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BESSENRODT-STANLEY POLYNOMIALS AND THE OCTAHEDRON

RECURRENCE

PHILIPPE DI FRANCESCO

Abstract. We show that a family of multivariate polynomials recently introduced by
Bessenrodt and Stanley can be expressed as solution of the octahedron recurrence with
suitable initial data. This leads to generalizations and explicit expressions as path or dimer
partition functions.
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2 PHILIPPE DI FRANCESCO

1. Introduction

In a recent publication, Bessenrodt and Stanley [2] introduced a family of multivariate
polynomials attached to any partition λ, generalizing a construction by Berlekamp [1].
These were defined as weighted sums over sub-diagrams of the Young diagram of λ.

In this paper, we show that these polynomials may be viewed as the restriction of par-
ticular solutions of the octahedron recurrence relation in a three-dimensional half-space.
The octahedron recurrence is a special case of so-called T -system, introduced in the con-
text of generalized Heisenberg integrable quantum spin chains with Lie group symmetries
[12, 13]. The octahedron recurrence has received much attention over the last decade for
its combinatorial interpretation in terms of domino tilings of the Aztec diamond [4] and
generalizations thereof [15, 11, 6, 7, 8, 9]. More generally, the A type T -systems possess
the positive Laurent property: their solutions may be expressed as Laurent polynomials of
any admissible initial data, with non-negative integer coefficients. In Ref.[5], this property
of the T -systems was connected to an underlying cluster algebra structure [10], and further
confirmed by providing an explicit solution based on some representation using a flat two-
dimensional connection [6], leading to expressions as partition function of weighted paths
on oriented graphs or networks, or equivalently of weighted dimer coverings of suitable
bipartite planar graphs.

Our punchline is the following: the polynomials of Bessenrodt and Stanley were shown
to obey particular determinantal identities [2], which we interpret as initial conditions for
the half-space octahedron recurrence, for which the partition λ determines the geometry of
the initial data. Reversing the logic, and fixing the values of these determinants, we may
express the solutions of the octahedron recurrence as Laurent polynomials thereof, as path
or dimer partition functions from [6, 8]. This produces a general family of multivariate
Laurent polynomials attached to any partition, that reduce to the polynomials of [2], for
special choices of the initial data.

The paper is organized as follows. In Section 2 we describe our new family of multivariate
Laurent polynomials attached to a partition λ, and how they reduce to the polynomials of
[2]. Section 3 is devoted to a survey of the T -system and its general solutions in terms of
network partition functions. We describe in particular the structure of admissible initial
data, which take the form of initial value assignments along a “stepped surface”, and
show how this data encodes an oriented weighted graph or network. In Section 4, we
show that the situation of [2] corresponds to choosing a particular “steepest” initial data
stepped surface, that forms a kind of fixed slope roof above the Young diagram of λ. The
corresponding network is particularly simple, as it takes the shape of the Young diagram
itself. Using the explicit solutions of the T -system, we write the solutions first as network
partition functions (Theorem 4.2, Sect.4.3) and then as dimer partition functions (Theorem
4.4, Sect.4.4). Section 5 is devoted to a 3D generalization of the multivariate polynomials,
by simply expressing the other solutions of the T -system “under the roof”. This leads us
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to a 3D object we call the pyramid of λ, to the boxes of which we associate other Laurent
polynomials. The latter reduce to polynomials when we apply the previous restriction of
initial data. These are first expressed as partition functions for families of non-intersecting
paths on the same networks as before (Sect.5.3), and then shown to restrict to sums over
nested sub-partitions of λ with the same weights as before (Theorem 5.5, Sect.5.4). We
gather a few concluding remarks in Section 6, where we present a different generalization
for other boundary conditions of the octahedron recurrence.

Acknowledgments. We would like to thank R. Stanley for an illuminating seminar during
the conference “Enumerative Combinatorics” at the Mathematisches ForschungsInstitut
Oberwolfach in March 2014 and A. Sportiello for his great help in the early stage of this
work. This work is supported by the NSF grant DMS 13-01636 and the Morris and Gertrude
Fine endowment.

2. A family of Laurent polynomials associated to Young diagrams

We consider partitions/Young diagrams of the form λ = (λ1, ..., λN) with λi boxes in row
i, and λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 1. We represent the Young diagram λ with rows 1, 2, ..., N
from top to bottom and justified on the left. The boxes of the diagram λ are labeled by
their coordinates (i, j), where i ∈ [1, N ] is the row number and j ∈ [1, λi] the horizontal
coordinate within the i-th row. We write (i, j) ∈ λ when the box (i, j) belongs to λ. For
later use, for any (a, b) ∈ λ, we define the sub-diagram λa,b ⊂ λ obtained by erasing all the
boxes of λ that are above the row a and to the left of the column b (it is the intersection
of the South East corner from (a, b) with λ).

We also consider the extended Young diagram λ∗ associated to λ, obtained by adjoining
a border strip from the end of the first row to the end of the first column of λ, namely
with λ∗

1 = λ1 + 1, λ∗
i = λi−1 + 1, i = 2, ..., N + 1. For instance the extended diagram of

λ = (3, 2) is λ∗ = (4, 4, 3). Note that λ can be recovered from λ∗ by removing its first
row and column. We define the squares Sa,b of λ∗ to be the square arrays of the form
Sa,b = {(i, j), a ≤ i ≤ na,b + a − 1, b ≤ j ≤ na,b + b − 1}, and such that Sa,b ⊂ λ∗ and
na,b ≥ 1 is maximal. The box (a, b) is called the North West (NW) corner of the square
Sa,b. In other words, the square Sa,b is the largest square array of boxes with NW corner
(a, b) that fits in λ∗. The integer na,b is called the size of Sa,b. In particular, each box (u, v)
of the border strip λ∗ \ λ is itself a square of size 1, Su,v = {(u, v)}.

Definition 2.1. We fix arbitrary non-zero parameters {θi,j}(i,j)∈λ∗ attached to the boxes of
λ∗. We now associate to each box (i, j) ∈ λ∗ a function pi,j ≡ pi,j(θ·) of all the parameters
θi,j defined by the identities:

(2.1) det
(

(pa+i−1,b+j−1(θ·))1≤i,j≤na,b

)

= θa,b for all (a, b) ∈ λ∗
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namely we fix the value of the determinant of the array of functions pi,j(θ·) on each square
Sa,b to be the parameter θa,b.

In particular, we have pu,v(θ·) = θu,v for all (u, v) ∈ λ∗ \ λ. That (2.1) determines the
pi,j’s uniquely will be a consequence of the rephrasing of the problem as that of finding
the solution of the T -system or octahedron recurrence, subject to some particular initial
condition. As a consequence of the positive Laurent property of the T -system, we have the
following main result:

Theorem 2.2. For all (a, b) ∈ λ, the function pa,b(θ·) is a Laurent polynomial of the θi,j’s
with non-negative integer coefficients.

Example 2.3. Let us consider the Young diagram λ = (2, 1), with the following θ variables
(one per box of λ∗ = (3, 3, 2)):

θ1,1 = a θ1,2 = b θ1,3 = c
θ2,1 = d θ2,2 = e θ2,3 = f
θ3,1 = g θ3,2 = h

The polynomials pa,b(θ·) are:

p1,1 =
afh+(b+ce)(d+eg)

efh
p1,2 =

b+ce
f

p1,3 = c

p2,1 =
d+eg
h

p2,2 = e p2,3 = f
p3,1 = g p3,2 = h

The Laurent polynomials pa,b(θ·) attached to the Young diagram λ reduce to the poly-
nomials introduced by Bessenrodt and Stanley in [2] when the variables θi,j are restricted
as follows. Let xi,j, (i, j) ∈ λ be new variables attached to the boxes of λ.

Theorem 2.4. Under the restrictions:

θi,j = 1 for all (i, j) ∈ λ∗ \ λ ,

θa,b =

na,b−1
∏

r=0

∏

(i,j)∈λa+r,b+r

xi,j for all (a, b) ∈ λ ,(2.2)

the Laurent polynomials pa,b(θ·) of Def.2.1 reduce to the polynomials pa,b(x·) of [2].

In particular, the change of variables cancels all denominators and produces a polynomial
of the variables xi,j .

In Section 4, we shall construct each polynomial pa,b(θ·) explicitly, as the partition func-
tion for paths on a weighted oriented graph (network) Na,b associated to λa,b, and alterna-
tively as the partition function of the dimer model on a suitable bipartite graph Ga,b. We
give two independent proofs of Theorem 2.4 in Sect.4.5.
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3. A∞/2 T -system and its solutions

3.1. T -system and initial data. In the case of A type Lie algebras, the T -system takes
the form (also known as the octahedron recurrence):

(3.1) Ti,j,k+1Ti,j,k−1 = Ti+1,j,kTi−1,j,k + Ti,j+1,kTi,j−1,k

where the indices of the indeterminates Ti,j,k are restricted to be vertices of the Face-
Centered Cubic (FCC) lattice LFCC = {(i, j, k) ∈ Z

3, i + j + k = 1mod 2}. This may be
viewed as a 2+1-dimensional evolution in the discrete time variable k, while i, j refer to
space indices.

The Ar condition consists in further restricting i ∈ [1, r], and to impose the additional
boundary conditions

(3.2) T0,j,k = Tr+1,j,k = 1 (j, k ∈ Z)

In other words, the Ar T -system solutions are those of the octahedron equation in-between
two parallel planes i = 0 and i = r + 1, that take boundary value 1 along the two planes
i = 0 and i = r + 1.

In the following, we will concentrate on the so-called A∞/2 T -system, where we only keep
the restriction i ≥ 1 and the boundary condition

(3.3) T0,j,k = 1

In turn, the solutions of the A∞/2 T -system are those of the octahedron equation in the
half-space i ≥ 0, that take boundary values 1 along the plane i = 0.

The system (3.1,3.3) must be supplemented by some admissible initial data (k, t), con-
sisting of:

• (1) a “stepped surface” k = {(i, j, ki,j)}i∈Z+;j∈Z, such that |ki+1,j − ki,j| = |ki,j+1 −
ki,j| = 1 for all i, j;

• (2) the following assignments of initial values t = {ti,j}i∈Z>0;j∈Z:

(3.4) Ti,j,ki,j = ti,j (i ∈ Z>0; j ∈ Z)

3.2. Solution. In Ref. [6] the Ar T -system was solved for arbitrary r and arbitrary initial
data. Note that for any finite (i, j, k) above the initial data stepped surface (i.e. k ≥ ki,j),
the solution Ti,j,k only depends on finitely many initial values ti,j, hence for r large enough
the solution is independent of r, so that the solution for the case A∞/2 is trivially obtained
from that of Ar. We now describe this solution.

The solution proceeds in two steps. First, one eliminates all the variables Ti,j,k for i ≥ 2
in terms of the values Tj,k := T1,j,k by noticing that the relation (3.1) is nothing but the
Desnanot-Jacobi (aka Dodgson condensation) formula for the following Hankel or discrete
Wronskian determinants:

(3.5) Wi,j,k = det
(

(Tj+b−a,k+i+1−a−b)1≤a,b≤i

)
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which, together with the initial condition W0,j,k = 1 allows to identify

(3.6) Ti,j,k = Wi,j,k

for all i ≥ 2.
The second step consists of writing a compact form for Tj,k for all k ≥ k1,j, by use of

a formulation of the relation (3.1) as the flatness condition for a suitable GL2 connection.
The solution is best expressed in the following manner. First we associate to the initial data
stepped surface k a bi-colored (grey/white) triangulation with the vertices of k, defined via
the following local rules, where we indicate the value of ki,j at each vertex of the projection
onto the i, j plane:

(3.7)
kk k−1

j

i

k+1 k k k−1 k−1 k k k+1 k+1 k k−1

k

k

k k−1 kkk+1 kk k+1 kkk−1 kk k+1

The last two cases give rise to two choices of triangulations each, due to the tetrahedron
ambiguity (there are two ways of defining a pair of adjacent triangles with the vertices
of a regular tetrahedron, namely the two choices of diagonals of the white/grey square in
projection), but our construction is independent of these choices. We may now decompose
the stepped surface into lozenges made of a grey and a white triangle sharing an edge
perpendicular to the k axis, and we supplement the single triangles of the bottom layer
i = 1, 2 with a lower triangle of opposite color with bottom vertex in the i = 0 plane.

Example 3.1. Let us consider the “flat” initial data surface k0 with ki,j = i+j+1mod2 ∈
{0, 1}. Picking a particular choice of diagonal in the tetrahedron ambiguities, we may
decompose the surface as follows:

0

1

2

4

3

. . . . . . 

. .
 . 

i
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where we have represented with solid (resp empty) dots the vertices with k = 1 (resp. k = 0).

To each lozenge, we associate a 2× 2 matrix according to the following rule:

(3.8) b

c

a → U(a, b, c) =

(

1 0
c
b

a
b

)

b

c

a → V (c, a, b) =

(

a
b

c
b

0 1

)

Note that the arguments a, b, c of the matrices are the values of initial data attached to the
three vertices of the grey lozenge. These matrices have the remarkable property that they
form a flat connection on the solutions of the T -system, namely we have

(3.9) V (u, a, b)U(b, c, v) = U(a, x, v) V (u, x, c) iff xb = ac+ uv

For some fixed integer r (large enough), we may embed the above matrices in r-dimensional
space, by defining the (r+1)× (r+1) matrices Ui, Vi, equal to the (r+1)× (r+1) identity
matrix, with the central 2×2 block with row and column labels i, i+1 replaced by U, V . The
position i corresponds to the i coordinate of the two middle vertices of the corresponding
lozenge. We now associate to each “slice” S = [0, r+ 1]× [j0, j1] of the initial data surface
namely with vertices {(i, j, ki,j)i,j∈S} the matrix M(j0, j1) equal to the product over all
lozenge matrices of the slice, taken in the order of appearance of the lozenges from left to
right. This matrix is independent of the choices pertaining to the tetrahedron ambiguity
above.

Given any j, k with k ≥ k1,j, let us define the left (resp. right) projections j0 (resp. j1)
onto the stepped surface k to be the largest (resp. smallest) integer ℓ such that j−ℓ = k−k1,ℓ
(resp. j − ℓ = k1,ℓ − k). This is illustrated below:

. . . . . . 

k

(j,k)

j 0

k

j j
1
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where we have represented by empty dots the vertices of the intersection of the stepped
surface k with the i = 1 plane. Finally the solution Tj,k may be written as:

(3.10) Tj,k = M(j0, j1)1,1 t1,j1

independently of r for r large enough. The proof in [6] relies on the flatness condition
(3.9). Note that the positive Laurent property for Tj,k as a function of the initial data {ti,j}
is manifest, as the entries of the matrices U, V are themselves Laurent monomials of the
initial data with coefficient 1 or 0.

3.3. Network interpretation. The matrix M(j0, j1) can be interpreted as the weighted
adjacency matrix of some oriented graph N(j0, j1) (referred to as a “network”), constructed
as follows. First interpret the matrices Ui, Vi as elementary “chips”:

(3.11) Ui(a, b, u) =
i

b
i

a

i+1 i+1
u

Vi(v, a, b) =

v

a b
i i

i+1 i+1

with two entrance connectors i, i + 1 on the left and two exit connectors i, i + 1 on the
right, and such that the (x, y) matrix element is the weight of the oriented edge form entry
connector x to exit connector y (here by convention all edges will be oriented from left
to right). Note we have represented by a dashed line the “trivial” oriented edges with
weight 1. The top edge in the Ui(a, b, u) chip has therefore weight a/b, the diagonal one
u/b, etc. The arguments a, b, etc. appear as face variables in the network. Any product
of such matrices can be interpreted as a larger network, obtained by concatenating the
corresponding chips. We call N(j0, j1) the network corresponding to the matrix M(j0, j1).
Now we may interpret the matrix element M(j0, j1)1,1 as the partition function for paths on
N(j0, j1) from the leftmost entry connector 1 to the rightmost exit connector 1. This give a
nice explicit combinatorial description of the solution Tj,k in terms of the initial data {ti,j},
which form the face labels of the network N(j0, j1). This is summarized in the following:

Theorem 3.2. The solution T1,j,k = Tj,k of the A∞/2 T -system with initial data (k, t) is
t1,j1 times the partition function of paths from the entry connector 1 to exit connector 1 on
the network N(j0, j1), where j0, j1 are the left/right projections of (j, k) onto the onto the
stepped surface k.

In [6], it was further shown that Ti,j,k for i ≥ 2 is proportional to the partition functions
of i non-intersecting paths on the network N(j0, j1). As such, it enjoys the positive Laurent
property as well.
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Example 3.3. The network N corresponding to a sample slice S of flat initial data surface
(see Example 3.1) reads:

1

2

3

4

5

e

1

e

111

dcbadca b

0

1

2

4

3

j

5

0

1

2

3

4

j

1

. .
 . 

i

where we have represented the face labels in a sample row. Note also that due to the A∞/2

boundary condition (3.3), all the vertex/face values on the bottom row/lower face are equal
to 1. The quantity Tj,k/Tj1,k1,j1

is the partition function for paths from entry connector 1 to
exit connector 1 on the network. We show here a sample such path, together with its local
step weights:

1/g

2

1

3

4

5

1

2

3

4

yx

e/jd/ey/dx/y1g/c1

a b c d e

1

f g h i j

5

The total contribution of this path to the partition function is therefore: 1
g
g
c
y
x
x
d
d
e
e
j
= x

cj
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4. Application: computation of the Laurent polynomials pa,b(θ·)

In this section, we show that the functions pa,b(θ·) defined by the system (2.1) are the
solutions Tj,k = T1,j,k of the A∞/2 T -system with some particular initial conditions and
some particular mapping of indices (a, b) → (j, k).

4.1. Steepest stepped surface. In this section we consider stepped surfaces with fixed
intersection with the i = 1 plane, say equal to a path π = (j, kj) with |kj+1 − kj| = 1 and
j + kj = 0 mod 2 for all j ∈ Z. We define the “steepest stepped surface” kπ to be the
unique stepped surface k with k1,j = kj included in the union of all the planes with normal
vector (1,−1,−1) or (1, 1,−1) and passing through pairs of distinct points of π. It is easy
to see that such a surface is piecewise-linear. Let (aj , bj = kaj), j ∈ Z be the vertices where
π changes direction, with say a minimum when j is even, and a maximum when j is odd.
The steepest stepped surface k = ki,j is defined by the following equations for m ∈ Z:

i− j − ki,j = 1− a2m − b2m (i ≥ 1; a2m−1 ≤ j ≤ a2m)

i+ j − ki,j = 1 + a2m − b2m (i ≥ 1; a2m ≤ j ≤ a2m+1)

Concretely, the steepest stepped surface is a sort of roof of fixed slope above the infinite
Young diagram delimited by the path π in the i = 1 plane (see Fig.1 for a 3D view in
perspective).

4.2. Connection with the Laurent polynomials pa,b(θ·). Let us represent the centers
of boxes of the Young diagram λ∗ as vertices of the i = 1 plane of the lattice LFCC (see
Fig. 1 for an illustration). This allows to identify the strip λ∗ \ λ as a path p from (0, 0)
to (N + λ1, N − λ1), while the NW corner box of the diagram has coordinates (N,N) (see
sketch below):

k

j

λ1

λ1 λ1

N

p

π
(0,0)

(N,N)

(N+    ,N−    )
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i=1

i=3

h

t

a

b

c
d

g e

i
f

j

k

i

Figure 1. The FCC lattice representation of the Young diagram λ = (5, 4, 4, 4, 2)
(blue dots in the i = 1 plane) and its augmented tableau λ∗ (extra green vertices
in the i = 1 plane), together with the initial data steepest stepped surface (green
vertices, including λ∗ \ λ). We have indicated a particular vertex of the surface in
the plane i = 3, with assigned initial value t, and displayed the pyramid of which
it is the apex, together with its base in the i = 1 plane, identified as a square
of size 3 of λ∗. The initial data assignment amounts to imposing that the 3 × 3
determinant of the values of T in this square is equal to the value t at the apex.

Let us extend arbitrarily the path p into a path π on the entire plane, and consider the
solutions Tj,k of the A∞/2 T -system with initial data stepped surface equal to the steepest
surface kπ associated to π, and with initial values ti,j. To avoid confusion, note that there
are distinct yet natural frames used so far for expressing the coordinates of the centers of
the boxes of λ∗. On one hand, we have the original frame, in which the coordinate (a, b)
refers to the box in row a ∈ [1, N ] and column b ∈ [1, λa]. On the other hand we have the
T -system (or FCC lattice) frame in the plane i = 1, in which the coordinate (j, k) of the
center of a box is related to that in the original frame by:

(4.1) j = λ1 + a− b, k = λ1 + 2− a− b

In the following, we will use letters a, b for the original coordinates, and j, k for the FCC
lattice coordinates.

We have the following:

Theorem 4.1. The system (2.1) has a unique solution pa,b(θ·), (a, b) ∈ λ. Moreover, we
have

(4.2) pa,b(θ·) = Ta−b+λ1,λ1+2−a−b

(

(a, b) ∈ λ∗
)
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where Tj,k = T1,j,k is the solution of the A∞/2 T -system with steepest initial data stepped
surface kπ and initial values t such that

(4.3) θa,b = t
a−b+λ1,

λ1+2−a−b+ka−b+λ1
2

(

(a, b) ∈ λ∗
)

where (j, kj) are the vertices of the path p, for j = 0, 1, ..., λ1 +N .

Proof. Consider the solution Ti,j,k of the A∞/2 T -system with steepest initial data stepped
surface kπ and initial values t. Let us restrict our attention to the solutions Tj,k = T1,j,k

at the points (j, k) with left and right projections on the interval [0, λ1 + N ]. These are
exactly the centers of the boxes of λ∗ in the above representation (see Fig.1 for the case
λ = (5, 4, 4, 4, 2)).

On the other hand, the equation (3.6) may be interpreted as follows. The indices (j+b−
a, k+ i+1−a− b) for 1 ≤ a, b ≤ i are the coordinates in the plane x = 1 of the base of the
pyramid Πi,j,k with apex (i, j, k), defined as Πi,j,k = {(x, y, z) ∈ LFCC , |y − j| + |z − k| ≤
|x− i|}. As illustrated in Fig.1, each vertex (i, j, ki,j) of the steepest surface kπ is the apex
of such a pyramid Πi,j,ki,j . By definition of the steepest stepped surface, the base of the
pyramid Πi,j,ki,j in the x = 1 plane is the square Sa,b of λ∗, with NW corner at position
(j, 2k − kj) = (a− b+ λ1, λ1 + 2− a− b) (and SE corner at position (j, kj) on the path p),

hence a = 1− ki,j +
j+kj
2

and b = λ1 +1+ ki,j +
kj−j

2
. We conclude that Ti,j,ki,j = ti,j is the

determinant of the array Tℓ,m for (ℓ,m) in the square Sa,b. In the example of Fig.1 (left),

this amounts to the identity t =

∣

∣

∣

∣

a b c
d e f
g h i

∣

∣

∣

∣

.

Let us identify ti,j ≡ Ti,j,ki,j with θa,b, for all (a, b) ∈ λ∗, with a = 1 − ki,j +
j+kj
2

and

b = λ1 + 1 + ki,j +
kj−j

2
. Then the system of equations (2.1) for pa,b becomes the same as

that for Tj,k, with j = a− b+λ1 and k = λ1+2−a− b. As all Tj,k are uniquely determined
by the initial data, then so are the pa,b, and the theorem follows. �

4.3. Network interpretation. We may now specialize the general solution of Sect.3 to
the case of the steepest stepped surface. Let us describe the extended Young tableau λ∗

via the sequence of integers n1, m1, n2, m2, ..., nk, mk corresponding to the length of straight
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portions of the path p delimiting the diagram, namely:

N+1

1

n2
m2

nk

mk

λ +11

...

...n1

m

or in the notations of Sect. 4.1: ni = a2i − a2i−1, mi = a2i+1 − a2i, i = 1, 2, ..., k, where
a1, a2, ..., a2k are the j coordinates in the FCC lattice of the changes of slope of p.

A drastic simplification occurs in the case of the steepest stepped surface: along each
steepest plane, only one type of lozenge U or V occurs, namely planes orthogonal to
(1,−1,−1) have a lozenge decomposition using only V type lozenges, while those orthog-
onal to (1, 1,−1) have a lozenge decomposition using only U type lozenges. Moreover
the slice of surface corresponding to Ti,j,k with lower/upper projections j0, j1 always starts
with a (1,−1,−1)⊥ plane and ends with a (1, 1,−1)⊥ one. The corresponding lozenge
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decomposition reads typically like:

n 1 n km1 mkj0 j11n ...

10

(j,k)

jj

where we have only included the minimal number of V or U type lozenges in each slice
(any extra U, V would have no effect on the corresponding matrix element M(j0, j1)1,1).
Recall that the vertices of the surface carry initial data assignments ti,j, in bijection with
the θa,b parameters, while the bottom layer at i = 0 carries values all equal to 1.
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We may now construct the network associated to the lozenge decomposition above. For
our running example, it reads:

1

c
b

a
b

c

b

a

1 1

1

1

1

1

1

1

1

1

1

1

1

1

t

1

t

where we have indicated how to deform the original network graph to bring it to the
square lattice with oriented edges. This latter graph is denoted by L(j0, j1) in FCC lattice
language. Assuming that the top inner face of L(j0, j1) corresponds to the box (a, b) of
λ, we denote alternatively this network by Na,b ≡ L(j0, j1). We have indicated the face
variables of this network by green dots (the top vertex carries the variable θa,b), while all
variables on the (bottom-most) red dots are equal to 1. The medallion summarizes the
weighting rule for the edges of L(j0, j1) = Na,b in terms of the face variables ti,j = θa,b (at
the indicated vertices). This is just a rephrasing of the weights of U and V type chips after
the above deformation, namely:

(4.4) U =
a

a
b

c
b

bc

a

c
b , V =

b a
b

c
b

c

ba

c

a

The graph L(j0, j1) = Na,b is nothing but the actual initial Young diagram λa,b (SE corner
at (a, b)) represented tilted by 45◦, and with all box edges oriented from left to right. The
face variables, expressed indifferently as ti,j ’s or θa,b’s, are actually at the centers of boxes
of λ∗

a,b but displaced by a global translation of (2, 0) in the (j, k) plane (or by one column

to the left and one row up in the original frame). For convenience we denote by λ#
a,b this

latter displaced array. Note that extra variables equal to 1 occupy the centers of boxes of
λ∗
a,b \ λa,b. In the above depiction, we have λa,b = (5, 4, 4, 4, 2) and λ∗

a,b = (6, 6, 5, 5, 5, 3).
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By use of Theorems 3.2 and 4.1, the value of pa,b = Tj,k in the top box is given by the
partition function for paths on L(j0, j1) = Na,b from the leftmost vertex to the rightmost
one, multiplied by the bottom right initial value t1,j1 = θa,λ∗

a
= θa,λa+1. We summarize this

result in the following:

Theorem 4.2. The solution pa,b to the system (2.1) is the partition function of paths on the
weighted graph Na,b associated to λa,b, from the leftmost to the rightmost vertex, multiplied
by the variable θa,λa+1 of the top right box of λ∗

a,b.

Note that Theorem 2.2 follows from this result, as the sum over paths produces a mani-
festly positive Laurent polynomial of the initial parameters θi,j .

Example 4.3. Let us revisit Example 2.3. The graph L(j0, j1) = N1,1 for the calculation
of p1,1 is associated to λ1,1 = λ = (2, 1), and reads:

e
f

a
b

b
c

1

1 1

1

1

1

1

1

a

g

h

d

e

f

b

c

1 1

1
h

1
f

g
h

h
e

d
e

1

where we have indicated the edge weights. The Laurent polynomial p1,1 is c times the
partition function for the 5 paths 1 → 1:

path :

weight : ge
fhc

d
fh

gb
fhc

bd
hefc

a
ce

wich yields

p1,1 =
afh+ (b+ ce)(d+ ge)

hef

in agreement with the expression of Example 2.3.

4.4. Dimer interpretation. The network formulation for the solution of the T -system
described in Sect.3 can be rephrased in terms of a statistical model of dimers on a planar
bipartite graph G with face variables, made only of square, hexagonal and octagonal inner
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faces, and with open outer faces adjacent to 1 or 2 edges (see Ref.[8]). This graph is
constructed as the dual of the lozenge decomposition, essentially by substituting:

b

c

ba

c

a and bb

c c

aa

Note that the initial data assignments become face variables in the dimer graph. The
configurations of the dimer model on a bipartite graph are obtained by covering single
edges of the graph by “dimers” in such a way that each vertex is covered exactly once. The
weight of a given configuration is the product of local outer/inner face weights expressed
in terms of the attached face variable. The weight of an inner face is a

v
2
−1−D where a is

the face variable, v the degree of the face (v ∈ {4, 6, 8}), and D the total number of dimers
occupying edges bordering the face. The weight of an outer face is b1−D, where b is the
face variable and D the total number of dimers occupying edges of the graph adjacent to
the face. Then we have:

Theorem 4.4. [8] The solution T1,j,k ≡ Tj,k of the A∞/2 T -system is the partition function
of the dimer model on the dimer graph dual to the lozenge decomposition of the correspond-
ing network.

For the particular case of the steepest stepped surface, the dimer graph Ga,b for the
computation of pa,b is particularly simple. Its inner faces occupy a domain of the hexag-
onal (honeycomb) lattice with the shape of the young diagram λa,b, while its outer faces

correspond respectively to λ∗
a,b \ λa,b with face variables all equal to 1, and to λ#

a,b \ λa,b.

The other face variables are the variables θα,β on λ#
a,b. For the case λa,b = (5, 4, 4, 4, 2) of

previous section, the dimer graph Ga,b reads:
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where we have represented in red the centers of boxes of λ∗
a,b \ λa,b (all with assigned face

values 1), and in green the centers of boxes of λ#
a,b (with the θα,β’s or ti,j ’s as assigned faces

values).
Applying Theorem 4.4, we finally get:

Theorem 4.5. The Laurent polynomial pa,b(θ·) is the partition function for the dimer model

on the graph Ga,b with face variables θα,β on the faces corresponding to the boxes of λ#
a,b and

face variables 1 on those corresponding to the boxes of λ∗
a,b \ λa,b.

Example 4.6. Let us revisit the example 2.3. The graph G1,1 for computing p1,1 reads:

1

a

b

cg

d

h

e

f

1

1

1

1

and the partition function for dimers on G1,1 is the sum over the following five configura-
tions:

dimer
configuration :

1

a

b

cg

d

h

e

f

1

1

1

1

1

a

b

cg

d

h

e

f

1

1

1

1

1

a

b

cg

d

h

e

f

1

1

1

1

1

a

b

cg

d

h

e

f

1

1

1

1

1

a

b

cg

d

h

e

f

1

1

1

1

weight : ge
fh

dc
fh

gb
fh

bd
efh

a
e

We note that Theorems 4.2 and 4.4 may be connected more directly by showing that
the path and dimer configurations are in bijection with each-other. To best see this, recall
that the dimer configurations on a domain of the hexagonal lattice are in bijection with
rhombus tilings of the dual (triangular) lattice, by means of three types of rhombi obtained
by gluing two adjacent triangles along their common edge. For the above example of
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λa,b = (5, 4, 4, 4, 2), the domain Ta,b of the triangular lattice dual to Ga,b reads:

Notice that generically the domain Ta,b only has two vertical boundary edges, dual to the
only two horizontal external edges of Ga,b. Dimer configurations on Ga,b are in bijection
with rhombus tilings of Ta,b. Moreover, such tilings are uniquely determined by either of
three sets of non-intersecting paths of rhombi (the so-called De Bruijn lines) defined as
follows. Each boundary edge of Ta,b has either of three orientations (vertical, +30◦, or
−30◦). Starting from any boundary edge, let us construct the chain of consecutive rhombi
that share only edges of the same orientation. Such a chain is a path connecting two
opposite boundary edges. For a given orientation of the boundary edge, all such paths
are non-intersecting, and form one of the above-mentioned three families. Any single such
family determines the tiling entirely. In the present case, the “vertical” family is particularly
simple, as it is made of a single path of rhombi:

This path determines the tiling entirely. We have therefore associated to each dimer con-
figuration on Ga,b a unique path with up and down steps (say from left to right), which
can be represented on the network L(j0, j1) = Na,b as a path from the leftmost vertex to
the rightmost one. This gives a bijection between the dimer configurations of Theorem 4.4
and the paths on networks of Theorem 4.2. It is easy to show how the local weights of the
path model can be redistributed into those of the dimer model, thus establishing directly
the equivalence between the two theorems.
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4.5. Back to the polynomials of Bessenrodt and Stanley. In this section we give
two independent proofs of Theorem 2.4.

As pointed out earlier, the polynomials of [2] may be recovered by specializing the vari-
ables θi,j according to (2.2). More precisely, the (restricted) polynomials pa,b(x·) of [2] are
defined by the formula:

(4.5) pa,b(x·) =







1 if(a, b) ∈ λ∗ \ λ

∑

µ⊂λa,b

∏

(r,s)∈λa,b\µ
xr,s if (a, b) ∈ λ

where in the second formula the sum extends over all sub-diagrams µ of λa,b. In [2], the
determinant of the array pa+i−1,b+j−1(x·), 1 ≤ i, j ≤ na,b pertaining to the square Sa,b of λ
with NW corner (a, b), was computed to be equal to the “leading term”:

(4.6) Za,b =

na,b
∏

i=1

∏

(α,β)∈λa+i−1,b+i−1

xα,β ,

equal to the product of leading terms of pa+i−1,b+i−1(x·) along the first diagonal. With
the choice of restrictions (2.2) which identify θa,b with Za,b, and by uniqueness of the T -
system solution, we deduce that the polynomials pa,b(θ·) defined by the T -system solution
are identical to the polynomials pa,b(x·) of [2], and Theorem 2.4 follows.

Let us now give an alternative direct proof of this result, by comparing the expression
(4.5) to the restriction of the network expression of Theorem 4.2 for the solution of the T -
system with steepest initial data stepped surface. The first part of the formula (4.5) is clear
from the choice θa,b = 1 for (a, b) ∈ λ∗\λ. To recover the second part, first note that there is
a bijection between the sub-diagrams µ ⊂ λa,b and the paths from the leftmost vertex to the
rightmost vertex on the network Na,b. To identify the polynomials, we simply have to check
that the weight of each path, multiplied by the rightmost face variable (t1,j1 ≡ θa,λ∗

a
= 1

here) reduces to
∏

(r,s)∈λa,b\µ
xr,s, namely the product of x variables under the path in λa,b.

To best compare the two settings, let us translate the network L(j0, j1) globally by the
vector by (0, 0,−2) in the LFCC representation (namely k → k− 2), so that the face labels
match the positions of the corresponding boxes in λa,b. This changes the local edge weight
rules accordingly (by moving the face variables by two steps downwards). In this new
representation, the local edge weights of the path model can now be written in terms of
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the x variables as:

b b

(b)

a

(a)

a

where we have shown the two possible cases of an up or down-pointing edge of the path,
both with weight a/b, and represented the weight in terms of the box variables x as follows:
in case (a) (up step), the weight a/b is the inverse of the product of the x’s in the dashed
(blue) domain, while in case (b) (down step), the weight a/b is the product of the x’s in
the solid (green) domain. We deduce that only boxes below the path delimiting µ in λa,b

contribute. Moreover, a given such box with variable x receives a contribution xNdown−Nup ,
whereNup andNdown denote the total number of up/down steps of the path that respectively
belong to the left/right sector seen from the box as depicted below:

x

It is clear that we always have Ndown −Nup = 1 as the path always goes up one step less in
the left sector than it goes down in the right sector. The total weight of the path delimiting
µ in λa,b is therefore the product over all the boxes below µ of the box variables x, and the
Theorem follows.

5. 3D Generalization

5.1. The general solution of the T -system. So far we have concentrated on the solution
Tj,k = T1,j,k of the T -system in the i = 1 plane. The general solution of the T -system gives
access more generally to values of Ti,j,k in other planes i ≥ 2 as well. In Ref.[6], it was
shown that such solutions are partition functions of families of i non-intersecting paths on
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the same type of network as for i = 1. More precisely, we first consider the base of the
pyramid Πi,j,k, which is a square array of Ti+b−a,j+i+2−a−b, a, b = 1, 2..., i. We then construct
all left and right projections of the points in this array, say ℓ1, ..., ℓi and ri, ri−1, ..., r1 from
left to right. Then the solution Ti,j,k is given by the following:

Theorem 5.1. [6] The solution Ti,j,k of the A∞/2 T -system with initial data (k, t) is equal
to the partition function of i non-intersecting paths on the network N(ℓ1, r1) that start from
the points (ℓa, kℓa) on the stepped surface k and end at the points (ra, kra) on the stepped

surface k, multiplied by the boundary term:
∏i

a=2 t
−1
1,ℓa

∏i
b=1 t1,ra.

5.2. Pyramid of a partition. Starting from a partition/Young diagram λ = (λ1, ..., λN),
we define its pyramid Pλ as the family of partitions/Young diagrams λ(i), i = 1, 2, ..., k,
such that (i) λ(1) = λ (ii) λ(i+1) is obtained from λ(i) by removing its first row and column
(iii) λ(k) = ∅.

The centers of boxes of the pyramid Pλ may be represented as the set of vertices (i, j, k)
in LFCC such that the base of the pyramid Πi,j,k in the plane i = 1 is entirely contained in
λ. In this correspondence, λ(m) is simply the intersection of the plane i = m with this set
of vertices. Another representation of the pyramid Pλ is as a strip decomposition of λ, by
superimposing all the diagrams λ(m), with their (1, 1) box in the same position. Finally,
we define the extended pyramid P ∗

λ to be the pyramid of the extended Young diagram λ∗,
namely P ∗

λ = Pλ∗ .

Example 5.2. The pyramid of the partition λ = (4, 4, 3) is λ(1) = (4, 4, 3), λ(2) = (3, 2),
λ(3) = (1), λ(4) = ∅. The representation of Pλ in LFCC and as a strip decomposition of λ
are respectively:

and

5.3. The family of Laurent polynomials for a pyramid. The solution of the A∞/2

T -system within a pyramid Pλ defined as above is entirely fixed by the assignment of initial
data on the “roof” of the pyramid, defined by P ∗

λ \ Pλ. Note that this roof is nothing but
the portion of the steepest stepped surface that determines the polynomials pa,b entirely.
This leads to a natural extension of the family of polynomials {pa,b}(a,b)∈λ into a pyramid

family {pa,b,m} with 1 ≤ m ≤ k and (a, b) ∈ λ(m), obtained by identification of the solution
Ti,j,k at the corresponding vertex of Pλ ⊂ LFCC .

As a consequence of this definition, we may rewrite (3.6) as:
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Theorem 5.3. The pyramid polynomials pa,b,m(θ·) associated to a Young diagram λ are
entirely determined by the determinant identity:

(5.1) pa,b,m(θ·) = det
(

(pa+i−1,b+j−1(θ·))1≤i,j,≤m

)

where the array of points in the determinant corresponds to the base in the plane i = 1 of
the pyramid with apex at the center of the box (a, b) of λ(m) in the LFCC representation.

The network interpretation of the solution of the T -system [6] allows to immediately
interpret the pyramid polynomial pa,b,m as the partition function for m non-intersecting
paths on the network Na,b associated to λa,b and the steepest stepped surface, up to a mul-
tiplicative boundary factor, by direct application of the Lindström Gessel-Viennot Theorem
[14, 16]. These paths start/end at the points of k that correspond to the left/right pro-
jections of the array of points in the determinant (5.1). On Na,b, these are the left/right
projections of the top vertex of each box in the corresponding square of size m with top
box (a, b).

Example 5.4. Let us consider λ = (5, 4, 4, 4, 3) and the network L(j0, j1) = N1,1 of

Sect.4.3. The pyramid polynomial p1,1,3 is equal to the determinant

∣

∣

∣

∣

p1,1 p1,2 p1,3
p2,1 p2,2 p2,3
p3,1 p3,2 p3,3

∣

∣

∣

∣

. It

is also proportional to the partition function of paths from the entry to the exit vertices
marked 1, 2, 3 below:

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

e

cb

d

a

32 3

1

32

122

3

11

where we have also represented a sample configuration of these three non-intersecting paths.
The entry/exit vertices of Na,b are the left/right projections of the vertices at the top of the
boxes in the corresponding square (here shaded in blue).
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The proportionality factor is simply a−1b−1cde, where the corresponding face variables
are immediately above the entry points 2, 3 and exit points 1, 2, 3.

5.4. Generalized Bessenrodt-Stanley polynomials for a pyramid. We may now
restrict the pyramid Laurent polynomials pa,b,m(θ·) attached to a partition λ via the same
change of variables (2.2) to box weights xi,j . This leads us to the definition of the quantities:

(5.2) pa,b,m(x·) = det
(

(pa+i−1,b+j−1(x·))1≤i,j,≤m

)

We have:

Theorem 5.5. The pyramid polynomials pa,b,m(x·) (5.2) have non-negative integer coeffi-
cients, and moreover pa,b,m(x·) is the partition function for m non-intersecting paths on the
network Na,b associated to λa,b, from the m left projections to the m right projections of the
vertices of the square of size m with NW corner at (a, b). Alternatively, pa,b,m(x·) is the
partition function for m strictly nested partitions ∅ ⊂ µm ⊂ µm−1 ⊂ · · · ⊂ µ1 ⊂ λa,b with

µi ⊂ λ
(i)
a,b inside λa,b, with the usual weights:

pa,b,m(x·) =
∑

µi⊂λ
(i)
a,b

i=1,2,...,m

m
∏

i=1

∏

(α,β)∈λa,b\µi

xα,β

6. Conclusion/Discussion

In this paper, we have expressed the polynomials of [2] as particular solutions of the
octahedron recurrence in a half-space with “steepest” initial data surface attached to a
fixed partition λ. This connection has allowed us to generalize these polynomials to the
full pyramid Pλ, and to find alternative expressions involving paths on networks or dimers
on bipartite graphs.

More generally, we may consider different initial data surfaces associated to the partition
λ, and use the solutions of the corresponding T -system to define different classes of poly-
nomials attached to the boxes of λ. Another natural choice is to pick the stepped surface
to be made of “vertical walls” along the boundary of λ, namely with vertices alternating
between two parallel planes with normal vector (0, 1, 1) or (0,−1, 1) in LFCC . In the case of
λ = (5, 5, 5, 5, 3), the 3D FCC lattice view and the corresponding stepped surface lozenge
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decomposition look like:

j0 j1

Here the vertical wall stepped surface is represented in front, with green vertices. The
centers of the boxes of λ are the blue vertices in the bottom plane (i = 1). In the lozenge
decomposition of the stepped surface, we have only represented the lozenges that will
contribute to the solution within λ, and added as before triangles in the bottom row, with
their bottom-most vertex assigned value 1 (the A∞/2 boundary condition (3.3)). Note also
that the boundary vertical walls intersect the plane i = 1 along the boxes of λ∗ \ λ.

The difference with the situation of the steepest stepped surface is subtle: in both cases,
the walls are made uniquely of either U type of V type lozenges, but their arrangement
(the order in which they come from left to right) is different, due to the rules (3.7). We
may now translate the lozenge decomposition into a network, which we deform in the same
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way as before to finally get:

1

c

1

ea b c d

1

g h if

a

b
d

e

f

g

h

i

1 1

where we have indicated the correspondence between a sample row of face weights (green
dots in general) with assigned values ti,j = a, b, c, ..., and the bottom outer faces by red dots
(with assigned values 1). The edge weights in the network are related to the face variables
in the usual way (4.4), and all the horizontal edges receive the weight 1. The construction
of the network looks more complicated, but again the solution at the box (1, 1) of λ is the
partition function for paths on this network, from the leftmost to the rightmost vertex. In
fact, it is possible to deform the network to make it match the shape of the Young diagram
λ, at the expense of adding some extra edges as follows:

a

b

c
d

e

f

g

h

i

a b

a b

a
b

1 1

where the up/down edge weights are related to the face variables in the usual way, while
the new horizontal edges have weights as indicated in the medallion. The additional arrows
(in red) split up each box of the strip decomposition {λ(i) \ λ(i+1)}i∈[2,k−1] of λ, where λ(i)

is the i-th layer of the pyramid Pλ, by connecting centers of box edges (we have shaded the
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strip λ(2) \ λ(3) in the above example). In particular all paths of red arrows are parallel.

Note also that the first strip λ(1) \ λ(2) is not split. Let us denote by Ña,b the network thus
constructed out of the partition λa,b.

Having assigned fixed parameters ti,j to each inner and outer face of the resulting network,
we may associate a Laurent polynomial qa,b,m(t·) to the (a, b) box of the m-th layer λ(m) of
the pyramid of λ, equal to the corresponding T -system solution with vertical wall initial
data stepped surface. Then we have:

Theorem 6.1. The Laurent polynomial qa,b,m(t·) is the partition function ofm non-intersecting

paths on Ña,b, starting/ending at the left/right projections of the top vertices of the boxes
in the square with top box (a, b) and size m, multiplied by the factor

∏m
α=2 t

−1
1,ℓα

∏m
β=1 t1,rβ ,

where ℓα/rα is the j coordinate in the FCC lattice of the α-th left/right projection of the
points in the square of size m with NW corner at (a, b).

Example 6.2. Let us consider the case λ = (2, 2). Let us assign the following initial values
on the vertical walls:

T4,0,1 = ℓ
T3,−1,1 = i T3,0,0 = j T3,1,1 = k
T2,−1,2 = f T2,0,1 = g T2,1,2 = h

T1,−2,2 = a T1,−1,1 = b T1,0,0 = c T1,1,1 = d T1,2,2 = e

Then the network Ñ1,1 reads, with the face variables or alternatively the edge weights:

1

2

1

2

e

1

1

11

1

l
kji

h

g

f

d

c

b

a

b
c

a
b

g
j

1

1

b
g

1
b

i
j

h
e

k
h

l

c
d

1
c

k

f
g

g
d

Let us first compute qa,b = qa,b,1 for the boxes for the Young diagram λ. The quantities

q1,1/e, q1,2/e, q2,1/d, q2,2/d are the partition functions for paths on Ñ1,1, respectively from
vertices 1 → 1, 2 → 1, 1 → 2 and 2 → 2. This gives:

q1,1 =
ae
c
+ ef

bd
+ aeg

bcd
+ ah

bd
+ cfh

bdg
+ t

y
+ xz

gy
q1,2 =

be
c
+ eg

cd
+ h

d

q2,1 =
ad
c
+ f

b
+ ag

bc
q2,2 =

bd
c
+ g

c
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Finally the quantity q1,1,2b/(de) is the partition function for pairs of non-intersecting paths
from 1, 2 to 1, 2:

q1,1,2 =
fh

g
+

bdt

cy
+

gt

cy
+

xz

cy
+

bdxz

cgy
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