
HAL Id: cea-01235184
https://cea.hal.science/cea-01235184v1

Submitted on 28 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Energy Management via PI Control for Data Parallel
Applications with Throughput Constraints

Anca Molnos, Warody Lombardi, Diego Puschini, Julien Mottin, Suzanne
Lesecq, Arnaud Tonda

To cite this version:
Anca Molnos, Warody Lombardi, Diego Puschini, Julien Mottin, Suzanne Lesecq, et al.. Energy
Management via PI Control for Data Parallel Applications with Throughput Constraints. 25th Inter-
national Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS), Sep
2015, Salvador, Bahia, Brazil. �cea-01235184�

https://cea.hal.science/cea-01235184v1
https://hal.archives-ouvertes.fr


Energy Management via PI Control for Data Parallel
Applications with Throughput Constraints

Anca Molnos, Warody Lombardi, Diego Puschini, Julien Mottin, Suzanne Lesecq, Arnaud Tonda
Univ. Grenoble Alpes, Grenoble, France. CEA - LETI, MINATEC Campus, Grenoble, France

Email: anca.molnos@cea.fr

Abstract—This paper presents a new proportional-integral
(PI) controller that sets the operating point of computing tiles in a
system on chip (SoC). We address data-parallel applications with
throughput constraints. The controller settings are investigated
for application configurations with different QoS levels and
different buffer sizes. The control method is evaluated on a
test chip with four tiles executing a realistic HMAX object
recognition application. Experimental results suggest that the
proposed controller outperforms the state-of-the-art results: it
attains, on average, 25% less number of frequency switches and
has slightly higher energy savings. The reduction in number of
frequency switches is important because it decreases the involved
overhead. In addition, the PI controller meets the throughput
constraint in cases where other approaches fail.

I. INTRODUCTION

Reducing energy consumption in embedded computing
systems is still a challenge, despite many recent advances on
the subject. Recent hardware platforms integrate multiple pro-
cessor cores on a chip and support operating point switching,
e.g., dynamic frequency and/or voltage scaling (DVFS) at the
level of processor cores [1], clusters [2] or entire chip [3],
[4]. Taking scaling decisions is a complex issue because
variable workload demands have to be taken into account, such
that application performance is not negatively impacted. An
overview of operating point scaling methods at system level is
presented in [5].

Among these methods, some employ controllers with a
feedback loop because of their abilities to adapt to workload
dynamics. Operating points are tuned by looking either at
the filling of hardware queues [6], [7], [8], [9] or software
queues, e.g., at task scheduler [10], at inter-task commu-
nication [11], [12]. Existing work proposes low overhead,
simple controllers, such as proportional integral derivative
(PID) [10], [13], [12] and non-linear [11] ones, as well as
complex custom controllers [7], [8], [9]. Significant energy
reductions are reported. The experiments are mostly performed
in simulation with the exception of two approaches that target
high-performance chips such as Intel’s SCC [14] and hexa-core
Xeon platforms [15].

Nevertheless, most existing methods do not fully address
applications that have throughput constraints, which are typical
in domains like, computer vision, image and signal process-
ing. Furthermore such applications may have different QoS
demands and, depending on the available memory resources
of the hardware platform, their buffers may have different
sizes. Larger buffer sizes may accommodate larger variations
of the workload while allowing the application to still meet the
throughput constraint. All these aspects need to be considered

when designing a controller that tunes the operating points of
hardware blocks.

To this end, the first contribution of this paper is a PI-
based controller that addresses data-parallel applications with
throughput constraints. These applications execute on a tiled
architecture, where each tile is placed in a voltage-frequency
island that can be controlled independently. Here we control
the speed of each tile, i.e., its clock frequency, assuming that
the lowest voltage supply necessary for a given frequency is
set by existing methods [16]. The controller has two distinct
regions, an energy management one where the PI is applied,
and a critical one where the tiles will run at their maximum
frequency to avoid throughput degradations. The evaluation
experiments are performed on a test chip following a tiled
multi-VFI architecture [2], with a realistic HMAX object
recognition application [17]. The evaluation metrics are: (1)
energy reduction (we consider as baseline an execution at max-
imum frequency), (2) number of frequency switches (often fre-
quency switches bring energy and performance overhead), (3)
degree of throughput degradation (here, ideally the controller
should always meet the constraint), and (4) the controller
overhead. All timing-related numbers, e.g., throughput, number
of frequency switches, are realistic and include overheads, e.g,
of frequency switch. Energy reductions are estimated off-line
using models constructed from physical chip measurements.

The second contribution of this paper is an in-depth ex-
perimental analysis of the sensitivity of the PI controller to
different configurations. This analysis is meant to determine
the best settings and led to the definition of three controller
operating intervals, referred to as, the high-amplitude variation,
the low-amplitude variation, and the saturation interval. The
interval containing the best controller settings depends on the
QoS levels and buffer sizes of the application.

The third contribution is a comparison against the perfor-
mance of an existing non-linear controller with two variants.
Experiments indicate that for our use-case, the PI controller
attains on average 25% less number of frequency switches,
leads to slightly better energy savings than the two non-
linear ones. In addition, the PI controller meets the throughput
constraint in cases where the other two approaches fail. All
investigated controllers have low overhead.

In the rest of this paper we first present the background
information in Section II, followed by the model of our system
in Section III and the proposed PI controller. Section IV covers
the experimental results, and Section V discusses the related
work. Finally Section VI concludes the paper.



II. APPLICATION, ARCHITECTURE

This section covers preliminary information, namely the
SoC architecture template and the application model, required
to understand this work.

A. Tiled, GALS architecture template

We consider a tiled SoC that follows a general tem-
plate of Globally Asynchronous Locally Synchronous (GALS)
architecture, such as the existing chips [1], [2]. Figure 1
illustrates this template. Each tile is placed in a separate
voltage-frequency island (VFI) and hence its speed and energy
consumption can be tuned independently of other tiles. The
tiles are connected via an asynchronous network on chip
(NoC) that ensures communication. A tile comprises one or
more cores, i.e., processor elements (PE), as well as level one
memory blocks (L1) and hardware blocks for communication
(DMA) and inter-tile synchronization. The tiles may share a
level two on-chip memory (L2), accessible over the NoC.

Fig. 1. Tiled SoC template

The SoC is connected with a host processor, which is
responsible with starting and stopping the execution of the
tiles and accessing the I/O interfaces. From this perspective,
the multi-/many-core can be regarded as a accelerator for the
host. The host and the SoC share a high-speed main memory.

B. Data parallel application model

In many domains, e.g., computer vision, image processing,
robotics, the application model is data-flow, namely a set of
tasks that process a continuous stream of incoming data. These
tasks communicate within each other through buffers. Such
applications are typically constrained by a throughput demand.
This constraint is expressed in, e.g., samples, pixels, entire
images, required to be available at each time unit.

Here we address data-flow applications following a com-
mon structure with a source task, multiple data parallel worker
tasks, and a sink task, as described in Figure 2. The source
and the sink tasks are not involved in heavy processing; the
source distributes the work (and input data) to the worker tasks
and the sink collects the results. We assume that the source
task attempts a simple work balancing strategy by splitting the
input data in pieces of similar size before sending them to the
worker tasks. The worker tasks process input data and store
the results in output buffers.

The main concern of the sink node is to respect the
throughput constraint, i.e., to make available an output token

Fig. 2. Data parallel application model

each unit of time. The exact definition of an output token and
its size is application dependent. We assume that the sink is
not required to collect workers’ results in any particular order,
meaning it does not block if one of the workers is slower than
the others. However, to complete an output token, the sink
requires all the tasks that work on that token to have finished.
Multiple tokens may be in processing at a given time moment
at the worker nodes.

In case that the throughput constraint is not met, i.e., the
workers produced insufficient data for the sink, the partially
computed output token is discarded. Other scenarios can be
implemented here, however we consider this as the most
realistic for streaming applications. We denote this shortly as
a skipped output. Note that we intentionally avoid the term
deadline miss, as we do not address hard real-time applications
where a deadline miss leads to severe consequences, but rather
applications that have a soft throughput constraint.

C. Implementation

The application is implemented with the Multicore As-
sociation Application Programming Interface (MCAPI) [18].
The MCAPI specification defines an API and a semantic for
communication and synchronization between processing cores
in many-core embedded systems. Our work is not limited
to MCAPI, as any other data-flow implementation model
that supports processes that communicate through buffers or
channels can be used.

MCAPI is based on three basic concepts: (1) a node, which
is an independent thread of control that executes a program
and communicates with other nodes, (2) an endpoint, which is
a communication termination point attached to a node; two
endpoints can be connected to form a channel, and (3) a
domain which consists of a set of MCAPI nodes that are
grouped together based on architectural or routing matters.
Each node belongs to one single domain. We use the blocking
communication in MCAPI. This means that, if a channel is
empty/full its consuming/producing node blocks.

We implement each worker task as an MCAPI domain,
which will be mapped on a computation tile. Inside a task, a
worker may split in threads, each corresponding to a MCAPI
node. These threads may execute in parallel on the PEs of the
tile; no constraint is imposed on the type of parallel structures
used inside a task, e.g., pipeline, data parallel. All the threads
of a worker task are scaled together, when the DVFS technique
is applied to their underlying tile.



The sink and the source task are mapped on a single
MCAPI domain, executing on the host processor. Each of
them may have several threads, implemented as nodes. For
example, in our case we assign a source and a sink thread
to each worker domain such that, even if some of the worker
buffers are full/empty, the source/sink may send/collect data
from other workers.

III. CONTROL OF THE CLOCK FREQUENCY OF THE TILE

The clock frequency of the different tiles can be controlled
in order to reduce energy consumption, however the throughput
constraint should be met. Here, four similar tiles are consid-
ered, with the throughput equally split over the tiles. An inde-
pendent, local controller is designed for each tile, following the
method below. The system model (subsection III-A), together
with the requirements of the closed-loop system, motivate the
controller choice (subsection III-B).

A. System modelling

In order to meet the throughput constraint, the sink node
should have available from the workers a token of size Yth
data units, each ∆th time units. Here we modify only the tile
clock frequency f . Therefore, the objective is to act on f so
as to ensure the constraint is fulfilled.

The available data y(k) at time k in the buffer is given by:

y(k) = y(k − 1) +Qin(k) −Qout(k) (1)

Qin(k) and Qout(k) are the quantities of data produced by
the worker and consumed by the sink, respectively, at time
k. Moreover, as we have no direct action on Qout(k), it is
considered as a disturbance. Therefore, the z-transform of the
system is:

Y (z)

Qin(z)
=

1

1 − z−1
(2)

which represents an integrator. Moreover, the quantity of data
that enters the buffer depends on the producer clock frequency,
modeled here by a simple linear equation:

Qin(z) = b · F (z) (3)

with b being an application-dependent parameter. We approx-
imate b with an average value on typical execution traces.

B. Controller design

The system under study is nonlinear, as pointed out in the
literature, e.g. [9]. However, a linearized model as presented in
Section III-A is used in order to design the controller. Indeed,
when the system can be modeled with a linear(ized) approxi-
mation, simple controllers can be obtained. Such controllers
have minimal implementation overhead, unlike controllers
relying on complex nonlinear control theory.

Notice that non-linearities, such as saturation and bounded
control values exist in the system. Because buffers have limited
size, they may become full or empty, leading, in this latter
case to a “skipped output”. The frequency is also bounded
and has discrete values. The presence of saturation can affect
the behavior of the closed-loop system, leading to controller
performance loss, oscillations and even instabilities. However,

the controller is designed such that the system stays far from
saturation.

From a control viewpoint, the closed-loop system has to
fulfill several requirements:

• Settling time. Because the quantity of data in the buffer
should be large enough to guarantee the throughput,
we do not need the controller to be highly reactive.
This “low” reactive time will have beneficial side
effects because the clock frequency will not be subject
to fast/strong changes, the opposite leading to extra
overhead (in energy and/or time). Hence the settling
time, defined as the time required for the available
data y to reach the setpoint ySP , does not need to be
short;

• Overshoot. Oscillations around ySP are not desired, as
they could increase the number of frequency switches;

• Rise time. Here again, the rise time must not be too
short in order to avoid rapid (instantaneous) frequency
changes as soon as there is some activity at the buffer’s
input/output;

• Steady state error. We do not have a strong constraint
on a reduced steady state error, because, ultimately, the
exact level of buffer filling is not important. However,
if the steady state error is not brought to zero, the
closed-loop system might present inappropriate behav-
ior.

Finally, the controller must ensure the stability of the
closed-loop system. Taking into account the system model
(2) and the above requirements, the following PI controller
is designed:

C(z) =
F (z)

E(z)
= Kp +Ki

z

z − 1
(4)

where F (z) is the controlled frequency. The error E(z) is
equal to YSP (z)−Y (z), where Y (z) is the available data and
YSP (z) is the setpoint (in z-notations). Kp is the proportional
gain and Ki is the integral gain. The associated recurrence
equation is:

f(k) = f(k − 1) + (Kp +Ki)e(k) −Kpe(k − 1) (5)

Note that the proposed controller being a PI one, during
saturation the integral term may increase faster than expected,
and the usage of an anti-windup mechanism is mandatory.

Kp and Ki influence the value of the closed-loop poles, as
resulting from Equations (2) and (4). The closed-loop behavior
is fixed via the choice of the closed-loop poles, leading to the
computation of the controller parameters. The characteristic
equation of the closed loop transfer function is given by:

z2 + (−2 +Kpb+Kib)z + (1 −Kpb) = 0 (6)

where the z1 and z2 are the poles to be placed:

(z − z1)(z − z2) = 0 (7)

By using (6) and (7), Kp and Ki can be found:

−z1 − z2 = −2 +Kpb+Kib (8)
z1z2 = 1 −Kpb (9)



The closed-loop poles must be in the unit circle to ensure
the controlled system stability. Moreover, they must have
real values to avoid overshoot. Section IV investigates the
performance of the closed-loop system for various pole place-
ments within the (0; 1) interval. In addition, the controller
is triggered periodically. Its activation period ∆ac should
be smaller than the time period at which the throughput is
enforced, ∆ac < ∆th. This is quite similar to the Shannon
condition that has to be fulfilled for sampled systems.

Fig. 3. Control regions

The PI control will be applied in the so-called “energy
management region”, as visible in Figure 3. When the buffer
filling level becomes lower than the quantity of data that gives
the throughput constraint, Yth, the maximum clock frequency
is applied to avoid a “skipped output”. We consider the case
where Yth is a constant value, e.g., decoding applications that
need to deliver a constant throughput to a rendering system.

C. Limitations

The present work is limited to the following cases:
(1) Data-parallel application, with simple inter-task data-
dependencies, e.g., no pipeline support; (2) Local, per-tile,
control. Currently, the same controller is implemented for
each tile, and no coordination between controllers is present
to explicitly address inter-tile variations in workload; (3)
The system modeling makes several simplifying assumptions.
Equation (3) represents a crude approximation for applications
behaviour. Furthermore, the work does not straightforwardly
apply to cases where neither the output nor the input through-
put are constant. Future work will relax these hypotheses by
addressing more complex application dependencies, distributed
control, and a wider system model.

IV. EXPERIMENTAL RESULTS

To validate our PI controller, we used HMAX, a com-
plex recognition application. This application is a powerful
hierarchical framework for object recognition which attempts
to mimic the behavior of the human brain [17]. Hierarchical
recognition typically involves the computation of a set of
features at a given level, based on the features computed at
the previous level. The input data of the first level is typically
a raw image buffer, and the extracted features are the results
of multiple filters applied to the input image such as Gabor
filters [19].

For the scope of this paper, we consider the first level of the
HMAX application, hence the sink node of this HMAX level
needs to deliver to a next level a given throughput, expressed
in blocks of pixels per second. The application is data parallel.

We investigate the HMAX application for different QoS
demand level and buffer size, because these two parameters
impact energy management. The QoS demand level indicates
the amount of slack available in the application. When the
QoS demand is high, the amount of slack available in the
application is low, and the other way around. The size of
the buffers influences the time window available to utilize
the slack. Intuitively, if the buffers are small they will fill
up quicker and even if the application has a lot of slack, the
workers may block, hence energy would be waisted.

The main metrics considered for evaluation are: (1) energy
reductions (here we chose a baseline with no energy manage-
ment), (2) the number of clock frequency switches, or shortly,
number of switches, and (3) the number of skipped outputs.
We also present more detailed metrics, e.g., the time in which
the workers are blocked on a full buffer, when necessary for
the explanation of results. The observed controllers’ overhead
is low in all cases (under 1%), hence we do not detail it further.

This application executes on a test chip that follows the
template described in Figure 1 and embeds four tiles, each with
16 processors [2]. We experimented with several input images
over tens of seconds of application execution time. Because we
utilize a fully-fledged multi-cluster test chip, the performance
results, e.g., throughout, number of skipped output, are very
realistic. As the test chip does not support dynamic supply
voltage scaling, we obtain the energy numbers by utilising the
off-line model presented in what follows.

A. Energy model

This work considers only dynamic power because the
measured static leakage energy is very small (< 3%) on our
test chip. The dynamic energy consumption model is given by
the classical equation: Edyn = A ·V 2, where A is a coefficient
that represent the circuit activity, and V is the supply voltage.
We obtain the parameters of the energy model for the test chip
by direct measurements. Static voltage scaling and dynamic
frequency scaling are performed to obtained several (V, f)
points. We assume a linear dependency between the clock
frequency and the supply voltage, and from the measurement
results we interpolate a model of the form:

Edyn =
∑

f∈flevels

Nf ·
(
αf2 + βf

)
. (10)

where flevels is the set of available frequencies and Nf are
the number of clock cycles executed at frequency f . Here
we consider 6 frequency levels between 200 and 400MHz,
however any other configuration can be used.

B. PI poles placement

This section presents the investigation of the controller
behaviour function of the poles placement on the real axis,
for all cases described in Table I.

As we will see, the controller has three types of poles
intervals, where its behaviour, e.g., number of frequency
switches, energy reduction, is different. The first is denoted
as the high-amplitude variation interval (marked with 1 in
figures) and it represents the poles interval where, after largely
scaling down the frequency, the controller needs to quickly go



TABLE I. INVESTIGATED COMBINATIONS OF DEMANDED QOS AND
BUFFER SIZES

High QoS demand Low Qos demand
(QoSmax) (0.5 ·QoSmax)

Large buffer size Low amount of slack High amount of slack
Large slack utilization window Large slack utilization window

Small buffer size Low amount of slack High amount of slack
Small slack utilization window Small slack utilization window

(a) Energy reduction and percentage of time when the workers
are blocked due to a full output buffer

(b) Number of frequency switches

Fig. 4. Influence of poles placement for large buffer sizes with high QoS

back to higher frequencies for longer time. This case occurs
for reactive controllers, when QoS demand is high, hence the
application does not have a large amount of slack. The second
is denoted as the low-amplitude variation interval (marked with
2 in figures) and it represents the poles interval where the

frequency is scaled down less but for longer time periods. The
third is the saturation interval (marked with 3 in figures),
where the workers are blocked because they are either too
fast and the output buffers are full, or too slow and the output
buffers are empty (skipped outputs). Typically in the saturation
zone energy is wasted.

Fig. 5. Histogram of clock frequencies, large buffer sizes, high QoS

1. Large buffer sizes

(a) Energy reduction and percentage of time when the workers
are block due to a full output buffer

(b) Number of frequency switches

Fig. 6. Influence of poles placement for large buffer sizes with low QoS

We present the results for poles’ belonging to the interval
[0.6; 0.985]. Outside of this interval the benefits in energy
reduction or number of frequency switches diminish.

First, we would like to highlight that no output is skipped,
for all QoS levels, regardless of the poles’ location.

Second, the results for high QoS demand are presented
in Figure 4a and Figure 4b, for the energy reductions and
number of frequency switches, respectively. We observe that,
when we move from a more reactive control (poles at 0.6)
to a less reactive one (poles at 0.985), the energy reduc-
tion slightly increases, hence, from this point of view, the
controller performs better when the closed-loop system has
slower dynamics. This is because, when the controller is
less reactive, the slack accumulates, permitting to run longer
times at lower frequencies, which is beneficial for energy
consumption. Figure 4a also indicates that the buffers never fill
up, hence the workers never block, even when the controller
is very slow. This is because the QoS demand is maximum.

Furthermore we observe an increase in number of switches,
up an inflexion point at 0.95. This is somewhat counter-
intuitive because one would expect that a less reactive con-
troller would induce fewer frequency switches. However, this
is not the case here because the QoS demand is high, hence
we do not have a large amount of slack, and thus after scaling
down the frequency, the controller needs to quickly go back
to higher frequencies where is stays for longer time. In other
words we are in the high-amplitude variation interval. This is
also indicated by the frequency histogram in Figure 5, which
presents the number of time instants when the application runs
at given frequencies.

For larger poles (after 0.95), the controlled system becomes
slow enough to so that the application accumulates slack and
it can run longer times at a lower frequency. This results in



(a) Energy reduction and percentage of time when the workers
are block due to a full output buffer

(b) Number of frequency switches, number of skipped outputs

Fig. 7. Influence of poles placement for small buffer sizes with high QoS

a decreasing number of switches and the controller is in the
low-amplitude variation interval, using mostly the two highest
levels of frequency (350MHz and 400Mhz). This is indicated
also by Figure 5: with large poles the clock frequency is less
reduced in amplitude (but for longer time periods) and the
application spends less time at fmax.

The “best” controller corresponds to large poles (at the
right end of the low-amplitude interval). However, highly
reactive controllers can be chosen from the beginning of the
high-amplitude interval, when the desired number of frequency
switches must be low, as this zone presents only a 2% lower
energy reduction when compared to the low-variation one.

Third, the results for low QoS demand are presented in
Figure 6a and Figure 6b, for the energy reductions and number
of frequency switches, respectively. Here also the energy
reductions slowly increase over the investigated range of poles.
We observe a similar behaviour as in the previous case of
high QoS demand, with two intervals, namely high- and low-
amplitude. However the differences in number of switches
in the first interval is not that pronounced because the QoS
demand is lower and, hence there is less need to spend a
lot of time at higher frequencies. This is why the number of
switches has an inflection point earlier, at 0.93. After 0.93 the
system enters in the low-amplitude interval where the slack
can accumulate and allow large periods at low frequencies.

Moreover, for poles larger than 0.97, the energy reductions
quickly diminish, because the controlled system is too slow
and, as the sink node imposes a low QoS demand, the output
buffers fill up. In other words, the controller is in the saturation
interval.

In the case of low QoS demands, the “best” controller set-
ting corresponds to closed-loop poles just before the saturation

(a) Energy reduction and percentage of time when the workers
are block due to a full output buffer

(b) Number of frequency switches, number of skipped outputs

Fig. 8. Influence of poles placement for small buffer sizes with low QoS

zone. Here, unlike the case of high QoS demand, controllers
in the high-variation interval are not interesting because they
do not bring a significant reduction in number of switches.

2. Small buffer sizes

Figures 7 and 8 present the results for high QoS and low
QoS demand, respectively. In case of small buffer sizes we
have similar controller behaviour, i.e., high-amplitude, low-
amplitude, saturation, but for different poles’ intervals. Further-
more, because the buffers are smaller, the controller saturates
much earlier. For example, for low QoS demand, for closed-
loop poles higher that 0.7, the fact that workers block for
more that 1% of the time already causes a decrease in energy
reduction, and if the controlled system is not sufficiently
reactive, the application will even skip outputs (poles at 0.93).
Outputs are skipped in the case the controller is either too
reactive or too slow, as visible in Figures 7b and 8b.

C. Controllers’ comparison

We compare the PI controller proposed in this paper
with a state-of-the-art non-linear controller proposed in [11],
which we denote as the 1-threshold controller. This controller
increases or decreases the frequency with one step, if the
workers’ buffer filling is smaller or larger, respectively, than the
setpoint. The controller is triggered at a variable time interval,
when the difference in buffer filling is higher than a certain
level, to reduce the number of frequency switches.

Furthermore, we also compare against an extension that
we make to the 1-threshold controller, and that we refer to as
the 2-thresholds controller. The 2-threshold controller is quite
similar to the 1-threshold one, except that it has a low threshold
(to trigger frequency switches when the buffer filling increases)
and a high threshold (to trigger frequency switches when the



(a) Energy reduction (b) Number of frequency switches (c) Number of skipped output tokens

Fig. 9. Comparison of 3 controllers for medium QoS level (0.7 ·QoSmax), various buffer sizes

(a) Energy reduction (b) Number of frequency switches (c) Number of skipped output tokens

Fig. 10. Comparison of 3 controllers for small buffer size (2 · token size), various QoS levels

buffer filling decreases). This type of non-linear controller is
typically used for processes that require a low number of
actuating actions, e.g., temperature regulation, hence it has the
potential to reduce the number of switches also in our case.
The setpoint is the same for all controllers. The 2-thresholds
controller thresholds are at 10% lower/higher that this setpoint.

The results for the case of medium QoS level (0.7 ·
QoSmax) and different buffer sizes is presented in Figure 9.
We can observe that for our use-case application, buffer
sizes larger than 5 times the token size do not bring large
improvements in number of frequency switches or energy
consumption. We observe that the 3 controllers have similar
energy reductions, up to 50%, as visible in Figure 9a. The
PI controller offers less frequency changes, with an average
of 35% and 20% decrease when compared to the 1-threshold
controller and 2-thresholds controller, respectively, as indicated
in Figure 9b. An important point is that the PI controller skips
no output tokens, unlike the non-linear controllers in case of
small buffer sizes, as covered by Figure 9c. This means that
these controllers are too reactive for the highly constraint case
of small buffer sizes.

The results for the case of small buffer sizes, with various
QoS levels are presented in Figure 10. Again, we observe
that the 3 controllers have similar energy reductions, up to
63% for low QoS levels, as visible in Figure 9a. In term of
number of frequency changes, the 2-thresholds controller is
close to the 1-threshold one. Furthermore, the PI controller
offers less frequency changes than the non-linear ones, with
an average reduction of 26% over the entire range of QoS
levels, as indicated in Figure 9b. The PI controller skips no
output tokens, unlike the non-linear controllers, as presented
by Figure 9c.

The results for large buffer sizes are similar; they are not

reported due to space limitation.

V. RELATED WORK

The management of operating points has been addressed in
the literature for the purpose of reducing energy consumption
or mitigate hot-spots. A recent survey of such methods is
presented by Zhuravlev et al. [5].

Control theoretic strategies have the potential to provide
good adaptation solutions for dynamic processes, as proved
in many engineering domains. Therefore, they were applied
to operating point tuning already in early DVFS approaches
for single-core systems [20]. One of the first to study control-
theoretic methods for DVFS in multi-processor systems are
Juang et al.[10]. They propose a proportional-integral deriva-
tive (PID) controller, and the ideas originate from earlier work
by the same authors on multiple clock domain micropro-
cessors [6]. The PID controls the clock frequency of each
processor by looking at the filling of software tasks queues
on each core. Local and distributed methods are compared in
simulation, proving a lot of energy saving potential, with a
minor performance loss.

Another category of solutions looks at hardware queues
in the processor [6] or multi-/many-core systems [7], [8]. A
custom controller is designed to adapt the frequency depending
on the filling of the queues of the network interface of the
NoC [7], [8]. This controller is evaluated initially on an
FPGA prototype with good results. Furthermore the method
is applied on an Intel SSC platform [14] for a data-parallel
application following the same model as in our work. As
lessons learned, the need for fast voltage switching and for
tailored control algorithms is advocated. Recently, the same
authors proposed an optimal control approach base on fractal-
state equations [9]. The controller assumes a platform where



operating frequency of PEs and routers can be individually
actuated. The experimental workload consists of web-server
and data-base applications. The solution seems well tailored
for dynamic workload, however it involves on-line linear
programming solving, which brings a non-negligible overhead.

The closest approaches to our work are the ones addressing
data-flow applications [12], [11]. These bodies of work support
a more general application model than our paper because
they include pipeline tasks. The SHoP architecture successfully
applies a distributed PI(D) controller to adapt the cores’ clock
frequency and balance multimedia workload over an SoC [12].
The results indicate that the systems can adapt to perturbations
and reach throughput in most cases. In contrast to this work,
we propose a controller that explicitly addresses the throughput
constraint by having two regions, namely, a critical one and an
energy management one. The PI is applied only in the energy
management region, when the buffer filling is above the level
that would guarantee the fulfilment of the throughput. Below
that level the maximum frequency is applied. Furthermore,
we extend existing work with an experimental analysis of the
controller setting for various QoS levels and buffer sizes.

Alimonda et al. [11] propose a threshold-based non-linear
controller. The controller is trigger with a variable rate to
reduce the number of frequency switches. Energy savings are
obtained in simulation for a software FM radio use-case. A
comparison of this type of non-linear controller with a PI
controller is presented by the same authors [13], indicating
that the PI leads to a higher number of frequency switches.
Contrary to these previous findings, we show that, for our use-
case, the PI controller results in significantly less frequency
switches and slightly less energy consumed than the threshold-
based controller with variable triggering.

In summary, unlike most of the state-of-the-art, this paper
addresses applications where no performance loss is desired,
i.e., throughput constraint should be firmly respected. We ex-
tend state-of-the-art with an investigation the PI configurations
that offer the “best” performance, in terms of energy, number
of frequency switches, number of skipped outputs, for various
demanded QoS levels and buffer sizes levels. Last but not least,
we apply and investigate the control on an real GALS test chip,
in contrast to most of the existing approaches.

VI. CONCLUSION

This paper addresses the problem of determining the clock
frequency of tiles in GALS architectures that execute data-
parallel applications with throughput constraints. The solution
is a novel PI-based controller with two distinct regions, namely,
an energy management one where the feedback control is ap-
plied and a critical one where the application runs at maximum
frequency. These regions are designed to avoid throughput
degradations. We evaluated our controller on a test-chip em-
bedding dynamic frequency scaling and static voltage scaling
per tile. All timing-related numbers, i.e., throughput, number
of frequency switched, are realistic and include overheads. En-
ergy reductions are estimated off-line using models constructed
from physical measurements. We have observed that the best
PI controller configuration depends on the application’s QoS
levels and buffer sizes. Furthermore, we compared the PI with
two simple non-linear approaches, i.e., (1) a state-of-the-art

controller with one threshold and (2) an improved version of
it with two thresholds. All three controllers have low overhead.
Experimental results suggest that the PI controller outperforms
the state-of-the-art in number of frequency switches (25% less,
on average) and energy savings. Furthermore the PI meets the
throughput constraint in cases where the other approaches fail.

ACKNOWLEDGMENT

This work was partially supported by the Artemis JU,
the Catrene JU, and the French Ministere de l’Economie, du
Redressement productif et du Numrique, under Grant Agree-
ment n◦332913 (project COPCAMS) and Grant Agreement
n◦CA112 (project HARP).

REFERENCES

[1] I. M. Panades and et al., “A fine-grain variation-aware dynamic Vdd-
hopping AVFS architecture on a 32 nm GALS MPSoC,” J. Solid-State
Circuits, vol. 49, no. 7, pp. 1475–1486, 2014.

[2] D. Melpignano et al., “Platform 2012, a many-core computing accel-
erator for embedded socs: performance evaluation of visual analytics
applications,” in DAC, 2012, pp. 1137–1142.

[3] A. Varghese et al., “Programming the adapteva epiphany 64-core
network-on-chip coprocessor,” IPDPS, pp. 984–992, 2014.

[4] F. Conti et al., “Energy-efficient vision on the pulp platform for ultra-
low power parallel computing,” IEEE SiPS: Design and Implem., 2014.

[5] S. Zhuravlev et al., “Survey of energy-cognizant scheduling techniques.”
IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 7, pp. 1447–1464, 2013.

[6] Q. Wu et al., “Formal online methods for voltage/frequency control in
multiple clock domain microprocessors,” ASPLOS, vol. 32, no. 5, pp.
248–259, Oct. 2004.

[7] Ü. Y. Ogras et al., “Design and management of voltage-frequency island
partitioned networks-on-chip,” IEEE Trans. VLSI, vol. 17, 2009.

[8] S. Garg, D. Marculescu, and R. Marculescu, “Custom feedback control:
Enabling truly scalable on-chip power management for MPSoCs,” in
ISLPED, 2010, pp. 425–430.

[9] P. Bogdan, R. Marculescu, and S. Jain, “Dynamic power manage-
ment for multidomain system-on-chip platforms: An optimal control
approach,” ACM TODAES, vol. 18, no. 4, Oct. 2013.

[10] P. Juang et al., “Coordinated, distributed, formal energy management
of chip multiprocessors,” in ISLPED, 2005.

[11] A. Alimonda et al., “A feedback-based approach to dvfs in data-flow
applications.” IEEE Trans. on CAD of IC and Syst., vol. 28, 2009.

[12] G. Almeida et al., “PI and PID regulation approaches for performance-
constrained adaptive multiprocessor system-on-chip,” Embedded Sys-
tems Letters, IEEE, vol. 3, no. 3, pp. 77–80, Sept 2011.

[13] S. Carta et al., “A control theoretic approach to energy-efficient
pipelined computation in mpsocs,” ACM TODAES, vol. 6, 2007.

[14] R. David, P. Bogdan, and R. Marculescu, “Dynamic power management
for multicores: Case study using the intel SCC.” in VLSI-SoC, 2012.

[15] R. Z. Ayoub et al., “OS-level power minimization under tight perfor-
mance constraints in general purpose systems.” in ISLPED, 2011.

[16] M. Altieri et al., “Coupled voltage and frequency control for dvfs
management,” in PATMOS, 2013.

[17] T. Serre, L. Wolf, and T. Poggio, “Object recognition with features
inspired by visual cortex,” in CVPR’05, 2005, pp. 994–1000.

[18] www.multicore-association.org.
[19] M. Riesenhuber and T. Poggio, “Hierarchical models of object recog-

nition in cortex.” Nature Neuroscience, vol. 3, pp. 1199–1204, 1999.
[20] Z. Lu et al., “Control-theoretic dynamic frequency and voltage scaling

for multimedia workloads,” in CASES, 2002, pp. 156–163.


