,m = Ukm—1 + 5m,lpk,q — h&tUk,m. (5—119)

The solution at leading order in A is:

( Piimg+O(h) m>k
Ukm = { o(h) m<k ’ (5-120)

which coincides with the definition of the matrix B in (5-91). Eqn. (5-119) can be solved recursively,
and we find that its unique solution is given by (5-110). To define completely an insertion operator, it
remains to specify how it acts on the functions wuy(t). The commutativity condition prescribes (5-111).

O
Although we did not make use of this property, we show for completeness that insertion operators

pairwise commute:

Lemma 5.8 For any a,be [1,q], we have [62,65] =

Proof. This condition is equivalent to:
b a a b
SSUY, t) — 6bU(x,t) + [U(z,t), UY,t)] = 0. (5-121)

a a b
Since U(z,t) = B(z,t) + O(h) and §3U(¥) € O(h) owing to Lemma 5.2, the commutation relation
(5-81) implies (5-121) at leading order. O

5.8 The pole property

We need to prove that wg has poles only at ramification points, in particular, no pole at oo or at

double zeroes. For this purpose, we will use the observations of § 5.5.
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5.8.1 Double points

Lemma 5.9 In the q-th reduction of KP, for any n,g, wg are reqular at preimages in SO of double

points.

Proof. We remind that this property is not obvious because equations (3-16) and (3-17), which allow

the computation of the WKB expansion of ¥(x,t) = V¥ eS/h C, may have a pole 1/()\([10] (z,t) —

)\1[)0] (z,t)), i.e. at the double points. However, this analysis was performed for the differential equation

with respect to x. But now, we have a second differential equation
hoyw(z,t) = M(x,t)®(z,t), (5-122)

from which we can perform a similar WKB analysis. One notices that solving (5-60) for \i!(w,t) =
1y + Dpsq P k] (x,t) recursively, the only denominators are of the form 1/(z, — 23), and thus the
only poles that are produced are when x — a such that z%(a) = 2°(a) for a # b, i.e. when z goes
to a ramification point. The conclusion is that poles at double points in z (and thus at preimages of
double points in z € SI) do not occur. O

5.8.2 Behavior at z — ®
Lemma 5.10 The g-th reduction of KP satisfies Assumption 3.1.
Proof. We now expand W at large = as
v =VIeSc, (5-123)
where:
0.9 = AN2) =V(z), V1o, V=0, ¥=1,+0(@ 9. (5-124)

Moreover, as in Section 3.2, the equation 70, ¥ = L ¥ implies that there is also a large & expansion

of the form:
U= V¥, (5-125)

where 0,8 = Diag(A;(z)), and V™10,V = O(z=Y/9) and ¥ = 1, + O(z /). This implies that:
A=A 4 O@zY9), (5-126)

and thus the pole property of Assumption 3.1 is satisfied. This implies that, for any g,n # (1,0), the

wﬁbg)(zl, ..., 2n) are regular when z; = 0.

5.9 Tau function

It is well known that for (p,q) model we have [dFGZJ94]:

Theorem 5.4
R? 02 In T (t) = u(t). (5-127)
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5.10 Application of the topological recursion

Theorem 3.1, and in particular Corollary 3.6 (since our spectral curve has genus 0), implies that the

correlators have the expansion:

Wn(a%ll, ... ,%Z)dxl, ...dx, = Z p29-2tn w,(lg)(za1 (x1)y. ..y 2% (x4)), (5-128)
920
where the w )(21, ..., 2n) are computed by the topological recursion. The initial data is:
dzd
w%o) =-Y(2)dX(z), wéo) (21,22) = 217222 (5-129)
(21 — 22)

To justify the second equation, we know from Corollary 3.5 that wéo) € B(S%), and there is a unique

such object on a genus 0 curve, which can be written as in the second equation in any uniformization
variable z.
In particular, we can retrieve the expansion of the Tau function with Corollary 4.2.

In7 = h92FO), (5-130)

g=0
Since Y’'X — X'Y = 1, we find that 0tY|x(z) = —dz/dX, hence:

0, F9 = Res zwgg)(z). (5-131)

z—00

Remember that 7 is defined up to a multiplicative constant, so the constant of integration to get F'(9)
from (5-131) is irrelevant here. A direct integration can be done explicitly for F(®) [Dub96] and F()
[EKKO05], but the formulas are complicated to state. In simple examples, it is more efficient to rely
on (5-131).

Case of the homogeneous solution

For the homogeneous solution, we have
X(2) = @72 1(Q). V()= @90, (=2 @M (5-132)

and where ul?)(¢) = (/p) eI, By homogeneity of the topological recursion (see [EO07, EO09]) this

implies:

WO (z1,. .., 2n) = (WOD@E29=E+D/2 G@) ¢y ) = (t/p) B2 Pr0)/(ra=Y) Bl (¢ ¢,

n

(5-133)
where djﬁbg) is computed as if ul%! was equal to 1. In particular for n = 0
Vg # 1, F(g)(t) = $(2—29)(p+q)/(p+a—1) F(g)(l). (5-134)
For F | we have:
P = Res zwi?(¢) = (ul®)~@+=D/2{ Res ¢w{V(¢)} = £{ Res ¢w{V ()}, (5-135)
Z2—0 (—0 t (—0
therefore:
FO@¢)=cnt, c=p Res cwiV(0). (5-136)
—00

where the arbitrary integration constant was set to 0 for ¢ = 1.
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For the homogeneous solution, we observe that the i — 0 expansion coincides with a ¢t —
expansion:
T = exp ( 3 n2o2p© (t)) = t°exp ( N (at=(ro/ra=1))20-2 Fg(l)). (5-137)
g=0 g=0

We see that h can be absorbed in a redefinition of the variable t. We also have:

u(t) = K2 InT = trmr Y. (Rt~ e/ ora=)20 {9} (1), (5-138)
g>0

e (0 +0)(2 29 (0 + 0)(2 — 29) ~ 1)
w9 (1) = F,(1). 5-139
(1) Rt o) (5-139)

In particular we see that

2

u{o}(l) — p—2/(17+q—1)7 F(O)(l) — 1 (p+q-1) p—2/(p+q—1). (5-140)

“2p+aptra+])
6 Examples

The ¢-th reductions of KP, and in particular the (p, q) models describe universal behavior — provably
or conjecturally — in statistical physics, random matrix theory, and integrable systems. For those
reasons, many of them have received names referring to the problems where they appear. The (1,2)
model is known to appear when studying the double scaling limit of random matrices at a generic
edge of the spectral density, and is related to the Airy process [PS02]. The (3,2) model was shown,
first in physics [M0090, DS90], then rigorously [IKF90], to describe generating series of random maps
with generic critical weights, and thus was called ”pure gravity”. The (4,3) (resp. the (6,5) model)
is expected to describe the generating series of random maps carrying an Ising model (resp. 3-Potts
model) with non-generic critical weights, and in fact, the theory we developed allows a proof of those
conjectures [BE].

All the (p, ¢) models are conjectured to describe the double-scaling limit in random matrices around
an edge a where the spectral density behaves like |z — a\p/ 9. This is also relevant for systems of vicious
walkers via Dyson Brownian motion [Dys62], and this is related to 2d quantum gravity for reasons
dating back to [BIPZ78]. This has been proven so far in a handful of case (see e.g. [Kuill] and
references therein), but mainly for ¢ = 2 cases — which correspond to the Gelfand-Dikii hierarchies
[GD75]. This conjecture is based on an ansatz [Moo90] for the convergence of operators P and
Q — interpreted as differentiation and multiplication in the vector space generating by orthogonal
polynomials — which has not been justified rigorously so far. Our methods do not provide a proof that
double scaling limits exist. However, once this existence is granted and it is characterized in terms
of a Lax pair, it can actually prove that the semiclassical expansion of the limit laws are computed
by the topological recursion. Moreover, if the semiclassical spectral curve of the Lax pair can be
identified with a blow-up of the large N spectral curve of the matrix model when parameters become
critical, it shows — combining the results of [EO07] and [BG13a] that the semiclassical expansion of
the double-scaling limit does coincide with a limit of coefficients in an off-critical 1/N expansion when
approaching criticality. This crossover is expected and we are able to justify it only relying on loop
equations, i.e. by algebraic methods. We refer to [BE10, BEM13] for applications relying on those
ideas.

In the remaining of the text, we illustrate some (p, ¢) models, by describing the non-linear PDEs
they generate, the spectral curves and the first few coefficients in the & — 0 expansion of the correlators

and of the Tau function.
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6.1 (p,q) = (3,2): pure gravity

Here we chose ¢ =2 and p = 3

Q = (hoy)?* — 2u, P=(mm3—3um%—ghu+u

The string equation [P, Q] = h implies that © = 0 and the Painlevé I equation for u(t):

1
—§#u+&ﬁ:u v=t.

It has the h expansion:

The Lax pair is given by
and

The spectral curve is:
dm@12—L@¢»=(y+hf-mx+mou—uf—%h%ux—m

To leading order in £, the eigenvalues of LY (z,t) are thus:

y=—t1 £ (z — ul)Vo + 200,
and they are parametrized by:

_ .2 0

s i R L

Notice that with ¢ = (ul%)=1/22, we recover the Chebyshev polynomials:

X(2) = ul?) (¢ —2) = T T(()
{ Y (2) = )22 (¢ = 30) — 1 = WP T(O) — 1

1

— 2 R22.

4

Applying the topological recursion gives the coefficients of expansion of the correlators:

wgo)(z) = Y (2)dX(2) = =2 (z* = 3ul 2% —¢,2) dz,
0 le dZQ
wé )(Z1, 22) = m,
UJ(O) (Z o ) _ —1 dzidzodzs
3 1,#2, <3 GU[O] Z% Z% Zg 3
4 (0]
(0) 1 le dZQ ng dzy 3u
- = 1
wy (215 ,21) 36 (ul0)3 2222 232) 2 —I—; 3 ,
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-1 dzy dzo dzz dzg dz O 3uldl &y 5 (ul0))2 6(ul")?
W (21, 25) = e e e <1+Z 2 D e W vl

72 (ul0l)® 23 23 25 23 23 =z P B = 2
W - L s a0
wy(z) = 142 (al0T)2 21 (2% + 3ul™),
1 1 le dZQ _ _ _ _
wé )(21, Z3) = 864 ()i 223 (2 +6ul® (272 4 252) + 9(ul)? 272 22

—i—15(u[o])2(zl—4 + z2_4)) ,

2 7 dz
Wg )(Z) = - 21035 (u01Y7 210 (42° + 1201% 26 + 36 (ul%)? 2% 4 87 (ul®)3 22 + 135 (u[o])4),
3 7 dz

+85860(ul)*28 + 181764 (ul)52* 4 297297 (ul?1)622 + 289575(u[0])7) .
The expansion of the Tau function In 7 = 3} _, h29-2F(9) is obtained from:

0. F9) = Res zwgg)(z) = 6ul4[% Res ng)(z) (6-10)

zZ—00 zZ—00

and the solution u = ul® + pI 729 ul9} from ul9t = 02F(9). We emphasized that 1 = 6ul?ul] to

facilitate the integration. That gives:

1) — oullall ol (1) = maul® _ 1
O F = 144 (ul01)2 = 24400 = FY =3 = 5 h(t/3)
= ul =5k
(2) _ 76ulql® 70l (2) _ -7 _ -7
O F 2835 (ul0T)7 273 (ul0T)0 = I 2735 (w[01)5 2733/25¢5/2 (6—11)
= ut¥ = 2932/4229/2-
3) _ 7-1400-6u[40 5272400 3) _ —5.72 _ =572
at}?( ) = 21539 (yl01)12 — 21138 (y,[01)11 = F( ) = 21238(y,[01)T0 — 2123345
—527
= ut¥ = 5TI32¢7 -

These results agree with the direct /& expansion of the solution of the Painlevé I equation (6-3).

6.2 (p,q) =(2,3)

Here, we consider pure gravity again, but exchange the role of P and @, namely we chose p = 2 and
q = 3. This gives the 3 x 3 Lax pair:

0 1 0
M(x,t) = 0 0o 1], (6-12)
x4+ 3hi—t 3u 0
2u 0 -1
Lz, t)=| t1 —x+ % ha —u 0 1. (6-13)
%h2il tl—x—%hu —u
The spectral curve is:
1 1
det (y15 — L(z,1)) = y° — 20’y — 2u® + (z — t))* + 3 R (yii — 3 u? + wii). (6-14)
To leading order the spectral curve is thus:
vt = 2(ul)2y + (@ — )2 — 2(ul)? = 0, (6-15)
which admits the parametrization:
X(z) = (U[O])3/2 T3(¢) = 2% —3ulllz [0] _ 1/2
{ Y(z) = —ulo Ty (¢) = 200 — 22 ut = (t/3)7°. (6-16)
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The ramification points are at ¢ = a4 = +1, they correspond to X (a+) = F2 (ul”)¥2. The local
Galois conjugate near a = +1 is:

0u() = 5 (¢~ av/12-3C2). (6-17)

The topological recursion gives (we denote ¢ = (ul?))=1/22) for the expansion of the correlators:

W(2) = —Y(2)dX(2) =3 (ul)¥2 (¢ - 2)(¢2 - 1) d¢,
(0) _dGidee
Wo (21,22) = ma
0O (21, 29, 25) = —dcldCdes,( 1 N 1 )
5o 12 ()52 \ (¢ = 1)2(G — 1)2(G — 12 (G + D2(C +1)2(¢s +1)2 )
(1) _ —d¢ 5—-3C+¢%2 54+3C+?
476 = gy (-t e )
-d
w?(z) = PILRE (u[g])lw { (C _1 T (7168(8—61957§7+246834g6 — 602251¢°

+1016572¢* — 1271499¢3 + 1218226(2 — 862277¢ + 369664)

+ 7168¢% + 61957¢7 + 246834¢° + 602251¢°

e
(C+1)t
+1016572¢* + 1271499¢3 + 1218226¢2 + 862277¢ + 369664)} .

It is necessary to compute wél) in order to obtain w§2), but we omitted its expression for conciseness.
The expansion of the Tau function In7 = ZgZO 7292 F(9) and the solution u = ul + 2921 7?9 uled

from ul9} = 02 F(9). We may use 6ul®lul%) = 1 to perform the integration. That gives:

1) _ 6 (ulth32gl0l 0] 1) e 1
OFY = S = siam = FU =25 = 5 In(t/3),
1} _ -1
ISV R
4812

o @ — 6@h¥2al%l 7168 7400 ~ PG _ . B B (6-18)
t - 21835 (u[o])15/2 T Q734 (U[O])G T 27345 (u[o])s T 2733/25¢5/20

= u{2} = —49

2933/2 $9/2 *

This again perfectly agrees with the direct /i expansion of the solution of the Painlevé I equation (6-3),

and this agrees with the (3,2) model, as an illustration of the (p,q) — (g,p) duality.
6.3 (p,q) = (4,3): Ising model
The model is defined by:
Q = (hd;)® — 3uhdy +ug, P = (hdy)* — 4u (hdy)* + vy hoy + vo. (6-19)

where u, ug, v1,vg are functions of ¢t. The string equation implies

3
u0=—§ hu — 3w + tq, (6—20)
where w is a function of ¢, and:
. 2 5 2 . .
v1 = —4dw — 4 h, vo = 2u _§h U — 2hw + to, (6-21)
where w satisfies
12uw — 2h% i = t3, (6-22)
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and then wu(t) satisfies

1 .3 ..

5 B i — 3 hPuil — 5 R2u? + 4u® + 6w? = t, (6-23)
where t1,to,t3 are integration constants. A particular choice is t; = to = t3 = 0 and w = 0, in which

case we have ) 5
5 Bt — 3R il — 3 R2u? + 4u® = t. (6-24)

The first few orders of expansion are:

1 1K 1925 kY 509575 K
— 2 1/3 - _ 8 _2
u=5 @D =51 T Tass @owE 1122 p@n T O, (6-25)

and from the relation 7207 In Z = u:

9 (273 1 55  h? 20975  h* 6
InZ=_— — Int — - O(R°). 6-26
BZ= 501wt M 195 ey steas s T O (6-26)
The Lax pair is:
0 1 0
M(z,t) = 0 0o 1|,
x+%hﬂ+3w—t1 3u 0
2u? + ty r—1t —w —u
L(z,t) = (t1 — 2z — 3w)u —u? + to r—1t —w (6-27)
(x —t1)2 +2(x —t))w —3w? —2(t; —x+3w)u  —u? +to
w— = hu i S U 0
+h Su +h2 — Wi 1hu fgu
9uu')+h(£ + 3 uu)+hw—7h2 —uu+hw—fh2 —w—fhu

In the particular case where t; = to = t3 = w = 0, we have:

uz—éhzii x—&-%hu —u
L(z,t) = —ux + 3 huu - h3 —u?+ LR J: —shu |. (6-28)
x +h2( u? + 2 uu) h4'ii' 2ux—hua+%h3d —u —7h2
The spectral curve is:
3 a 1,3 2 2. 1 o0 4 2 6
det(y 13 — L(z,t)) = y° — (3u - éhuu — 3R vt + Eh (i +2uu))y—x +tr +2u
7 1 3 1 1
27,32 4 . af U .4 L O 252 L 2. .. 3.
+h% (ud 3uu)+h( 16u +4uuu+4uu 2uuu+6u u)
1 1 1 1
To leading order the spectral curve is thus:
y* = 3(ul)ty = ot — 4(l®)’e? + 2(ul)?, (6-30)
i.e. in terms of Chebyshev polynomials:
T (y/(l®)?) = Ty (2 (ul) ), (6-31)
which admits the parametrization:
X(z2) = (U[O])3/2 T3(¢) = 2° — 3ulllz [0] _ 1/3
{ Y(z) = (u[o]) 4 (C) = 24 — 41012 4 2(u[0])2 utl = (t/4)7". (6-32)
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The ramification points are at ( = a4 = +1, they correspond to X(as) = F2. The local Galois

conjugate near a = +1 is:

oa(C) = =2 (g —a/12 = 3<2) . (6-33)

2

The topological recursion gives (we denote ¢ = z/vul0l) for the expansion of the correlators:

W) = —Y(2)dX(2) = =3 (ul)72 (¢t — 4¢% +2)(¢3 - 1) d¢,
(0) ~dGdG
Wy (z1,22) = m,

—d(; d¢2 d¢s ( 1 N 1 )
24 (w72 N\ (¢ = 1)2(G = D¢z —1)? (G + 1)+ 1)2(¢ +1)2)7
—d¢ THTCH3C T—TC+3C
T (T )
~5d
W) = g (2[5)21/2 & e o (791 + 10831¢2 + 5642¢* + 8010¢° — 5060¢°
+6556¢10 — 4098¢'? + 1982¢*M* — 539¢1¢ + 77(18>,

(3) B —5d¢ 1 2 4

wi(z) = 71959 (ulO1)F572 (2 T)10 (1534020+ 51852480¢2 + 139051115¢
+126732801¢° + 14026336¢® + 136206860¢ 0 — 165273597¢12 + 227618305¢
—9221591820¢ ¢ + 175823400¢® — 107773575¢%° + 51069755¢% — 17959320(**

+4465420¢%% — 701415¢%8 + 53955430).

The computation of w§2) (resp. w§3)) required the knowledge of wél) (resp. the knowledge of wflo), wél)

and w§2)), but since their expression is lengthy we do not copy them here. The expansion of the Tau
function In 7" = 3] _, 729-2F(9) and the solution u = ul® + g1 B ul9} from w9t = Z2F9). We

can use 12(ul®)24l% = 1 to perform the integration. That gives:

1) _ 0]\5/2.7 [0 1 _ lod 1) _ lnug _ In(t/4)
OF () = 12 (ulOhy/20) o il = )=l _ by
{1y = 1
(2) [01\5/2.,[0] 5.7-11 5-7-11 - (2) _ M 55
O P2 =12 (ul)>7%4 21335 (@0])21/2 — 31137 (4[01)8 = FY= T 31134 ([0T)7 — T 1206 (20)7/3
2} _ 1925
—> u{ e —
1458 (2t)13/3>
3) _ 0]\5/2 [0 5211-109 _ 5%11.109 4% (3) _ _ _ 5211109  _ _ _ 29975
atF - 12 (U[ ]) ’LL[ ] 21937 (u[O])35/2 921736 (u[D])15 = F - 218367(u[0])14 - 81648 (2014/3
— i3 = 509575

T 13122(26)2073

This matches (6-25).
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A  Proof of Lemma 2.2

If &5 is an insertion operator, we now prove the following formulae. For any n >

[[l»d]],

5ZK(951, T2)
S0P (1)

6y L(x)

&y Tr L(x)

0y Indet ()

dy In (m)

ay

SoWa (21, .., Th)

Proof of Lemma 2.2. First we have by the Leibniz rule 52(‘1’

ayy—1 —
Sy (z) = -0

Then, we compute

= Wn_»,_l(y,iﬂl,...

) (60 (2)) 7 (@) =

= _K(.ﬁl,y)EaK(y,Jfg),

P(¥)
[x—y
P(Y)
[x—y
1
RS

+U(H).P(#)].

+ U(z‘}),L(x)] - Y

r—y
a ay An,
79377,)-

6ZK(3:1,902) = 1 i:CQ (52[‘1’_1(l‘1)‘1’(l‘2)]
_ 1 (\111(501)1)(5)‘1’(172) N “ay)P(Y) ¥ ()
Ty — o . Yy—x1 " o —Y
+ U (2 U)W (23) — & (2 UWY)P )
_ _‘I’_l(xl)q’(y)Ea ‘Il_l(y)q’(x2) = —K(z1,y)EK(y, z2).
rr—Yy Yy — 22

notice that U disappears in this computation. Similarly,

FP(E) = (89 (2))Ey T () + U () By (00T (2))
_ POY@EY ()  E(2)E ¥ (2)P(Y)
T —y T —y
HU®R)®(2)Ey T~ (2) — O (2)E, T (2)U ()

_ POPE] o il

- S [UG), P

Then we have
5;L(I) = ( (h(? U(z) ()
= (5”\11 (z)) ' (2) — hd, Y(2))

e ([0,
y

1, any a,b,aq, ...

~1(z)®(z)) = 0, which leads to:

(A1)

(A.2)

(A4)



R N b () R A
_ (x_y)zP(y)Jr[x_erU(y),L( )1. (A5)

To compute the action of 4y on the correlators, we consider n = 1 separately:

Y T —z

1
W) = 6b (lim K, (e, 2) — )
“ zZ—T
= lim 00K, a(z,2)
Z—T -

= - ZILH;Ka,b(xvy) Kb,a(yaz)
= —Kop(2,9) Kpoly, ©) = Wa(z,y). (A.6)

Then, for n > 2, we can use formula (2-5):
5ZWn(x1, cey X))
n
= (=p" Z 5Z[HKW7%@) (@i, JUff(i))]

o=n-cycle i=1
n
= (71)n+2 Z Z Ka_;‘,a(xjay)Ka,aU(j)(yaxo(j)) HKaiyao‘(i) ($i’$(r(i))
o=n-cycle j=1 i#]

= (_1)n+2 Z HKahaa(i) (‘riﬂxo(i))

o=(n+1)-cycle =1
Y=Tn+1, An4+1=0

a

= Whn (¥, 21, ..., 20). (A7)

B Proof of Theorem 3.1

We assume that all ramification points are simple (see [BE13] for the case or higher ramifications),
the embedding of the curve S[% — C2 by the functions (z,y) is regular, and that TT is satisfied.
We shall prove the topological recursion using the linear (Theorem 2.1) and quadratic (Theorem 2.2)
loop equations only. This is already done in [EO07, BEO13], but we present here a self-contained
proof. Contrarily to [BEO13] which is more general, we take advantage here that the semiclassical
spectral curve SI% is a compact Riemann surface of genus g, to identify more precisely the possible
holomorphic term in (3-41).

From the TT hypothesis, we have that every wi? with (g,n) # (0,1),(0,2) has poles only at
the ramification points. We have called r = {ry,...,r,} the set of ramification points. Let r € r
be a ramification point, by definition and assumption there are exactly two indices a # b such that
2%(r) = 2°(r), and we define the local Galois involution ¢, in a vicinity of r, as the map 2%(x) +— 2°(x).
Let J ={2,...,n} and z; = (2;)es, and define:

Q%q)(z, 2izy) = wr(Lng—l)(z, 2 z5) + 2 wi:l_)ul(z, zz)wﬂ_‘)lll(zf’zp) (B.1)
hthi=g, IOI'=J
and
Q%g)(Z,Z,;ZJ) = LU,(,L'({‘__Q]A)(Z,Z/,ZJ) + Z wiﬁ)|l|(z7zl)wil-ly-\)I’|(Z,7ZI’)7 (Bz)

h+h!=g, IOUI'=J

where Y means that we exclude the cases (h,I) = (0, &) and (h,I) = (g,J), i.e.

QW) (z,2325) = QW (2,21 21) + Wi (2) W), (2, 25) + w1 (2,25) WV (). (B.3)
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Lemma B.1 Near a ramification point r, we have:

3 Q) (=", 21 2y) = Q) (2.07(2); ) + amalytical at z — . (B4)

a<b

Proof of the lemma. To simplify notations, we can always label 1 and 2 the sheets meeting at the

1

ramification point 7. Le. if z = 2!, we have 0,.(z) = 22. Let us decompose the sum over indices as:

Y Q0" = QW)+ D) QW my) (B.5)
1<a<b<d 2<b=d

+ > QW)+ Y QW (", 2hzy).

2<b<d 2<a<b<d

The linear loop equation implies that:

QW (2 2t 25) + QW (22, 2% 2 ) Z Q) (22, 2z y), (B.6)

2<a<d

and thus:

Z QW (2, 2% ;) = QW (21, 2% 2) — Z QW) (2% 2% 2)) + Z Q9 (2% 2% 25). (B.7)

1<a<b<d 2<a,b<d 2<a<b<d
The last two lines have no poles at the ramification point, hence the announced result. O

Remark. Since the analytic term in r in (B.4) is a quadratic differential in z invariant under Galois

involution, it must actually have a double zero at r.

Theorem B.1 The wgg) ’s satisfy the topological recursion:

z (O)(Z .)
@ (= R Sa'r(z) Wy (21,
17ZJ E €S
e rer = (O)() W§O)<UT(Z)>

09 (2, 0,(2); zs) + holomorphic(z ). (B.8)
Proof. First, Lemma B.1 together with the quadratic loop equation imply that Q%g) (z,0.(2); 2zs) has
no pole at the ramification point 7. This means that:

09 (2, 0,(2);25) = —wgo)(z) CU?(,Lg_gl(O'T(Z),ZJ) — w,(lg_zl(z,zJ) w§0) (0r(2)) + analytical at . (B.9)

Moreover, using again the linear loop equation we have that

wﬁlgll(ar(z),zJ) = —wiﬂl(z,z‘]) + analytical at r, (B.10)
and thus
09 (2, 00(2);25) = [wgo)(z) - wgo) (0r(2))] wigll(z zy) + analytical at r. (B.11)

According to the previous remark, the remainder has actually a double zero at z = r. We remind
that wgo) — ydz, and since we assume that the embedding of SI% in C? by (z,y) is regular, dy(r) # 0.
Combined with the assumption that x has simple ramification points, this implies that [ (0)( ) —

wio) (0-(2))] has exactly a double zero at z = r. Therefore, we find:

z (0)
1 S (z) ( 13') -
PP Q) (2,00 (2); B.12
2 ;r z—enbv wgo)(z) _w§0)(0_7'(z)) (Z ag (Z) ZJ) ( )

1 ¥4
= 52 Res ( f ( )wé‘”(zm) W%, (2,2,)
or(z

TEr
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- (9) S (9)
312 e ([ 1) elthteian - Res ([l ) lfhaterm)
rer o o

where o is an arbitrary base point on the spectral curve. We rename the integration variable in the

second term z — o,.(2), and get:

Sczr (0)(Z17 ) ~
- Z Res 2 ©) 09 (2, 0,(2);2) (B.13)
TEr =T Z) Wy (UT(Z))
z z 0
SEINEE ( [t 1) withzmn - Res ([ ol 1) wlthton ).}
rer o o
using again the linear loop equation, i.e. that wfﬂzl(ar( ),Zy) = _%(21(2 z;) + analytical at r, we
arrive to
Z (0)
$o o ywy (z1,7) 2
3 2 Bes e 0 ene) = 3 Re ([ 1) ithezn. g
= ) — W (JT(Z)) rer 7T o

Now, observe that wflgll(z, z7) has poles only at the ramification points, whereas wgo) (2, 21) has a pole

only at z = z; (a double pole). We may move the integration contours from surrounding the poles of

w,(ﬂgl(z, zy) to surrounding the poles of wéo)(z, z1), i.e. using the Riemann bilinear identity:

Q) (2,0,(2);2s) (B.15)

1 Z Res Sjr(z)w(())(zlv )
rEr =T ) wim (UT(Z))

- res ( f e, ) wlthm)
g
taim 201 (PG (felihimn) - (§ebG) (fehinn)
=1 A B B; A,

where the cycles A;, B; are chosen to form a basis of 2g non-contractible cycles on S [ with canonical
intersections A; N B; = 6; ;. Observe that (S w(o) (1, )) has a simple pole at z; = z with residue 1,

so the first term is:
z—2z1

— Res U w§0>(zl,-)) W9 (z,25) = W9 (21, 29). (B.16)

Since wéo) e B(S) (from Corollary 3.5), we also know that § 4, w§0>(z1, ) and §, wéo)(zl,-) are
holomorphic forms of z1, and thus we have obtained the decomposition:

£ s (1,0)
Zz—»r (0) (z) — (0)( -(2))

This finishes the proof of Theorem 3.1. O

09 (z,0,(2);25) = w,(ﬁl(zl, z;) + holomorphic (z1). (B.17)
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