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Abstract

Using unitarity, analyticity and crossing symmetry, we derive universal sum rules for scattering amp-
litudes in theories invariant under an arbitrary symmetry group. The sum rules relate the coefficients
of the energy expansion of the scattering amplitudes in the IR to total cross sections integrated all
the way up to the UV. Exploiting the group structure of the symmetry, we systematically determine
all the independent sum rules and positivity conditions on the expansion coefficients. For effective
field theories the amplitudes in the IR are calculable and hence the sum rules set constraints on the
parameters of the effective Lagrangian. We clarify the impact of gauging on the sum rules for Gold-
stone bosons in spontaneously broken gauge theories. We discuss explicit examples that are relevant
for WW -scattering, composite Higgs models, and chiral perturbation theory. Certain sum rules based
on custodial symmetry and its extensions provide constraints on the Higgs boson coupling to the
electroweak gauge bosons.
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1 Introduction

Effective field theories (EFTs) are the standard language that describes the dynamics of low-energy
degrees of freedom in terms of a series of increasingly higher dimension operators,

∑
i,n c

(n)
i /ΛnO(n)

i .

Only a finite set of the (a priori unknown) low-energy coefficients (LECs) c(n)
i enters in the physical

observables at any given order in (p/Λ)n. When the theory is invariant under a symmetry group H, the
LECs are further restricted by demanding invariant O(n)

i . Chiral perturbation theory in QCD is the
EFT prototype for the dynamics of pions at low-energies: the leading O(p2) Lagrangian is controlled
by just two parameters, namely the pion decay constant and the pion mass. Beyond leading order,
higher derivative operators become relevant and several other LECs need to be included.

While symmetry restrictions are crucial for the EFT to make sense and be predictive, they do not
exhaust all physical conditions that the LECs must satisfy whenever the underlying ultraviolet (UV)
theory has a Lorentz invariant, unitary, analytic, and crossing symmetric S-matrix. These requirements
translate into dispersion relations that relate the LECs in the infrared (IR) to certain integrals over the
energy of total cross-sections. For example, the theory L = (∂µπ)2/2 + c/Λ4(∂µπ∂

µπ)2 + . . . for one
Goldstone Boson (GB) π, invariant under a shift symmetry π → π+c, admits sensible UV completions
only for c ≥ 0 because the forward elastic scattering amplitude A(s) satisfies [1]

A′′(0) =
4

π

∫ ∞
0

ds
σtot(s)

s2
≥ 0 . (1.1)

The left-hand side can be calculated within the EFT in terms of c, whereas the right-hand side is
the total cross-section integrated all the way up to the UV where the EFT is not valid. This UV-IR
connection provides additional constraints on the LECs. The recent proof of the a-theorem [2] is
actually based on such a twice-subtracted dispersion relation for the dilaton elastic scattering where
c ∼ aUV − aIR ≥ 0. Analogously, for the SU(2) chiral Lagrangian one can derive dispersion relations
that provide positivity constraints on the LECs `4,5 [1, 3, 4]. In fact, for ππ scattering in QCD one
can even go beyond the forward limit and implement unitarity, crossing symmetry, and analyticity in
a set of twice-subtracted dispersion relations known as Roy equations [5], see e.g. refs. [6, 7] for recent
discussions. Similar twice-subtracted dispersion relations have been derived in the context of particle
physics beyond the Standard Model (SM). For example, ref. [4] studied twice-subtracted dispersion
relations for the scattering of longitudinally polarized Electroweak (EW) vector bosons W and Z in
the EW chiral Lagrangian.

All the examples above set constraints on LECs at O(p4). Indeed, the twice-subtracted dispersion
relations ensure the UV convergence of the integral of the total cross-sections that cannot exceed the
Froissart bound σ(s) ∼ log2 s [8]. However, as it was noticed in ref. [9], certain linear combinations of
the scattering amplitudes may still be convergent with just one subtraction and thus give sum rules
for the leading LECs at O(p2). In particular, inspired by the results of ref. [10], the authors of ref. [9]
derived the sum rule

1− a2 =
v2

6π

∫ ∞
0

ds
s

(
2σtotI=0 + 3σtotI=1 − 5σtotI=2

)
, (1.2)

where I is the weak isospin. This is a constraint for the O(p2) coupling constant a of a Higgs-like singlet
h coupled to the GBs emerging from the spontaneous breaking SU(2)L × SU(2)R → SU(2)V with an
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interaction term a h ∂µπ
i∂µπi/v. Within chiral perturbation theory in QCD, this equation with a = 0

is known as Olsson sum-rule [11], and it is convergent because the combination of cross-sections under
the integral does not couple to the pomeron [12]. Indeed, the amplitudes that saturate the Froissart
bound at high energies drop in that linear combination. More recently, ref. [13] derived a sum rule for
the elastic forward scattering of 4-plets πa = (π1,2,3, h) of an approximate custodial SO(4) in composite
Higgs models, while ref. [14] studied perturbative unitarity sum rules in weakly coupled models with
several Higgs bosons.

In this paper we build on these previous results and consider the elastic forward 2 → 2 scatter-
ing of an arbitrary real, unitary representation r of an internal symmetry group H. Using unitarity,
analyticity, and crossing symmetry we derive universal sum rules for the scattering amplitudes that en-
compass and generalize all previous examples, including once-subtracted dispersion relations, shedding
light on the underlying general structure of the coefficients of the scattering amplitudes at any order,
as well as on the LECs at O(p2). EFTs for GBs associated with a coset G/H (where G may or may
not be compact) are the prototypes of theories where our sum rules apply. But in fact, our approach
is also valid for arbitrary spins and masses. We discuss in detail the sum rules for the scattering of
longitudinally polarized EW gauge bosons WL’s, and carefully compare the results to the gauge-less
limit with GBs. We prove positivity constraints on the coefficients of the scattering amplitudes that
generalize those found in ref. [1] for the shift symmetry to arbitrary groups. In particular, we show that
the amplitude coefficients must lie within a convex polyhedral cone. We describe how to identify the
cone edges, which determine the ‘strongest’ positivity constraints that, linearly combined with positive
coefficients, generate the entire cone.

Sneak preview and summary of the results

In the remaining part of the introduction we outline the main ideas and part of the results of this paper
while skipping most of the technical details related e.g. to the massless limit, the IR convergence, the
possible IR residues, and the good analytic behavior of the scattering amplitudes around, say, s = 0.
The main ideas and results presented here carry over the general case as we show in the bulk of the
paper.

The sum rules for the 2→ 2 elastic scattering are derived from dispersion relations that relate the
low-energy forward (t = 0) eigen-amplitudes AI(s) within each irreducible representation (irrep) rI

found in r⊗ r

AI(s) ∼ a(0)
I + a

(1)
I s+ a

(2)
I s2 + . . . , (1.3)

to certain linear combinations of integrals of total cross-sections. For example, in an index-free matrix
notation, the sum rules for massless states for one and two subtractions are

P− a
(1) =

2

π

∫ ∞
0

ds
s
P− σ

tot(s) , (1.4a)

P+ a
(2) =

2

π

∫ ∞
0

ds
s2
P+ σ

tot(s) , (1.4b)

where P± = (1±X)/2 are the projection operators into the ±1-eigenspace of the involutory crossing
matrix X that acts on the eigen-amplitudes by exchanging s↔ u channels as AI(u) =

∑
J XIJAJ(s).
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Moreover, the amplitudes are not all independent because satisfy the constraints

P− a
(2n) = 0 , P+ a

(2n+1) = 0 , (1.5)

which do not rely on unitarity but depend only on the symmetry structure of the theory and crossing
symmetry. The crossing matrix is completely independent of the dynamics and fully determined by
the symmetry H. The left-hand side of the sum rules (1.4) represents the IR side where the coefficients
a

(1,2)
I can possibly be calculated within an EFT in terms of the LECs, whereas the integrals over the

total cross sections encode information from any energy scale up to the UV, where the EFT is no longer
valid. The presence of P− in the sum rule with one subtraction in eq. (1.4) is crucial to project out the
UV divergent contribution of the integral in eq. (1.4a), making it thus convergent, analogously to the
Olsson sum rule in QCD. We show that in absence of degeneracy the number of linearly independent
sum rules with an even (odd) number of subtractions equals the number of (anti-)symmetric irreps
in r ⊗ r. Explicit expressions for these linearly independent sum rules can simply be obtained by
diagonalizing the crossing matrix.

We also provide an algorithm to systematically construct the strongest positivity constraints on the
scattering coefficients a(n)

I when n is even. In particular, we show that the crossing matrix is unitary
with respect to the positive definite (diagonal) metric GIJ = dim rI δIJ made of the dimensions dim rI

of the irreps. Equation (1.4b) can thus be written in terms of a scalar product 〈v, a(2)〉 =
∑

IJ v
∗
IGIJa

(2)
J

that involves only positive quantities

〈v, a(2)〉 =
2

π

∫ ∞
0

ds
s2
〈v, σtot(s)〉 =⇒ 〈v, a(2)〉 ≥ 0 , (1.6)

whenever the +1-eigenvector v ofX has positive real components vI . In fact, we show that there always
exist dimV+ 6= 0 linearly independent such positivity constraints (where V± is the ±1-eigenspace)
provided by vectors v that live in a convex polyhedral cone whose edges are the intersection of V+ and
the positive quadrant Rm+ where m = dimX. The strongest positivity constraints 〈vedge, a

(2)〉 ≥ 0 on
the a(2)

I are those associated with the scalar product along the edge generators vedge of the polyhedral
cone.

For odd n, we show that no such general positivity constraints can be obtained. Therefore, one
cannot univocally determine the sign of the associated O(p2) LECs from eq. (1.4a). Nevertheless, it
turns out that the sum rules often allow us to pin down the quantum numbers of the states that are
needed to obtain specific signs for the LECs.

Let us briefly discuss a concrete example. Taking e.g. H = SO(N 6= 4) and r = N, i.e. the
fundamental representation (for N ≥ 3). The product decomposes as N ⊗ N = 1 ⊕ A ⊕ S, where
(A) S is the traceless (anti-)symmetric representation. The crossing matrix X has one −1-eigenvalue
and two +1-eigenvalues. Hence eq. (1.4a) gives one (once subtracted) sum rule

2a
(1)
1 +Na

(1)
A − (N + 2)a

(1)
S =

2

π

∫ ∞
0

ds
s

[
2σtot

1 +Nσtot
A − (N + 2)σtot

S

]
, (1.7)

eq. (1.5) gives the constraints

a
(1)
S = −a(1)

A = − 1

N − 1
a

(1)
1 , 2a

(2)
1 +Na

(2)
A − (N + 2)a

(2)
S = 0 , (1.8)
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while eq. (1.4b) gives two other (twice-subtracted) sum rules – see the text for their explicit form –
leading to the two strongest positivity constraints

a
(2)
A + a

(2)
S ≥ 0 , a

(2)
1 + (N − 1)a

(2)
S ≥ 0 , (1.9)

which correspond to the conditions 〈viedge, a
(2)〉 ≥ 0 where v1

edge = (0, N,N + 2)T and
v2

edge = (N + 2, 2, 0)T are the edge generators of polyhedral convex cone in which the amplitude coef-

ficients must lie. Using the constraints (1.8), the positivity constraints (1.9) imply a(2)
S ≥ 0.

The power of the sum rules emerges when one calculates the coefficients a(n)
I in terms of the LECs

of an EFT. Let us take for example the theory of GBs coming from the symmetry breaking pattern
SO(N + 1) → SO(N) (a sphere) or SO(N, 1) → SO(N) (a hyperboloid), and let us add to this
theory of GBs extra light Higgs-like states h ∈ 1 and hab ∈ S coupled as (ahδab + bhab) ∂µπ

a∂µπb/fπ.
Equation (1.7) therefore becomes a sum rule that constrains the LECs:(

±1− a2 +
N + 2

2N
b2
)

=
f2
π

2πN

∫ ∞
0

ds
s

[
2σtot

1 +Nσtot
A − (N + 2)σtot

S

]
. (1.10)

The signs + and − correspond to the sphere and hyperboloid respectively. For
SO(4)/SO(3) ∼ SU(2)L × SU(2)R/SU(2)V one recovers the sum rule of ref. [9], and the original Ols-
son sum rule for a = b = 0.

The scattering of 4’s of SO(4) is relevant in every custodially symmetric composite Higgs model.
It is quite special because the anti-symmetric 6 ∈ SO(4) is further reducible into two anti-symmetric
representations (3,1) and (1,3) of SU(2)L × SU(2)R. In turn, this theory admits two sum rules for
odd n and other two for even n as we show in detail in section 4.2. In particular, we find a new
once-subtracted sum rule in addition to the sum rule found in ref. [13].

For WLWL → WLWL scattering, one would be tempted, by invoking the Equivalence Theorem
(ET) in the custodial limit g′ = 0, to directly extrapolate the result (1.10) obtained for GBs in
SO(4)/SO(3). However, when using the ET one has to carefully take into account the t-channel W -
exchange diagram, since the squared mass m2

W cannot be discarded in the forward limit t = 0 due to a
pole 1/(t−m2

W ). In fact, such a term gives a finite contribution ∼ g2/(2m2
W ) = 2/v2 independent of

the gauge coupling g which thus affects the left-hand side of the sum rule (1.10) that gets replaced as
(1− a2) → (3− a2). Alternatively, one can work directly with WL as external states and reproduce,
in the forward limit, the same result in agreement e.g. with ref. [15]. However, as we show in section
5, the additional contribution to the left-hand side of the sum rule is exactly canceled by an additional
finite contribution to the right-hand side, coming from the integral of the amplitude along a big circle
at infinity in the complex s plane. This subtle point boils down to identifying the correct analytic
structure of the theory and has often been overlooked in previous works. Moreover, the sum rule has
been previously derived with g′ = 0, where no photon exchange in the t-channel occurs.1 In fact,
the t-channel exchange of a massless spin-1 boson has a Coulomb singularity at t = 0, and one may
question the validity of the sum rule (1.10) for the SM with a small but finite g′. Nevertheless, even
in this case, we show in subsection 5.3 that a cancellation between these extra gauge contributions

1We thank Adam Falkowski for remarking this point.
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on both sides of the sum rule (derived departing from the strict forward limit) occurs, again thanks
to analyticity. In light of these results, we are able to show that the sum rules obtained for GBs at
vanishing gauge couplings do actually carry over to the full gauge theory in the approximation of small,
but finite, g′ � 1.

We suggest the reader interested in physical applications to go directly to section 4 where we provide
a self-contained summary of the tools developed in the previous sections, as well as detailed examples
thoroughly worked out.

The paper is organized as follows. In section 2 we introduce our general approach, discuss on
general grounds the UV and IR convergence of the sum rules, and describe the relation with EFTs. In
section 3 we derive the positivity constraints emerging from even-subtracted dispersion relations. In
section 4 we give several examples of the application of our general approach to particularly interesting
physical cases. We study the scattering of fundamentals of SO(N 6= 4) and of adjoints of SU(N ≥ 4)

for every N . We analyze in detail the special cases of SO(3) and SO(4) which are relevant for the
EW chiral Lagrangian and composite Higgs models, as well as SU(2) and SU(3) for chiral QCD.
We finally devote section 5 to longitudinal WW scattering in the EW chiral Lagrangian and show
the cancellation of the contributions from t-channel gauge boson exchange. In section 6 we draw our
conclusions and highlight possible interesting applications of our results. Appendix A contains an
extensive discussion of the crossing matrix X and its general properties. Appendix B is devoted to a
discussion of the analytic structure of the amplitude in the presence of light unstable resonances. In
appendix C we go beyond the forward limit and discuss the sum rules at t 6= 0. Appendix D describes
the construction of the crossing matrix for SO(N) and SU(N). Appendix E reports the full expression
of the WLWL →WLWL scattering amplitude at tree level.

2 Sum rules

Let us focus on the 2 → 2 elastic scattering |a〉 |b〉 → |c〉 |d〉 with a, b, c, d = 1 . . . ,dim r belonging to
the real (non necessarily irreducible) representation r = r of a symmetry group H. For concreteness
we focus on real particles but the same arguments can be extended by properly including charge
conjugation. Two-particle states can be decomposed into irreps rI(ξ)

r⊗ r =
⊕
I(ξ)

rI(ξ) (2.1)

where I is a (collective) index that identifies inequivalent irreps, while ξ labels possible degenerate
identical irreps appearing in the decomposition. For example, in the scattering of triplets 3 under
SO(3) ∼ SU(2), we have 3 ⊗ 3 = 1 ⊕ 3 ⊕ 5. For SU(3), the scattering of adjoints 8 decomposes as
8⊗8 = 1⊕81⊕82⊕10⊕10⊕27 so that the 8 are degenerate because appear twice on the right-hand
side of eq. (2.1). Equation (2.1) allows us to decompose |a〉 |b〉 ≡ |ab〉 ∈ r⊗ r, a, b = 1 . . . ,dim r, as

|ab〉 =
∑
I(ξ),i

CabI(ξ)i|I(ξ), i〉 , (2.2)
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where |I(ξ), i〉 (i = 1, . . . ,dim rI) is a basis of rI(ξ) and CabI(ξ)i denote the Clebsch-Gordan (CG) coeffi-
cients relating the two bases.

By the Wigner-Eckart theorem the scattering amplitudes among different irreps can be written just
in terms of eigen-amplitudes AI(ξξ′)(s, t):

AI(ξ)i→J(ξ′)j(s, t) = δijδIJAI(ξξ′)(s, t) . (2.3)

Here s, t and u are the standard Mandelstam variables s = (pa + pb)
2, t = (pa − pc)2, u = (pa − pd)2

with s + t + u = 4m2. Notice that the mixed eigen-amplitues AI(ξξ′)(s, t) between degenerate irreps
with ξ 6= ξ′, can be in principle non-vanishing unless other selection rules can be invoked. We come
back to this point later on.

Hereafter, unless stated otherwise, we refer to forward scattering only

AI(ξξ′)(s) ≡ AI(ξξ′)(s, t = 0) . (2.4)

Furthermore, we assume throughout this paper that the amplitudes obey the ordinary first principles
of:

(1) Analyticity, which allows us to extend AI(ξξ′)(s) to an analytic function over the complex plane,
with poles and branch cuts corresponding to the contributions of stable particles and of the
continuum to the scattering process, as for instance in figure 2.1.

(2) Unitarity, which gives the optical theorem

ImAI(ξξ)(s) = s

√
1− 4m2

s
σtot
I(ξξ)(s) (2.5)

for s on-shell and wherem is the mass of the particles r and also implies, via analytic continuation,
that

AI(ξξ′)(s)∗ = AI(ξ′ξ)(s∗) , (2.6)

which generalizes the Schwarz reflection principle.

(3) Crossing symmetry, which relates e.g. s- and u-channel amplitudes

Aab→cd(s) = Aad→cb(u) , (2.7)

where u = 4m2 − s. In addition to s ↔ u we can also completely exchange the initial and
final states, s ↔ s, for which crossing symmetry implies the following relations between the
eigen-amplitudes

AI(ξξ′)(s) = AĪ(ξ′ξ)(s) . (2.8)

We often adopt an index-free notation for the eigen-amplitudes:

A(s) ≡


...

AI(ξξ′)(s)
...

 , (2.9)
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where the collective index I(ξξ′) is now restricted to independent eigen-amplitudes, i.e. eigen-amplitudes
which are unrelated by eq. (2.8). For example, for the scattering 8⊗ 8 = 1⊕ 81 ⊕ 82 ⊕ 10⊕ 10⊕ 27

in chiral SU(3) eq. (2.8) gives A812 = A821 and A10 = A10 and then only A812 (or A821) and
A10 (or A10) appear in the index-free vector A(s).

In appendix A it is shown that the s ↔ u crossing symmetry acts on the eigen-amplitudes via a
constant involutory crossing matrix X 2

A(u) = XA(s) , X2 = 1 . (2.10)

The entries XI(ξξ′)J(ζζ′) of the crossing matrix are constructed in terms of the CG coefficients defined
in eq. (2.2) and we refer to the appendix for their detailed description. Let us stress that, consistently
with eq. (2.10), the indices of XI(ξξ′)J(ζζ′) must be restricted to those labeling the independent eigen-
amplitudes which enter the index-free vector A, as discussed after eq. (2.9). Also notice that, since
X2 = 1, all the eigenvalues of X are either +1 or −1.

While we leave a detailed discussion of X to appendix A and to the following sections, we mention
here one of its important properties. One of the +1-eigenvectors of X is given by the vector v with
components

vI(ξξ′) =

{
1 if ξ = ξ′

0 if ξ 6= ξ′
. (2.11)

Let us also anticipate that we encounter several cases in which X is block-diagonal in non-mixed
and mixed indices, i.e.

X =

(
X̂

Xmix

)
, (2.12)

where X̂ has only non-mixed entries X̂I(ξξ)J(ζζ). Even though most of the following discussion is general
and does not require eq. (2.12), in most physical applications it could be convenient to work with X̂
instead of X. For instance this is the case for chiral SU(3). We refer to X̂ as the reduced crossing
matrix. It clearly satisfies X̂2 = 1 and then it has eigenvalues ±1. Furthermore, the vector in eq. (2.11)
restricts to a +1-eigenvector v̂ of X̂ with identical components v̂I(ξξ) = 1.

2.1 Dispersion relations

By analyticity, expanding the amplitude A(s) around a certain (complexified) scale s = µ2

A(s) =
∑
n

A(n)(µ2)(s− µ2)n , (2.13)

one can use the Cauchy integral formula to express the coefficients A(n)(µ2) as

A(n)(µ2) +
∑
si

Res

[
A(s)

(s− µ2)n+1

]
=

1

2πi

∮
C
ds

A(s)

(s− µ2)n+1
, (2.14)

2More explicitly, the crossing matrix carries two collective indices XI(ξξ′)J(ζζ′) and eq. (2.10) in components reads
AI(ξξ′)(u) =

∑
Jζζ′ XI(ξξ′)J(ζζ′)AJ(ζζ′)(s). For scattering amplitudes of non-real particles, one should include in X the

charge conjugation operator.
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Re s

Im s

4m2
ÊÊ Ê

2m2

Ê

m2
C

s-plane

Figure 2.1: Analytic structure of the amplitude A(s) in the (Re s, Im s) plane. The contour C corresponding
to the Cauchy integral formula (2.14), encloses the point µ2 around which the amplitude is expanded and the
poles at s = si (red points) corresponding to propagating particles with masses lighter than 4m2. The analytic
structure of A(s) is symmetric under reflection around 2m2.

where the left-hand side is the contribution from the residues at the poles s = si (and their crossed)
and s = µ2 enclosed by a contour C in the complex s-plane that does not cross any singular point, see
figure 2.1. For convenience we introduce the notation a(n) ≡ A(n)(µ2 = 0) or, more explicitly

a
(n)
I(ξξ′) ≡ A

(n)
I(ξξ′)(µ

2 = 0) . (2.15)

We consider the following analytic structure of the amplitude A(s): there is a branch cut running
on the real axis from s = 4m2 (corresponding to the physical threshold of r’s pair production) to +∞.
Crossing symmetry at t = 0, i.e. s → u = −s + 4m2, enforces another cut from −∞ to s = 0. In
addition, there may be mass poles for s = si and, by crossing symmetry, for s = 4m2 − si on the real
axis below 4m2 associated to light propagating particles. Heavier resonances do not give poles in the
physical Riemann sheet. Should the light poles at s = si be unstable as well, they would move to
another Riemann sheet hidden by a longer cut, see figure B.1. The analytic structure in this case is
discussed in appendix B.

We can now smoothly deform the integration contour C as in figure 2.2. The right-hand side of
eq. (2.14) can be written as the sum of two terms: one comes from the big circle of radius Λ2 centered
around 2m2

cΛ(n) =

∫ 2π

0

dθ
2π

|sΛ|eiθA(|sΛ|eiθ)
(|sΛ|eiθ − µ2)

n+1 , |sΛ| = 2m2 + Λ2 , (2.16)

with Λ eventually going to infinity, and the other from the integrals along the branch cuts:∫ Λ2+2m2

4m2

ds
2πi

[
A(s+ iε)−A(s− iε)

(s− µ2)n+1
+ (−1)n

A(−s+ 4m2 − iε)−A(−s+ 4m2 + iε)
(s− 4m2 + µ2)n+1

]
. (2.17)
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Figure 2.2: The contour C of figure 2.1 deformed to a path along the branch cuts plus a big circle at s = Λ2.

By the crossing symmetry (2.10), we can rewrite eq. (2.14) as follows:

A(n)(µ2) +
∑

si

Res

[
A(s)

(s− µ2)n+1

]
=

cΛ (n) +

∫ Λ2+2m2

4m2

ds
2πi

[
1

(s− µ2)n+1
+ (−1)n

X

(s− 4m2 + µ2)n+1

]
[A(s+ iε)−A(s− iε)] .

(2.18)

In general, the condition (2.6) implied by unitarity gives

A(s+ iε)−A(s− iε) = 2 ReA−(s+ iε) + 2 i ImA+(s+ iε) , (2.19)

where, in components,

A±I(ξξ′)(s) ≡
1

2

[
AI(ξξ′)(s)±AI(ξ′ξ)(s)

]
(2.20)

are the symmetric and anti-symmetric combinations with respect to the degeneration indices ξ and
ξ′. In absence of degeneracy we clearly have A+ = A and A− = 0, but this can easily happen also
in the degenerate case. For instance, the mixed amplitudes may vanish by means of other selection
rules which in fact remove the degeneracy3 so that AI(ξξ′) = AIδξξ′ and then A+ = A. Moreover,
A+ = A is granted whenever degenerate irreps are all real, as it must be the case for small enough
real representations r, because of crossing symmetry (2.8). In all these cases we can identify A+ with
A and write∑

(residues)(n) = cΛ (n) +

∫ Λ2+2m2

4m2

ds
π

[
1

(s− µ2)n+1
+ (−1)n

X

(s− 4m2 + µ2)n+1

]
ImA(s+ iε) ,

(2.21)
where the left-hand side is a shorthand for∑

(residues)(n) = A(n)(µ2) +
∑
si

Res

[
A(s)

(s− µ2)n+1

]
. (2.22)

3For example, a tiny mass splitting, angular momentum conservation or extra quantum numbers. For instance, this
is the case for adjoints of SU(3) where A812 = 0 at t = 0 for angular momentum conservation (see subsection 4.3).
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In the following we assume that A− = 0 and therefore that eq. (2.21) holds, bearing in mind that
whenever A− can be non-vanishing one needs to use eq. (2.18) instead of eq. (2.21).

2.2 Convergence

Equation (2.21) represents a set of general dispersion relations with n subtractions. It is well known
that for n ≥ 2, the integrals are convergent and cΛ(n) → 0 for Λ → ∞, i.e. when the radius of the
big circle is sent to infinity, thanks to the Froissart bound |A(s)| ≤ contst × s log2 s for s → ∞ [8].
For example, ref. [16] derived such a dispersion relation with two subtractions for the particular case
of chiral SU(2) in QCD. For n = 1 one would instead expect no convergence when the amplitude
saturates the Froissart bound. However, only definite directions in the amplitude space may grow
maximally fast so that even for n = 1 one can find certain linear combinations which are convergent.
For n = 1, the integral at large s in eq. (2.21) is indeed dominated by

2

π

∫ ∞ ds
s2
P− ImA(s) , (2.23)

where P± denote the projection operators associated with the ±1-eigenspaces of the crossing matrix
X:

P± ≡
1

2
(1±X) . (2.24)

As we will presently see, it follows from eq. (2.23) that in order to draw conclusions about the
once-subtracted (n = 1) dispersion relations it is sufficient to add to the three first principles listed
above one further assumption:

(4) Universal asymptotic behavior of the amplitude, that is the asymptotic scattering amplitude at
large s is the same for all irreps. More precisely we assume the following leading asymptotic
behavior

AI(ξξ′)(s) ∼ const× s δξξ′ , for s→∞ (modulo factors of log s) , (2.25)

where the constant factor is independent of I(ξξ′).

This condition refines the way an amplitude can saturate the Froissart bound: A(s) and hence cΛ(1)

are allowed to grow maximally fast but in a universal way. Indeed, the condition (2.25) is equivalent
to demanding that A(s), and then cΛ(1), is asymptotically proportional to the +1-eigenvector v of the
crossing matrix X defined in eq. (2.11). This means that the leading asymptotic contribution to A(s)

and cΛ(1) is annihilated by P−.

We then see that eq. (2.25) is sufficient for guaranteeing that eq. (2.23), and hence the integral in
eq. (2.21) for n = 1, converges for Λ → ∞. Moreover, if we project the entire sum rule (2.21) with
n = 1 onto the −1-eigenspace of the crossing matrix X, we get rid of the big circle contribution since
P−c

∞(1) = 0. We then arrive at the expression

P−
∑

(residues)(1) =

∫ ∞
4m2

ds
π

[
1

(s− µ2)2
+

1

(s− 4m2 + µ2)2

]
P− ImA(s+ iε) , (2.26)
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which represents a set of once-subtracted dispersion relations involving only finite quantities. (No-
tice that the same argument can be repeated starting from the more general dispersion re-
lations in eq. (2.18).) In fact, by crossing symmetry and analyticity alone we know that
A(2m2 + s) = XA(2m2 − s), and thus P+c

∞(1) = 0 too. Therefore, under the assumption of uni-
versal asymptotic growth (2.25) of the AI , the integral contribution along the big circle averages to
c∞(1) = 0 and we can write another dispersion relation,

P+

∑
(residues)(1) =

∫ ∞
4m2

ds
π

[
1

(s− µ2)2
− 1

(s− 4m2 + µ2)2

]
P+ ImA(s+ iε) . (2.27)

For µ2 = 2m2, this equation represents just the constraints P+
∑

(residues)(1) = 0 imposed by crossing
symmetry rather than a genuine once-subtracted sum rule as opposed to the eq. (2.26).

Let us discuss now the validity of the condition (2.25). Strongly coupled theories can have amp-
litudes which saturate the Froissart bound and could in principle violate the condition (2.25). However,
whenever the fastest growth is reached by exchanging an H-singlet object in the t-channel, the corres-
ponding eigen-amplitude does satisfy the condition (2.25) because of unitarity of the CG coefficients

Aab→cd ∼ s δacδbd =⇒ AI(ξξ′) ∼ s δξξ′ . (2.28)

QCD, for example, satisfies the condition (2.25) because the Froissart bound is indeed saturated by
the exchange of the pomeron, a completely neutral composite object with the quantum numbers of
the vacuum. It is in fact the universality expressed by eq. (2.25) that gives rise to the Pomeranchuk’s
theorem [17]. Reference [18] has indeed formally shown that, whenever the imaginary part of the
amplitude is independent of the quantum numbers of the scattering states, the H-singlet exchange
alone dominates the amplitude. Moreover, any model that respects the Regge theory is also satisfying
the condition (2.25) since the leading Regge trajectory is again due to a neutral object exchanged in
the t-channel giving the behavior in eq. (2.28) [17]. The condition (2.25) is very general and, to the
best of our knowledge, there exists no strongly coupled counter-example that violates it.

Weakly coupled theories in the UV require more care. On the one hand, one would expect scattering
amplitudes to fall with energy or, at most, become constant or admit perhaps a mild logarithmic growth.
For those, const = 0 in eq. (2.25) (meaning that the amplitude does not saturate the Froissart bound)
and the convergence of the dispersion relations with one subtraction holds. On the other hand, the
amplitudes involving propagating massive spin-1 states in the UV may grow faster than log s. Indeed,
spontaneously broken gauge theories contain spin-1 bosons with masses mV that, propagating in the
t-channel, contribute to the real forward scattering amplitudes with a term δA ∼ c2

∗s: even though
the integral over the imaginary amplitudes (that is total cross-sections) remains finite, δA gives a
finite contribution, coming from the big circle in the UV (see eq. (2.16)), δc∞(1) = c2

∗, which is not
necessarily projected out by P−, as stressed e.g. in ref. [9]. In principle, one should therefore add this
finite contribution P−δc

∞(1) to the right-hand side of eq. (2.26). Nevertheless, despite appearances,
such an extra P−δc∞(1) from t-channel exchange is actually harmless when the massive gauge degrees
of freedom in the IR and the UV are the same. The massive gauge bosons contribute indeed to the left-
hand side (the IR-side) of the sum rules too, and by the very same amount δA(1) = c2

∗ (see section 5 for
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an explicit example). This is the case whenever the extra contribution to the amplitude is the same in
the UV and in the IR, so that trivially, by analyticity, its integral is the same along the contours C and
the big circle at Λ2 (see figures 2.1 and 2.2). This reasoning is not spoilt by the running of the gauge
coupling or higher loops contributions because the exchanged momentum t is zero while s = Λ2 →∞.
In this regime the eikonal approximation becomes exact enforcing the above cancellation.

The net contribution from the massive gauge bosons propagating in the t-channel, if they are stable,
is thus only through the IR residues at s = m2

W and its crossed point, which is however negligible when
µ2 � m2

W , see section 2.4 for details.

In summary, the once-subtracted dispersion relations (2.26) are theoretically on a firm ground.
There is however a last important caveat: we have always assumed that it is possible to take the
forward limit t = 0. When massless spin-1 states are propagating in the t-channel this may not be
the case and one should add an IR regulator that provides a mass gap, or alternatively move away
from the strict forward limit as done in the Roy equations, that exploit the partial wave expansion
[5–7]. We come back to this point when discussing the sum rules for gauge theories in section 5 where
we make use of dispersion relations at finite t (presented in appendix C) that are needed to avoid
the Coulomb singularity from the photon exchange. Anticipating the final result, by analyticity, a
cancellation similar to that of massive gauge bosons discussed above takes place. In fact, the extra
contribution from the massless vectors cancels between the two sides of the dispersion relation before
taking the limit t→ 0.

2.3 The sum rules

Let us come back to the general dispersion relations (2.21). For n ≥ 2, by using the projectors P±
introduced in eq. (2.24), they can be projected onto the ±1-eigenspaces of X as

P±
∑

(residues)(n) =

∫ ∞
4m2

ds
π

[
1

(s− µ2)n+1
± (−1)n

(s− 4m2 + µ2)n+1

]
P± ImA(s+ iε) . (2.29)

Under the conditions discussed in subsection 2.2, this equation holds for n = 1 too (and in fact,
projected with P− only, it holds at the crossing symmetric point µ2 = 2m2 for n = 0 as well).

These dispersion relations involve integrals over the physical region s ≥ 4m2. We want now to
link them to physical observables such as the total cross-section. Indeed, unitarity implies the optical
theorem (2.5) for the elastic forward scattering. Notice, however, that we cannot always focus just on
the elastic forward amplitudes AI(ξξ), since the crossing matrix X, and hence the projectors P±, may
bring non-elastic terms from mixed amplitudes AI(ξξ′) with ξ 6= ξ′ into the game. In such a case, we
cannot write

ImA(s+ iε) = s

√
1− 4m2

s
σtot(s) (2.30)

in eq. (2.29).

However, such a problem is often absent or can easily be circumvented. For example, whenever non-
trivial mixed amplitudes are absent, AI(ξξ′) = AI(ξξ)δξξ′ , as for instance in the presence of additional
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selection rules, eq. (2.30) holds and then from eq. (2.29) one gets the sum rules

P±
∑

(residues)(n) =

∫ ∞
4m2

ds
π

[
s

(s− µ2)n+1
± (−1)ns

(s− 4m2 + µ2)n+1

]√
1− 4m2

s
P±σ

tot(s) . (2.31)

Clearly, the same sum rules hold when the crossing matrix has the block-diagonal structure (2.12), up
to restricting to the non-mixed amplitudes and replacing X → X̂.

Furthermore, even when X does not have the form (2.12) and the mixed amplitudes are non-
vanishing, one could still obtain sum rules involving physical observables. Indeed, we can consider the
elastic scattering amplitude between mixed states 1/

√
2(|I(ξ)〉+ |I(ξ′)〉)

AI(ξ)+I(ξ′) =
1

2
AI(ξ) +

1

2
AI(ξ′) +

1

2
[AI(ξξ′) +AI(ξ′ξ)] =

1

2
AI(ξ) +

1

2
AI(ξ′) +AI(ξξ′) (2.32)

and define σtotI(ξξ′) for ξ 6= ξ′ as

σtotI(ξξ′) ≡
ImAI(ξξ′)

s
√

1− 4m2

s

= σtotI(ξ)+I(ξ′) −
1

2

(
σtotI(ξ) + σtotI(ξ′)

)
, (2.33)

so that the sum rules (2.31) still hold and involve only physical cross-sections.

2.4 Sum rules and EFT

So far we have not used the freedom of choosing µ2. Apart from where the singularities are located in
the s-plane we can choose µ2 in eq. (2.14) as we like, although some choices may be more useful than
others. There are two choices that recommend themselves.

The first choice corresponds to take the crossing symmetric point µ2 = 2m2 that allows one to
nicely disentangle, in Eq. (2.31), the actual sum rules

P−
∑

(residues)(2k+1) =
2

π

∫ ∞
4m2

ds
s

(s− 2m2)2k+2

√
1− 4m2

s
P−σ

tot(s) , k ≥ 0 , (2.34a)

P+

∑
(residues)(2k) =

2

π

∫ ∞
4m2

ds
s

(s− 2m2)2k+1

√
1− 4m2

s
P+σ

tot(s) , k ≥ 1 , (2.34b)

from the constraints

P−
∑

(residues)(2k) = 0 , k ≥ 0 , (2.35a)

P+

∑
(residues)(2k+1) = 0 , k ≥ 0 . (2.35b)

Actually, these constraints (2.35) follow directly from the definition (2.22) and eq. (2.10). Notice that
eq. (2.35b) for k = 0 implies P+c

∞(1) = 0 and therefore, should the assumption (2.25) be satisfied,
c∞(1) = 0.

The sum rules have two crucial properties: they are IR and UV convergent,4 and all the quantities
on the right-hand side except for the projectors are real and have positive definite sign. The definite
sign turns out to be crucial to derive positivity constraints that we discuss in the next section.

4Let us recall that only for one subtraction, k = 0 in eq. (2.34a), the UV convergence of the integral in eq. (2.34a) is
not automatically guaranteed and that there could be an additional constant c(1)∞ appearing on the right-hand side of
eq. (2.34a), as discussed in subsection 2.2.
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The other useful choice corresponds to µ2 much bigger than all IR mass scales, namely
Reµ2 ∼ Imµ2 � m2

IR ≈ m2, s2
i . With such a choice, the dispersion relations (2.21) and the sum rules

(2.31) take a simpler form by dropping all the IR structures. In particular, we do not need to keep
track of the IR residues. For instance (2.21) can be approximately written as

A(n)(µ2) = cΛ (n) +

∫ Λ2

4m2

ds
π

[
1

(s− µ2)n+1
+ (−1)n

X

(s+ µ2)n+1

]
ImA(s+ iε), (2.36)

which holds up to small corrections of O(m2/µ2,m2
i /µ

2,m2/Λ2
IR) where ΛIR is the cutoff of the EFT.

Note, however, that unless the IR masses are really small this is possible only for the first few subtrac-
tions, i.e. for n = 1, 2 or so. Indeed, if we want to be able to calculate the left-hand side within the
EFT, |µ|2 is bounded from above by the IR cutoff Λ2

IR, while the coefficients A(n)(µ2) are generically
suppressed by higher powers of Λ2

IR. For example, the choice |µ|2 . Λ2
IR/4π represents a compromise

that works reasonably well for n = 1, 2. In any case, as long as the IR side of the sum rule is calculable
within the EFT one can always check whether this approximation is valid. If it is not, then one should
keep the residues on the left-hand side.

The scale µ2 acts essentially as the scale where we probe the scattering process [1]. By truncating
the EFT at O(p2n) we are tolerating errors of O((µ2/Λ2

IR)n+1) in our calculations. For example, in
a theory of GBs in the IR, the left-hand side calculated with the O(p2) Lagrangian is practically µ2

independent, whereas the µ2-dependence on the right-hand side accounts only for higher order terms
(such as the neglected O(p4) which includes loops and the logarithmic running of the O(p2) LECs)
and/or the small IR deformations that enter e.g. as m2

i /µ
2.

The approximate dispersion relations (2.36) assume a neater form by projecting them with P± as
done above. For instance, the once-subtracted dispersion relations become

P−A(1)(µ2) =
2

π

∫ ∞
4m2

ds
(s2 + µ4)

(s2 − µ4)2
P−ImA(s+ iε) , (2.37a)

P+A(1)(µ2) =
2

π

∫ ∞
4m2

ds
2µ2s

(s2 − µ4)2
P+ImA(s+ iε) , (2.37b)

where again we are neglecting the masses with respect to µ2. Moreover, should the masses be very
small or vanishing, we can take µ2 small as well, or effectively vanishing, while keeping m2

i /µ
2 � 1.

Take for instance the sum rules (2.31). In this limit they simplify even further in actual sum rules

P− a
(2k+1) =

2

π

∫ ∞
0

ds
s2k+1

P− σ
tot(s) , k ≥ 0 , (2.38a)

P+ a
(2k) =

2

π

∫ ∞
0

ds
s2k

P+ σ
tot(s) , k ≥ 1 , (2.38b)

and constraints

P+ a
(2k+1) = 0 , k ≥ 0 , (2.39a)

P− a
(2k) = 0 , k ≥ 0 , (2.39b)

assuming they are IR convergent for the given integer k. This is again a condition that one can explicitly
verify with the EFT at hand. For example, a generic theory of GBs from a non-linear sigma model
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gives an IR convergent once-subtracted sum rule in the limit µ2 → 0. Theories with a shift-symmetry
πa → πa + ca give convergent twice-subtracted sum rules for µ2 → 0.

If instead µ2 → 0 is a singular limit, one can not only resort to the regular expressions with finite
µ2, but can actually try to isolate all the sources of IR divergence on the same side, and then take the
limit µ→ 0 at the end: since one side of the sum rule is convergent by construction the other must be
so too.

A more explicit version of the sum rules (2.34) and (2.38) is obtained by expressing them in a basis
adapted to the ±1-eigenspaces V± of the matrix X. Let us denote by m the rank of the matrix X, so
that m = m+ +m−, where m± = dimV±. One can then construct a matrix M which diagonalizes the
matrix X. In particular we can choose M such that, if we split {I(ξξ′)} = {α, a}, with α = 1, . . . ,m−

and a = 1, . . . ,m+, the projectors P± take the block-diagonal form

MP−M
−1 =

(
1m− 0

0 0

)
, MP+M

−1 =

(
0 0
0 1m+

)
. (2.40)

Then eqs. (2.38) give the following explicit set of sum rules

[Ma(2k+1)]α =
2

π

∫ ∞
0

ds
s2k+1

[Mσtot(s)]α , α = 1, . . . ,m− , k ≥ 0 , (2.41a)

[Ma(2k)]a =
2

π

∫ ∞
0

ds
s2k

[Mσtot(s)]a , a = 1, . . . ,m+ , k ≥ 1 , (2.41b)

while the constraints (2.39) take the form

[Ma(2k+1)]a = 0 a = 1, . . . ,m+ , k ≥ 0 , (2.42a)

[Ma(2k)]α = 0 α = 1, . . . ,m− , k ≥ 0 . (2.42b)

Analogously, eqs. (2.34) and (2.35) provide very similar sum rules and constraints for the choice
µ2 = 2m2 up to the replacing

1

sn
→ s

(s− 2m2)n+1

√
1− 4m2

s
, a(n) → A(n)(µ2 = 2m2) (2.43)

into the eqs. (2.41) and (2.42), integrating from 4m2, and retaining all the residues on the left-hand
side.

3 Positivity constraints

In order to derive positivity constraints from our sum rules (2.31), one needs to choose a real µ2. In
practice any point on the real axis below the branch cut threshold at s = 4m2 could be a good choice.
To be definite, let us take the crossing symmetric point µ2 = 2m2 that has been considered to set
analogous positivity constraints on the LECs `4,5 of the QCD chiral Lagrangian [3]. We can then use
the sum rules (2.34). Let us also assume for simplicity that there are no poles below the cut. Therefore,
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the sum rules (2.34) and the constraints (2.35) for even n = 2k take the form

P+A(2k)(2m2) =
2

π

∫ ∞
4m2

ds
s

(s− 2m2)2k+1

√
1− 4m2

s
P+σ

tot(s) , (3.1a)

P−A(2k)(2m2) = 0 . (3.1b)

Analogous expressions for odd n = 2k + 1 are obtained simply by replacing P± → P∓. By using the
positivity of the cross sections and the properties of the projectors we are able to systematically analyze
the existence of positivity constraints on linear combinations of the coefficients A(n)(2m2) that can be
related to the LECs of the EFT one is interested in. Should the limit m,µ→ 0 be regular, we can even
remove all the mass scales, so that the above some rules and constraints reduce to the form (2.38) and
(2.39), and we can thus study a(n) = A(n)(0) as it is done e.g. for n = 2 in the theory of GBs with a
shift symmetry [1], as well as for the dilaton in the proof of the a-theorem [2]. In fact, should the cut
actually extend all the way down to s = 0, the limit m,µ → 0, whenever it exists, would be the only
sensible choice to discuss positivity constraints on the amplitude coefficients.

In the following, for notational convenience, we take µ = 2m2 → 0 and use eqs. (2.38) and (2.39),
bearing in mind that the exact same arguments can be repeated by working with finite masses and
eq. (3.1) or its odd-n counterpart.

3.1 Positivity for even n

Let us first restrict to even n = 2k. In order to simplify the discussion, in this subsection we assume
that the crossing matrix X has the block-diagonal structure (2.12). Then we can focus on the real
reduced matrix X̂. We can correspondingly project all vectors appearing in eqs. (2.38) and (2.39) to
the non-mixed components, adding a hat to distinguish them. The (real) ±1-eigenspaces of X̂ are then
denoted by V̂± and have dimensions m̂±, while m̂ = m̂+ + m̂− gives the rank of X̂. It follows from the
discussion of appendix A that the matrix X̂ is orthogonal with respect to a metric Ĝ, which can be
obtained by reducing to non-mixed indices the metric G, see eqs. (A.19) and (A.20). This reduction is
important in the following.

Let us first consider the eq. (2.39b). This just says that the vector â(2k) is constrained to lie in
complexified V̂+. Furthermore, the reality of the right-hand side of the (reduced) eq. (2.38b) implies
that â(2k) is actually real. This is clear if we reinstate finite masses and use µ2 = 2m2, since the
non-mixed amplitudes are real below the branch cut. Hence we can conclude that

â(2k) ∈ V̂+ . (3.2)

On the other hand, eq. (2.38b) explicitly relates â(2k) to the projected cross section vector P+σ
tot(s).

In order study its implications, let us denote by 〈·, ·〉 the inner product associated with Ĝ, for instance
〈v̂1, v̂2〉 = v̂1 TĜv̂2.5 Then eq. (2.38b) can be written as

〈v̂, â(2k)〉 =
2

π

∫ ∞
0

ds
s2k
〈v̂, σ̂tot(s)〉 , ∀v̂ ∈ V̂+ . (3.3)

5More explicitly, v̂1TĜv̂2 clearly stands for
∑
I(ζζ′)

∑
J(ξξ′)(v̂

1)I(ζζ′)ĜI(ζζ′)J(ξξ′)(v̂2)J(ξξ′)(s).
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Remember that the vector σ̂(s) has all non-negative entries and suppose that v̂ has real non-negative
entries too. Then

〈v̂, σ̂tot(s)〉 ≥ 0 . (3.4)

In more geometrical terms, which are useful for later generalizations, the vector σ̂(s) takes values
in a convex polyhedral cone C ' Rm̂+ and requiring that v̂ has only non-negative entries is equivalent
to requiring that v̂ lies in the dual cone C∗ ' Rm̂+ . Notice that the +1-eigenvector v̂ introduced below
eq. (2.12) lies inside C∗. Hence, V̂+ ∩ C∗ is a non-empty m̂+-dimensional convex polyhedral cone.

From eq. (3.3) we immediately get the following positivity constraints

〈v̂, â(2k)〉 ≥ 0 for v̂ ∈ V̂+ ∩ C∗ , (3.5)

which must be accompanied by eq. (3.2), which in fact reduces the number of possible independent
(even) amplitude coefficients to m̂+. Then eq. (3.5) identifies an m̂+-dimensional cone V̂+ ∩ C∗ of
positivity constraints for such m̂+ independent amplitude coefficients.

To make these positivity constraints (3.5) more explicit, we can select a set of vectors v̂A, with
A = 1, . . . , q and q ≥ m̂+, which generate the edges of the polyhedral cone V̂+ ∩ C∗. Such a convex
polyhedral cone with all the “generating” vectors lying on the faces of the Rm̂+ space is shown in a
3-dimensional cartoon in figure 3.1. In practice v̂A are generators with all non-negative entries of
the one-dimensional subspaces resulting from the intersection of V̂+ with all the m̂ − m̂+ + 1 planes
obtained by setting m̂+ − 1 components of Rm̂ equal to zero. In other words, they are identified by
the equation P−v̂A = 0 together with the vanishing of all the possible subsets of m̂+ − 1 components.
With such a choice, v̂ ∈ V̂+∩C∗ if and only if v̂ = ρAv̂

A with ρA ≥ 0. Hence, once we have constructed
this particular set of vectors, we can rewrite eq. (3.5) as the q ≥ m̂+ positivity constraints

〈v̂A, â(2k)〉 ≥ 0 A = 1, . . . , q . (3.6)

One can also obtain this set of positivity constraints directly from the sum rules written in the
form (2.41b), restricted to the non-mixed sector. The prescription is the following. Take the generic
linear combination τa[M̂â(2k)]a, with m̂+ parameters τa. This gives a linear combination of the m̂
components of â(2k). Choose m̂+ − 1 out of these m̂ components and impose that their coefficients in
τa[M̂â(2k)]a are vanishing. This gives m̂+ − 1 equations which fix the m̂+ parameters τa in terms of
a single one. If we can choose these constrained τa’s so that τa[M̂â(2k)]a has all positive coefficients,
then it gives one of the combinations appearing on the left-hand side of the positivity constraints (3.6).
Otherwise we discard it. Then, to obtain all the other positivity constraints in eq. (3.6), one should
repeat the procedure for all the other subsets of m̂+ − 1 out of the m̂ components of â(2k). Finally,
recall that these conditions are supplemented by (3.2), which is more explicitly given by the set of
equations (2.42b) restricted to the non-mixed sector.

In the following sections we show how this prescription practically works in several examples.
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Figure 3.1: Example of a convex polyhedral cone with six faces in three dimensions. All the edges of the cone
and the orange faces lie on one of the faces of the first quadrant R3

+, while the yellow faces are internal to
the quadrant. When the ambient space is generalized to m̂ dimensions and the convex polyhedral cone to an
m̂+ < m̂ dimensional one with q ≥ m̂+ edges, the q edge vectors lying on the faces of the Rm̂

+ space represent the
unique choice of basis vectors that can generate the entire cone through linear combinations with only positive
coefficients. We call the positivity constraints represented by these vectors the strongest positivity constraints.

3.2 Non-positivity for odd n

One can now wonder whether the above procedure outlined for even n = 2k could be mimicked for
isolating some positivity constraints for odd n = 2k + 1 as well. Unfortunately, it is easy to see that
this is never possible.

Let us again assume eq. (2.12) and restrict to the non-mixed sector. First of all, by repeating the
above argument starting from eq. (2.39a), one would be lead to the conclusion that â(2k+1) ∈ V̂− and
〈ŵ, â(2k+1)〉 ≥ 0 for any ŵ ∈ V̂− ∩ C∗ (with k ≥ 1). Now the key point is that, being the matrix X̂
Ĝ-orthogonal, the eigenspaces V̂+ and V̂− are Ĝ-orthogonal in the sense that 〈v̂, ŵ〉 = 0 for any v̂ ∈ V̂+

and ŵ ∈ V̂−. In particular, we know that the vector v̂ introduced below eq. (2.12) belongs to V̂+. Then
〈v̂, ŵ〉 = 0 for all ŵ ∈ V̂−. But, being Ĝ diagonal (and with positive definite entries), 〈v̂, ŵ〉 is a linear
combination of the components of ŵ with just positive coefficients. Hence, 〈v̂, ŵ〉 = 0 implies that at
least one component of ŵ is negative and then ŵ cannot belong to C∗. Therefore the set V̂− ∩ C∗ is
empty and there are no positivity constraints coming from the same argument used for even n.

3.3 Inclusion of the mixed sector

The above derivation of the positivity constraints for even n can be extended to the case in which X
does not take the form of eq. (2.12) and mixed amplitudes are included. We just briefly outline the
general idea without spelling out the details.
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First, analogously to the case discussed above, eq. (2.39b) says that

a(2k) ∈ V+ , (3.7)

while eq. (2.38b) can be rewritten as

〈v, a(2k)〉 =
2

π

∫ ∞
0

ds
s2k
〈v, σtot(s)〉 , ∀v ∈ V+ . (3.8)

Here we have to take into account that v ∈ V+ cannot be generically restricted to be real and the
pairing 〈·, ·〉 corresponds to the complete metric G, for instance 〈v1,v2〉 = v1 †Gv2.

We observe that now the vector σ(s) can be seen as a linear combination with positive coefficients
of the form

σtot(s) =
∑
Iξ

σtotI(ξ)(s)uI(ξξ) +
tot∑
Iξ 6=ξ′

σI(ξ)+I(ξ′)(s)uI(ξξ′) . (3.9)

As one can easily check, the vectors uI(ξξ) have one component equal to 1, a number (given by the
degeneration of rI(ξ)) of components equal to −1

2 , and the other entries equal to zero. On the other
hand, the vectors uI(ξξ′), with ξ 6= ξ′, have one component equal to 1 and the others vanishing. Since
σtotI(ξ)(s) and σtotI(ξ)+I(ξ′)(s) are positive, we see that σtot(s) lie in the convex polyhedral cone C ⊂ Rm

whose edges are generated by the vectors uI(ξξ′).

We can now repeat the arguments above almost verbatim. The main difference is that one has to di-
vide real and imaginary contributions to eq. (3.8). Suppose now that Rev is such that 〈Rev,uI(ξξ′)〉 ≥ 0

for all uI(ξξ′)’s. In more formal terms, assume that Rev ∈ C∗, where C∗ is the dual cone to C. In such
a case, Re〈v, σ(s)〉 ≥ 0 and then from eq. (3.8) we get the positivity constraints

Re〈v, a(2k)〉 ≥ 0 for v ∈ V+ and Rev ∈ C∗ . (3.10)

Analogously, for the imaginary component we get

Im〈v, a(2k)〉 ≥ 0 for v ∈ V+ and Imv ∈ C∗ . (3.11)

One could then proceede as described is subsection 3.1 to extract a minimal set of independent positivity
constraints from eqs. (3.10) and (3.11).

4 Examples

So far we have been completely general and did not restrict to any specific symmetry group H. Let
us now summarize the algorithm to extract the sum rules for the scattering of two (identical and real)
representations r of H:

• do the CG decomposition r ⊗ r =
⊕

I,ξ rI(ξ) into irreps rI(ξ), and calculate the crossing matrix
X that acts on the independent eigen-amplitudes AI(ξξ′), by using e.g. the expressions (A.1) and
(A.18);
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• diagonalize X with a non-singular matrix M that brings it to a canonical form

MXM−1 =

(
−1m− 0

0 1m+

)
; (4.1)

• read off the sum rules’ coefficients from the rows ofM . In particular, for massless particles, when
no degenerate irreps occur in the CG decomposition, the sum rules for one and two subtractions
are

[Ma(1)]α =
2

π

∫ ∞
0

ds
s

[Mσtot(s)]α , α = 1, . . . ,m− , (4.2a)

[Ma(2)]a =
2

π

∫ ∞
0

ds
s2

[Mσtot(s)]a , a = 1, . . . ,m+ , (4.2b)

[Ma(1)]a = 0 a = 1, . . . ,m+ , (4.2c)

[Ma(2)]α = 0 α = 1, . . . ,m− , (4.2d)

where a(n) = A(n)(0) are the expansion coefficients around s = 0. When instead degenerate
irreps appear in the CG decompositions, one should work as described in section 2. The last
two eqs. (4.2) actually represent a constraint that follows directly from the symmetry structure
of the theory and crossing symmetry, without relying on unitarity. They imply that not all the
amplitudes coefficients are linearly independent.

• derive the positivity constraints that follow from eq. (4.2b) by taking linear combinations of the
last m+ rows of M that return only non-negative entries. The strongest positivity constraints
obtained in this way take the form

∑
I v

A
I dim rIa

(2)
I ≥ 0, and can be derived by following the

algorithm outlined at the end of subsection 3.1 that finds the edge generators of a convex poly-
hedral cone vA that belong to the +1-eigenspace and have m+ − 1 vanishing entries (with the
remaining ones being strictly positive).

For massive particles it is useful to study the behavior of the eigen-amplitudes at scales s ≈ µ2

through the expansion

A(s) = A(0)(µ2) +A(1)(µ2)(s− µ2) +A(2)(µ2)(s− µ2)2 + . . . (4.3)

with µ2 larger than the squared masses and any other IR structure such as extra light poles or small
widths: m2

IR � Reµ2 ∼ Imµ2 � Λ2
IR. For example, within this approximation, the sum rules and the

constraints from diagonalizing eq. (2.31) are

[MA(1)(µ2)]α =
2

π

∫ ∞
4m2

ds
(s2 + µ4)s

(s2 − µ4)2

√
1− 4m2

s
[Mσtot(s)]α , α = 1, . . . ,m− , (4.4a)

[MA(1)(µ2)]a =
2

π

∫ ∞
4m2

ds
2µ2s2

(s2 − µ4)2

√
1− 4m2

s
[Mσtot(s)]a , a = 1, . . . ,m+ , (4.4b)

[MA(2)(µ2)]a =
2

π

∫ ∞
4m2

ds
(s2 + 3µ4)s2

(s2 − µ4)3

√
1− 4m2

s
[Mσtot(s)]a , a = 1, . . . ,m+ , (4.4c)

[MA(2)(µ2)]α =
2

π

∫ ∞
4m2

ds
(3s2 + µ4)sµ2

(s2 − µ4)3

√
1− 4m2

s
[Mσtot(s)]α , α = 1, . . . ,m− . (4.4d)
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They reproduce eqs. (4.2) in the limit µ2,m2 → 0 with |µ|2 � m2 if this limit exists. If it does
not, one should collect all the IR divergent terms on one side and take the limit afterwards so that
the convergence of one side enforces the convergence of the other. Alternatively, one can work with
A(n)(µ2) with a finite and real µ2 smaller than 4m2, e.g. setting it at the crossing symmetric point
µ2 = 2m2. In such a regime the sum rules are given by eqs. (4.2) up to the replacement (2.43). They
are guaranteed to be real and IR convergent as in eq. (3.1). One can thus extract positivity constraints
from the even-subtracted sum rules as discussed in section 3.

The sum rules with two or more subtractions are UV convergent. Once-subtracted sum rules are
also UV convergent under the general assumptions discussed in subsection 2.2 about the universality
behavior of the amplitudes saturating the Froissart bound.

In this section we go through detailed examples and show concretely the powerful information
carried by the sum rules. For simplicity we assume that the expansion around µ2 = 0 does not
give rise to any IR singularity and work directly with the expansion coefficients a(n) (at least for
n = 1, 2), bearing in mind the simple modifications a(n) → A(n)(µ2) for the sum rules and the positivity
constraints at finite µ2. In case IR residues are present and cannot be neglected with respect to µ2,
they should also be included in the left-hand side of eqs. (4.2), see e.g. eq. (2.31).

4.1 Fundamentals of SO(N)

We consider first the case of the forward elastic scattering of two particles transforming as fundamental
representations of SO(N) with N 6= 4. The case N = 4 is discussed in subsection 4.2.

The tensor product of fundamental representations decomposes as N ⊗ N = 1 ⊕ S ⊕ A into a
singlet, the symmetric and anti-symmetric representations, whose dimensions are

∆1 = 1 , ∆S =
1

2
N(N + 1)− 1 , ∆A =

1

2
N(N − 1) . (4.5)

The crossing matrix is given by (see appendix D for details about the construction of X)

X =

 1
N

∆S
N −∆A

N
1
N

α
∆S

∆A
∆S

(1
2 + 1

N )

− 1
N

1
2 + 1

N
1
2

 , (4.6)

with α = N(N − 1)/4− 1 + 1/N . The states are ordered as 1, S, and A. One can simply verify that
this matrix satisfies all the properties discussed in appendix A and in particular X2 = 1, detX = −1,
and TrX = m+ −m− = 1. Since m = m+ + m− = 3, we get that the number of independent once-
subtracted and twice-subtracted sum rules are respectively m− = 1 and m+ = 2, consistently with
the general discussion of appendix A, which relates these numbers to the number of (anti)-symmetric
representations appearing in the decomposition. As expected by eq. (2.11), the +1-eigenspace contains
the vector (1, 1, 1)T and the columns sum up to 1 for each row.

We diagonalize X with a non-singular matrix M

M =

 1
2N −N+2

4N
1
4

− 1
2N

N+2
4N

3
4

1
2N

6N−4
8N

1
4

 , MXM−1 =

(
−11 0

0 12

)
. (4.7)
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Its first row gives the coefficients of the sum rule with an odd number of subtractions6, e.g.

2a
(1)
1 − (N + 2)a

(1)
S +Na

(1)
A =

2

π

∫ ∞
0

ds
s

[
2σtot

1 (s)− (N + 2)σtot
S (s) +Nσtot

A (s)
]
. (4.8)

The convergence for one subtraction is guaranteed by the fact that the coefficients in front of the
cross-sections add up to zero being orthogonal to the vector (1, 1, 1)T . The other two rows set instead
the constraints on the a(1)

I ’s that we can write as

a
(1)
S = −a(1)

A = − 1

N − 1
a

(1)
1 , (4.9)

and apply to the once-subtracted sum rule (4.8) that in terms of just one eigen-amplitude, e.g. a(1)
A ,

takes the form
a

(1)
A =

1

2πN

∫ ∞
0

ds
s

[
2σtot

1 (s)− (N + 2)σtot
S (s) +Nσtot

A (s)
]
. (4.10)

Let us pass to two subtractions. The first row of M tells us which combination of even scattering
amplitude coefficients must vanish, e.g.

2a
(2)
1 − (N + 2)a

(2)
S +Na

(2)
A = 0 . (4.11)

Any (linearly independent) combination of the other two rows gives sum rules with an even number of
subtractions. If the coefficients are arranged to be positive these sum rules imply inequalities because
of the positivity of the total cross-sections. For example, summing the second and third row of the
matrix (4.7) we get that a(2)

S +a
(2)
A equals an integral over positive combination of cross-sections, hence

a
(2)
S + a

(2)
A ≥ 0.

More systematically, we can apply the prescription of section 3 where the edge generators v’s of the
positivity convex polyhedral cone satisfy 2v1 − (N + 2)vS + NvA = 0, and have (m+ − 1) vanishing
components, while the remaining ones are positive. In this way we find two edges in a three dimensional
space generated by v1 = (0, N,N + 2)T and v2 = (N + 2, 2, 0)T . The associated cone is depicted
in figure 4.1. We can thus determine the coefficients that set the strongest positivity constraints∑

I,J v
A
I GIJa

(2)
J ≥ 0 with A = 1, 2 by contracting with the metric G = diag(∆1,∆S,∆A),

a
(2)
S + a

(2)
A ≥ 0 , (4.12a)

a
(2)
1 + (N − 1)a

(2)
S ≥ 0 . (4.12b)

Notice that the constraint (4.11) allows one to single out two independent amplitude coefficients, for
instance a(2)

S,A, and to recast the associated positivity constraints in the form

a
(2)
S + a

(2)
A ≥ 0 , (4.13a)

3a
(2)
S − a

(2)
A ≥ 0 , (4.13b)

that immediately imply a
(2)
S ≥ 0. Equality in the expressions (4.12) and (4.13) is reached only for

trivial non-interacting theories where the cross-sections are vanishing. Analogous positivity constraints
from twice subtracted sum rules in the specific case of SO(3) ∼ SU(2) have been studied also in
refs. [4, 16, 19, 20].

6We have implicitly taken all masses to zero at the end of the computation, as we are allowed to do if no massless
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Figure 4.1: Two dimensional convex polyhedral cone in three dimensions (i.e. planar cone or sector of a plane)
generated by

∑
I v

A
I GIJ which are the coefficients of the strongest positivity constraints for SO(N 6= 4) for

N = 3, 5, 6, . . .

4.1.1 Goldstone bosons from SO(N, 1)/SO(N) and SO(N + 1)/SO(N)

As we stressed in the Introduction, the sum rules become useful when the IR side can be calculated
using the LECs of an EFT. We consider now the theory of GBs emerging from the spontaneous breaking
patterns SO(N + 1)→ SO(N) or SO(N, 1)→ SO(N). The Lagrangian at O(p2) is given by

L =
1

2
∂µπ

a∂µπa ∓ 1

6f2
π

[
(πbπb)(∂µπ

a∂µπa)− (∂µπ
aπa)(∂µπbπb)

]
, (4.14)

where the GBs live on a N -dimensional sphere (upper sign) or hyperboloid (lower sign) respectively.
We also add two light states, h ∈ 1 and hab ∈ S, that are coupled as

1

fπ
(ahδab + bhab) ∂µπ

a∂µπb . (4.15)

We can think of them as Higgs-like states. The LECs are the decay constant fπ, and the couplings a
and b. With these ingredients we can calculate the amplitudes for the scattering at low-energy

A(πaπb → πcπd) = (±1− a2 +
N + 2

2N
b2)

s

f2
π

(
δabδcd − δcbδad

)
, (4.16)

mode propagates in the t-channel. This is the case for the theory of GBs discussed below where no IR divergence arises
with one subtraction.
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and the corresponding eigen-amplitude coefficients

a
(1)
1 =

(N − 1)

f2
π

(
±1− a2 +

N + 2

2N
b2
)
,

a
(1)
S = − 1

f2
π

(
±1− a2 +

N + 2

2N
b2
)
,

a
(1)
A =

1

f2
π

(
±1− a2 +

N + 2

2N
b2
)
,

(4.17)

which, as expected, satisfy the constraints (4.9). Substituting these coefficients into eq. (4.8) the
once-subtracted sum rule takes now an explicit expression in terms of the LECs of the EFT:(

±1− a2 +
N + 2

2N
b2
)

=
f2
π

2πN

∫ ∞
0

ds
s

[
2σtot

1 (s) +Nσtot
A (s)− (N + 2)σtot

S (s)
]
. (4.18)

The two signs + and − correspond to the sphere and the hyperboloid respectively. For
SO(4)/SO(3) ∼ SU(2)L × SU(2)R/SU(2)V we recover the sum rule of ref. [9] for b = 0, and the
original Olsson sum rule of QCD for a = b = 0. The sum rule for SO(3) improves the one proposed
for U(1) ∼ SO(2) in ref. [10] in the context of composite Higgs models since the deep UV contribution
c∞(1) from the big circle is projected out by P−.

More generally, in a non-linear sigma model defined by the constraint
∑N

i=1 φ
2
i + cφ2

N+1 = f2
π

(ellipsoid) where H = SO(N) is unbroken, one needs just to rescale the +1 of the sphere in eq. (4.18)
by a factor 1/c. This shows that the sum rule with no Higgses is insensitive to the geometric structure
of the coset as long as we deform it in a way that respects H and rescale fπ.

4.2 Composite Higgs models and SO(4)

We now move on to consider the case H = SO(4) ∼ SU(2)L×SU(2)R that is important for custodially
symmetric composite Higgs models, see e.g. ref. [21] for a recent comprehensive review. The scattering
of two 4 ∈ SO(4) is special because the anti-symmetric 6 is further reducible into (1,3) ⊕ (3,1) of
SU(2)L × SU(2)R. An immediate consequence is that there are two sum rules for an odd number
of subtractions, rather than just one like for SO(N 6= 4), and two sum rules for an even number of
subtractions.

Let us work directly with SU(2)L × SU(2)R where every irrep carries pairs of indices in the irreps
of SU(2). In particular, we have (2,2)⊗ (2,2) = (1,1)⊕ (1,3)⊕ (3,1)⊕ (3,3). The CG coefficients
are thus the product of the well known CG coefficients for 3-dimensional rotations. We can therefore
calculate the crossing matrix X directly from its definition (A.1) and get

X =
1

4


1 −3 −3 9
−1 −1 3 3
−1 3 −1 3
1 1 1 1

 , M =
1

8


−1 −1 −1 3
1 −3 5 −3
1 1 1 5
−1 3 3 3

 , (4.19)

where M is the matrix that diagonalizes X as MXM−1 = diag (−1,−1, 1, 1). The crossing matrix has
two linearly independent −1-eigenvectors, and therefore there are two independent sum rules with an
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odd number of subtractions. Taking e.g. linear combinations of the first two rows of M we get the sum
rules

a
(1)
(1,1) + a

(1)
(1,3) + a

(1)
(3,1) − 3a

(1)
(3,3) =

2

π

∫ ∞
0

ds
s

[
σtot

(1,1)(s) + σtot
(1,3)(s) + σtot

(3,1)(s)− 3σtot
(3,3)(s)

]
, (4.20a)

a
(1)
(1,3) − a

(1)
(3,1) =

2

π

∫ ∞
0

ds
s

[
σtot

(1,3)(s)− σ
tot
(3,1)(s)

]
. (4.20b)

The last two rows of M provide the constraints on the a(1)
I that we can write as

a
(1)
(3,3) = −1

3
a

(1)
(1,1) = −1

2
(a

(1)
(1,3) + a

(1)
(3,1)) , (4.21)

and use to recast eq. (4.20a) in terms of a single eigen-amplitude, e.g. a(1)
(3,3):

a
(1)
(3,3) = − 1

4π

∫ ∞
0

ds
s

[
σtot

(1,1)(s) + σtot
(1,3)(s) + σtot

(3,1)(s)− 3σtot
(3,3)(s)

]
. (4.22)

The first two rows of M provide instead the constraints for a(2)
I :

a
(2)
(1,1) + a

(2)
(1,3) + a

(2)
(3,1) − 3a

(2)
(3,3) = 0 , (4.23a)

a
(2)
(1,3) − a

(2)
(3,1) = 0 . (4.23b)

Following the prescription of section 3, we can derive the strongest positivity conditions for an even
number of subtractions, e.g.

a
(2)
(1,3) + a

(2)
(3,1) + 2a

(2)
(3,3) ≥ 0 , (4.24a)

a
(2)
(1,1) + 3a

(2)
(3,3) ≥ 0 . (4.24b)

Solving the constraints (4.23), e.g. for a(2)
(3,1) and a

(2)
(1,1), one can obtain the two strongest positivity

constraints for the two remaining independent amplitudes which immediately imply a(2)
(3,3) ≥ 0.

4.2.1 Goldstone bosons and composite Higgs

Let us now assume that the IR theory is well described by GBs from the cosets SO(5)/SO(4) or
SO(4, 1)/SO(4), or more generally by a non-linear sigma model

4∑
i=1

φ2
i +

1

cH
φ2

5 = f2
π . (4.25)

For the Higgs boson at O(p2) it accounts for the deformation

OH =
cH
2f2
π

(∂µ|H|2)2 , (4.26)

which is the leading one in custodially symmetric composite Higgs models [22]. We may also add a
light SO(4) singlet and a light symmetric (traceless) scalar coupled to the GBs with couplings a and
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b as in eq. (4.15). The resulting eigen-amplitudes

a
(1)
(1,1) =

3

f2
π

(
cH − a2 +

3

4
b2
)
,

a
(1)
(1,3) = a

(1)
(3,1) =

1

f2
π

(
cH − a2 +

3

4
b2
)
,

a
(1)
(3,3) = − 1

f2
π

(
cH − a2 +

3

4
b2
)
,

(4.27)

satisfy the constraints (4.21) and allow us to evaluate the left-hand side of the sum rule (4.20a) that
now reads (

cH − a2 +
3

4
b2
)

=
f2
π

4π

∫ ∞
0

ds
s

[
σtot

(1,1)(s) + σtot
(1,3)(s) + σtot

(3,1)(s)− 3σtot
(3,3)(s)

]
. (4.28)

The case with a = b = 0 was originally found in ref. [13] that, however, missed the second sum rule
(4.20b). Our construction instead systematically allows one to find all the independent sum rules.

The second sum rule with one subtraction shows an interesting feature. The IR theory of GBs
has an accidental discrete PLR symmetry at O(p2) that exchanges SU(2)L ↔ SU(2)R and therefore
sets a(1,3) = a(3,1). Higher dimensional operators spoil this symmetry. Yet the sum rule enforces an
averaged PLR ∫ ∞

0

ds
s
σtot

(1,3)(s) =

∫ ∞
0

ds
s
σtot

(3,1)(s) , (4.29)

on top of the asymptotic equality

σtot
(1,3)(s→∞) = σtot

(3,1)(s→∞) , (4.30)

analogous to the Pomeranchuk’s theorem or, similarly, to the condition of eq. (2.25). The averaged
PLR relation is a surprising result where the IR/UV connection is clearly at work: an IR accidental
symmetry puts constraints on the theory at all energies.

4.3 Adjoints of SU(N) and chiral QCD

We now consider the 2 → 2 forward scattering between particles transforming in the adjoint repres-
entation of SU(N) for N ≥ 4. The simpler cases N = 2 and N = 3, relevant for chiral QCD, are
discussed below in a separate subsection.

We have the following decomposition of Adj⊗Adj:

Adj⊗Adj = 1s ⊕Ds ⊕ Fa ⊕Ys ⊕Ta ⊕T
a ⊕Xs , (4.31)

where the s and a labels stand for symmetric and antisymmetric with respect to the two original
adjoints.7 The dimensions of the irreps appearing in the decomposition are

∆1 = 1 , ∆D = N2 − 1 , ∆F = N2 − 1 ,

∆Y =
N2(N + 1)(N − 3)

4
, ∆T = ∆T =

(N2 − 4)(N2 − 1)

4
, ∆X =

N2(N − 1)(N + 3)

4
.

(4.32)
7We adopt for SU(N) the same conventions as in ref. [23].
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The crossing matrix X can be computed as shown in appendix D. In this case only X̂ is relevant8 and
is given by

X̂ =



1
N2−1

1 −1 (N−3)N2

4(N−1) 2− N2

2
N2(N+3)
4(N+1)

1
N2−1

N2−12
2(N2−4)

−1
2 − (N−3)N2

4(N−2)(N−1) 1 N2(N+3)
4(N+1)(N+2)

1
1−N2 −1

2
1
2 − (N−3)N

4(N−1) 0 N(N+3)
4(N+1)

1
N2−1

1
2−N − 1

N
1

N−2 + 1
4 + 1

2−2N
N+2
2N

N+3
4N+4

1
1−N2

2
N2−4

0 (N−3)N
4(N2−3N+2)

1
2

N(N+3)
4(N2+3N+2)

1
N2−1

1
N+2

1
N

N−3
4(N−1)

N−2
2N

N2+N+2
4N2+12N+8


, (4.33)

where the entries are ordered as 1,D,F,Y,T,X. One can simply verify that this matrix satisfies all
the properties discussed in appendix A. The matrix M that diagonalizes X̂ as

MX̂M−1 = diag(−1,−1, 1, 1, 1, 1) , (4.34)

is given by

M =



1
2−2N2 − 1

2N+4 − 1
2N

3−N
8(N−1)

2−N
4N

(N+3)(3N+2)
8(N+1)(N+2)

1
2(N2−1)

1
4−N2 0 − (N−3)N

8(N2−3N+2)
1
4 − N(N+3)

8(N2+3N+2)

1
2(N2−1)

1
2N+4

1
2N

N−3
8(N−1)

N−2
4N

1
8

(
− 4
N+2 + 5 + 2

N+1

)
1

2−2N2
1

N2−4
0 (N−3)N

8(N2−3N+2)
3
4

N(N+3)
8(N2+3N+2)

1
2(N2−1)

1
4−2N − 1

2N
1
8

(
− 2
N−1 + 5 + 4

N−2

)
N+2
4N

N+3
8N+8

1
2−2N2 −1

4
3
4 − (N−3)N

8(N−1) 0 N(N+3)
8(N+1)


. (4.35)

We see that the −1-eigenspace has dimension two, leading to two once-subtracted sum rules and
dim X̂ − 2 = 4 twice-subtracted sum rules. These numbers match the number of (anti)-symmetric
irreps appearing in the matrix X̂. The first two rows of M in eq. (4.35) allow us to read the two
independent once-subtracted sum rules

4a
(1)
1

N2 − 1
+

4a
(1)
D

N + 2
+

4a
(1)
F

N
+

(N − 3)a
(1)
Y

N − 1
+

2(N − 2)a
(1)
T

N
−

(N + 3)(3N + 2)a
(1)
X

(N + 1)(N + 2)

=
2

π

∫ ∞
0

ds
s

[
4σtot1

N2 − 1
+

4σtotD

N + 2
+

4σtotF

N
+

(N − 3)σtotY

N − 1
+

2(N − 2)σtotT

N
−

(N + 3)(3N + 2)σtotX

(N + 1)(N + 2)

]
,

(4.36a)

4a
(1)
1

N2 − 1
−

8a
(1)
D

N2 − 4
−

(N − 3)Na
(1)
Y

N2 − 3N + 2
+ 2a

(1)
T −

N(N + 3)a
(1)
X

N2 + 3N + 2

=
2

π

∫ ∞
0

ds
s

[
4σtot1

N2 − 1
−

8σtotD

N2 − 4
−

(N − 3)NσtotY

N2 − 3N + 2
+ 2σtotT −

N(N + 3)σtotX

N2 + 3N + 2

]
.

(4.36b)

8The matrix X is block diagonal in the mixed and non-mixed indexes. Moreover, the amplitude corresponding to the
mixed entry FD (or DF) vanishes due to conservation of angular momentum in the forward limit.
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The coefficients aI in these sum rules are not all independent since they satisfy the constraints set by
the last four rows of M that, taking linear combinations, can be written e.g. as

a
(1)
1 −Na

(1)
Y − (N2 +N − 2)a

(1)
T =0 , (4.37a)

2a
(1)
D − (N − 2)a

(1)
T −Na

(1)
Y =0 , (4.37b)

2a
(1)
F −Na

(1)
Y − (N + 2)a

(1)
T =0 , (4.37c)

a
(1)
X + 2a

(1)
T + a

(1)
Y =0 . (4.37d)

Solving these constraints, e.g. for a(1)
1,D,F,X, the sum rules (4.36) read

2a
(1)
T + a

(1)
Y

= −2

π

∫ ∞
0

ds
s

[
4σtot1

N2 − 1
+

4σtotD

N + 2
+

4σtotF

N
+

(N − 3)σtotY

N − 1
+

2(N − 2)σtotT

N
−

(N + 3)(3N + 2)σtotX

(N + 1)(N + 2)

]
,

(4.38a)

a
(1)
T =

2

π

∫ ∞
0

ds
s

[
4σtot1

N2 − 1
−

8σtotD

N2 − 4
−

(N − 3)NσtotY

N2 − 3N + 2
+ 2σtotT −

N(N + 3)σtotX

N2 + 3N + 2

]
. (4.38b)

In the next subsection we relate these a(1)
I to the LECs of the SU(N)L×SU(N)R/SU(N)V non-linear

sigma model.

The first two rows give rise also to the following constraints for the second derivatives

4a
(2)
1

N2 − 1
+

4a
(2)
D

N + 2
+

4a
(2)
F

N
+

(N − 3)a
(2)
Y

N − 1
+

2(N − 2)a
(2)
T

N
−

(N + 3)(3N + 2)a
(2)
X

(N + 1)(N + 2)
= 0 , (4.39a)

4a
(2)
1

N2 − 1
−

8a
(2)
D

N2 − 4
−

(N − 3)Na
(2)
Y

N2 − 3N + 2
+ 2a

(2)
T −

N(N + 3)a
(2)
X

N2 + 3N + 2
= 0 . (4.39b)

The positivity conditions corresponding to the crossing matrix (4.33) are computed as prescribed in
section 3. In this case the procedure is the following: we take linear combinations with free coefficients
of the last four rows of M in eq. (4.35). We obtain a 6-vector depending on four free coefficients. We
set three entries at a time to zero, and express three of the coefficients as functions of the remaining
one. We then substitute their expression into the 6-vector linear combination and we check if the three
non-zero entries are all positive (or negative, since they still depend on one free parameter). We repeat
the procedure for all the combinations of three entries of the 6-vector linear combination. In this way
we get the five strongest positivity constraints

2a
(2)
F + (N − 2)a

(2)
T +Na

(2)
X ≥ 0 , (4.40a)

2a
(2)
D + (N + 2)a

(2)
T +Na

(2)
X ≥ 0 , (4.40b)

2a
(2)
1 + (N − 2)(N + 1)a

(2)
Y + (N − 1)(N + 2)a

(2)
X ≥ 0 , (4.40c)

a
(2)
1 + 2(N + 1)a

(2)
F +N(N + 2)a

(2)
X ≥ 0 , (4.40d)

(N + 2)a
(2)
1 + 2(N − 2)(N + 1)a

(2)
D +N3a

(2)
X ≥ 0 . (4.40e)

These equations generate a 4-dimensional convex polyhedral cone with five edges in a 5-dimensional
space. Therefore the positivity conditions are not all linearly independent. However, they are the
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minimal set necessary to construct all possible positivity constraints through linear combinations with
only positive coefficients (see figures (3.1) and (4.1) for illustration). Notice that using the constraints
(4.39) solved for a(2)

1 and a(2)
D , eq. (4.40) implies the simple positivity constraints a(2)

F , a
(2)
Y , a

(2)
T , a

(2)
X ≥ 0.

4.3.1 Goldstone bosons from SU(N)L × SU(N)R/SU(N)V

The sum rules (4.36) are completely general and independent of the structure of the IR effective theory.
An interesting case corresponds to the IR effective theory being given by the non-linear sigma model
for the coset SU(N)L × SU(N)R/SU(N)V . The O(p2) effective Lagrangian can be written as

L(2)
eff =

f2
π

4
Tr
[
(∂µΣ)†∂µΣ

]
, (4.41)

where the non-linear Σ field is defined has

Σ = e
2iπaTa
fπ , Σ→ gRΣg†L , gL,R ∈ SU(N)L,R , (4.42)

with the SU(N) generators T a defined according to eq. (D.2). Expanding the Lagrangian (4.41) in the
number of fields up to four we get

L(2)
eff =

δab

2
∂µπ

a∂µπb − 1

6f2
π

fabef cdeπaπc∂µπ
b∂µπd . (4.43)

From this effective Lagrangian we get the four Goldstone bosons scattering amplitude

A
(
πaπb → πcπd

)
(s, t = 0) =

s

f2
π

facef bde . (4.44)

Projecting this amplitude into the space of irreps, by using the projectors given in appendix D, we
obtain

A1 =
Ns

f2
π

, AD =
Ns

2f2
π

, AF =
Ns

2f2
π

,

AY =
s

f2
π

, AT = AT = 0 , AX = − s

f2
π

,
(4.45)

which nicely satisfy the constraints (4.37). This last equation allows us to write down the contribution
of the non-linear sigma model SU(N)L × SU(N)R/SU(N)V to the sum rules (4.36):∫ ∞

0

ds
s

[
4σtot1

N2 − 1
+

4σtotD

N + 2
+

4σtotF

N
+

(N − 3)σtotY

N − 1
+

2(N − 2)σtotT

N
−

(N + 3)(3N + 2)σtotX

(N + 1)(N + 2)

]
= − π

2f2
π

,

(4.46a)∫ ∞
0

ds
s

[
4σtot1

N2 − 1
−

8σtotD

N2 − 4
−

(N − 3)NσtotY

N2 − 3N + 2
+ 2σtotT −

N(N + 3)σtotX

N2 + 3N + 2

]
= 0 . (4.46b)

4.3.2 Chiral SU(2) and SU(3)

The scattering of two adjoints of SU(2) ∼ SO(3) is covered by the discussion in subsection 4.1
in the case N = 3. Let us move to the scattering of two 8 ∈ SU(3). In this case,
8⊗ 8 = 1s ⊕ 8s1 ⊕ 8a2 ⊕ 10a ⊕ 10

a ⊕ 27s where we have renamed the irreps with their dimension. Note
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that the representation Y of the general decomposition of eq. (4.31) does not appear. Therefore, after
dropping this irrep in the matrix (4.33) we get the following crossing matrix

X̂ =



1
8 1 −1 −5

2
27
8

1
8 − 3

10 −1
2 1 27

40

−1
8 −1

2
1
2 0 9

8

−1
8

2
5 0 1

2
9
40

1
8

1
5

1
3

1
6

7
40


, (4.47)

which agrees with the crossing matrix used in ref. [24]. The matrix M that diagonalizes X̂ as

MX̂M−1 = diag(−1,−1, 1, 1, 1) (4.48)

is given by

M =


− 1

16 − 1
10 −1

6 − 1
12

33
80

1
16 −1

5 0 1
4 − 9

80
1
16

1
10

1
6

1
12

47
80

− 1
16

1
5 0 3

4
9
80

− 1
16 −1

4
3
4 0 9

16

 . (4.49)

This is nothing but the matrix (4.35) for N = 3 where the entry corresponding to the representation
Y has been dropped. The once-subtracted sum rules can therefore be read off the first two rows of
this matrix that give

a
(1)
27 = − 1

120π

∫ ∞
0

ds
s

[
15σtot1 + 24σtot81

+ 40σtot82
+ 20σtot10 − 99σtot27

]
, (4.50a)

a
(1)
10 =

1

40π

∫ ∞
0

ds
s

[
5σtot1 − 16σtot81

+ 20σtot10 − 9σtot27

]
. (4.50b)

On the right-hand side we have solved the constraints set on the a(1)
I ’s by the last three rows of M for

a
(2)
1 , a

(2)
81
, a

(2)
82

. The non-linear sigma model SU(3)L×SU(3)R/SU(3)V gives a(1)
10 = 0 and a(1)

27 = −1/f2
π ,

see eq. (4.45).

The first two rows of M give rise also to

15a
(2)
1 + 24a

(2)
81

+ 40a
(2)
82

+ 20a
(2)
10 − 99a

(2)
27 = 0 , (4.51a)

5a
(2)
1 − 16a

(2)
81

+ 20a
(2)
10 − 9a

(2)
27 = 0 . (4.51b)

The positivity conditions are obtained with the usual procedure from the last three rows of M and
read

2a
(2)
82

+ a
(2)
10 + 3a

(2)
27 ≥ 0 , (4.52a)

2a
(2)
81

+ 5a
(2)
10 + 3a

(2)
27 ≥ 0 , (4.52b)

a
(2)
1 + 8a

(2)
82

+ 15a
(2)
27 ≥ 0 , (4.52c)

5a
(2)
1 + 8a

(2)
81

+ 27a
(2)
27 ≥ 0 . (4.52d)
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These are exactly the first two and the last two conditions (4.40) for N = 3. They can be seen as the
generating vectors of a 4-edged 3-dimensional convex polyhedral cone in five dimensions. Notice that
solving the constraints (4.51a) for a(2)

1 and a
(2)
81

the positivity constraints imply a
(2)
82
, a

(2)
10 , a

(2)
27 ≥ 0.

Certain positivity constraints for the LECs appearing in twice-subtracted sum rules of chiral SU(3)

have been discussed in refs. [3, 24].

5 Longitudinal WW scattering

Some of the once-subtracted sum rules presented in the previous sections for GBs in SO(4)/SO(3)

and SO(5)/SO(4) have been interpreted in the context of the EW chiral Lagrangian and Composite
Higgs models in refs. [9, 10, 13] by means of the Equivalence Theorem (ET). There are however three
caveats:

• As recently noticed in ref. [15] the application of the ET in the forward limit t = 0 or t � m2
W

is questionable since large corrections of the order of m2
W /t can be expected.

• Theories with massive gauge bosons require particular care since they may affect the sum rules
with one subtraction by a finite δc∞(1) coming from the deep UV, as we discussed already in
section 2.2.

• A propagating photon in the t-channel in the forward scattering, t = 0, gives rise to a Coulomb
singularity so that one may wonder whether g′ = 0 and g′ 2 � 1 yield different sum rules.

In this section we address in steps each of these subtle points, and derive a robust sum rule for WLWL

scattering with arbitrary g and small but finite g′ 2 � 1.

5.1 Longitudinal WW scattering and the equivalence theorem

Let us start with the first point and compare WLWL scattering with ππ scattering. We focus first on
SU(2)L broken completely with g 6= 0, and g′ = 0 strictly so that the photon is not included. We
come back to the case of finite g′ in subsection 5.3. We also include a propagating singlet Higgs-like
state h coupled to the longitudinal components of the gauge bosons with a strength a in units of the
SM coupling. The relevant part of the Lagrangian in a Rξ-gauge is given by

L = −1

4
W a
µνW

µν a − 1

2ξ
(∂µW

µa +mW ξπ
a)2 +

v2

4
Tr
[
(DµΣ)†DµΣ

]
(1 + 2a

h

v
) +

1

2
∂µh∂

µh , (5.1)

where Σ = eiπaσa/v and mW = gv/2.

The amplitude for the processW a
LW

b
L →W c

LW
d
L receives contributions from the quadrilinearW in-

teraction, the s, t, u-channelW exchange, and s, t, u-channel h singlet exchange. There is no πWW ver-
tex, so that there is no contribution from Goldstone exchange. The exact form of the eigen-amplitudes
is given in appendix E. Here we are interested in the limit s � m2

IR � t with m2
IR = m2

W , m2
h since
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we eventually need the forward amplitude. From the first row of the matrix M in eq. (4.7) with N = 3

we extract the left-hand side of the sum rule

lim
µ2�m2

IR�t
[MA(1)(µ2)]1 =

(
3− a2

)
v2

. (5.2)

This result should be contrasted with the usual limit s, t� m2
IR that gives instead

lim
s,t�m2

IR

[MA(1)(s, t)]1 =

(
1− a2

)
v2

. (5.3)

The latter result clearly agrees with the prediction of the ET for the ππ scattering in that kinematical
region. But in fact, we want to emphasize that even eq. (5.2) agrees with the prediction of the ET at
t � m2

IR. Indeed, the diagrams contributing to the πaπb → πcπd scattering are exactly the same as
in the previous case with all the external WL legs replaced by the corresponding Goldstone bosons.
In particular, they include the contribution of a t-channel exchange of a W boson which has a pole
of the form g2(4m2

W − 2s − t)/(t −m2
W ), where we cannot neglect m2

W compared to t in the forward
limit. In other words, at t = 0, the ππ scattering in a gauge theory with g 6= 0 is different from the ππ
scattering in the gauge-less limit g = 0. The latter does not include the diagram with the t-channel W
boson exchange which, for t = 0, contributes instead to the scattering amplitude A(1) of the former by
an extra 2/v2 factor explaining the mismatch between eq. (5.3) and eq. (5.2). More explicitly, using
the scattering amplitude computed with GBs as external legs given by eq. (E.14) we get

lim
s�m2

IR

[MA(1)(s, t)]1 =
(1− a2)

v2
− g2

2

1

t−m2
W

. (5.4)

This expression reduces to the correct limits (5.2) and (5.3) for t � m2
W and t � m2

W respectively.
The bottom line is that the ET does provide the correct answer when handled properly and when all
relevant contributions are taken into account.

5.2 The sum rule for g′ = 0

From the matrix M that diagonalizes the crossing matrix for SO(3) ∼ SU(2), see eqs. (4.6) and (4.7),
we can read off the sum rule with one subtraction9 at s = µ2 with Reµ2 � m2

W(
3− a2

)
v2

=
1

6π

∫ ∞
4m2

W

ds
(s2 + µ4)s

(s2 − µ4)2

√
1−

4m2
W

s

[
2σtot

1 (s) + 3σtot
3 (s)− 5σtot

5 (s)
]

+ [Mδc∞(1)]1 . (5.5)

The left-hand side supports the claim of ref. [15]. However, the right-hand side contains a finite
contribution coming from the massive gauge boson exchange, if they are still propagating degrees of
freedom in the deep UV.10 In this case, the very same terms that are responsible for the mismatch

9There are in fact two additional dispersion relations that we could write, see eq. (4.4b). However, we are eventually
interested in the case µ2 = 2m2

W , see eq. (5.12), where these extra equations are nothing but the trivial constraints set
by crossing symmetry, A(1)

5 (2m2
W ) = −A(1)

3 (2m2
W ) = −A(1)

1 (2m2
W )/2.

10For the other contributions to c∞(1) we assume that eq. (2.25) holds and hence they are projected out.
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between (5.2) and (5.3) also affect the contribution from the big circle c∞(1), and by exactly the same
amount

δc
∞(1)
1 =

4

v2
, δc

∞(1)
3,5 = ± 2

v2
=⇒ [Mδc∞(1)]1 =

2

v2
. (5.6)

We therefore recover the original sum rule

(
1− a2

)
=
v2

6π

∫ ∞
4m2

W

ds
(s2 + µ4)s

(s2 − µ4)2

√
1−

4m2
W

s

[
2σtot

1 (s) + 3σtot
3 (s)− 5σtot

5 (s)
]
, (5.7)

up to the finite mass terms, and the µ2 factor. Notice that µ2 can not be generically sent to zero while
keeping mW finite. Moreover, µ2 regularizes the otherwise divergent integral in the IR in the general
formula (2.31).11

Notice that we used the same gauge coupling on the IR side and on the big circle (where
s = Λ2 →∞) because t = 0 and thus the exchanged momentum and the scattering angle are zero.
More concretely, the eikonal approximation that resums all the ladder diagrams (including the crossed
ones that enforce crossing symmetry) [25–27]

δAI = −2i

∫
d2b⊥e

iq⊥b⊥
(
eiχI − 1

)
, χI(b⊥) =

1

2s

∫
d2q⊥
(2π)2

e−iq⊥b⊥δABorn
I (q⊥) , (5.8)

returns for s→∞ and t = 0 the Born amplitude A = ABorn, as can be explicitly checked with the extra
gauge contribution to the full tree-level amplitude given in eq. (E.14). Since the extra contribution
to the amplitude is the same in the UV and in the IR, the δc∞(1) from the big circle is the same, by
analyticity, of the δA(1) returned by the contour integral along any C in the IR.

The punch line is that the sum rule for WW scattering at g′ = 0 agrees with the one for GBs
scattering because the extra gauge boson contributions are the same on both sides of the sum rule.

5.3 The sum rule for g′ 2 � 1

We now extend the discussion of the previous subsection and allow for a small electric-charge and a
propagating photon while we still neglect the mass splitting among the massive gauge bosons. In other
words, we now focus on the limit g′ 2 � 1.

First, we regulate the IR with a finite t and a finite photon mass m2
γ , to be sent to zero later.

The sum rules at finite t are discussed in appendix C. Analogously to the case of massive W ’s the
contribution from the photon exchange gives an extra IR term to the left-hand side of the sum rule of
the form

δA(s, t) =
c∗s+ c̃∗t

t−m2
γ

−→ δA(1) =
c∗

t−m2
γ

(5.9)

where c∗ and c̃∗ are proportional to the square of the electric charge. The photon also generates an
extra contribution to cΛ(1) that can be computed by expanding in the size of the radius of the big circle:

11The integral on the right-hand side of eq. (2.31) is indeed generically IR divergent for massive gauge bosons as µ→ 0
since the longitudinal polarisations εLµ(k) do not vanish as s → 4m2

W . This should be contrasted with the case of GBs
where the εLµ(k) of the gauge bosons is replaced by the GB momentum kµ which does instead go to zero at the IR
boundary s = 0.
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since eiθ always multiplies such a radius, apart from the first term that is finite, the others average to
zero (see eq. (2.16))

δcΛ(1) =
c∗

t−m2
γ

. (5.10)

As expected, the IR contribution and the one from the big circle are equal, δc∞(1) = δA(1), and thus
they cancel, disappearing from the sum rules. Again, c∗ is the same coefficient on both sides since we
are working at finite but small t (in fact, we send t→ 0 at the end) so that the exchanged momentum
seen from the photon is always small, even though the center of mass energy for the big circle is large.
Therefore, analyticity ensures that δc∞(1) = δA(1).

After removing these terms we can take the limits mγ → 0 and t → 0, in any order, getting the
same expression as for the gauge-less limit g′ = 0. In particular, the limit t→ 0 allows us to link ImA
in (C.5) to the total cross-section so that the sum rules essentially reduce to those of GBs discussed in
the previous sections. For example, in the SM with a light Higgs-like singlet coupled to the W bosons
with a coupling constant rescaled by a factor a we recover again eq. (5.7). Adding a quintuplet coupled
to W ’s as in eq. (4.15) changes the left-hand side as

(
1− a2

)
→
(
1− a2 + 5b2/6

)
.

This result agrees with the sum rule for the GBs living in SO(4)/SO(3) found in ref. [9] with
b, µ2 ,m2

W → 0. The main difference is that our version for WLWL-scattering has g 6= 0, g′ 2 � 1

and finite masses, see also footnote 11 for the IR convergence. Actually, we checked in appendix E
that keeping all the residues, the left-hand side of eq. (5.7) does not explicitly depend on µ2 at tree-
level. The dependence on µ2 on the right-hand side thus captures the radiative corrections such as the
running of the coupling constants. For µ2 real and below the cut (but finite and away from the poles)
one should also reintroduce the full dependence on m2

W according to eq. (2.31), that is made by the
replacement

(s2 + µ4)s

(s2 − µ4)2
→

(s2 + µ4 − 4m2
W s− 4m2

Wµ
2 + 8m4

W )s

(s− µ2)2(s+ µ2 − 4m2
W )2

(5.11)

in eq. (5.7). As long as µ2 is away from the poles and the IR singularity at µ2 = 0 there is very little
sensitivity to its actual value. Choosing for convenience the crossing symmetric point µ2 = 2m2

W one
gets

(
1− a2

)
=
v2

6π

∫ ∞
4m2

W

ds
s

(s− 2m2
W )2

√
1−

4m2
W

s

[
2σtot

1 (s) + 3σtot
3 (s)− 5σtot

5 (s)
]
, (5.12)

which can be used, thanks to the reality of µ2, to argue that a Higgs coupling a bigger than one would
require sizable contributions to longitudinal WW -scattering from quintuplets [9] that contain doubly
charged states [10].

Summarizing the result, we have proved that the sum rule for the GBs survives after gauging. In
particular, the sum rule for SO(4)/SO(3) carries overWLWL scattering with finite g and small g′ 2 � 1.
This is a non-trivial result since the theory contains gauge bosons that contribute to c∞(1), as well as a
photon exchanged in the t-channel at or near the forward limit. While the forward amplitudes are not
continuous in the gauge couplings at g = 0 or g′ = 0 (as opposed to the continuity in the non-forward
scattering [28]), the resulting sum rules are actually continuous.
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6 Conclusions and Discussion

We derived dispersion relations that provide universal sum rules for the 2 → 2 forward scattering
amplitudes of real particles transforming in a unitary representation r = r of an arbitrary internal
symmetry group H. The sum rules represent identities between an IR side where the amplitudes
are presumably calculable, e.g. within an EFT, and a UV side that encodes information about the
asymptotic behavior of the amplitudes at very high energy. The theory of GBs living in a coset space
G/H represents the typical system where our sum rules can be used to set non-trivial constraints on
the low-energy coupling constants in addition to the usual symmetry requirements. But in fact our
approach applies also to more general systems, e.g. with massive and spinning particles, as long as H
is a good symmetry linearly realized on the states.

The sum rules, aside from the usual ingredients of unitarity, analyticity and crossing symmetry are
crucially based on two general properties of the s↔ u crossing matrix X that acts on the space of the
eigen-amplitudes A(s). First, the crossing matrix is involutory, X2 = 1. Second, it admits (at least)
one +1-eigenvector v, Xv = v, that for non-degenerate irreps has all identical entries. Since X2 = 1,
one can construct two projectors P± = (1±X)/2. We showed that the eigen-amplitudes projected on
the +1-eigenspace admit dispersion relations that can be regarded as a multidimensional generalization
of the ordinary dispersion relations for non-symmetric theories (where X is trivial). In practice, along
certain directions provided by the eigenvectors of X, we are able to recast the usual dispersion relation
arguments to prove, e.g., positivity constraints that generalize those found in ref. [1, 3, 4]. We provided
a systematic and simple way to construct all such positivity constraints for the coefficients a(n)

I with
even n of the low-energy expansion of the eigen-amplitudes.

Projecting instead on the −1-eigenspace with P− we studied once-subtracted dispersion relations.
The resulting sum rules are very interesting since they can be used to put constraints on the low-
energy coupling constants of EFTs at O(p2). Under very general assumptions discussed in section 2.2,
and summarized by the universality condition (2.25) on the saturation of the Froissart bound, we
showed that the sum rules based on once-subtracted dispersion relations are UV convergent. Indeed,
amplitudes that grow maximally fast as A(s) ∼ s log2 s turn out to be proportional to v, i.e. a +1-
eigenvector of X, and are thus projected out by P−. Again, our method allows us to systematically
find all the sum rules and the associated constraints on the LECs.

We discussed several illustrative examples that are relevant for theories of GBs such
as SO(N + 1)/SO(N) and SO(N, 1)/SO(N) that appear in composite Higgs models, and
SU(N)L × SU(N)R/SU(N)L+R for e.g. chiral QCD. In the context of composite Higgs models re-
specting the custodial SO(4) symmetry, we obtain two once-subtracted sum rules, see eqs. (4.28) and
(4.29) in section 4.2, one of which constrains the operator OH of the SILH Lagrangian [22].

Finally, we discussed the once-subtracted sum rule for longitudinal WW -scattering with finite g
and small g′, that is in the custodial SO(3) limit of the SM. We carefully compared the resulting sum
rule to the one obtained for GBs of SO(4)/SO(3) in the gauge-less limit. We showed that even though
the amplitudes in the forward limit are not continuous in the gauge couplings at g = g′ = 0, the
resulting sum rule for GBs does actually carry over to the scattering of longitudinal W ’s. While the
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same conclusion could be reached with a naive use of the equivalence theorem, we emphasized that
in fact a non-trivial cancellation between two extra contributions on both sides of the sum rule takes
place.

There are various directions that are worth exploring further. One immediate option would be to
use the positivity conditions on the a(2)

I coefficients to set constraints on the dimension six operators
that deform the SM but respect custodial symmetry. More speculative directions involve extensions
of the space-time symmetry. For example, it would be interesting to look more carefully at the way
our arguments adapt to higher or lower dimensions, as well as to curved space-times. Finally, even
though we have restricted our analysis to internal symmetries, it would be very interesting to extend
our approach to space-time symmetries such as supersymmetry.
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A Crossing matrix and its properties

In this appendix we explain how to construct the crossing matrix X in eq. (2.10) and derive some of its
properties. We start by using the CG coefficients in eq. (2.2) to construct the matrix Q with elements

QI(ξξ′)J(ζζ′) =
1

dim rI

∑
abcd

P ab,cdI(ξξ′) P
cb,ad
J(ζ′ζ) , (A.1)

where
P ab,cdI(ξξ′) =

∑
i

CabI(ξ)iC̄
cd
I(ξ′)i . (A.2)

with C̄abI(ξ)i ≡ (CabI(ξ)i)
∗ ≡ Cab

Ī(ξ)i
. We recall that the CG coefficients are unitary matrices∑

a,b

CabI(ξ)iC̄
ab
J(ζ)j = δIJδijδξζ ,

∑
I,ξ,i

C̄abI(ξ)iC
cd
I(ξ)i = δacδbc . (A.3)
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In particular P ab,cdI(ξξ) can be regarded as the projector onto the subspace rI(ξ), expressed in the basis
|ab〉. Furthermore, notice that, by definition,

Q̄I(ξξ′)J(ζζ′) = QI(ξ′ξ)J(ζ′ζ) = QĪ(ξξ′)J̄(ζζ′) . (A.4)

A.1 Crossing symmetry in non-minimal notation

The crossing symmetry of eq. (2.7) can be written in terms of the eigen-amplitudes AI(ξξ′)(s) appearing
in (2.3) as

AI(ξξ′)(u) =
∑
Jζζ′

QI(ξξ′)J(ζζ′)AJ(ζζ′)(s) . (A.5)

Let us organize the eigen-amplitudes AI(ξξ′)(s) in a vector

Ã(s) =


...

AI(ξξ′)(s)
...

 (A.6)

where the index I(ξξ′) takes all possible values. Hence, the vector Ã(s) differs from the vector A(s)

introduced in eq. (2.9), since the latter is restricted to eigen-amplitudes which are not related by
eq. (2.8).

The crossing relation (A.5) can then be written in the compact form

Ã(u) = QÃ(s) . (A.7)

This equation shows that QI(ξξ′)J(ζζ′) are the crossing matrix elements for the unconstrained eigen-
amplitudes (A.6). The matrix Q has the following important properties that follow directly from
unitarity of the CG coefficients

1. Q is involutory:
Q2 = 1 , (A.8)

and then it has only ±1 eigenvalues;

2. The +1-eigenspace of Q contains the vector ṽ whose components are

ṽI(ζζ′) =

{
1 if ζ = ζ ′

0 if ζ 6= ζ ′
; (A.9)

3. Q is unitary with respect to the diagonal metric ∆ with entries ∆I(ξξ′) = dim rI :

Q†∆Q = ∆ . (A.10)

This condition follows from eq. (A.8) and the symmetry dim rIQ̄I(ξξ′)J(ζζ′) = dim rJQJ(ζζ′)I(ξξ′)

implied by the definition (A.1).
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The vector ṽ is related to the vector v defined in eq. (2.11), the only difference being that, as for Ã,
its indices I(ξξ′) are unrestricted. Other properties of Q have been studied in detail in ref. [29].

In general, we can assign to each irrep rI(ξ) appearing in eq. (2.1) a definite ±1 parity under the
exchange |ab〉 → |ba〉 in r ⊗ r. We indicate such parity by (−)I(ξ), with I(ξ) ∈ Z (mod 2), and we
explicitly identify it by the property:

CabI(ξ)i = (−)I(ξ)CbaI(ξ)i . (A.11)

The rows and columns of the matrix Q have q ≡ dimQ indices, labelled by I(ξξ′). We say that an index
I(ξξ′) is even if (−)I(ξ) = 1, while an index I(ξξ′) is odd if (−)I(ξ) = −1. We can write q = q+ + q−,
where q± denote the number of even/odd indices I(ξξ′). Reference [29] proved that

TrQ ≡
∑
I(ξξ′)

QI(ξξ′)I(ξξ′) = q+ − q− . (A.12)

On the other hand TrQ is also equal to the difference between the number of +1 and −1 eigenvalues
of Q. Hence, q± exactly give the number of ±1 eigenvalues of Q.

A.2 Getting rid of redundancies

The matrix Q and eq. (A.7) could directly be used to derive dispersion relations and sum rules for
the eigen-amplitudes, along the lines followed in the main part of the present paper. On the other
hand, the eigen-amplitudes AI(ξξ′)(s) are not all independent and they are related by eq. (2.8). Hence,
in general, there is some redundancy in eq. (A.7) and it is then convenient to eliminate it.

In order to do that, let us first explicitly distinguish the irreps rI(ξ) appearing in eq. (2.1) in
three independent sets, rIr(ξ), rIc(ξ) and rĪc(ξ), where Ir and Ic label real and complex representations
respectively. (The choice of the separation of the complex representations into rIc(ξ) and rĪc(ξ) is of
course arbitrary.) Then, we can correspondingly group the indices I(ξξ′) in three sets. The first set
contains the indices Ir(ξξ). The second set contains the indices Ir(ξξ

′) with ξ < ξ′ and the indices
Ic(ξξ

′). The third set contains the indices Ir(ξ
′ξ) and the indices Īc(ξ

′ξ), by using the same ordering
of ξ and ξ′ used for the second set. Using this subdivision the vector Ã(s) splits in three subvectors
A1(s),A2(s),A3(s) as follows

Ã(s) =

 A1(s)
A2(s)
A3(s)

 . (A.13)

Correspondingly, we can write the block-decomposition of the matrices Q and ∆ according to the above
index subdivision

Q =

 Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

 , ∆ =

 ∆1 0 0
0 ∆2 0
0 0 ∆3

 . (A.14)

Notice that ∆2 = ∆3 and that, by eq. (A.4),

Q12 = Q13 , Q21 = Q31 , Q23 = Q32 , Q22 = Q33 . (A.15)
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The relation (2.8) now reads A2(s) = A3(s). We can therefore consider the minimal amplitude
vector

A(s) =

(
A1(s)
A2(s)

)
, (A.16)

already introduced in eq. (2.9). The crossing relation (A.7) can be written in terms of the vector A(s)

as
A(u) = XA(s) , (A.17)

where X is the matrix

X =

(
Q11 Q12 +Q13

Q21 Q22 +Q23

)
. (A.18)

This is the crossing matrix introduced in section 2, which plays a crucial role in the present paper.
The matrix X inherits some properties from those of Q, as one can check by direct inspection. They
have been already mentioned in section 2, see eqs. (2.10) and (2.11). Furthermore X is unitary with
respect to the diagonal metric

G =

(
∆1 0
0 2∆2

)
, (A.19)

which means
X†GX = G . (A.20)

A.3 Reducibility of the crossing matrix X

In this subsection we discuss some other properties of the matrix X, useful to determine whether
it takes the block-diagonal form (2.12).

From the definition of Q in eq. (A.1) and the property (A.11), it immediately follows that

QI(ξξ′)J(ζζ′) = (−)I(ξ)+I(ξ′)+J (ζ)+J (ζ′)QI(ξξ′)J̄(ζ′ζ) , (A.21)

where (−)I(ξ) denotes the parity of rI(ξ) defined above eq. (A.11). This in turn implies that

XI(ξξ′)J(ζζ′) = (−)I(ξ)+I(ξ′)+J (ζ)+J (ζ′)XI(ξξ′)J(ζζ′) . (A.22)

From this identity we see that XI(ξξ′)J(ζζ′) = 0 if (−)I(ξ)+I(ξ′)+J (ζ)+J (ζ′) = −1 and, in particular, we
have

XI(ξξ′)J(ζζ) = XJ(ζζ)I(ξξ′) = 0 if (−)I(ξ) = −(−)I(ξ′) . (A.23)

This provides a useful restriction on the components of X. For instance, it often happens that de-
generate irreps appear only in pairs of opposite parity (see, e.g., the D and F representations in the
decomposition of the product of adjoints of SU(N) in eq. (4.31)). This immediately implies that X
has the block-diagonal structure (2.12).

Another possible restriction on the structure of Q, and then of X, could come from an additional
(possibly discrete) symmetry group K which commutes with the symmetry group H. To make this
argument more concrete, suppose that K is a U(1) symmetry that acts as |I(ξ), i〉 → eiqI(ξ)θ|I(ξ), i〉,
where θ is the U(1) angle. Then from the definition of Q in eq. (A.1) we get

QI(ξξ′)J(ζζ′) = ei(qI(ξ)−qI(ξ′)+qJ(ζ′)−qJ(ζ))QI(ξξ′)J(ζζ′) . (A.24)
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Figure B.1: Analytic structure in the presence of light particles of mass ml.

Hence, if for instance qI(ξ) 6= qI(ξ′) for ξ 6= ξ′, then QI(ξξ′)J(ζζ) = QJ(ζζ)I(ξξ′) = 0. This clearly implies
that XI(ξξ′)J(ζζ) = XJ(ζζ)I(ξξ′) = 0 too. In such a case X has the block diagonal structure (2.12).

B Analytic structure with light unstable resonances

Light poles can turn into unstable resonances in presence of extra light states of mass m2
` in which

they can decay. When this happens the poles move to the unphysical Riemann and the branch cut
extends down to the masses of the light states 4m2

` . The analytic structure of the amplitude at t = 0

in this case is depicted in figure B.1, where the cuts extend from s = −∞+ iε to s = 4m2 − 4m2
` + iε,

and from s = 4m2
` − iε to s = +∞− iε. Notice that here the iε prescription is important to ensure

the correct cross symmetric structure of the amplitude. The dispersion relation involves now an extra
unphysical region of integration, namely from 4m2

` to 4m2:

A(n)(µ2) = cΛ (n) +

∫ Λ2+2m2

4m2
`

ds
2πi

[
1

(s− µ2)n+1
+ (−1)n

X

(s− 4m2 + µ2)n+1

]
[A(s+ iε)−A(s− iε)] .

(B.1)

Moreover, when massless particles are present, e.g. when m` = 0, the dispersion relations for finite
t 6= 0 may be needed, as discussed in appendix C. For m` = 0 and finite t the cuts go from s = 0− iε
to s = +∞− iε, and from s = −∞+ iε to s = 4m2 − t+ iε.

In all such cases, we can discard the unphysical region of integration 4m2
` < s < 4m2 as long as

the widths are narrow compared to mi, µ and Λ. This is equivalent to working at leading order in the
couplings that make the resonance unstable. For example, the SM Higgs has a tiny width dominated
by the small bottom Yukawa coupling, and we can basically approximate the analytic structure with
a pole on the real axis at s = m2

h, which anyway gives a negligible contribution to the sum rules when
µ2 � m2

i .
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C Beyond the forward limit

When massless particles can be exchanged in the t-channel one cannot strictly consider the forward
limit t = 0 because of the Coulomb singularity. While this problem does not arise for GBs, it may be
relevant e.g. for massless gauge bosons such as the photon. In such a case one can work at fixed and
finite t 6= 0 and/or add an IR regulator like a mass term.

Consider first the contour integral at fixed and finite t

1

2πi

∮
C

A(s, t)

(s− µ2)n+1
=
∑
si

Res

[
A(s, t)

(s− µ2)n+1

]
+A(n)(µ2, t) , (C.1)

around the cuts running from s = 4m2 to +∞, and from s = −∞ to −t, by s ↔ u = −s − t + 4m2

crossing. The case with unstable resonances below the 4m2 slightly changes the analytic structure
as we discussed in appendix B. Adapting the arguments presented for t = 0, we get the dispersion
relations

P−
∑

(residues)(n) =

∫ ∞
4m2

ds
π

[
1

(s− µ2)n+1
− (−1)n

1

(s+ t− 4m2 + µ2)n+1

]
P−ImA(s+ iε, t)

(C.2a)

P+

∑
(residues)(n) =

∫ ∞
4m2

ds
π

[
1

(s− µ2)n+1
+ (−1)n

1

(s+ t− 4m2 + µ2)n+1

]
P+ImA(s+ iε, t)

(C.2b)

where the convergence for n > 1 is guaranteed by the Froissart bound for t 6= 0 [8]

|A(s, t 6= 0)| ≤ const× s log
3
2 s

(−t)
1
4

, for s→∞ . (C.3)

For n = 1 the convergence could be spoilt by amplitudes that grow maximally fast. However, as we
discussed in section 2.2 for t = 0, if the amplitudes grow maximally fast in a universal way, that is as

A(s, t 6= 0) ∼ const× s log
3
2 s δξξ′ (C.4)

with const independent of I(ξξ′), then the integral in eq. (C.2a) is UV convergent, and the contribution
c∞(1) from the big circle is projected out by P−. Thus the once-subtracted sum rule holds too.

We can also take the limit of µ2 much larger than all IR scales, including µ2 � t, so that, e.g., the
first sum rule in eq. (C.2a) for n = 1 can be expressed as

P−A(1)(s = µ2, t) =
2

π

∫ ∞
4m2

ds
(s2 + µ4)

(s2 − µ4)2
P−ImA(s+ iε, t) +O(

m2

µ2
,
m2
i

µ2
,
t

µ2
) . (C.5)

In order to relate the non-forward imaginary amplitude to the physical cross-sections one make an
expansion in partial waves that, e.g. for spin-0 particles, reads

A(t, s) =
∑
`

(2`+ 1)P`(1 + 2t/(s− 4m2))A`(s) , (C.6)

where P`(cos θ) are the Legendre polynomials and ImA`(s) = sσ`(s)
√

1− 4m2

s .
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D Projectors and crossing matrix for SO(N) and SU(N)

In this appendix we construct the matrices Q, X and X̂ for the product of fundamentals of SO(N 6= 4)

and SU(N ≥ 4).

D.1 SO(N)

In the product of two fundamentals of SO(N), N⊗N = 1⊕ S⊕A, no degenerate irreps appear and
then Q = X = X̂, which can be constructed by eq. (A.1) with the projectors

P ab,cd1 =
1

N
δabδcd ,

P ab,cdS =
1

2
(δacδbd + δadδbc)− 1

N
δabδcd ,

P ab,cdA =
1

2
(δacδbd − δadδbc) .

(D.1)

The result is given in eq. (4.6).

D.2 SU(N)

In the product (4.31) of two adjoint representations of SU(N) there appear degenerate irreps and the
matrix X is given by the consistent reduction of the matrix Q discussed in appendix A. In order to
compute the matrices P ab,cdI(ξξ′) appearing in eq. (A.1) we follow the conventions

[T a, T b] = ifabcT c , Tr(T aT b) =
δab

2
, {T a, T b} =

1

n
δab1n + dabcT c , dacedbce =

N2 − 4

N
δab ,

(D.2)
which imply

fabc = −2iTr([T a, T b]T c) , dabc = 2Tr({T a, T b}T c) , (D.3)

for the SU(N) generators in the fundamental representation T a. Other useful relations are

Tr
(
T aT bT c

)
=

1

4
(ifabc + dabc) ,

Tr
(
T aT bT cT d

)
=

1

4N
δabδcd +

1

8
(ifabe + dabe)(if cde + dcde) ,

fabef cde = dacedbde − dadedbce +
2

N

(
δacδbd − δadδbc

)
,

dabef bce + dacef bde + dcdef bae = 0 .

(D.4)
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The matrices P ab,cdI(ξξ′) are then given by12

P ab,cd
1 =

δabδcd

N2 − 1
, (D.5a)

P ab,cd
D =

N

N2 − 4
dabedcde , (D.5b)

P ab,cd
DF = − 1√

N2 − 4
dabef cde , (D.5c)

P ab,cd
FD = − 1√

N2 − 4
fabedcde , (D.5d)

P ab,cd
F =

fabef cde

N
, (D.5e)

P ab,cd
Y =

N − 2

4N

(
δacδbd + δadδbc

)
+

N − 2

2N(N − 1)
δabδcd − 1

4

(
dacedbde + dadedbce

)
+

N − 4

4(N − 2)
dabedcde , (D.5f)

P ab,cd
T =

N2 − 4

4N2

(
δacδbd − δadδbc

)
− 1

2N

(
dacedbde − dadedbce

)
− i

4

(
dbcefade + dadefbce

)
, (D.5g)

P ab,cd

T
= (P ab,cd

T )∗ , (D.5h)

P ab,cd
X =

N + 2

4N

(
δacδbd + δadδbc

)
− N + 2

2N(N + 1)
δabδcd +

1

4

(
dacedbde + dadedbce

)
− N + 4

4(N + 2)
dabedcde . (D.5i)

Using these matrices we can construct the matrix Q as in eq. (A.1) getting Q =

1
N2−1

1 0 0 −1
(N−3)N2

4(N−1)
1− N2

4
1− N2

4
N2(N+3)
4(N+1)

1
N2−1

N2−12
2(N2−4)

0 0 − 1
2

− (N−3)N2

4(N−2)(N−1)
1
2

1
2

N2(N+3)
4(N+1)(N+2)

0 0 − 1
2

− 1
2

0 0 1
4
i
√
N2 − 4 − 1

4
i
√
N2 − 4 0

0 0 − 1
2

− 1
2

0 0 − 1
4
i
√
N2 − 4 1

4
i
√
N2 − 4 0

1
1−N2 − 1

2
0 0 1

2
− (N−3)N

4(N−1)
0 0

N(N+3)
4(N+1)

1
N2−1

1
2−N 0 0 − 1

N
1

N−2
+ 1

4
+ 1

2−2N
N+2
4N

N+2
4N

N+3
4N+4

1
1−N2

2
N2−4

− i√
N2−4

i√
N2−4

0
(N−3)N

4(N2−3N+2)
1
4

1
4

N(N+3)

4(N2+3N+2)
1

1−N2
2

N2−4
i√

N2−4
− i√

N2−4
0

(N−3)N

4(N2−3N+2)
1
4

1
4

N(N+3)

4(N2+3N+2)
1

N2−1
1

N+2
0 0 1

N
N−3

4(N−1)
N−2
4N

N−2
4N

N2+N+2
4N2+12N+8


,

(D.6)
where the representations are ordered as they appear in eqs. (D.5). This 9 × 9 matrix can now be
consistently reduced to a 7× 7 block diagonal matrix X with the prescriptions of appendix A. These
prescriptions here can be simply implemented by summing the two columns corresponding to the DF

and FD entries (columns 3 and 4) and the two columns corresponding to the T and T entries (columns
7 and 8) and by removing one of each of the two equal rows so obtained. In this way one gets the block

12The last term in the projector P ab,cdT differs from the one of ref. [23], which does not square to one (presumably due
to a typo in their equation).
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diagonal X matrix

X =



−1 0 0 0 0 0 0

0 1
N2−1

1 −1 (N−3)N2

4(N−1) 2− N2

2
N2(N+3)
4(N+1)

0 1
N2−1

N2−12
2(N2−4)

−1
2 − (N−3)N2

4(N−2)(N−1) 1 N2(N+3)
4(N+1)(N+2)

0 1
1−N2 −1

2
1
2 − (N−3)N

4(N−1) 0 N(N+3)
4(N+1)

0 1
N2−1

1
2−N − 1

N
1

N−2 + 1
4 + 1

2−2N
N+2
2N

N+3
4N+4

0 1
1−N2

2
N2−4

0 (N−3)N
4(N2−3N+2)

1
2

N(N+3)
4(N2+3N+2)

0 1
N2−1

1
N+2

1
N

N−3
4(N−1)

N−2
2N

N2+N+2
4N2+12N+8



, (D.7)

where the first block containing only the −1 entry corresponds to the DF (or equivalently FD)
mixed entry while the block 6 × 6 corresponds to the non-degenerate representations in the order
1,D,F,Y,T,X.

E WLWL → WLWL scattering amplitude

The scattering of two longitudinal W ∈ 3 of SO(3) can be written as

A
(
W a
LW

b
L →W c

LW
d
L

)
= As (s, t, u) δabδdc +At (t, s, u) δacδbd +Au (u, t, s) δadδbc , (E.1)

where u = 4m2
W −s−t. The functions As,t,u are related by crossing symmetry. For t = 0, crossing sym-

metry simply acts as s ↔ u and b ↔ d, that is As (s, 0, u) = Au (s, 0, u) and At (0, s, u) = At (0, u, s).
The full tree-level amplitude appearing in eq. (E.1) can be written in the c.o.m. frame as

As(s, t, u) = −
a2
(
s− 2m2

W

)2
v2
(
s−m2

h

) +
1

v2
(
s− 4m2

W

)2 (
m2
W − t

) (
s+ t− 3m2

W

)
×
[
768m10

W − 128m8
W (5s+ 4t) + 32m6

W

(
7s2 + 8st+ 4t2

)
−8m4

W s
(
5s2 + 11st+ 4t2

)
+m2

W s
2
(
3s2 + 18st+ 14t2

)
− s3t(s+ t)

]
,

(E.2a)

At(t, s, u) =
a2
(
st+ 2m2

W s− 8m4
W

)2
v2
(
m2
h − t

) (
s− 4m2

W

)2 +
1

v2
(
s− 4m2

W

)2 (
s−m2

W

) (
s+ t− 3m2

W

)
×
[
− 768m10

W + 64m8
W (4s+ 9t) + 16m6

W

(
3s2 + 3st− 8t2

)
−8m4

W s(s+ t)(3s+ 4t) +m2
W s

2
(
2s2 − 2st− 3t2

)
+ s3t(s+ t)

]
,

(E.2b)
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Au(u, t, s) =
a2
(
8m4

W − 6m2
W s+ s(s+ t)

)2(
s+ t− 4m2

W +m2
h

)
v2
(
s− 4m2

W

)2 − 1

v2
(
s− 4m2

W

)2 (
s−m2

W

) (
m2
W − t

)
×
[
512m10

W − 64m8
W (6s+ 7t) + 16m6

W

(
9s2 + 3st+ 8t2

)
−16m4

W s
(
2s2 + st− 2t2

)
+ 3m2

W s
2
(
s2 + 4st+ t2

)
− s3t(s+ t)

]
.

(E.3a)

The first one agrees with the one computed in ref. [15] but for the sign of the last two terms in the last
line (presumably due to a typo in their equation).

The function As(s, t, u = −s− t+4m2
W ) at fixed t has poles at s = m2

h, s = 3m2
W − t and s = 4m2

W ,
while Au(u = −s− t+ 4m2

W , t, s) has poles at s = −t+ 4m2
W −m2

h, s = m2
W and s = 4m2

W .

The amplitudes can now be decomposed in eigen-amplitudes of 1, 3, and 5 as follows

A1 = 3As (s, t, u) +At (t, s, u) +Au (u, t, s) , A3,5 = At (t, s, u)∓Au (u, t, s) . (E.4)

From these eigen-amplitudes and the first row of the matrix M in eq. (4.7) with N = 3 we see that the
combination of amplitudes and residues that enter on the left-hand side of the sum rules is given by

[MA(1)(µ2, t = 0)]1 +
∑
si

Res

[
[MA(1)(s, t = 0)]1

(s− µ2)2

]
, (E.5)

where A = (A1,A5,A3)T and

[MA(s, t = 0)] =

 1
2 (As(s, 0, u)−Au(u, 0, s))

At(0, s, u)− 1
2 (As(s, 0, u) +Au(u, 0, s))

At(0, s, u) + 1
2 (As(s, 0, u) +Au(u, 0, s))

 . (E.6)

Notice that at t = 0 the residues in s = 4m2
W vanish. The other residues in eq. (E.5) give, for t = 0,

Ress=m2
W

= −
27m4

W

2v2
(
µ2 −m2

W

)2
Ress=m2

h
=
a2
(
m2
h − 2m2

W

)2
2v2

(
µ2 −m2

h

)2
Ress=4m2

W−m
2
h

= −
a2
(
m2
h − 2m2

W

)2
2v2

(
µ2 − 4m2

W +m2
h

)2
Ress=3m2

W
=

27m4
W

2v2
(
µ2 − 3m2

W

)2 ,

(E.7)

while the derivative of the amplitude computed at s = µ2 and t = 0 gives

[MA(1)(µ2, t = 0)]1 =
4a2

(
µ2 − 2m2

W

)2 (−µ4 + 3m4
h − 12m2

hm
2
W + 8m4

W + 4µ2m2
W

)
4v2

(
m2
h − µ2

)2 (
µ2 +m2

h − 4m2
W

)2
−

12
(
−µ8 + 36m8

W − 12µ2m6
W − 13µ4m4

W + 8µ6m2
W

)
4v2

(
µ4 + 3m4

W − 4µ2m2
W

)2 .

(E.8)
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By expanding eqs. (E.7) and (E.8) we get

lim
µ�m2

W ,m2
h

[MA(1)(µ2, t = 0)]1 =
3− a2

v2
+O

(
m2
h

µ2
,
m2
W

µ2

)
,

lim
µ�m2

W ,m2
h

∑
si

Res

[
[MA(s, t = 0)]1

(s− µ2)2

]
= O

(
m2
h

µ2
,
m2
W

µ2

)
.

(E.9)

Intriguingly, these corrections O(m2
h/µ

2) and O(m2
W /µ

2) actually cancel in the sum (E.5) yielding

[MA(1)(µ2, t = 0)]1 +
∑
si

Res

[
[MA(s, t = 0)]1

(s− µ2)2

]
=

3− a2

v2
(E.10)

as exact result. From eq. (E.10) one obtains the sum rule (5.5) that, after subtraction of the contri-
butions form the big circle at infinity for finite g � 1, gives eq. (5.7). Notice that eq. (E.10), i.e. the
left-hand side of the sum rule (5.5), does not depend explicitly on µ2, whereas the right-hand side
does. Therefore, our sum rule (5.7) captures information about the radiative corrections, i.e. about
the running of the couplings and their β-functions.

Analogously, one can consider the other two once-subtracted dispersion relations (2.27)

0 = [MA(1)(µ2, t = 0)]2,3 +
∑
si

Res

[
[MA(s, t = 0)]2,3

(s− µ2)2

]

=
2

π

∫ ∞
4m2

W

ds
2(µ2 − 2m2

W )(s− 2m2
W )s

(s− µ2)2(s− 4m2
W + µ2)2

√
1−

4m2
W

s
[Mσtot(s)]2,3 .

(E.11)

As for the previous sum rule, the left-hand side turns out to be µ2 independent within our tree-level
calculation, and vanishing. At the crossing symmetric point µ2 = 2m2

W , the residues and [MA(1)]2,3

on the left-hand side are separately vanishing

A(1)
5 (2m2

W ) +A(1)
3 (2m2

W ) = 0 , A(1)
1 (2m2

W ) + 2A(1)
5 (2m2

W ) = 0 , (E.12)

as expected by crossing symmetry, and confirmed by eq. (E.11). For the other values of µ2, the
amplitudes in eqs.(E.2) still nicely combine in simple expressions:

A(1)
5 (µ2) +A(1)

3 (µ2) =
216m6

W

v2µ2

(µ2 − 2m2
W )

(µ4 − 4m2
Wµ

2 + 3m4
W )2

, (E.13a)

A(1)
1 (µ2) + 2A(1)

5 (µ2) =
12a2

v2

(µ2 − 2m2
W )(m2

h − 2m2
W )3

(m2
h − µ2)2(m2

h − 4m2
W + µ2)2

. (E.13b)

The calculation performed with the GBs π on the external legs is totally analogous, up to the
replacement As(s, t, u)→ Aπ(s, t, u) and Au(u, t, s)→ Aπ(u, t, s) where

Aπ(s, t, u) =
s

v2
− s2a2

v2(s−m2
h)

+
g2

4

u− s
t−m2

W

− g2

4

s− t
u−m2

W

. (E.14)
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