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We have obtained the equilibrium volumes, bulk moduli, equations of state of the ferromagnetic
cubic α and paramagnetic hexagonal ǫ phases of iron in close agreement with experiment using an
ab initio dynamical mean-field theory approach. The local dynamical correlations are shown to be
crucial for a successful description of the ground-state properties of paramagnetic ǫ-Fe. Moreover,
they enhance the effective mass of the quasiparticles and reduce their lifetimes across the α → ǫ
transition leading to a step-wise increase of the resistivity, as observed in experiment. The calculated
magnitude of the jump is significantly underestimated, which points to non-local correlations. The
implications of our results for the superconductivity and non-Fermi-liquid behavior of ǫ-Fe are
discussed.

PACS numbers:

Understanding properly pressurized iron is important
for the geophysics of the inner Earth core [1] as well as
for technological applications of this metal. In the range
12-16 GPa [2, 3] a martensitic transition from the body-
centered-cubic (bcc) ferromagnetic phase (α-Fe) to the
hexagonal close-packed (hcp) phase (ǫ-Fe) takes place.
This ǫ-Fe phase, discovered in 1956, [4] exhibits surpris-
ing magnetic and electronic properties, including super-
conductivity in the range of pressures from 13 to 31 GPa
with a maximum transition temperature of about 2 K[5]
as well as a non-Fermi-liquid normal state observed in
the same pressure range [6].

Perhaps the most puzzling aspect of ǫ−Fe is its mag-
netism, or rather an unexpected absence of it. Indeed,
density-functional-theory (DFT) ab initio calculations
within the generalized-gradient approximation (GGA)
predict an antiferromagnetic ground state for the ǫ phase,
with either collinear [7–9] or non-collinear [10] order,
which has up to date eluded experimental detection.
While an anomalous Raman splitting observed in ǫ-Fe
[11] has been related to a possible antiferromagnetic or-
der [12], no magnetic splitting has been detected in this
phase by Mössbauer spectroscopy down to temperatures
of several Kelvins [13, 14]. A collapse of the ordered
magnetism across the α − ǫ transition has also been ob-
served in the x-ray magnetic circular dichroism and in the
x-ray absorption spectroscopy measurements [2]. A spin-
fluctuation paring mechanism that has been proposed for
the superconducting phase [15] seems as well incompat-
ible with the large-moment antiferromagnetism. If the
non-magnetic ground state is imposed, the DFT-GGA
total energy calculations predict an equation of state that
drastically disagrees with experiment. The bulk modulus
is overestimated by more than 50% and the equilibrium
volume is underestimated by 10% compared to the exper-
imental values [7]. Therefore, the ground state properties

of the observed non-magnetic ǫ-Fe remain theoretically
unexplained.

Another puzzling experimental observation is a large
enhancement in the resistivity across the α-ǫ transition,
with the room temperature total resistivity of ǫ-Fe being
twice as large as that of the α phase [16]. The electron-
phonon-scattering contribution to resistivity calculated
within GGA is in excellent agreement with the exper-
imental total resistivity for the α phase [17], however,
these calculations predict virtually no change in the re-
sistivity across the transition to antiferromagnetic hcp-
Fe. The enhancement of resistivity in ǫ-Fe seems likely
to be caused by the ferromagnetic spin-fluctuations as
the resistivity ρ follows ρ ∝ T 5/3 [6, 18]. This again is at
odds with the antiferromagnetism suggested by the GGA
calculations.

All this points to the possible importance of the elec-
tronic correlations that are not correctly incorporated
in the local or semi-local DFT. In this paper, we show
that including local dynamical many-body effects sig-
nificantly improves the description of iron. Within a
local-density-approximation+dynamical mean-field the-
ory (LDA+DMFT) framework we obtain the ground
state properties and the equation of states (EOS) of both
ferromagnetic α and paramagnetic ǫ phases of iron as well
as the α−ǫ transition pressure and volume change in good
agreement with experiment. The strength of the elec-
tronic correlations is significantly enhanced at the α → ǫ
transition. This leads to a reduced binding, which ex-
plains the relatively low value of the measured bulk mod-
ulus in ǫ−Fe. The calculated resistivity has a jump at
the transition but the magnitude of the jump is severely
underestimated compared with the experimental value,
which points to additional scattering not present in our
local approach.

Previously, the local correlations have been found to
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improve the description of the high-temperature param-
agnetic α-Fe [19, 20]. Moreover, the recently discovered
electronic topological transition in ǫ-Fe has been success-
fully explained by LDA+DMFT but not captured within
LDA and GGA [21]. However, no attempts to study
ground state and transport properties of ǫ-Fe within an
LDA+DMFT approach has been reported up to date.

We have employed a fully self-consistent method
[22, 23] combining a full-potential band structure tech-
nique [24] and LDA for the exchange/correlations with
the dynamical mean-field theory (DMFT) [25] treat-
ment of the onsite Coulomb repulsion between Fe 3d
states. The Wannier orbitals representing Fe 3d states
were constructed from the Kohn-Sham states within the
energy range from -6.8 to 5.5 eV. The DMFT quan-
tum impurity problem was solved with the numerically
exact hybridization-expansion continuous-time quantum
Monte-Carlo (CT-QMC) method [26] using an implemen-
tation based on the TRIQS libraries [27] package. The
local Coulomb interaction in the spherically-symmetric
form was parametrized by the Slater integral F0 = U =
4.3 eV and Hund’s rule coupling J = 1.0 eV chosen to re-
produce the value of the ordered magnetic moment in α-
Fe of 2.2 µB at its experimental volume. These values are
somewhat larger than F0 = U = 3.4 eV and J = 0.9 eV
obtained by a constrained-random-phase-approximation
(cRPA) method in Ref. [28] for α-Fe. The 30% increase
with respect to the static cRPA values accounts for the
frequency dependence of the Coulomb vertex [29]. We
used the around-mean-field form of the double counting
correction [30] in this work. We verified that the lowest-
energy collinear anti-ferromagnetic order ”AFM-II” [7]
collapses at the largest experimental volume of ǫ-Fe in
LDA+DMFT-CTQMC calculations with a rotationally-
invariant local Coulomb repulsion [31]. However, non-
density-density terms in the Coulomb vertex increase
dramatically the computational cost of CT-QMC and
preclude reaching the high accuracy required to extract
an equation of state. Hence, we adopted the paramag-
netic phase for ǫ-Fe and employed the density-density ap-
proximation for the local Coulomb interaction through-
out. This allowed us to use the fast ”segment picture”
algorithm of the CT-QMC [26] reaching an accuracy of
about 0.1 meV/atom in the total energy computed in ac-
cordance with Ref. [23]. All our calculations were done
for a relatively low temperature T = 290 K. Thus the
phonon and entropic contributions were neglected in the
phase stability calculations. The conductivity in DMFT
is ρ−1 = 2πe2~

∫
dω

∑
k −(∂f/∂ω)vkAk(ω)vkAk(ω) with

implicit summation over band indices [32]. We calcu-
lated the band velocities vk using the Wien2k optics
package[24, 33] and we constructed the spectral functions
Ak(ω) from the highly precise DMFT self-energies (com-
puted using 1011 CT-QMC moves) which we analytically
continued to the real axis using Padé approximants.

The obtained LDA+DMFT total energies vs. volume

TABLE I: Equilibrium atomic volume V (a.u.3/atom) and
bulk modulus B (GPa) of bcc and hcp Fe computed by dif-
ferent ab initio approaches. The FM , PM , and NM sub-
scripts indicate ferromagnetic, paramagnetic, non-magnetic
state, respectively, AFM − II is the lowest energy collinear
magnetic structure of ǫ-Fe in accordance with GGA calcula-
tions of Ref. [7].

.
bcc LDA+DMFTFM GGAFM expt.FM

V 78.4 76.5a , 77.2b, 77.9c 78.9

B 168 187a, 174b, 186c 172

hcp LDA+DMFTPM GGANM GGAAFM−II expt.

V 73.4 68.9a, 69d 71.2d 75.4e

B 191 288a, 292d 209d 165e

LDA+DMFT values are from this work. GGA and exp.
values are from a). this work b). [34], c). [9], d). [7], e). [35]

in the α and ǫ phases are plotted in Fig 1a. Our cal-
culations predict the ferromagnetic bcc α phase to be
the ground state. The transition to a paramagnetic ǫ-Fe
(the common tangent shown in Fig 1a) is predicted to
occur at a pressure Pc of 10 GPa. The paramagnetic α
phase is about 10 mRy or 1500 K higher in energy, in
good correspondence to the Curie temperature of α-Fe.
In Table I we list the resulting LDA+DMFT equilibrium
atomic volumes and bulk moduli obtained by the fitting
of calculated energy-volume data with Birch-Murnaghan
EOS [36]. Also shown are GGA lattice parameters and
bulk moduli obtained by us and in previous works, as well
as corresponding experimental values. The LDA+DMFT
dramatically improves agreement with the experiment for
paramagnetic ǫ-Fe for both the volume and bulk modu-
lus, thus correcting the large overbinding error of GGA.
The paramagnetic LDA+DMFT results are still closer
to experimental values than the AFM GGA ones. Hence,
even by adopting a magnetic state, which is not observed
in experiment, one can only partually account for the in-
fluence of electronic correlations within the DFT-GGA
framework. For α-Fe we obtain a relatively small correc-
tion to GGA, which already reproduces the experimental
values quite well.

In Fig 1b we compare the LDA+DMFT and GGA
EOS with the one measured from Ref. [37]. Again,
for both phases the LDA+DMFT approach successfully
corrects the GGA overbinding error, which is relatively
small in α-Fe and very significant in ǫ-Fe. Conse-
quently, LDA+DMFT also reproduces correctly the vol-
ume change at the α− ǫ transition (about 5%), which is
grossly overestimated in GGA. The c/a ratio in the hcp
ǫ phase is also affected by the electronic correlations. As
shown in Fig 1c, the GGA calculations predict a reduc-
tion of the c/a ratio with increasing volume, from 1.59 at
V=58 a.u.3/atom to 1.58 at V=70 a.u.3/atom. Within
LDA+DMFT the c/a ratio remains almost constant and
is close to the value of 1.60, in good agreement with ex-
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FIG. 1: (Color online). a). LDA+DMFT total energy vs. volume per atom for bcc (ferromagnetic, solid blue line, and
paramagnetic, dot-dashed black line) and hcp (dashed red line) Fe. The error bars are the CT-QMC method stochastic error.
The orange long dash-dotted straight line indicates the common tangent construction for the α− ǫ transition. b). Equations of
states (EOS) for ferromagnetic bcc (low pressure) and paramagnetic hcp (high pressure) Fe. Theoretical results are obtained
by fitting the LDA+DMFT (thick line) and GGA (thin line) total energies, respectively, using the Birch-Murnaghan EOS [36].
The experimental EOS of iron shown by green filled squares is from Dewaelle et al., Ref. [37]. c). The ratio of lattice parameters
c/a of ǫ-Fe vs. volume per atom obtained in LDA+DMFT (blue circles, dashed line) and GGA (red squares, solid line). The
experimental data are from Dewaelle et al. [37] (diamonds) and Glazyrin et al. [21] (pink circles).

FIG. 2: (Color online) The ratio of the average inverse quasi-
particle lifetime 〈Γ〉 to temperature (the left axis) and the
average mass enhancement 〈m∗〉/m0 (the right axis) vs. vol-
ume per atom. The solid lines (filled symbols) and dashed
lines (hatched symbols) are 〈Γ〉/T and 〈m∗〉/m0, respectively.
The values for bcc and hcp phases are shown by blue squares
and red circles, respectively. The black stars indicate the bcc
and hcp atomic volumes at the transition point, respectively.

perimental measurements [47].

One may see that the ground-state properties (bulk
modulus, equilibrium volume, etc.) of the ǫ phase
are significantly modified within the LDA+DMFT ap-
proach as compared to GGA. In contrast, for ferro-
magnetic α-Fe those modifications are much weaker.
In order to understand the origin of this difference
we have evaluated the strength of the correlation ef-

fects in both phases from the low-frequency behav-
ior of the local DMFT self-energy Σ(iω) on the Mat-
subara grid. Namely, we computed the average mass
enhancement 〈m∗〉/m0 as

∑
s m

∗
sNs(EF )/

∑
s Ns(EF ),

where the s index designates combined spin and or-
bital quantum numbers {σ,m}, Σs(iω) and Ns(EF ) are
the imaginary-frequency DMFT self-energy and partial
density of states at the Fermi level for orbital s, re-
spectively, m∗

s = 1 − [dℑΣs(iω)/dω|ω→0] is the corre-
sponding orbitally-resolved mass enhancement. We have
also evaluated the average inverse quasiparticle lifetime

〈Γ〉 = − m0

〈m∗〉

∑
s
Ns(EF )∗ℑΣs(ω=0)∑

s
Ns(EF ) . The resulting average

mass enhancement and inverse quasiparticle lifetime are
plotted in Fig. 2. In ferromagnetic α-Fe both quantities
slowly decay with decreasing volume and then they ex-
hibit a large enhancement across the α − ǫ transition,
indicating a more correlated nature of ǫ-Fe. The latter is
characterized by heavier quasiparticles, a larger electron-
electron scattering and a stronger volume dependence of
the correlation strength as compared to the bcc phase.
This analysis clearly demonstrates that dynamical many-
body effects are enhanced in the ǫ phase.

Why are the electronic correlations in ǫ-Fe stronger
and why does the DFT fail there? The crucial difference
is the magnetism. In α-Fe, the physics is governed by the
large static exchange splitting which easily polarizes the
paramagnetic state characterized by a peak in the density
of states (DOS) close to the Fermi energy. Therefore, the
spin-polarized DFT-GGA calculations, which are able
to capture this static exchange splitting, reproduce the
ground state properties of ferromagnetic α-Fe rather well.
In antiferromagnetic ǫ-Fe obtained within DFT-GGA the
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FIG. 3: (Color online) The electron-electron contribution to
the resistivity in bcc α-Fe (black circles, ) and hcp ǫ-Fe (blue
squares) computed within LDA+DMFT for T=294 K. The
experimental room-temperature resistivity [16] (red triangles,
dashed line) is shown divided by 10 . The vertical dot-dashed
line indicate the theoretical transition pressure.

static exchange splitting also reduces the bonding leading
to an improuved agreement with the experimental equa-
tion of state. In contrast, dynamical many-body effects
must be included to describe the experimental paramag-
netic state of ǫ-Fe properly. In this respect we note that
the many-body corrections to the total energy and spec-
tral properties were shown to be important [20, 38, 39]
for the high-temperature nonmagnetic state of α-Fe as
well. If one suppresses magnetism, α-Fe is actually even
more correlated than ǫ−Fe, which is a consequence of its
large DOS close to the Fermi energy[40]. This larger DOS
implies slower quasiparticles which are influenced by the
interactions, especially the Hund’s rule coupling [41].

We now turn to transport. The drop in the quasi-
particle lifetime across the α − ǫ transition affects the
electron-electron-scattering (EES) contribution to the re-
sistivity ρel.−el.. We have calculated the evolution of the
room-temperature ρel.−el. versus pressure in both phases,
as displayed in Fig. 3. One may see that the behavior of
ρel.−el. under pressure reflects that of the inverse quasi-
particle lifetime Γ. The resistivity decays with pressure
except at the transition point where a step-wise increase
is found. A rapid enhancement of ρel.−el. in the ǫ phase at
pressures below Pc =10 GPa is in agreement with very re-
cent measurements [42], in which a large hysteresis in the
α− ǫ transition was obtained with the transition shifted
to 7 GPa at the depressurization, and a very similar rapid
increase in the total resistivity upon the decrease of pres-
sure was observed in ǫ-Fe for pressures below the usual
experimental Pc of 12-15 GPa.

Now we discuss a very interesting point: despite the
good qualitative agreement, the magnitude of the resis-

tivity enhancement through the transition to ǫ−Fe in our
calculations underestimates the values found in the ex-
periment [16], by a factor of 10, see Fig. 3 [48]. The cal-
culations of the electron-phonon-scattering (EPS) con-
tribution to resistivity in Ref. [17] reproduce the resis-
tivity of the bcc-Fe well but exhibit almost no change
across the transition. Therefore, the corresponding jump
of the measured total resistivity has to be attributed to
electron-electron scattering. If the experimental issues,
such as the sample thinning can be excluded, then the
missing scattering that we find in comparison with ex-
periments has to be associated with non-local long-range
effects, which are not dealt with in our calculations. In-
terestingly, except for the magnitude, the pressure depen-
dence of the resistivity is accounted well by our results.
This might be understood by recognizing that the local
correlations that suppress the coherence scale (the ki-
netic energy) also make the electronic degrees of freedom
more prone to the effects of the coupling to the long-range
spin-fluctuations.

It is interesting to compare ǫ-Fe and Sr2RuO4, a
widely investigated unconventional superconductor with
similar transition temperature [43], to make a further
link with spin fluctuations. Both materials display low-
temperature unconventional superconductivity [43] and
several mechanisms have been discussed to be at its ori-
gin [44]. In Sr2RuO4 superconductivity emerges from
a well-established Fermi liquid with TFL = 25K. Lo-
cal approaches, like the one used in this work, yield
much shorter lifetimes [45] and a resistivity which agrees
with experiments at low temperatures within 30%. [46]
The picture is different for ǫ-Fe, which displays a non-
Fermi-liquid T 5/3 temperature dependence of its low-
temperature resistivity, [18] extending up to a temper-
ature T ∗ which reaches the peak T ∗

max ≈ 35K at a pres-
sure where superconductivity reaches its maximum [42].
Spin fluctuations, which are believed to be responsible
for this behavior [15] have, hence, a very strong effect in
ǫ-Fe. Because their non-local nature cannot be captured
within our framework, we believe that they are at the
origin of the discrepancy between the experimental and
our calculated resistivities.

In summary, including local correlations crucially im-
proves the theoretical picture of ǫ−Fe by correctly ac-
counting for a set of experimental observations within
the paramagnetic state. This solves the long-standing
controversy between theory and experiment for this ma-
terial. The successful description of Fe within the para-
magnetic state, together with an underestimation of the
resistivity found in our local approach, hints at the im-
portance of spin fluctuations, which supports scenarios
relating them to the origin of superconductivity.
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