Keywords: mov r8, r12 2 c632 : mov r9, r13 3 c634 : mov r6, r14 4 c636 : mov r7, r15

on floating-point multiplication, But applicable to many other operations ! Example : simple float multiplication, compiled for TI's MSP430 float fmul (float a , float b) { return (a * b); }

Definitions

Optimization principle F = mul(M, X)

Results

Speedup

Overhead recovering

Conclusion for multiplication

Demonstration that runtime code generation is a realistic goal

DefinitionsCliquez

 Static compilation "classical" binary code generation (gcc, icc, clang, ...) Dynamic Compilation binary code generated at run-time (DBT) JIT run-time dynamic compilation based on complex Intermediate representation (Java, LLVM) Innovations Compilette : small binary code generator embedded into application able to optimize code depending on data sets deGoal : a tool which help to generate Compilettes Self-optimisation using runtime code generation for Wireless Sensor Networks | DACLE Division | October 9th 2015 | : different insn scheduling for both mode Self-optimisation using runtime code generation for Wireless Sensor Networks | DACLE Division | October 9th 2015 | __mulsf3 costs ∼1000 cycles per invocation Self-optimisation using runtime code generation for Wireless Sensor Networks | DACLE Division | October 9th 2015 | 8 tgen : code generation */ 2 float (*) (float) fmulM ; 3 fmulM = g e n e r a t e _ f m u l _ c o d e (M , p); 4 5 /* tdyn : run the generated routine 6 float fmul (float X) { 7 return fmulM (X); 8 } t gcc : execution time of gcc's multiplication routine t gen : execution time of code generation t dyn : execution time of the generated fmulM function Self-optimisation using runtime code generation for Wireless Sensor Networks | DACLE Division | October 9th 2015 | 9 Performance indicators

 t gcc : execution time of gcc's multiplication routine t gen : execution time of code generation t dyn : execution time of the generated fmulM function

	Speedup : Overhead recovering : n = FP Multiplication algorithm t gen (X, Y) (denormal, zero, NaN) Unpack X, Y Mantissa multiplication Renormalize Repacking Rounding t LibMul GeneralAlgo s = t dyn t gcc (1) Optimization potential Skip unecessary steps Special case handling Value specialization

gcc -t dyn so that t gen + n.t dyn ≤ n.t gcc (2) Self-optimisation using runtime code generation for Wireless Sensor Networks | DACLE Division | October 9th 2015 | 11

© CEA. All rights reserved &

© CEA. All rights reserved & Writing a compilette with deGoal Self-optimisation using runtime code generation for Wireless Sensor Networks | DACLE Division | October 9th 2015 | 6