
HAL Id: cea-01236474
https://cea.hal.science/cea-01236474

Submitted on 1 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tool Support for a Method and a Language Integrating
Model Refinements and Project Management

Salma Bergaoui, Ivan Llopard, Nicolas Hili, Christian Fabre, Fayçal Benaziz

To cite this version:
Salma Bergaoui, Ivan Llopard, Nicolas Hili, Christian Fabre, Fayçal Benaziz. Tool Support for a
Method and a Language Integrating Model Refinements and Project Management. 8th European
Congress on Embedded Real Time Software and Systems (ERTS 2016), Jan 2016, Toulouse, France.
�cea-01236474�

https://cea.hal.science/cea-01236474
https://hal.archives-ouvertes.fr


8th International Congress on Embedded Real Time Software & Systems – ERTS2 2016
January 27–29, 2016, Toulouse, France

Tool Support for a Method and a Language Integrating
Model Refinements and Project Management

Salma Bergaoui1,3, Ivan Llopard1,3, Nicolas Hili2,3, Christian Fabre1,3, and Fayçal Benaziz1,3

1CEA, LETI, MINATEC Campus, F-38054 Grenoble, France.
2LIG, F-38000, Grenoble, France.

3Univ. Grenoble Alpes, F-38000 Grenoble, France.

{salma.bergaoui, ivan.llopard, faycal.benaziz, christian.fabre1}@cea.fr, nicolas.hili@imag.fr

December 1, 2015

Keywords: Embedded Systems, Development Processes,
Methods & Tools, Project Management, Model-Based Sys-
tem Engineering, Parallelism, Action Language.

Abstract

Complexity of Embedded System (ES) development is
increasing due of several cumulative sources. Some
of them are directly related to constraints on the ESs
themselves, like computing power, resource constraints,
and multi- or many-core programming, while other are
related to the industrial context, like teamwork and
parallelisation of concurrent development. In this pa-
per we present CanHOE2, a Model-Driven Engineering
(MDE) tool that addresses two issues of ES develop-
ment: expression of parallelism by means of objects
and Hierachical State Machines (HSMs), and team-
work synchronisation.

1 Introduction

Embedded System (ES) development teams have to
cope with usual constraints of industrial organizations:
(1) End-to-End Engineering: the full development cy-
cle goes from requirement formalization to the final in-
tegration and assessment of the application on its plat-
form. (2) Incremental & collaborative development:
To organize efficiently the work of large teams, it is
critical to regularly distribute and integrate work, and
to measure progress towards the objectives. (3) More-
over, at any level, models should be executable and in-
strumented: executable to check them against require-
ments, and instrumented to get continuous qualitative
and/or quantitative feedback to drive engineering de-
cisions.

Another important factor of ES development effi-
ciency is the set of modeling and programming lan-
guages used in a project. Ideally, we would rely on
a single high-level modeling language that: (a) Can
model hardware as well as software; (b) Is not tied
to any hardware architecture like Field-Programmable

Gate Array (FPGA), Digital Signal Processor (DSP)
or General Purpose Processor (GPP); (c) Is parallel-
friendly; (d) Provides a clear path to generate efficient
code.

Lastly, the wide variety of modern platform pat-
terns like manycore platforms with distributed memory
based on Globally Asynchronous, Locally Synchronous
(GALS) and Network-on-Chip (NoC) are increasingly
heterogeneous and thus much more difficult to program
than classical shared memory architectures. For these
new architectures, parallelism has to be exposed; their
distributed architecture requires strong partitioning of
the code and calls for message-passing style of pro-
gramming. At the same time, modern embedded appli-
cations cannot be divided between data/computational
parts and control parts anymore. Instead, they are
made of a number of layers that include both parallel
computations on large data sets and data-dependent
control as well.

In this context, we developped a Model-Driven En-
gineering (MDE) approach named “Highly Hetero-
geneous, Object-Oriented, Efficient Engineering” or
〈HOE〉2 for short. The approach is made of:

• A method that provides modeling concepts nec-
essary to describe heterogeneous embedded sys-
tems. The 〈HOE〉2 method provides a set of re-
lated project management entities and metrics to
organize, track and report on the development ef-
forts [1, 2, 3].

• An action language that seamlessly combines
association-based data parallelism and operations
on compound data [4]. The 〈HOE〉2 language pre-
serves the expressiveness of Statecharts [5], and
captures a layout – and implementation – neutral
description of data organization, extends message
passing with an intuitive semantics for this addi-
tional parallelism and provides strong foundation
for array-based optimization techniques.

• A canonical tool named CanHOE2 that combines
textual and visual programming while enforcing

https://hal-cea.archives-ouvertes.fr/cea-01236474 1/9 c© 2015, CEA

https://hal-cea.archives-ouvertes.fr/cea-01236474


January 27–29, 2016 ERTS2 2016 Toulouse, France

the principles of 〈HOE〉2 for efficient management
of projects. It is canonical in the sense that it aims
at illustrating the main points of the method.

This paper is structured as follow. We review some
related works in Section 2. Section 3 introduces the
context of our approach. In Section 4, we present the
CanHOE2 tool, its main features, design choices and
implementation. Section 5 presents its application on
a specific case study, and we conclude in Section 6 with
perspectives and future work.

2 Related Work

Over the past years, many methods and tools were
proposed in order to model embedded systems [6, 7,
8].

ACCORD/UML is a model-based method proposed
to model real-time application models in the automa-
tive area [6, 7]. It is organized around waterfall life-
cyles and implies several stakeholders such as car and
parts manufacturers.

BIP (for Behavior, Interaction and Priority) is a
framework for composing hierarchical systems [8]. It
permits to build composite systems by hierarchically
assembling atomic components that are described in
terms of behavior and interactions. BIP defines an
activity-based process in which a few set of activities is
defined, for designing application models, integrating
platform’s constraints, generating code and for verify-
ing the system.

MopCom is a model-based development method for
designing ESs [7]. It proposes a top-down process di-
vided up into two flows for enhancing the development
parallelism, and several iterations to refine an appli-
cation model onto several abstraction layers of a plat-
form.

In all these methods, processes are defined along-
side generic or specific tools. Tools are used in order
to support both the language used for modeling ESs,
and the process with its different features (parallelism,
multi-roles, etc.). However, there are several draw-
backs. Tools are often generic and do not cover all the
activities of an ES process. Coupling several tools can
permit to cover the whole process, yet is inefficient for
modeling ESs. Using non-dedicated tools hinders the
development as they do not provide a global and co-
herent view of the developed system throughout the
whole process. Hence, they allow designers to digress
from the canonical process. In addition to that, they
do not integrate any project management features a
project manager could benefit from in order to have
a global understanding of a current development and
to monitor it. There is now a need of developing In-
tegrated Development Environments (IDEs) that ad-
dress all these issues in one go.

On the tool side, “IBM Rhapsody”, from
IBM/Rational, provides an IDE to develop UML
or SysML models that is widely deployed in the indus-
try [9]. The dynamic behavior of an object is captured

in a flavor of Finite-State Machine (FSM) where the
transitions’ actions are called by external libraries de-
veloped in a general-purpose language. The FSM can
be translated into C++ code, compiled and executed.
During development, this code calls back into the IDE
for debug and animation of the execution, e.g. with
sequence diagrams. Several Board-Support Packages
(BSPs) are also available such that the generated code
can be compiled, uploaded and executed on various
embedded platforms. Other tools from IBM, such
as “Rules Composer” permit to define specific code
generators from Rhapsody models [10]. The mixed
semantics of these tools, with FSM and C++ libraries,
do not allow for symbolic reasoning at the model level,
be it for optimization, correctness analysis or model
refinement. Although they do support MDE, they
main target is executable code production.

“Papyrus MDT” [11, 12] is a component of the
Eclipse Model Development Tools (MDT) project. It
is a complete solution for UML modeling and is fully
compliant with the latest versions of the UML stan-
dard. It supports the definition of profiles, and their
applications to tailor UML models to a particular do-
main. Papyrus provides some tools to customize the
whole modeling environment of Eclipse (i.e. editors,
palettes, the model explorer and the property panel)
according to the definition of the profile. Thus, de-
signers can design models in a dedicated environment
using specific profiles. However, the customization is
only performed regarding the dedicated language and
disregarding any process that could be combined to the
dedicated language. Hence, Papyrus could be tailored
to a specific language, but not to a specific method.
From the model execution side, Papyrus provides code
generation engines for C++ and Java. However, it fo-
cuses on structural elements and only provides a lim-
ited support for code generation from behavior models
through “Qompass Designer” [13]. That means, as the
authors state [14], Qompass Designer only supports
simple FSM models and it is currently not possible to
produce code from hierarchical FSM models.

3 Context

CanHOE2 supports and implements the 〈HOE〉2
method.

3.1 The 〈HOE〉2 Method

〈HOE〉2 stands for Highly Heterogeneous Object Ori-
ented Efficient Engineering. The 〈HOE〉2 method is
organized around four models and three refinements,
that defines a set of successive activities with clear in-
puts and outputs – See Fig. 1 [1, 2, 3]. These models
are built as follows: (A) The informal requirements
are formalized in the Requirement Model by means of
System, Actors, Use Cases and Scenarios; (B) This
requiement model is then refined into an executable,
platform independent, Analysis Model. This is done
by means of Hierarchical Opening of objects: replac-

https://hal-cea.archives-ouvertes.fr/cea-01236474 2/9 c© 2015, CEA

https://hal-cea.archives-ouvertes.fr/cea-01236474


January 27–29, 2016 ERTS2 2016 Toulouse, France

ing an object viewed as black box with several object
that represent a more detailed version of the orginal
object while collectively exhibiting the same apparent
behavior. This transformation can be applied recur-
sively to new objects. (C) The Platform is partially
introduced by declaring its Worlds – See (1) in Fig. 1.
A world is an abstraction of an execution domain that
can Hosts objects – like a set of processors and their
shared memory, a FPGA, or a dedicated hardware In-
tellectual Property (IP). Once the platforms’s worlds
are known, the Design Model is built. For this, each
object from the analysis model is split in smaller ob-
jects that are Distributed over the platform’s worlds.
(D) Further platform details are introduced into the
application: for each world, its Containers are pro-
vided. Each container embodies a set of coding rules,
with a trade-off, to implement an object semantics on
the target world. The Implementation Model is built
by Injecting each object of the design model into a
container.

In terms of associated process management, we de-
fine the following concepts:

• Task, Phase and Task Sheets: A task is an atomic
modeling activity: one of the three refinements
applied to a single objet. A phase is the set of
tasks that captures all the refinements that build
the phase’s model. A task sheet is an instance of
a task.

• Participant : A participant may be either a
Project Manager (PM) or a Developer. A PM
creates and drives the project by (a) defining and
assigning tasks to Developers, and (b) by integrat-
ing, or rejecting, the models they produce. A De-
veloper can modify models only according to a
task sheets provided by the PM.

• Project : A project contains its task sheets and the
four phases of the process. A project is led by a
single PM and built by several Developers.

• Iteration: An iteration is a collection of tasks. It
is the smallest entity of project management.

Table 1 illustrates an example of a consistent plan-
ning using the iterations as a diagram similar to a

Table 1: Consistent Planning of developments
RA SA SD SI

UC1 SN1
1 T 1

1 T 2
1 T 6

3

T 8
4

UC2 SN1
2

UC3
SN2

3

T 3
2

T 4
2

T 7
3

SN3
3

UC4 SN1
4

UC5

SN1
5

T 5
2

SE2
5

SE3
5

UC6 SN1
6

Figure 2: 〈HOE〉2 Action Language

Gantt where T i
j denotes the ith task of iteration j.

The same kind of planing can be declined for the de-
velopment of the platform. As can be seen, the itera-
tions form rectangles and squares in the table schedule:
Each iteration starts from a consistant state and ends
by a consistant state of the system. However, this kind
of representation does not illustrate the refinements
within a single iteration.

3.2 〈HOE〉2 – A New Action Language
for HSM

The 〈HOE〉2 language build on a number of concepts
from Unified Modeling Language (UML) such as ob-
jects and associations [4, 15]. 〈HOE〉2 Objects commu-
nicate through exchange of messages. Their behavior
is captured by Harel’s Statecharts [5, 15]. The 〈HOE〉2
language proposes a number of extensions to UML:

• A new Action language. The 〈HOE〉2 action lan-
guage separates actions into two sequentially or-
dered parts: First the parallel updates of associa-
tions, followed by a parallel sending of messages –
See Fig. 2.

• Using associations to define Iteration domains and
Indexes. 〈HOE〉2 introduces a syntax for the spec-
ification of parallel iteration domains for associa-
tions updates and sending actions.

• Indexed regions: Iteration domains can also be
used to enumerate parallel regions. Each region is
identified by its own index.

• Transaction: The concept of interface is extended
with the ordering and direction of messages ex-
changed.

These extensions are detailled by Llopard et al. [4].

4 The CanHOE2 Tool

As we explained previously, CanHOE2 serves to sup-
port the 〈HOE〉2 process and language. We choose to
develop our tool with the several Eclipse technologies
[16, 17, 18]. Eclipse offers a set of convenient user-
interface components in the context of meta-modeling
(Perspective Management, Common Navigator Frame-
work, Ecore Standard, etc.). It provides some tools to
easily display multieditors in the editor area, navigator
and views. CanHOE2 can create models and diagrams
associated to these models. Models are created using

https://hal-cea.archives-ouvertes.fr/cea-01236474 3/9 c© 2015, CEA

https://hal-cea.archives-ouvertes.fr/cea-01236474


January 27–29, 2016 ERTS2 2016 Toulouse, France

Figure 1: 〈HOE〉2 a Collaborative Top-Down Dev. Process for Embedded System Design: Application and
Platform Tracks

the Eclipse Modeling Framework (EMF) tool. It al-
lows to instantiate models by providing a meta-model
and save them in XML Metadata Interchange (XMI)
markup language. It is suitable for metamodels and
model exchanges. CanHOE2 also offers a textual edi-
tor for the 〈HOE〉2 language. In this section, we detail
the implementation choices, interface design and con-
tributions of our tool.

4.1 Tool Design

CanHOE2 provides four editors corresponding to the
four models described in the 〈HOE〉2 method (see
Fig. 1). Navigation in the models is based on the
logical ordering of refinements within models. The
project management tool supports consistent planning
and definition of iterations obeying the model refine-
ment dependencies. The iteration history is navigable.
The user interface is split into three areas at a mini-
mum (see Fig. 3):

• The Navigator Area, that allows the designer to
intuitively navigate inside a streamlined hierarchy
of 〈HOE〉2 artefacts.

• The Editor Area: where the developer can write
program using graphical elements or textual cod-
ing.

• The View Area, dedicated to project management
and teamwork tools. It implements dedicated
views to update information about the entities se-
lected in the active editor.

As illustrated in Fig. 4, the developer may either
write its program directly in 〈HOE〉2 textual language
or describe it graphically, assisted by a palette and a
property panel: a palette is displayed and the devel-
oper is able to drag and drop entities from it. Infor-
mation about graphical entities can be modified in the
graphical editor, or in a property panel. Graphic and
textual development can be complementary. Indeed,
the developer can mix user friendly textual and graph-
ics solutions, they will be automatically synchronized
to each backup (see Fig. 4). By double-clicking on any
graphical element, an embedded 〈HOE〉2 language edi-
tor open up and let the programmer modify the actual
code (see Fig. 5).

Figure 5: Embedded Editor for Transition

4.2 Tool Implementation
The first step is to derive a well-formatted Ecore meta-
model from our canonical one. This step is fundamen-
tal since we need to consider the Ecore and its asso-
ciated tool specificities. Once we have produced our

https://hal-cea.archives-ouvertes.fr/cea-01236474 4/9 c© 2015, CEA

https://hal-cea.archives-ouvertes.fr/cea-01236474


January 27–29, 2016 ERTS2 2016 Toulouse, France

Figure 3: The CanHOE2 Interface Dedicated to the 〈HOE〉2 Method and Language

Ecore metamodel, we defined the 〈HOE〉2 language
syntax using Xtext/Xtend technology from the above
defined Ecore model [17]. Xtext provides a set of tools
for the implementation of domain-specific languages.
From the 〈HOE〉2 metamodel, we derived a full con-
crete implementation of it. The compiler components
of our language are independent of Eclipse or OSGi
and can be used in any Java compliant environment.
Xtext automatically generates the parser, a type-safe
builder of our Abstract Syntax Tree (AST), the seri-
alizer and code formatter, the scoping framework and
the text editor. The editor integrates syntax highlight-
ing and error checking, among many other things. To
achieve graphical models, we rely on the Sirius frame-
work [18]. Sirius enables the visual design of complex
systems (software, business activities, physics, etc.)
and guarantees the consistency of the corresponding
data (architecture, component properties, etc.).

4.3 Support Tools for Project Manage-
ment in CanHOE2

CanHOE2 offers several tools to support project man-
agement. Indeed, it can manage the authentification
and collaborative work providing a global view on the
progress of the project.

Authentication. In a regular work environment,
an employee can only access the projects to which he
has been assigned. In CanHOE2, once authenticated,
the user accesses a personal dashboard that lists the
projects in which he is involved. From this dashboard,
he can also create new projects as a PM. According
to his role in the project, one of two perspectives is
opened: “Project Manager” or “Developer” perspec-
tive. A perspective is a window with adapted views
to the user. Eclipse RCP can easily manage these per-
spectives and allow us to show a proper layout of the
available views. The views in CanHOE2 are based on
Java SWT [19].

The user authentication process goes through
Lightweight Directory Access Protocol (LDAP). LDAP
is a network protocol for accessing an electronic direc-
tory where you can reference the users (name, login,
phone ...), machines or applications. Access to LDAP
server is done via Java Naming and Directory Interface
(JNDI) [20].

Collaborative development. Such a collabora-
tive environment needs a database to capture all the
artifacts manipulated and their evolution over time.
CanHOE2 uses centralized Git repositories to this end
that are accessed by CanHOE2 on behalf of each par-
ticipant [21]. CanHOE2 uses two types of repositories:

• A configuration Git repository contains the infor-

https://hal-cea.archives-ouvertes.fr/cea-01236474 5/9 c© 2015, CEA

https://hal-cea.archives-ouvertes.fr/cea-01236474


January 27–29, 2016 ERTS2 2016 Toulouse, France

Figure 4: CanHOE2 Synchronized Text and Graphical Editors

mation that CanHOE2 uses to connect to LDAP
and the list of all CanHOE2 active repositories.

• Several project-specific Git repositories, where we
store additional information about the project
(task sheets) and resulting patterns of the Can-
HOE2 application (model use cases, scenarios).

Project monitoring. In order to help the project
manager to monitor the project development and to
plan different iterations on it, we implement traditional
diagrams for project management such as GANTT and
PERT diagrams. Internalized project management re-
duces development time and provides a monitoring in-
terface to better manage the development team.

5 Case Study
In this section, we introduce a Face Tracker system.
The face tracker system consists of application for face
detection, which is hosted by an Oriented Camera plat-
form. This platform includes a general purpose pro-
cessing unit, a Passive InfraRed (PIR) sensor and a
bracket on which the camera is attached. Two servo-
motors orientate the bracket for pan and tilt.

Fig. 3 illustrates use cases diagram of the Face
Tracker application . Tables 2 and 3 show multiple use
cases and scenarios, respectively, that formalizes the
requirements. From these use cases and scenarios, we
can now define a task list and its corresponding order
of execution. We present hereafter a non-exhaustive
list of tasks that have to be performed:

• T 1: Refinement of UC 1 & 2

• T 2: Initiation of the system analysis

• T 3: Refinement of UC 3, 4, 5 & 6

• T 4: Refinement of the system analyis for UC 3 &
4

• T 5: Refinement of the system analyis for UC 5 &
6

• T 6: Initiation of the system design

Table 2: Usecases of the Face Detection Application
Id Causality Name

Description

1 Primary Detect presence
The actor wants to know when somebody enter the monitored
zone.

2 Primary Track faces
The actor wants to track faces of people entering the moni-
tored zone.

3 Secondary Toggle camera control
The actor wants to switch between manual and automatic
tracking modes

4 Secondary Query camera control mode
The actor wants to know the current tracking mode

5 Secondary Orientate camera
The actor set the camera’s orientation.

6 Secondary Query camera orientation
The actor wants to know the camera’s curent orientation.

• T 7: Refinement of the system design

• T 8: System implementation

Once this list is completed, we can define the execu-
tion priority of tasks and hence the list of our different
iterations.

• I1= T 1 + T 2 : Refinement of the use cases 1 & 2
and system analysis initiation

• I2= T 3 + T 4 + T 5: Refinement of requirements
and system analysis

• I3= T 6 + T 7 : System design

• I4= T 8 : System implementation

Table 1 illustrates our iterations planning. In what
follows, we will focus on I1 and I3 iterations. However,
before the beginning of the design phase (i.e. iteration
I3), the platform development team have to start to
work on it. We will call that iteration I ′1. We named
our platform, "The Oriented Camera platform".

https://hal-cea.archives-ouvertes.fr/cea-01236474 6/9 c© 2015, CEA

https://hal-cea.archives-ouvertes.fr/cea-01236474


January 27–29, 2016 ERTS2 2016 Toulouse, France

Table 3: Scenarios of the Face Detection Application
Id Nature Name

Description

1-1 Nominal Presence detected notification
The actor subscribes for updates of presence in the monitored
zone. The application notifies to the user when somebody
enters or exit the monitored zone. The actor unsubscribes
when he does not want updates anymore.

2-1 Nominal Face tracking notification
The actor subscribe to people’s faces and the position in the
monitored zone. The application notifies to the user with the
position of a face in the monitored zone every 2 s. The actor
unsubscribes when he does not want to track people faces
anymore.

3-1 Nominal Switching to automatic mode
The system is in manual mode. The user toggles it to auto-
matic mode.

3-2 Nominal Switching to manual mode
The system is in automatic mode. The user toggles it to
manual mode.

4-1 Nominal Querying control mode
The actor asks for the camera’s control mode. The system
answers wether the camera is in automatic or manual mode.

5-1 Nominal Manually orienting the camera
The system is in manual mode. The user wants to move the
camera relative to the curent position. The camera is moved
by the requested pan and tilt angles.

5-2 Error Manually orienting while in auto. mode
The system is in automatic mode. The user wants to move
the camera relative to the curent position. The system refuses
because the camera is in automatic mode.

5-3 Error Manually orienting the cam. hits a stop
The system is in manual mode. The user wants to move the
camera relative to the curent position. The camera is moved
by less than the requested pan and tilt angles as it hits a hard
stop.

6-1 Nominal Camera position query
The actor asks the system about the camera position. The
system answers with the position.

Iteration I1: Refinement of the use cases 1&2
and system analysis initiation

During this iteration, we can detail the use cases
identified but also initiate the analysis phase. Fig. 6
illustrates an analysis model of the Face Tracker sys-
tem : the system is composed by three objects (1) a
presence detector for detecting a presence in a specific
area, (2) a face detector for detecting a face and its po-
sition from a video stream and (3) a turret controller
for controlling the orientation of a camera a control-
lable turret two angles.

In this iteration we have also to model the behav-
ior of our application, and its response to exchanged
messages (See Fig. 7).

Iteration I ′1: Requirements and system anal-
ysis of the platform

Tables 4 and 5 gives a list of use cases and scenar-
ios of the platform. These lists can be completed and
refined with theirs corresponding diagrams.

To model the platform, we use the same diagram for

Figure 6: Face Tracker system opening diagram

Figure 7: Face Tracker system behavior diagram

modeling the application with a particular notation for
the different elements of the platform. Fig. 8 shows the
analysis model of the platform. This platform allows
the hosted application to control, via two engines, the
position of the camera by orientating it around two
axes. The model is composed by two worlds a Pro-
cessor and Microcontroller. They are provided with
resources in terms of computing and memory, and com-
munication. They also provide different containers al-
lowing access to the communication resources and to
the peripherals of the platform.

The technical choices for the platform design are:

• The Raspberry PI platform: It is adapted to the
field of image processing and allows installing and
uninstalling Python programs running one pro-
gram at a time. It allows also the update of time
and date settings.

• The turret control platform: This platform pro-
vides the use cases (1) subscribtion to presence
detection, and (2) turret orientation. The turret
can be used to support the sensors or actuators,
such as a camera, an ultrasonic radar, a projector,
etc.

• The Arduino UNO platform: It is a prototyping
platform for the control of sensors and, digital or
analog actuators.

From these three platforms we have designed the com-
position diagram (see Fig. 9). From this level of mod-
eling we can start the system design.

Iteration I3: System design

https://hal-cea.archives-ouvertes.fr/cea-01236474 7/9 c© 2015, CEA

https://hal-cea.archives-ouvertes.fr/cea-01236474


January 27–29, 2016 ERTS2 2016 Toulouse, France

Table 4: Use cases of the Oriented Camera platform
Id Causality Name

Description

1 Primary Install Firmware
The actor installs a new firmware in the platform.

2 Primary Toggle the application on/off
The actor turn on/off the application.

3 Primary Time & date settings update
The actor sets the time and date settings.

4 Secondary Time & date settings query
The actor gets the time and date settings.

5 Secondary Firmware version query
The actor gets the firmware version.

Table 5: Scenarios of the Oriented Camera platform
Id Nature Name

Description

1-1 Nominal Firmware installed
The actor installes a new firmware.

1-2 Error Firmware installation error
A firmware is already installed on the platform. The actor
wants to install the same version or an older version of the
firmware. The firmware cannot be installed.

2-1 Nominal Toggle the application on/off
The actor turn on the application. The application runs till
the actor decides to turn off the application. The application
is switched off.

3-1 Nominal Time & date settings updated
The actor sets the time & date. The platform reset its clock
to the entered time & date.

4-1 Nominal Time & date settings query
The actor asks the system about the time & date. The system
answers with its internal time & date.

5-1 Nominal Firmware version query
The actor asks the system about the firmware. The system
answers with the firmware version.

The I3 iteration initializes and starts the system de-
sign phase satisfying the separation of objects, into the
two worlds of the platform (See Fig. 10).

6 Conclusion & Perspectives

The 〈HOE〉2 method defines a single process used
to develop both applications and platforms. It de-
fines precisely what information is sent from the plat-
form model to the application model during develop-
ment. Its companion language suports parallelism and
is amendable to polyhedral analyses. It is made of (1)
a new action language limited to association updates
and sending of messages, (2) domains, iterators and
indexes based on associations.

In this paper, we presented CanHOE2, a modelling
and process management tool for the 〈HOE〉2 method
and its language. Its main contribution is that not
only does it supports the 〈HOE〉2 language, as any
modelling tool, but also the associated process. The

Figure 8: Oriented Camera Platform Analysis

Figure 9: Oriented Camera Platform Composition

Figure 10: Face Tracker system design

support of management and cooperation is deeply in-
tegrated with support of modeling.

In future work, we want to extend CanHOE2 with
more support for the method, in particular towards the
models simulation and 〈HOE〉2 model-to-model trans-
formations.

Aknowledgements: This work was partially
funded by the Artemis-JU and the French “Min-
istère de l’économie, de l’industrie et du numérique”
for the Artemis project COPCAMS, GA 332 913,
http://copcams.eu.

References
[1] Nicolas Hili, Christian Fabre, Sophie Dupuy-

Chessa, and Stéphane Malfoy. “Efficient Em-
bedded System Development: A Workbench for
an Integrated Methodology”. In: Proc. of the
6th Embedded Real-Time Software and Sys-
tems Congress (ERTS2 2012). Toulouse, France,
Feb. 1, 2012. url: http://hal.inria.fr/hal-
00671966/.

https://hal-cea.archives-ouvertes.fr/cea-01236474 8/9 c© 2015, CEA

http://copcams.eu
http://hal.inria.fr/hal-00671966/
http://hal.inria.fr/hal-00671966/
https://hal-cea.archives-ouvertes.fr/cea-01236474


January 27–29, 2016 ERTS2 2016 Toulouse, France

[2] Nicolas Hili, Christian Fabre, Sophie Dupuy-
Chessa, and Dominique Rieu. “A Model-Driven
Approach for Embedded System Prototyping
and Design”. In: Proc. of The IEEE International
Symposium on Rapid System Prototyping (RSP
2014). New Delhi, India, Oct. 16–17, 2014. doi:
10.1109/RSP.2014.6966688.

[3] Nicolas Hili, Chrisitan Fabre, Ivan Llopard,
Sophie Dupuy-Chessa, and Dominique Rieu.
“Model-Based Platform Composition for Embed-
ded System Design”. In: Proc. of IEEE 8th In-
ternational Symposium on Embedded Multicore
Many-core Systems-on-Chip (MCSoC-14). Uni-
versity of Aizu, Japan, Sept. 23–25, 2014. doi:
10.1109/MCSoC.2014.31.

[4] Ivan Llopard, Albert Cohen, Christian Fabre,
and Nicolas Hili. “A Parallel Action Language
for Embedded Applications and Its Compilation
Flow”. In: Proceedings of the 17th International
Workshop on Software and Compilers for Em-
bedded Systems. SCOPES ’14. Sankt Goar, Ger-
many: ACM, 2014, pp. 118–127. isbn: 978-1-
4503-2941-5. doi: 10.1145/2609248.2609257.

[5] David Harel. “Statecharts: a Visual Formalism
for Complex Systems”. In: Science of Computer
Programming 8.3 (1987), pp. 231–274. issn:
0167-6423.

[6] Sébastien Gérard. “Modélisation UML exé-
cutable pour les systèmes embarqués de
l’automobile.” PhD thesis. Université d’Evry,
Oct. 2000.

[7] Denis Aulagnier et al. “SoC/SoPC development
using MDD and MARTE profile”. Anglais. In:
Model Driven Engineering for Distributed Real-
time Embedded Systems. Ed. by Jean-Philippe
Babau et al. ISTE, Mar. 2009.

[8] A. Basu et al. “Rigorous Component-Based Sys-
tem Design Using the BIP Framework”. In: Soft-
ware, IEEE 28.3 (Apr. 2011), pp. 41–48. issn:
0740-7459. doi: 10.1109/MS.2011.27.

[9] IBM Rational. Rhapsody. url: http : / / www .
ibm . com / software / products / en / ratirhap
(visited on 2015-10-13).

[10] IBM Rational. Rules Composer. url: http://
www-01.ibm.com/support/docview.wss?uid=
swg27019384 (visited on 2015-10-13).

[11] Sébastien Gérard, Cédric Dumoulin nad Patrick
Tessier, and Bran Selic. “Papyrus: A UML2
tool for Domain-Specific Language Modeling”.
In: vol. 6100. Springer Verlag, 2010.

[12] Sébastien Gérard. On the Papyrus’ USE: Us-
age, Specialization and Extension. Sept. 6, 2010.
url: http : / / www . eclipse . org / modeling /
mdt / papyrus / usersTutorials / resources /
TutorialOnPapyrusUSE_d20101001.pdf.

[13] Eclipsepedia. Papyrus Qompass. June 5, 2014.
url: https://wiki.eclipse.org/Papyrus%
5C_Qompass.

[14] Eclipsepedia. Papyrus/Codegen/Cpp descrip-
tion. Sept. 29, 2015. url: https : / / wiki .
eclipse . org / Papyrus / Codegen / Cpp % 5C _
description.

[15] Object Management Group. OMG Systems Mod-
eling Language (OMG SysML), Version 1.3. Ob-
ject Management Group, 2012.

[16] Eclipse. The Eclipse Foundation. url: http://
www.eclipse.org (visited on 2015-10-13).

[17] Xtext: a Framework for Development of Pro-
gramming Languages and Domain Specific Lan-
guages. Eclipse Foundation. url: http://www.
eclipse.org/Xtext (visited on 2015-10-13).

[18] Sirius: an Eclipse Project which Allows the
Creation of Graphical Modeling Workbench by
Leveraging the Eclipse Modeling Technologies.
Eclipse Foundation. url: http://www.eclipse.
org/sirius (visited on 2015-10-13).

[19] SWT : an open source widget toolkit for Java
designed to provide efficient, portable access to
the user-interface facilities of the operating sys-
tems on which it is implemented. Eclipse Foun-
dation. url: www.eclipse.org/swt/ (visited on
2015-10-27).

[20] Java Naming and Directory Interface. Oracle.
url: http://www.oracle.com/technetwork/
java/jndi/index.html (visited on 2015-10-13).

[21] Git: a Free and Open Source Distributed Version
Control System. git. url: http://git-scm.com
(visited on 2015-10-13).

https://hal-cea.archives-ouvertes.fr/cea-01236474 9/9 c© 2015, CEA

http://dx.doi.org/10.1109/RSP.2014.6966688
http://dx.doi.org/10.1109/MCSoC.2014.31
http://dx.doi.org/10.1145/2609248.2609257
http://dx.doi.org/10.1109/MS.2011.27
http://www.ibm.com/software/products/en/ratirhap
http://www.ibm.com/software/products/en/ratirhap
http://www-01.ibm.com/support/docview.wss?uid=swg27019384
http://www-01.ibm.com/support/docview.wss?uid=swg27019384
http://www-01.ibm.com/support/docview.wss?uid=swg27019384
http://www.eclipse.org/modeling/mdt/papyrus/usersTutorials/resources/TutorialOnPapyrusUSE_d20101001.pdf
http://www.eclipse.org/modeling/mdt/papyrus/usersTutorials/resources/TutorialOnPapyrusUSE_d20101001.pdf
http://www.eclipse.org/modeling/mdt/papyrus/usersTutorials/resources/TutorialOnPapyrusUSE_d20101001.pdf
https://wiki.eclipse.org/Papyrus%5C_Qompass
https://wiki.eclipse.org/Papyrus%5C_Qompass
https://wiki.eclipse.org/Papyrus/Codegen/Cpp%5C_description
https://wiki.eclipse.org/Papyrus/Codegen/Cpp%5C_description
https://wiki.eclipse.org/Papyrus/Codegen/Cpp%5C_description
http://www.eclipse.org
http://www.eclipse.org
http://www.eclipse.org/Xtext
http://www.eclipse.org/Xtext
http://www.eclipse.org/sirius
http://www.eclipse.org/sirius
www.eclipse.org/swt/
http://www.oracle.com/technetwork/java/jndi/index.html
http://www.oracle.com/technetwork/java/jndi/index.html
http://git-scm.com
https://hal-cea.archives-ouvertes.fr/cea-01236474

	Introduction
	Related Work
	Context
	The hoe2 Method
	hoe2 – A New Action Language for HSM

	The CanHOE2 Tool
	Tool Design
	Tool Implementation
	Support Tools for Project Management in CanHOE2

	Case Study
	Conclusion & Perspectives

