\

TRIQS: A toolbox for research on interacting quantum
systems
Olivier Parcollet, Michel Ferrero, Thomas Ayral, Hartmut Hafermann, Igor

Krivenko, Laura Messio, Priyanka Seth

» To cite this version:

Olivier Parcollet, Michel Ferrero, Thomas Ayral, Hartmut Hafermann, Igor Krivenko, et al.. TRIQS:
A toolbox for research on interacting quantum systems. Computer Physics Communications, 2015,
196, pp.398. 10.1016/j.cpc.2015.04.023 . cea-01232448

HAL Id: cea-01232448
https://cea.hal.science/cea-01232448
Submitted on 23 Nov 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://cea.hal.science/cea-01232448
https://hal.archives-ouvertes.fr

arXiv:1504.01952v2 [cond-mat.str-el] 21 Jul 2015

TRIQS: A Toolbox for Research on
Interacting Quantum Systems

Olivier Parcollet®* Michel Ferrero”, Thomas Ayral®?, Hartmut Hafermann?,
Igor Krivenko®, Laura Messio?®, Priyanka Seth”

@ Institut de Physique Théorique (IPhT), CEA, CNRS, 91191 Gif-sur-Yvette, France
bCentre de Physique Théorique, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedez, France
¢I. Institut fiir Theoretische Physik, Uni. Hamburg, Jungiusstrafie 9, 20855 Hamburg, Germany
AL,PTMC, UMR 7600 CNRS, Université Pierre et Marie Curie, 75252 Paris, France

Abstract

We present the TRIQS library, a Toolbox for Research on Interacting Quantum Sys-
tems. It is an open-source, computational physics library providing a framework for
the quick development of applications in the field of many-body quantum physics, and
in particular, strongly-correlated electronic systems. It supplies components to develop
codes in a modern, concise and efficient way: e.g. Green’s function containers, a generic
Monte Carlo class, and simple interfaces to HDF5. TRIQS is a C++/Python library
that can be used from either language. It is distributed under the GNU General Public
License (GPLv3). State-of-the-art applications based on the library, such as modern
quantum many-body solvers and interfaces between density-functional-theory codes and
dynamical mean-field theory (DMFT) codes are distributed along with it.

PROGRAM SUMMARY

Program Title: TRIQS

Project homepage: http://ipht.cea.fr/trigs

Catalogue identifier: —

Journal Reference: —

Operating system: Unix, Linux, OSX

Programming language: C++/Python

Computers: any architecture with suitable compilers including PCs and clusters
RAM: Highly problem-dependent

Distribution format: GitHub, downloadable as zip
Licensing provisions: GNU General Public License (GPLv3)
Classification: 4.4, 4.6, 4.8, 4.12, 5, 6.2, 6.5, 7.3, 7.7, 20
PACS: 71.10.-w,71.27.4+a,71.10.Fd,71.30.4+h

*Corresponding author.
E-mail address: olivier.parcollet@cea.fr
Email addresses: olivier.parcollet@cea.fr (Olivier Parcollet),
michel.ferrero@polytechnique.edu (Michel Ferrero), thomas.ayral@polytechnique.edu
(Thomas Ayral), hartmut .hafermann@cea.fr (Hartmut Hafermann),
ikrivenk@physnet.uni-hamburg.de (Igor Krivenko), messio@lptmc. jussieu.fr (Laura Messio),
priyanka.seth@polytechnique.edu (Priyanka Seth)

Preprint submitted to Computer Physics Communications July 22, 2015

Keywords: Many-body physics, Strongly-correlated systems, DMFT, Monte Carlo, ab initio cal-
culations, C++, Python

Ezternal routines/libraries: cmake, mpi, boost, FFTW, GMP, BLAS, LAPACK, HDF5, NumPy, SciPy,
h5py, mpidpy, mako.

Nature of problem:

Need for a modern programming framework to quickly write simple, efficient and higher-level
code applicable to the studies of strongly-correlated electron systems.

Solution method:

We present a C++/Python open-source computational library that provides high-level abstrac-
tions for common objects and various tools in the field of quantum many-body physics, thus
forming a framework for developing applications. Running time: Tests take less than a minute.
Otherwise highly problem dependent (from minutes to several days).

1. Introduction

In this paper, we present the 1.2 release of the TRIQS project (Toolbox for Research
in Interacting Quantum Systems), a free software library written in Python and C++ for
the implementation of algorithms in quantum many-body physics. TRIQS is distributed
under the GNU General Public License (GPLv3).

Strongly-correlated quantum systems are a central challenge for theoretical condensed
matter physics with a wide range of remarkable phenomena such as metal-insulator tran-
sitions, high-temperature superconductivity and magnetism. In the last two decades,
tremendous progress has been made in the field of algorithms for the quantum many-
body problem, both in refining existing techniques and in developing new systematic
approximations and algorithms. Methods to address the quantum many-body problem
include dynamical mean-field theory (DMFT) [1, 2] and its cluster [3] or diagrammatic
extensions [4, 5] or the density matrix renormalization group (DMRG) [6]. DMFT meth-
ods can also now be combined with more traditional electronic structure methods such as
density functional theory (DFT) leading to ab initio realistic computational techniques
for strongly-correlated materials [2]. Several collaborative software development efforts
have made some of these theoretical developments largely accessible, e.g. Refs. [7, 8, 9].

The purpose of the TRIQS project is to provide a modern framework of basic building
blocks in C++ and Python. This is needed for the rapid implementation of a broad spec-
trum of methods. Applications range from simple interactive phenomenological analysis
in Python to high-performance quantum impurity solvers in C++. At this stage, TRIQS
focuses primarily on, but is not limited to, solid-state physics computations, diagram-
matic approximations and methods of the DMFT family (DMFT, clusters and underlying
quantum impurity solvers).

A particular emphasis is placed on the documentation, in particular in providing short
code examples that can be reused immediately (in Python and C++). Full documentation
of the project is available online: http://ipht.cea.fr/trigs.

Several applications have already been built with the TRIQS library, and some of
them are publicly distributed. Let us mention a state-of-the-art implementation of the
hybridisation-expansion quantum impurity solver CTHYB (http://ipht.cea.fr/trigs/
applications/cthyb/) and the DFT TOOLS project which provides an interface be-
tween DMFT and DFT packages such as WIEN2K for realistic computations for strongly-
correlated materials (http://ipht.cea.fr/triqs/applications/dft_tools/). Since

2

http://ipht.cea.fr/triqs
http://ipht.cea.fr/triqs/applications/cthyb/
http://ipht.cea.fr/triqs/applications/cthyb/
http://ipht.cea.fr/triqs/applications/dft_tools/

these applications are not part of the library itself and involve a different set of authors,
they will be presented in separate publications. However, they are distributed along
with the TRIQS library under GPL license and are available for download on GitHub
(https://github.com/trigs).

The TRIQS project uses professional code development methods to achieve the best
possible quality for the library and the applications, including: i) version control using
git; ii) systematic code review by the main TRIQS developers; iii) test-driven develop-
ment: features of the library are first designed with a series of test cases. When the
implementation is completed, they become the non-regression tests executed during the
installation process.

This paper is organised as follows: we start in Sec. 2 with the main motivations for
the project. In Sec. 3, we outline the structure of the TRIQS project. Sec. 4 summarizes
our citation policy. In Sec. 5, we discuss the prerequisites to efficient usage of TRIQS
and Sec. 6 describes the portability of the library. In Sec. 7, we provide two illustrating
examples to give a flavour of the possibilities offered by the library: we show that TRIQS
makes it possible to write a DMFT self-consistency loop in one page of Python, and, in
another example, how equations can be coded efficiently in C++. In Sec. 8 we review
the most important library components. In Appendix A we present the implementa-
tion of a fully working, MPI-parallelized, modern continuous-time quantum Monte Carlo
algorithm (the so-called CT-INT algorithm [10, 11]) in about 200 lines. This example
illustrates how TRIQS allows one to design a complex, yet short, readable and extensible
code.

2. Motivations

The implementation of modern algorithms for quantum many-body systems raises
several practical challenges.

Complezity: Theoretical methods and algorithms are becoming increasingly complex
(e.g. quantum Monte Carlo [10, 12, 13, 11] and dual boson [14] methods). They are hence
more difficult to implement, debug and maintain. This is especially true for realistic
computations with methods of the DMFT family, where one has to handle not only the
complexity of the many-body problem but also the various aspects (orbitals, lattices) of
real materials, which usually requires a well-organised team effort.

Versatility/Agility: Algorithms are changing and improving rapidly, sometimes by
orders of magnitude for some problems [15]. This can lead to a possibly quick obsoles-
cence of a given implementation. To address new physics problems requires regular and
substantial modifications of existing implementations. Moreover, there are numerous
possibilities for new algorithms which need to be tested quickly.

Performance: Modern algorithms are still quite demanding on resources, e.g. quantum
Monte Carlo methods. Hence, the performance of the codes is critical and a simple
implementation in a high-level language is usually not sufficient in practice.

Reproducibility: The central role and the growing complexity of the algorithms in our
field reinforces the need for reproducibility, which is central to any scientific endeavour.
Therefore, the results obtained by a numerical computation should in principle be pub-
lished systematically along with the code that produced them, in order to allow others
to reproduce, falsify or improve on them. This requires codes to be readable (i.e. written
to be read by other people than their author) and relatively quick to produce.

3

https://github.com/triqs

To address these challenges, one needs readable, clear and simple implementations
with reusable components provided through high-level abstractions. We emphasize that
this is not in contradiction with the requirement of high performance. The combination
of a higher level of abstraction with high performance is achieved using modern program-
ming techniques (e.g. generic programming). The purpose of the TRIQS project is to find
and efficiently implement the relevant abstractions, basic components and algorithms for
our domain.

3. Structure

The TRIQS framework is depicted in Fig. 1: the core library is at the root (bottom)
consisting of basic building blocks, which are used in a series of applications (top). The
applications can be in pure python (e.g. DFT TOOLS), in C++ with a Python interface
(e.g. CTHYB), or even in pure C++. The subject of this paper is the core library.

Figure 1: Structure of the TRIQS project

dft_tools cthyb C++ app.

TRIQS library

The components of the TRIQS library can be used both in Python and in C++: C++
brings the performance needed for applications where speed is critical (like many-body
solvers) and the type safety of a compiled language. On the other hand, Python is typi-
cally used as a higher-level interface for data analysis, investigation of phenomenological

approaches, and tasks related to reproducibility. Most objects of the library are written
4

in C++ and exposed to Python using a specially designed tool described in Sec. 8.8. As
a result, TRIQS can be used together with all the modern scientific tools of the Python
community, in particular with IPython notebooks [16] which are recommended for an
optimal interactive usage of the library in Python.

4. Citation policy

We kindly request that the present paper be cited in any published work using the
TRIQS library directly (e.g. for data analysis) or indirectly (e.g. through TRIQS based
applications). In the latter case, this citation should be added to the citations already
requested by the application. This helps the TRIQS developers to better keep track of
projects using the library and provides them guidance for future developments.

5. Programming Requirements

TRIQS can be used at different levels of expertise, starting from basic Python inter-
active usage to development of cutting-edge mixed Python/C++ high-performance and
massively parallel codes, and in pure C++.

Most objects, in particular the Green’s functions, have a rich Python interface, al-
lowing one to easily plot and manipulate them. For example, simple operations such
as value assignment, inversion or output to and input from HDF5 files are all one-line
operations, as shown in the examples below.

At the C++ level, the required knowledge to make efficient use of the library is min-
imised. The systematic usage of modern C++ (C++11 and C++14) very often lead to
simpler syntax than old C++. The library often favours a “functional style” programming
and the simplest possible constructions for the C++ user. To fully exploit the capabilities
of the library, some understanding of the basic notions of generic programming, such as
concepts and templates, is helpful, but not required. More traditional object-oriented
notions of C++ such as inheritance or dynamical polymorphism (virtual functions) are
not necessary to use the TRIQS library.

6. Portability

TRIQS is written in modern C++, i.e. using the C++11 ISO standard. The motivation
for this choice is twofold: first, we encourage the users of the library to benefit from
the new features of C++, in particular those which produce much simpler code (e.g. auto,
for auto loop or lambdas). Second, it dramatically reduces the cost of implementing
and maintaining the library itself, since many of the new C++ features are designed to
facilitate the use of the metaprogramming techniques needed to implement high-level,
high-performance libraries.

As a result, TRIQS requires a C++11 standard-compliant compiler. The documenta-
tion provides an updated list of tested compilers. When it is available, we recommend
using a C++14 compiler for development, in particular to get simpler error messages.

At the Python level, we use the 2.7 versions of Python. Support for Python 3 is
planned for later releases. We use the binary hierarchical data format (HDF5) to guar-
antee portability of user generated data in binary form.

5

7. TRIQS in two examples

Here we illustrate the use of the library for two typical tasks encountered in many-
body physics; this should give a flavour of the possibilities offered by the library. The first
example is a complete DMFT computation implemented in Python, using a continuous-
time quantum Monte Carlo solution of the impurity model (which is presented in Ap-
pendix A). The second example illustrates the manipulation of Green’s functions in C++
within TRIQS.

7.1. A DMFT computation in one page of IPython

This example requires the CT-INT tutorial application to be installed. The installa-
tion procedure is described in Sec. 9.2.

Fig. 2 shows a screenshot of an IPython notebook implementing a DMFT self-
consistency loop. The essential steps are to load the solver module, set parameters
and an initial guess for the Green’s function and to loop over the DMFT iterations.
The solver module, for which performance is critical, is written in C++ but used from
Python. This notebook is available in the sources of the ctint_tutorial application (in
the examples subdirectory) along with the corresponding python script that is suitable
for parallel execution.

The Python framework is highly flexible. In this example, we exchange the random
number generator in the final DMFT iteration to consolidate the result. We could also
turn on additional measurements, or implement more sophisticated stopping criteria for
the loop. Using the IPython notebook, results can be plotted and analysed interactively.
As a minimal example, we load the HDF5 archive from the disk and plot the imaginary
part of the Green’s functions in the second cell of the notebook. Parameters used in
the calculation can easily be saved to file and retrieved for data analysis. On a parallel
machine, the first part of the script is executed in Python (without the notebook), on
multiple cores, while the analysis can still be done in the IPython notebook.

Within this framework, DMFT can readily be explored and practised by non-experts.
The major part of the calculation is of course performed by the solver module. In
this example, we have used the interaction-expansion continuous-time quantum Monte
Carlo (CT-INT) solver. We can easily switch to a more sophisticated hybridisation-
expansion continuous-time quantum Monte Carlo algorithm (CT-HYB) solver by loading
the appropriate solver module instead. The complete listing of the C++ implementation of
the solver module is given and explained in Appendix A, as a more detailed illustration
of the library’s features.

7.2. Easy manipulation of Green’s functions in C++

Here, we show how to compute in C++ a hybridisation function A(7) in imaginary
time given the bare dispersion of a two-dimensional square lattice with nearest neighbour
hopping, at chemical potential . This is a typical task which is usually performed at

Figure 2: Screenshot of an IPython notebook executing a DMFT loop using the CT-INT

solver.

IPLyI:

Note b 00 k dmft_bethe (unsaved changes)

File Edit View Insert Cell Kernel Help (o]
© < @ B/ 4 ¥ > B C Code 4| Cell Toolbar: | None C
In [1]: from pytrigs.gf.local import *
from pytrigs.archive import *
import pytrigs.utility.mpi as mpi
from pytrigs.applications.impurity solvers.ctint_tutorial import CtintSolver
from pytrigs.plot.mpl interface import oplot
Parameters
U = 2.5 # Hubbard interaction
mu = U/2.0 # Chemical potential
half_bandwidth=1.0 # Half bandwidth (energy unit)
beta = 40.0 # Inverse temperature
n_iw = 128 # Number of Matsubara frequencies
n_cycles = 10000 # Number of MC cycles
delta = 0.1 # delta parameter
n_iterations = 21 # Number of DMFT iterations
S = CtintSolver(beta, n_iw) # Initialize the solver
S.G_iw << SemiCircular(half_bandwidth) # Initialize the Green's function
with HDFArchive("dmft bethe.output.h5",'w') as A:
A['n_iterations'] = n_iterations # Save a parameter
for it in range(n_iterations): # DMFT loop
for name, GO in S.GO_iw:
GO0 <<= inverse(iOmega_n + mu - (half_bandwidth/2.0)**2 * S.G_iw[name]) # Set GO
Change random number generator on final iteration
random name = 'mt19937' if it<n_ iterations-1 else 'lagged_ fibonaccil9937'
S.solve(U, delta, n_cycles, random name=random name) # Solve the impurity problem
G_sym = (S.G_iw['up']+S.G_iw['down'])/2 # Impose paramagnetic solution
S.G_iw << G_sym
if mpi.is_master_node():
A['G%i'%it] = G_sym # Save G from every iteration to file
Starting on 1 Nodes at : 2014-10-22 18:06:12.886058
In [2]: A = HDFArchive("dmft bethe.output.h5",'r') # Open file
n_iterations = A['n_iterations'] # Load a parameter
for it in range(n_iterations): # Use parameter in the analysis
if not it%2: oplot(A['G%i'%it].imag, '-o', name='Im G%i'$it) # Plot every second result
x1im(0,5)
out[2]: (0, 5)
00
e Im GO
e ImG2
oo ImG4 |
oo ImG6
oo ImG8
e ImGl10
e ImG12
e ImGl4
e ImGl6
e ImGl18
—~ oo Im G20
3
-14
[1 2 3 4 5

the beginning of a DMFT calculation. The necessary steps are the following;:

1 1
N zk: iwn, + p — 2(cos kg + cosky)

= iwn + 1 — Gy ' (iwn)
1 - —iwn T
3 ZA(zwn)e "

G() (zwn) =

4
voE
2

Il |

The sum over k = (k;, ky) is taken over the Brillouin zone, w, is a fermionic Matsub-
ara frequency and f is the inverse temperature. Using the library, these equations are
implemented as follows:

Listing 1 Computing the hybridisation

#include <triqs/gfs.hpp>

using namespace trigs::gfs;
using namespace trigs::lattice;
int main() {

double beta = 10, mu = O0;
int n_freq = 100, n_pts = 100;

// Green’s function on Matsubara frequencies, 1x1 matrix-valued.
auto Delta_iw = gf<imfreq>{{beta, Fermion, n_freq}, {1, 1}};
auto Gloc = gf<imfreq>{{beta, Fermion, n_freq}, {1, 13}};

// Green’s function in imaginary time, 1x1 matrix-valued.
auto Delta_tau = gf<imtime>{{beta, Fermion, 2 * n_freq + 1}, {1, 1}};

auto bz = brillouin_zone{bravais_lattice{{ {1, 0}, {0, 1} }}};
auto bz_mesh = regular_bz_mesh{bz, n_pts};

trigs::clef::placeholder<1> k_;
trigs::clef::placeholder<2> iw_;

// The actual equations

Gloc(iw_) << sum(1/(iw_ + mu - 2*(cos(k_[0]) + cos(k_[1]))), k_ = bz_mesh)
/bz_mesh.size (); // (1)

Delta_iw(iw_) << iw_ + mu - 1 / Gloc(iw_); // (2)

Delta_tau() = inverse_fourier (Delta_iw); // (3)

// Write the hybridization to an HDF5 archive

auto file = trigs::hb5::file("Delta.hb5", HS5F_ACC_TRUNC);
h5_write(file, "Delta_tau", Delta_tau);

h5_write(file, "Delta_iw", Delta_iw);

In the implementation of equations (1) and (2) (lines 23-25), we use a compact syntax
for the assignment to the Green’s function container provided by the TRIQS library (the
CLEF library, Sec. 8.5). By definition, this is equivalent to assigning the evaluation
of the expression on the right-hand side to the data points of the “Green’s function”’
Delta_iw on the left and for all Matsubara frequencies in its mesh. iw_ is a placeholder,
i.e. a dummy variable standing for all points in the Green’s function’s mesh.

In line 23, the formal expression made of iw_ and kx_ is summed over the values
of x_, and assigned to the function for each iw_. Note that no copy is made by this
statement, the computation is inlined by the compiler, as if it was written manually.
This technique is more concise than writing a for-loop on each variable, reduces the risk
of errors and simultaneously increases the readability. Moreover, such techniques come
with no performance penalty (as indicated by our tests on several standard compilers).

In line, we assign the inverse Fourier transform of A(w) to A(7) [Eq. (3)]. Note
that the high-frequency expansion is part of the Green’s function container and so is
automatically computed in lines 23 and 25 (see Sec. 8.2 for details). It is used to properly
treat the discontinuity in the Fourier transformation in line 26.

Finally, the Green’s functions are stored in an HDF5 file with a simple interface, in a
portable manner. The storage conventions are detailed in the reference documentation.

1Here we refer the Green’s function containers and objects representing hybridisation functions or
functions with the same signature simply as “Green’s functions”.

8

OO0 NOUE W N~

This example is interesting for two reasons: firstly, it shows that the TRIQS library
performs a lot of low-lying operations. There is no need to reimplement them and the
user can concentrate on the physics; secondly, it shows that one can write quite complex
operations concisely, which is necessary in order to write readable codes.

8. Library components

In this section, we provide an overview of the TRIQS library components. We il-
lustrate them either with small examples or in the CT-INT impurity solver example
presented in Appendix A. The description is neither meant to be complete nor ex-
haustive; the online reference documentation (http://ipht.cea.fr/triqs) will fill the
gaps.

8.1. Multidimensional arrays (C++)

TRIQS provides its own multidimensional arrays, with an emphasis on flexibility,
performance and the Python interface. It is a fundamental building block for higher-
level containers, such as Green’s functions. Listing 2 below illustrates some of their
features.

Listing 2 Array / matrix example

#include <triqs/arrays.hpp>

using namespace triqgs::arrays;

int main() {

auto a = matrix<double>(2, 2); // Declare a 2x2 matrix of double
auto b array<double, 3>(5, 2, 2); // Declare a 5x2x2 array of double
auto ¢ array<double, 2> {{1,2,3}, {4,5,6}}; // 2x3 array, with initialization
trigs::clef::placeholder<0> i_;

trigs::clef::placeholder<1> j_;

trigs::clef::placeholder<2> k_;

// Assignment of values using CLEF
a(i_, j_o) << i_ + j_;
b(i_, j_, k) << i_ * a(k_, j_);

std::cout << "a = " << a << std::endl; // Printing

matrix<double> i = inverse(a); // Inverse using LAPACK

double d = determinant (a); // Determinant using LAPACK

auto ac = a; // Make a copy (the container is a regular type)
ac = a * a + 2 x ac; // Basic operations (uses BLAS for matrix product)
b(0, range(), range()) = ac; // Assign ac into partial view of b

// Writing the array into an HDF5 file.
auto f = trigs::h6::file("a_file.h5", HSF_ACC_TRUNC);
h5_write(f, "a", a);

auto m = max_element (abs(b)); // maximum of the absolute value of the array.
// A more "functional" example: compute the norm sum_{i,j} [A_{ij}l
auto lambda = [](double r, double x) { return r + std::abs(x); };
auto norm = fold(lambda)(a, 0);
}

The library provides three types of containers: array (for multidimensional arrays),
matriz and vector with the following main characteristics:

http://ipht.cea.fr/triqs

e Regular-type semantics: Just like std::vector, these containers have regular-
type semantics.

e Views: Each container has a corresponding view type (e.g. array_view) to e.g. work
on slices and partial views.

e CLEF: The containers are compatible with CLEF (Sec. 8.5 and Listing 2) for fast
assignment techniques.

e Python interface: These containers can be easily converted to and from Python
NumPy arrays.

e Interface to HDF5: See Sec. 8.6 and Listing 2.

e Arithmetics: Arithmetic operations are implemented using expression templates
for optimal performance.

e BLAS/LAPACK: A BLAS/LAPACK interface for matrices and vectors is pro-
vided for the most common operations.

e STL compatible iterators: The containers and views can be traversed using
such iterators, or with simple foreach constructs.

e Optionally, a (slower) debug mode checks for out-of-range operations.

8.2. Green’s functions (C++ and Python)

The library provides a special set of containers that allow one to store and manip-
ulate the various Green’s functions used in the quantum many-body problem and its
algorithms. They are defined on meshes for various domains, they are tensor-, matrix-,
or scalar-valued and can be block-diagonal.

Domains currently implemented include real and imaginary frequencies, real and
imaginary times, Legendre polynomials, and Brillouin zones. Multiple variable Green’s
functions are also part of the library, but are restricted to C++14 mode only and are of
alpha quality in release 1.2. We will not discuss them in this paper.

Green’s functions optionally include a description of their high-frequency behaviour
in terms of their moments. Storing this information is important for several operations
(e.g. Fourier transformation, frequency summation) where the high-frequency behaviour
needs to be treated explicitly. Being part of the object, the singularity is consistently
recomputed in all arithmetic operations so that the user need not work out the high-
frequency asymptotics. Listing 3 illustrates some basic usage of Green’s functions, while
a Python example has been given above (Fig. 2).

Listing 3 Green's function example

#include <triqs/gfs.hpp>

using namespace triqgs;

using namespace triqgs::gfs;
using namespace trigs::lattice;
int main() {

10

double beta = 10;
int n_freq = 1000;
clef::placeholder<0> iw_;
clef::placeholder<1i> k_;

// Construction of a 1x1 matrix-valued fermionic gf on Matsubara frequencies.
auto g_iw = gf<imfreq>{{beta, Fermion, n_freql}, {1, 13}};

// Automatic placeholder evaluation
g_iw(iw_) << 1 / (iw_ + 2);

// Inverse Fourier transform to imaginary time

auto g_tau = gf<imtime>{{beta, Fermion, 2 * n_freq + 1}, {1, 1}};

g_tau() = inverse_fourier(g_iw); // Fills a full view of g_tau with FFT result
// Create a block Green’s function composed of three blocks,

// labeled a,b,c and made of copies of the g_iw functions.

auto G_iw = make_block_gf({"a", "b", "c"}, {g_iw, g_iw, g_iw});

// A multivariable gf: G(k,omega)

auto bz = brillouin_zone{bravais_lattice{{{1, 0}, {0, 1}}}};

auto g_k_iw = gf<cartesian_product<brillouin_zone, imfreq>>{
{{bz, 100}, {beta, Fermion, n_freql}}, {1, 11}};
g_k_iw(k_, iw_) << 1 / (iw_ - 2 * (cos(k_(0)) + cos(k_(1))) - 1 / (iw_ + 2));

// Writing the Green’s functions into an HDF5 file.
auto f = hb::file("file_g_k_iw.h5", HS5F_ACC_TRUNC);
h5_write(f, "g_k_iw", g_k_iw);

h5_write(f, "g_iw", g_iw);

h5_write(f, "g_tau", g_tau);

h5_write(f, "block_gf", G_iw);

The main characteristics of Green’s functions are:

e Arithmetics: Just like arrays, Green’s functions implement arithmetic operations
using expression templates.

e Quick assignment: The class uses the CLEF component of the TRIQS library
for quick assignment (see Sec. 8.5 and Listing 3).

e Python interface: The Green’s functions are easily shared between Python and
C++, see Sec. 8.8, and can thus be used in conjunction with the Python visualisation
tools.

e Fourier transforms: TRIQS provides a simple interface to fast Fourier trans-
forms (FFTW). For Green’s functions the information about the high-frequency
behaviour is used to avoid numerical instabilities.

e Interface to HDF5.

8.3. Monte Carlo tools (C++)

The TRIQS library provides several classes for writing Metropolis-like (quantum)
Monte Carlo algorithms. In addition to some basic analysis tools, like binning or jack-
knife, the library mainly contains the mc_generic class that implements the Metropolis
algorithm (choose a move, try the move, compute Metropolis ratio, reject or accept,
etc.) in terms of completely generic moves (configuration updates) and measurements.

11

In practice, one just needs to implement the moves and measurements. The only
requirement is that they must model their respective concepts 2. For example, the concept
of a move is given by Listing 4. Note in particular that they do not require inheritance
or virtual functions, which makes them particularly simple to use.

Listing 4 Concept of a Monte Carlo move

struct my_monte_carlo_move {

// propose a change in the configuration and return the Metropolis ratio
double attempt ();

// the move has been accepted: modify configuration
double accept();

// the move has been rejected: undo configuration changes
void reject ();

};

A concrete usage of the class is shown in the CT-INT solver example (Appendix
A). The class is particularly convenient for complex Monte Carlo algorithms with several
moves: the moves are isolated from the implementation of the Metropolis algorithm itself
and each move can be implemented independently.

The Monte Carlo is of course automatically MPI-enabled. Furthermore, random num-
ber generators can easily be changed dynamically to ensure there is no subtle correlation
effect.

Listing 5 illustrates a basic application of the tools for statistical analysis on a corre-
lated random series. Let us assume we have two long vectors v1 and v2 storing (possibly
correlated) samples of the random variables X and Y and that we wish to compute es-
timates of (X) and (X)/(Y), together with the corresponding error bars. In both cases,
the correlation between samples has to be removed using a binning procedure. This
being done, the first computation is quite straightforward, while the second one further
requires a jackknife procedure to remove the bias introduced by the nonlinearity. In
TRIQS, all these operations are performed by the following code snippet, using a little
library similar to e.g. ALPS/alea [7]:

Listing 5 Statistics: error analysis

//£fill observable with the series

observable<double> X, Y;

for(auto const & x : V1) X << x; //V1: a vector of statistical samples
for(auto const & y : V2) Y << y; //V2: a vector of statistical samples

std::cout << "<X> is approximately " << average_and_error (X) << std::endl;
std::cout << "<X>/<Y> is approx. " << average_and_error(X/Y) << std::endl;

x<<x fills the observable x (a stack of the samples) with the values x of V1. average_and_error (X)
computes an estimate of (X) and of the error A(X), while average_and_error(x/Y) com-
putes an estimate of (X)/(Y) and of A(X)/(Y).

8.4. Determinant manipulations (C++)

The manipulation of determinants is central to many Monte Carlo approaches to
fermionic problems, see e.g. [10, 12, 13, 11]. Several cases can be abstracted from

2In the sense of C++ concepts.
12

the following mathematical problem. Let us consider a function F(z,y) taking real or
complex values (the type of the arguments = and y is arbitrary) and the square matrix
M defined by

Mij = F(zi, y;), (4)

for two sets of parameters {z;} and {y;} of equal length. The problem consists in quickly
updating M and its inverse M ! following successive insertions and removals of one or
two lines (labelled by z;) and columns (labelled by y;) using the Sherman-Morrison and
Woodbury formulas [17, 18].

This generic algorithm is implemented in the TRIQS det_manip class, using BLAS
Level 2 [19, 20] internally. The class provides a simple API, in order to make these
manipulations as straightforward and efficient as possible.

For optimal efficiency within a Monte Carlo framework, the modifications to the
matrices can be done in two steps: a first step which only returns the determinant ratio
between the matrix before (M) and after the modification (M’), i.e. £ = det M’/ det M
(which is generally used in the acceptance rate of a Metropolis move) and a second step
which updates the matrix and its inverse. This computationally more expensive step
is usually done only if the Monte Carlo move is accepted. An example of this class is
employed is the CT-INT solver discussed in Appendix A.

8.5. CLEF (C++)

CLEF (Compile-time Lazy Expressions and Functions) is a component of TRIQS
which allows one to write expressions with placeholders and functions, and to write
quick assignments. For example, the following — quite involved — equation

’
Ooo

Xov'w = 6(98098'0 0w — ggaggiwéuwéao’) (5)
can be coded as quickly as (variables with underscores denote placeholders)

chiO(s_, sp_)(nu_, nup_, om_) <<
beta * (gls_l(nu_) * glsp_l(nup_) * kronecker (om_))
- beta * (gls_1(nu_) * gls_l(nu_ + om_)
* kronecker (nu_, nup_) * kronecker(s_, sp_));

This writing is clearly much simpler and less error-prone than a more conventional five-
fold nested for-loop. At the same time, these expressions are inlined and optimised
by the compiler, as if the code were written manually. The library also automatically
optimises the memory traversal (the order of for loops) for performance based on the
actual memory layout of the container chio.

The CLEF expressions are very similar to C++ lambdas, except that their variables are
found by name (the placeholder) instead of a positional argument (in calling a lambda).
This is much more convenient for complex codes.

The precise definition of the automatic assignment is as follows. Any code of the form
(e.g. with three placeholders):

A(i_,j_,x_) << expression;

where expression is an expression involving placeholders® is rewritten by the compiler
as follows:

3For a precise list of what is allowed in expressions, the reader is referred to the reference documen-
tation.

13

triqs_auto_assign(
A, [l1(auto& i,auto& j,auto& x) {
return eval(expression, i_=i, j_=j, x_=x);
}

);

where trigs_auto_assign is a free function defined by the container A, which fills the con-
tainer with the result of the evaluation of the lambda, and eval evaluates the expression
(eval is a function and is part of CLEF). The precise details of this operation, such as
the memory traversal order, are encoded in this function. The CLEF quick assignment
mechanism can therefore easily and efficiently be extended to any object of the library.
The library provides adaptors to allow standard mathematical functions such as cos or
abs and std::vector to be used in expressions. User-defined functions and class methods
can conveniently be made compatible with the CLEF quick assignment through macros.

8.6. HDF5 (C++ and Python)

HDF5 is a standard, portable and compact file format, see http://www.hdfgroup.
org. Almost all objects in the TRIQS library (including arrays or Green’s functions) can
be stored in and retrieved from HDFS5 files, from C++ and/or Python, with a simple and
uniform interface. For example, in C++:

auto a = array<double, 2> {{1,2,3}, {4,5,6}}; // some data

{
auto f = h5::file("data.hb", ’w’); // open the file

h5_write(f, ’a’, a); // write to the file
// closes the file

or, the corresponding code in Python:

a = numpy.array([[1,2,3],[4,5,6]11)
with HDFArchive("data.h5", ’w’) as f:

f[’a’] = a

In Python, the HDFArchive behaves in a similarly as a dict. Therefore, one can reload
a complex object (e.g. a block Green’s function) in a single command in a script. An
example can be seen in Listing 1.

An HDFS5 file can be seen as a tree whose leaves are “basic” objects (multidimensional
rectangular arrays, double, integer, strings, ...). More complex objects are usually
decomposed by the library into a subtree of smaller objects, which are stored in an
HDF5 subgroup. For example, a block diagonal Green’s function (of type BlockGf) is
stored with subgroups containing the Green’s functions it is made of; a Green’s function
is stored as a subgroup containing the array of data, the mesh, and possibly the high
frequency singularity. This format, i.e. the precise conventions for the names and types
of the small objects and the storage order of the data in the arrays, is described in the
reference documentation. The HDF5 files can be read without the TRIQS library from C,
C++, Fortran, Python codes, the HDF5 command line tools and with any tool supporting
this format. This enables publishing data and facilitates sharing them across different
groups and platforms. The HDF5 format is indeed widely used, e.g. by the ALPS project
[7].
Note also that the HDF5 files written from C++ or Python have exactly the same
format. Hence one can straightforwardly load some Green’s functions in Python that
have been computed and written using a C++ code, or vice-versa.

14

http://www.hdfgroup.org
http://www.hdfgroup.org

8.7. Second-quantized operators (C++ and Python)

The theories of strongly-correlated electron systems often use a language of second-
quantized operators to formulate the problems under consideration. The model Hamil-
tonians as well as the observables of interest are routinely written as polynomials of
fermionic operators ¢/ and c.

The TRIQS library implements a C++ template class many_body_operator, which ab-
stracts the notion of a second-quantized operator. The purpose of this class is to make
expressions for second-quantized operators written in the C++ or Python code as close
as possible to their analytical counterparts. In order to pursue this goal, the class im-
plements the standard operator algebra. The library stores the expression in normal
order, so it performs automatically basic simplications, for example when an expression
vanishes. Any operator can be constructed as a polynomial of the elementary operators
carrying an arbitrary number of integer/string indices (defined at compile time). The
coefficients of the polynomials may be real, complex or of a user-defined numeric type in
advanced use scenarios.

There is also a Python version of the same class (called operator), specialised for the
case with real coefficients and the fermionic operators with two indices (this particular
choice is made for compatibility with the Green’s function component). Anyone writing
a TRIQS-based many-body solver may benefit from this class. For example, the user of
the solver could define a model Hamiltonian in a Python script and subsequently pass it

to the solver:
from pytriqs.operators.operators import Operator, n, c_dag, c
Spin operators

Sp = c_dag("up",0)*c("dn",0) # S_+
Sm = c_dag("dn",0)*c("up",0) # S_-
Sz = 0.5%(n("up",0) - n("dn",0)) # S_z
S2 = Sz*Sz + (Sp*Sm + Sm*Sp)/2 # 872

The Hamiltonian of a half-filled Hubbard atom: four equivalent forms
U=1.0

Hi = -U/2%(n("up"”,0) + n("dn",0)) + Uxn("up",0)*n("dn",0)
H2 = Ux(n("up",0) - 0.5)*(n("dn",0) - 0.5) - U/4

H3 = -2.0%xUxSz*Sz

H4 = -2.0/3.0*%U*xS2

print H1, ’\mn’, H2, ’\n’, H3, ’\n’, H4

All four forms are indeed equivalent
print (H1-H2).is_zero() and (H2-H3).is_zero() and (H3-H4).is_zero()

8.8. C++/Python wrapping tool

The tool that glues together the C++ components to Python is a crucial piece of the
TRIQS project. Indeed the C++/Python architecture of the project is very demanding
in this aspect: we need to expose diverse components from C++ to Python. These range
from simple functions to complex objects with methods, overloaded arithmetic operators,
the interface to HDF5, and so on. The tool must be very flexible, while being as simple
as possible to use in the most common cases.

The TRIQS library proposes such a tool in version 1.2. From a simple Python-written
description of the classes and functions to expose to Python, it generates the necessary
C wrapping code to build the Python module. Utilities are also included to actually
compile and setup the modules with cmake.

In most cases, the process can be fully automatised, using a second tool based on
the Clang library, which parses the C++ code using 1ibClang and retrieves the descrip-
tion of the classes and functions along with their documentation. As an example, the

15

automatically produced description files for the CT-INT algorithm is provided in the
Appendix.

In more complex cases, some information can be added manually to the class de-
scription, for example the fact that the object forms an algebra over the doubles. In
such a case, by adding a single line to the description file, the tool automatically gener-
ates all the necessary operators for the algebra structure in Python by calling their C++
counterparts.

As a consequence, this tool also allows the TRIQS user to write C++ code directly
within the IPython notebook and use it immediately, using a so-called “magic cell com-
mand”, in IPython terminology. This is illustrated in Fig. 3. In this case, the command

Figure 3: Using C++ directly within the IPython notebook

In [1]: %reload ext pytrigs.magic

In [2]: %%trigs
#include <string>
std::string hello(){ return "Hello, world!"; }

In [3]: print hello()

Hello, world!

In [4]: type(hello())

Out[4]: str

%utrigs extracts the prototype of the C++ hello() function, writes, compiles and loads the
Python module to be used in the next cell. TRIQS objects, along with STL containers
(e.g. vector, tuple), can be used as function arguments or return values.

Using this feature one can tinker with C++ codes directly inside a Python environment,
without having to set up a C++ project. It is suitable for debugging, quick testing,
or executing short C++ code. For longer codes, it is better to set up a Python/C++
project along the lines shown for the CT-INT in the Appendix. Note that this feature is
experimental in release 1.2 and currently limited to a single C++ function per cell (even
though generalisation is quite straightforward).

9. Getting started

Detailed information on installation can be found on the TRIQS website and current
issues and updates are available on GitHub.

9.1. Obtaining TRIQS

The TRIQS source code is available publicly and can be obtained by cloning the
repository on the GitHub website https://github.com/TRIQS/trigs. As the TRIQS
project is continuously evolving, we recommend that users always obtain TRIQS from
GitHub. Fixes to possible issues are also applied to the GitHub source.

16

https://github.com/TRIQS/triqs

9.2. Installation

Installing TRIQS is straightforward. We use the cmake tool to configure, build and
test the library. Assuming that all dependencies have been installed (refer to the online
documentation), the library is simply installed by issuing the following commands at the
shell prompt:

git clone https://github.com/TRIQS/trigs.git src
mkdir build_trigs && cd build_trigs

cmake ../src

make

make test

make install

H BH AH P BH P

By default, the installation directory INSTALL_DIR will be located inside the build di-
rectory. Further installation instructions and help on installing the dependencies can be
found in the online documentation.

9.3. Usage

There are different ways of using TRIQS. In the following, we assume that the location
of the INSTALL_DIR/bin folder is in the search path. We recommend starting with one
of the interactive IPython notebook examples provided with this paper (see below). The
interactive IPython notebook is started using the command

$ ipytrigs_notebook

which will open the browser and allow one to open an existing or a new notebook.
Providing a notebook name as an argument will open the notebook directly.

The IPython example in Fig. 2 uses the CT-INT solver of Appendix A, which is
shipped as a separate application. Installing external applications is straightforward.
The CT-INT application, for example, is installed as follows:

git clone https://github.com/TRIQS/ctint_tutorial.git src_ctint
mkdir build_ctint && cd build_ctint

cmake -DTRIQS_PATH=INSTALL_DIR_ABSOLUTE_PATH ../src_ctint

make

make test

make install

€BH hH P P BHPH

where INSTALL_DIR_ABSOLUTE_PATH is the (absolute) path to the TRIQS installation
directory. The application will be installed into the applications subdirectory in this
TRIQS installation directory. Assuming that INSTALL_DIR_ABSOLUTE_PATH/bin is in
the UNIX search path, one can then execute the example notebook in Fig. 2. To this
end, navigate to the examples directory of the ctint_tutorial application sources and
issue the following command:

$ ipytrigs_notebook dmft_bethe.ipynb

17

This will load the notebook inside a browser. Individual cells can be executed by pressing
[Shift+ENTER] (refer to the IPython notebook documentation). The same directory
contains a Python script to execute the same DMFT loop from the command line, which
is another mode to use TRIQS that is better suited for long computations on a parallel
machine. It can be executed by typing

$ pytriqs dmft_bethe.py
or in parallel by running, e.g.,
$ mpirun -np 4 pytriqs dmft_bethe.py

These commands produce a file dnft_bethe.output.h5. To plot the Green’s function
from the final iteration, we can launch ipytrigs and type:

$ ipytrigs

In [1]: from pytrigs.archive import *

In [2]: from pytriqgs.gf.local import *

In [3]: from pytrigs.plot.mpl_interface import oplot, plt
In [4]: A = HDFArchive("dmft_bethe.output.h5","r")

In [5]: oplot(A["G20"].imag, "-o", name="Im G20")

In [6]: plt.show()

As a starting point for developing an external application, we provide a minimal skele-
ton application called hello_world. It can be installed in the same way as the CT-INT
solver. The C++ examples of this paper, various IPython notebooks and the hello_world
are provided in a dedicated GitHub repository https://github.com/TRIQS/tutorials.
git.

10. Contributing

TRIQS is an open source project and we encourage feedback and contributions from
the user community to the library and the publication of applications based on it. Issues
should be reported exclusively via the GitHub web site at https://github.com/TRIQS/
trigs/issues. For contributions, we recommend to use the pull request system on the
GitHub web site. Before any major contribution, we recommend to coordinate with the
main TRIQS developers.

11. Summary

We have presented the TRIQS library, a Toolbox for Research on Interacting Quan-
tum Systems. This open-source computational physics library provides a framework
18

https://github.com/TRIQS/tutorials.git
https://github.com/TRIQS/tutorials.git
https://github.com/TRIQS/triqs/issues
https://github.com/TRIQS/triqs/issues

for the quick development of applications in the field of many-body quantum physics.
Several applications have been built on this library already. They are available at
https://github.com/TRIQS and will be described in other publications.

12. Acknowledgements

The TRIQS project is supported by the ERC Grant No. 278472—MottMetals. We
acknowledge contributions to the library and feedbacks from M. Aichhorn, A. Antipov,
L. Boehnke, L. Pourovskii, as well as feedback from our user community. I.K. acknowl-
edges support from Deutsche Forschungsgemeinschaft via Project SFB 668-A3. P.S.
acknowledges support from ERC Grant No. 617196—CorrelMat.

Appendix A. A sample application: Interaction expansion continuous-time
quantum Monte Carlo algorithm

In this Appendix, we present the implementation of a simple interaction expansion
continuous-time quantum Monte Carlo algorithm (CT-INT). We have used this solver
in the DMFT IPython example in Fig. 2. We first briefly recall the formalism of the
CT-INT algorithm before discussing the code.

Appendiz A.1. Formalism
We consider the following single-orbital impurity action

Z / / drdr'd, (T)Got(r —7') / drHins (T (A.1)

whose interaction term is a slightly modified Hubbard term

Hint = % Z (’fLT — aST> (fu — a“) (A.2)

s=1,1
with 1
a’’ = 3 + (2055 — 1)0. (A.3)

Here 6 is a free small parameter which reduces the sign problem and d,, is a Kronecker
symbol. This rewriting of the interaction term results in a shift of the chemical potential
(absorbed in the bare Green’s function é’o)' n=p— Q. The o’s only appear in the
interaction term.

The CT-INT algorithm consists in expanding the partition function Z = [D[d, dJe~*
in powers of H;,;. One obtains:

X Z <T nT T1

s1...8.="T,1

B
k
Z = Z()Z Kl /d7'1 di k
0
)~

oMy (g (1) —) (ny (1) — @*t4) - (g (1) — @), -

(A.4)
19

https://github.com/TRIQS

where T, is the time ordering operator. In the original CT-INT algorithm proposed in
Ref. [10], ofT =1 — a™ = a and o*" = o = 0. This choice can be shown to eliminate
the sign problem for the half-filled single band Anderson model. Here we sum over the
indices to make the formulation slightly more symmetric. It has the advantage that the
non-interacting Green’s function G does not explicitly depend on a’s. Note that in the
case of all @®“ being the same, the sum over s; produces a factor 2%, which cancels
the 2% in the denominator. The non-interacting Green’s function has no off-diagonal
up/down terms, so that the average factorises into product of two correlation functions
for each spin. Let us furthermore introduce time ordering by replacing the integrals over
the complete time intervals into a product of time-ordered integrals,

B b B 71 Th—1
dri...dTg <H H(ng(n) —as“j)> =k! | dn [drs... dty, X
[(L el]
x ((np(r) = @) - (my(mi) = @™ 1)) ((ny (1) — @) -+ (ny (1) — @™ 4)) . (A5)

Using Wick’s theorem and the usual definition for the Green’s function
Gg (1) = = (T7d,(1)d(0)), , (A.6)

the averages can be represented by determinants. We hence arrive at

o0 _In\k
Z:ZOZ/ dry...dr, Y (2? det D} det Dy. (A.7)
k=0""> s

51..-Sk

The determinants explicitly read

B G57(07) leg(rl -T2) ... G3(m — 1)
by |G- o). Gt - m) NS
(_;(S)}"’U(T]C —7'1) GSkJ(Tk —Tg) ngg(o_)

where we have defined the Green’s function G5° as

GZ07) —a®" 7 =1

Gg(’]’l —’7'2) T1 #TQ (A9>

Gslo(’ﬁ — 7'2) = {
We can sample the partition function (A.7) by defining a Monte Carlo configuration as
C:={{m,s1},..., {7, sk}} and the Monte Carlo weight of a configuration according to
w(C) = |(=U/2)* det DthL The Metropolis acceptance rate for an insertion of a vertex
is

—pU det DZ+1Dt+1}

A, ., = min {1, A.10
Y k+1 detD]Dy (A10)
while for a removal, it is
—k det D} | Dx
A, , = min [1,—M] A1l
o BU det DI D} (A.11)

20

=
HOWOW] OO W N

12
13
14

The Green’s function can be calculated as

1 6lnZz

G0 = "5 5nc ()

(A.12)

Carrying out the functional derivative and Fourier transforming yields

Gg(mn):ag(mn)f ﬂ ¢ (iwn)) ZZ [D7];; e sign[w(C)w(C). (A.13)

Separating the Monte Carlo weight, we need to accumulate

M (iwn) = —— 75 ZZ Df); e 7T x sign[w(C)), (A.14)

Z = Z signfw(C)], (A.15)
C

From M, we can compute the Green’s function as follows [13]:
G (iwy) = G (iwn) + G (iwn) MO (iw,) GS (iwy,). (A.16)

Appendiz A.2. Implementation

As an example of an application of the library, we discuss here the complete code
listing of a fully working, parallelized implementation of the weak-coupling CTQMC
algorithm described above. How this code can be used in an actual computation is
illustrated in the DMFT example of Sec. 7.1. Through the use of the various components
of the library, including gf, mc_tools, det_manip and CLEF, the full implementation takes
about 200 lines; it comes with a Python interface. Note that this simple implementation
can easily be extended: further measurements and moves may be added, or it may be
generalised to multi-orbital case or to a retarded interaction.

We divide the code into several listings that we discuss briefly. The purpose is to
give an illustration of the possibilities of the TRIQS library without entering into all the
details. We start with the main header file (Listing 6) of the code. It mainly defines and
provides access to the Green’s functions that are used in the code, in particular in the
main member function solve.

Listing 6 CT-INT: the header file

#include <triqs/gfs.hpp>
#include <boost/mpi.hpp>

/] ——emmmm————— The main class of the solver —---—-----—————-———————————

using namespace triqs::gfs;
enum spin {up, downl};

class ctint_solver {

block_gf<imfreq> gO_iw, gOtilde_iw, g_iw, M_iw;
block_gf<imtime> gOtilde_tau;

double double_occ, percent_done_, beta;

int n_matsubara, n_times_slices;

21

OO~ O UL W~

public:

// Accessors of the class

block_gf_view<imfreq> GO_iw() { return gO_iw; }
block_gf_view<imtime> GO_tau() { return gOtilde_tau; }
block_gf_view<imfreq> G_iw() { return g_iw; }

ctint_solver (double beta_, int n_iw = 1024, int n_tau = 100001);

// The method that runs the qmc
void solve(double U, double delta,

int n_cycles, int length_cycle = 50, int n_warmup_cycles = 5000,
std::string random_name = "",
int max_time = -1);

};

Listing 7 defines the Monte Carlo configurations through a simple vector of determi-
nants A.8 (instances of the det_manip class). They contain all the necessary information
to completely determine a configuration C := {{ry,s1},-.., {7k, sk} }. The determinants
are constructed from a function object gObar_tau, also declared in this listing, that is
used to fill the elements of the matrix A.8.

Listing 7 CT-INT: define the configurations
/] —mmmmmmmmmmm - The QMC configuration ----------------

// Argument type of gObar

struct arg_t {

double tau; // The imaginary time
int s; // The auxiliary spin

};

// The function that appears in the calculation of the determinant
struct gObar_tau {

gf<imtime> const >

double beta, delta;

int s;

double operator () (arg_t const &x, arg_t const &y) const {

if ((x.tau == y.tau)) { // G_\sigma(0”"-) - \alpha(\sigma s)

return 1.0 + gt[0]J(0, 0) - (0.5 + (2 * (s == x.s 7 1 : 0) - 1) * delta);
}

auto x_y = x.tau - y.tau;

bool b = (x_y >= 0);

if (!'b) x_y += beta;

double res = gtlclosest_mesh_pt(x_y)](0, 0);

return (b ? res : -res); // take into account antiperiodicity
}
};

// The Monte Carlo configuration

struct configuration {

// M-matrices for up and down
std::vector<triqgs::det_manip::det_manip<gObar_tau>> Mmatrices;

int perturbation_order () const { return Mmatrices[upl.size(); 1}

configuration(block_gf<imtime> &gOtilde_tau, double beta, double delta) {
// Initialize the M-matrices. 100 is the initial matrix size
for (auto spin : {up, down})
Mmatrices.emplace_back(gObar_tau{gOtilde_taulspin], beta, delta, spin}, 100);
}
};

Now that the configuration is declared, the next step is to define the Monte Carlo
moves that are going to act on this configuration. In Listing 8, two moves are im-
22

= e
OOUTERE WN O OO ULRWN -

plemented: the insertion of an interaction vertex at a random imaginary time and the
removal of a randomly chosen vertex. They are described by classes that must model
the concept of a Monte Carlo move. In other words they must have the three members
attempt, accept, reject. The attempt method tries a modification of the configuration and
returns a Metropolis acceptance ratio (e.g. for the insertion this ratio is given by A.10).
The Monte Carlo class will use this ratio to decide wether to accept or reject the proposed
configuration and then call accept or reject accordingly. Note that for efficiency reasons
the update of the determinants is done in two steps: in the attempt method only the ratio
of the new to the old determinant is computed (via try_insert). The actual update of the
full inverse matrix is performed only if the move is accepted (see the complete_operation
call in accept).

Listing 8 CT-INT: define the moves

// === QMC move : inserting a vertex ------------------

struct move_insert {

configuration *config;
trigs::mc_tools::random_generator &rng;
double beta, U;

double attempt() { // Insert an interaction vertex at time tau with aux spin s
double tau = rng(beta);
int s = rng(2);

auto k = config->perturbation_order ();

auto det_ratio = config->Mmatrices[up].try_insert(k, k, {tau, s}, {tau, s}) *

config->Mmatrices [down].try_insert(k, k, {tau, s}, {tau, s});

return -beta * U / (k + 1) * det_ratio; // The Metropolis ratio

}

double accept() {
for (auto &d : config->Mmatrices) d.complete_operation(); // Finish insertion
return 1.0;

void reject() {}

/] === QMC move : deleting a vertex ------------------

struct move_remove {

configuration *config;
trigs::mc_tools::random_generator &rng;
double beta, U;

double attempt () {

auto k = config->perturbation_order ();

if (k <= 0) return 0; // Config is empty, trying to remove makes no sense
int p = rng(k); // Choose one of the operators for removal

auto det_ratio = config->Mmatrices[up].try_remove(p, p) *

config->Mmatrices [down].try_remove(p, p);
return -k / (beta * U) * det_ratio; // The Metropolis ratio
}

double accept () {
for (auto &d : config->Mmatrices) d.complete_operation();
return 1.0;

void reject() {} // Nothing to do
}s;

The measurement of the Green’s function is shown in Listing 9. It is a simple tran-
scription of Eq. A.15. Again, the measurements are described by classes that obey the

23

OO~ UL WN -

concept of a Monte Carlo measurement: they have a method accumulate which is called
during the Monte Carlo chain and accumulates data, and a collect_results method that
is called at the very end of the calculation. Typically the collect_results MPI-reduces
the results from several cores in a parallelized calculation. Note that std14::plus in
lines 34 and 35 is the C++14 version of std: :plus, which does not require a type, and
which is provided by TRIQS for backward compatibility to C++11.

Listing 9 CT-INT: define the measures
/] - QMC measurement ----------------
struct measure_M {

configuration const *config; // Pointer to the MC configuration
block_gf<imfreq> &Mw; // reference to M-matrix
double beta, Z = 0;

measure_M(configuration const *config_, block_gf<imfreq> &Mw_, double beta_)
: config(config_), Mw(Mw_), beta(beta_) {

Mw() = 0;

}

void accumulate (double sign) {
Z += sign;

for (auto spin : {up, downl}) {

// A lambda to measure the M-matrix in frequency

auto lambda = [this, spin, sign](arg_t const &x, arg_t const &y, double M) {

auto coeff std::exp(-1_j * M_PI * (x.tau - y.tau) / beta);
auto fact = coeff *x coeff;

for (auto const &om : this->Mw[spin].mesh()) {
this->Mwlspin] [om] (0, 0) += sign * M * coeff;
coeff *x= fact;

}

};

foreach(config->Mmatrices [spin], lambda);

}
}

void collect_results(boost::mpi::communicator const &c) {
boost::mpi::all_reduce(c, Mw, Mw, stdl4::plus<>());
boost::mpi::all_reduce(c, Z, Z, stdld::plus<>());

Mw = Mw / (-Z * beta);

};

The above components are put together in the main solver body shown in Listing 10.
The first part is the constructor that only defines the dimension of the Green’s functions.
The second part is the solve method that actually runs the Monte Carlo simulation. It
first constructs the Fourier transform @0(7) of the non-interacting Green’s function given
by the user (it is stored in go_iw). Then a Monte Carlo simulation is created by adding
the relevant moves and measures. This is done via the add_move and add_measure methods.
Note that both the moves and the measurements are constructed with a reference to
the Monte Carlo configuration config. The simulation is launched with start and final
results are collected at the end of the simulation with collect_results. In line 50, we
finally compute the actual Green’s function through a compact CLEF expression that
implements (A.15).

Listing 10 CT-INT: the main solver body
24

© 00O U W

1

/] - The main class of the solver -------------—--—-———————-

ctint_solver::ctint_solver(double beta_, int n_iw, int n_tau) : beta(beta_) {
gO_iw =
make_block_gf ({"up", "down"}, gf<imfreq>{{beta, Fermion, n_iw}, {1, 1}3});
gOtilde_tau =
make_block_gf ({"up", "down"}, gf<imtime>{{beta, Fermion, n_tau}, {1, 1}});
gOtilde_iw = gO_iw;
g_iw = g0_iw;
M_iw = gO_iw;
}

// The method that runs the gmc

void ctint_solver::solve(double U, double delta, int n_cycles, int length_cycle,

int n_warmup_cycles, std::string random_name,
int max_time) {

boost::mpi::communicator world;
trigs::clef::placeholder<0> spin_;
trigs::clef::placeholder<1> om_;

for (auto spin : {up, down}) { // Apply shift to gO_iw and Fourier transform

gOtilde_iw[spin](om_) << 1.0 / (1.0 / gO_iw[spinl(om_) - U / 2);
gO0tilde_tau () [spin] = trigqs::gfs::inverse_fourier(gOtilde_iwl[spinl);
}

// Rank-specific variables
int verbosity = (world.rank() == 0 7 3 : 0);
int random_seed = 34788 + 928374 * world.rank();

// Construct a Monte Carlo loop

trigs::mc_tools::mc_generic<double> CTQMC(n_cycles, length_cycle,
n_warmup_cycles, random_name,
random_seed, verbosity);

// Prepare the configuration
auto config = configuration{gOtilde_tau, beta, deltal;

// Register moves and measurements

CTQMC.add_move (move_insert{&config, CTQMC.rng(), beta, U}, "insertion");

CTQMC.add_move (move_remove{&config, CTQMC.rng(), beta, U}, "removal");
CTQMC.add_measure (measure_M{&config, M_iw, beta}, "M measurement");

// Run and collect results
CTQMC.start (1.0, trigs::utility::clock_callback(max_time));
CTQMC.collect_results (world);

// Compute the Green function from Mw
g_iwlspin_Jl(om_) << gOtilde_iw[spin_Jl(om_) + gOtilde_iw[spin_J](om_) *
M_iw[spin_J](om_) =*

gOtilde_iw[spin_](om_);

The listings above give a complete implementation of the CT-INT algorithm in C++:
the ctint_solver class is ready to be used from within other C++ programs. It is however
convenient to control calculations on the Python level. As discussed above, TRIQS
provides a tool to easily ezpose C++ to Python. Starting from a descriptor written
in Python (shown in Listing 11), it automatically generates a C wrapping code that
constructs the Python modules for the ctint_solver. The descriptor basically lists the
C++ elements that need to be exposed to Python. In most cases, this descriptor can
be generated automatically by a small analysing tool provided with TRIQS. Here the

script 11 has been generated automatically using this tool.

Listing 11 CT-INT: Python wrapper descriptor

Generated automatically using the command

25

—O © 0 UL W N

e
=N

—_
ot

c++2py.py ../c++/ctint.hpp -p -m pytrigs.applications.impurity_solvers.
ctint_tutorial -o ctint_tutorial
from wrap_generator import *

The module
module = module_(full_name = "pytriqs.applications.impurity_solvers.
ctint_tutorial", doc = "")

All the trigs C++/Python modules
module.use_module (’gf’)

Add here all includes beyond what is automatically included by the trigs
modules
module.add_include("../c++/ctint.hpp")

Add here anything to add in the C++ code at the start, e.g. namespace
using

module.add_preamble ("""

using namespace trigs::gfs;

nn ll)
The class ctint_solver
¢ = class_(
py_type = "CtintSolver", # name of the python class
c_type = "ctint_solver", # name of the C++ class
)
c.add_constructor (""" (double beta_, int n_iw = 1024, int n_tau = 100001)"""
’ doc = nmn muny
c.add_method("""void solve (double U, double delta, int n_cycles, int
length_cycle = 50, int n_warmup_cycles = 5000, std::string random_name
= """ int max_time = -1)""",
doc = nnn nn ll)
c.add_property(name = "GO_iw",
getter = cfunction("block_gf_view<imfreq> GO_iw ("),
doc = nnn nnn)
c.add_property(name = "GO_tau",
getter = cfunction("block_gf_view<imtime> GO_tau ()"),
doc = nnn nnn)
c.add_property(name = "G_iw",
getter = cfunction("block_gf_view<imfreq> G_iw ("),
doc = "nm onwnmy

module.add_class (c)

module.generate_code ()

After the code has been compiled and installed a new Python module is available
in pytrigs.applications.impurity_solvers.ctint_tutorial. The solver can then be used as
illustrated in Fig. 2. As this example shows, C++ members like go_iw can directly be
initialised from a Python script and the solve method is also accessible. Controlling
the solver, or any other C++ code directly from Python makes it very easy to change
parameters, plot results, build flexible control structures around it, etc., without the
need to recompile the codes.

References

[1] A. Georges, G. Kotliar, W. Krauth, M. J. Rozenberg, Dynamical mean-field theory of strongly
correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys. 68 (1) (1996) 13.
doi:10.1103/RevModPhys.68.13
URL http://dx.doi.org/10.1103/RevModPhys.68.13

26

http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.68.13

2]

(3]

(4]

(5]

[6]

[7]

(8]

(9]
(10]

(11]

(12]

(13]

[14]

(15]

[16]

(17]

(18]

(19]

20]

G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, C. A. Marianetti, Electronic
structure calculations with dynamical mean-field theory, Rev. Mod. Phys. 78 (2006) 865-951. doi:
10.1103/RevModPhys.78.865.

URL http://1link.aps.org/doi/10.1103/RevModPhys.78.865

T. Maier, M. Jarrell, T. Pruschke, M. H. Hettler, Quantum cluster theories, Rev. Mod. Phys. 77
(2005) 1027-1080. doi:10.1103/RevModPhys.77.1027.

URL http://link.aps.org/doi/10.1103/RevModPhys.77.1027

A. Toschi, A. A. Katanin, K. Held, Dynamical vertex approximation: A step beyond dynamical
mean-field theory, Physical Review B (Condensed Matter and Materials Physics) 75 (4) (2007)
045118. doi:10.1103/PhysRevB.75.045118.

URL http://link.aps.org/abstract/PRB/v75/e045118

A. N. Rubtsov, M. I. Katsnelson, A. I. Lichtenstein, Dual fermion approach to nonlocal correlations
in the hubbard model, Phys. Rev. B 77 (2008) 033101. doi:10.1103/PhysRevB.77.033101.

URL http://link.aps.org/doi/10.1103/PhysRevB.77.033101

U. Schollwéck, The density-matrix renormalization group, Rev. Mod. Phys. 77 (2005) 259-315.
doi:10.1103/RevModPhys.77.259.

URL http://link.aps.org/doi/10.1103/RevModPhys.77.259

B. Bauer, L. D. Carr, H. G. Evertz, A. Feiguin, J. Freire, S. Fuchs, L. Gamper, J. Gukelberger,
E. Gull, S. Guertler, A. Hehn, R. Igarashi, S. V. Isakov, D. Koop, P. N. Ma, P. Mates, H. Matsuo,
O. Parcollet, G. Pawlowski, J. D. Picon, L. Pollet, E. Santos, V. W. Scarola, U. Schollwock, C. Silva,
B. Surer, S. Todo, S. Trebst, M. Troyer, M. L. Wall, P. Werner, S. Wessel, The alps project release
2.0: open source software for strongly correlated systems, Journal of Statistical Mechanics: Theory
and Experiment 2011 (05) (2011) P05001.

L. Huang, Y. Wang, Z. Y. Meng, L. Du, P. Werner, X. Dai, igist: An open source continuous-time
quantum monte carlo impurity solver toolkitarXiv:1409.7573.

URL http://arxiv.org/abs/1409.7573

M. Stoudenmire, S. White. [link].

URL http://itensor.org

A. N. Rubtsov, V. V. Savkin, A. I. Lichtenstein, Continuous-time quantum monte carlo method for
fermions, Phys. Rev. B 72 (3) (2005) 035122. doi:10.1103/PhysRevB.72.035122.

E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer, P. Werner, Continuous-time
monte carlo methods for quantum impurity models, Rev. Mod. Phys. 83 (2) (2011) 349-404. doi:
10.1103/RevModPhys.83.349.

P. Werner, A. Comanac, L. de’ Medici, et al., Continuous-time solver for quantum impurity models,
Phys. Rev. Lett. 97 (7) (2006) 076405. doi:10.1103/PhysRevLett.97.076405.

E. Gull, P. Werner, O. Parcollet, M. Troyer, Continuous-time auxiliary-field monte carlo for quan-
tum impurity models, EPL (Europhysics Letters) 82 (5) (2008) 57003.

URL http://stacks.iop.org/0295-5075/82/i=5/a=57003

E. G. C. P. van Loon, A. I. Lichtenstein, M. I. Katsnelson, O. Parcollet, H. Hafermann, Beyond
extended dynamical mean-field theory: Dual boson approach to the two-dimensional extended
hubbard model, Phys. Rev. B 90 (2014) 235135. doi:10.1103/PhysRevB.90.235135.

URL http://1link.aps.org/doi/10.1103/PhysRevB.90.235135

A. M. Léauchli, P. Werner, Krylov implementation of the hybridization expansion impurity solver and
application to 5-orbital models, Phys. Rev. B 80 (2009) 235117. doi:10.1103/PhysRevB.80.235117.
URL http://1link.aps.org/doi/10.1103/PhysRevB.80.235117

F. Pérez, B. E. Granger, IPython: a system for interactive scientific computing, Computing in
Science and Engineering 9 (3) (2007) 21-29. doi:10.1109/MCSE.2007.53.

URL http://ipython.org

Abstracts of papers, The Annals of Mathematical Statistics 20 (4) (1949) 620-624. doi:10.1214/
aoms/1177729959.

URL http://dx.doi.org/10.1214/aoms/1177729959

J. Sherman, W. J. Morrison, Adjustment of an inverse matrix corresponding to a change in one
element of a given matrix, The Annals of Mathematical Statistics 21 (1) (1950) 124-127. doi:
10.1214/aoms/1177729893.

URL http://dx.doi.org/10.1214/aoms/1177729893

C. L. Lawson, R. J. Hanson, D. R. Kincaid, F. T. Krogh, Algorithm 539: Basic Linear Algebra
Subprograms for Fortran usage [F1], ACM Transactions on Mathematical Software 5 (3) (1979)
324-325.

L. S. Blackford, J. Demmel, I. Duff, G. Henry, M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet,

27

http://link.aps.org/doi/10.1103/RevModPhys.78.865
http://link.aps.org/doi/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/RevModPhys.78.865
http://link.aps.org/doi/10.1103/RevModPhys.78.865
http://link.aps.org/doi/10.1103/RevModPhys.77.1027
http://dx.doi.org/10.1103/RevModPhys.77.1027
http://link.aps.org/doi/10.1103/RevModPhys.77.1027
http://link.aps.org/abstract/PRB/v75/e045118
http://link.aps.org/abstract/PRB/v75/e045118
http://dx.doi.org/10.1103/PhysRevB.75.045118
http://link.aps.org/abstract/PRB/v75/e045118
http://link.aps.org/doi/10.1103/PhysRevB.77.033101
http://link.aps.org/doi/10.1103/PhysRevB.77.033101
http://dx.doi.org/10.1103/PhysRevB.77.033101
http://link.aps.org/doi/10.1103/PhysRevB.77.033101
http://link.aps.org/doi/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/RevModPhys.77.259
http://link.aps.org/doi/10.1103/RevModPhys.77.259
http://arxiv.org/abs/1409.7573
http://arxiv.org/abs/1409.7573
http://arxiv.org/abs/1409.7573
http://arxiv.org/abs/1409.7573
http://itensor.org
http://itensor.org
http://dx.doi.org/10.1103/PhysRevB.72.035122
http://dx.doi.org/10.1103/RevModPhys.83.349
http://dx.doi.org/10.1103/RevModPhys.83.349
http://dx.doi.org/10.1103/PhysRevLett.97.076405
http://stacks.iop.org/0295-5075/82/i=5/a=57003
http://stacks.iop.org/0295-5075/82/i=5/a=57003
http://stacks.iop.org/0295-5075/82/i=5/a=57003
http://link.aps.org/doi/10.1103/PhysRevB.90.235135
http://link.aps.org/doi/10.1103/PhysRevB.90.235135
http://link.aps.org/doi/10.1103/PhysRevB.90.235135
http://dx.doi.org/10.1103/PhysRevB.90.235135
http://link.aps.org/doi/10.1103/PhysRevB.90.235135
http://link.aps.org/doi/10.1103/PhysRevB.80.235117
http://link.aps.org/doi/10.1103/PhysRevB.80.235117
http://dx.doi.org/10.1103/PhysRevB.80.235117
http://link.aps.org/doi/10.1103/PhysRevB.80.235117
http://ipython.org
http://dx.doi.org/10.1109/MCSE.2007.53
http://ipython.org
http://dx.doi.org/10.1214/aoms/1177729959
http://dx.doi.org/10.1214/aoms/1177729959
http://dx.doi.org/10.1214/aoms/1177729959
http://dx.doi.org/10.1214/aoms/1177729959
http://dx.doi.org/10.1214/aoms/1177729893
http://dx.doi.org/10.1214/aoms/1177729893
http://dx.doi.org/10.1214/aoms/1177729893
http://dx.doi.org/10.1214/aoms/1177729893
http://dx.doi.org/10.1214/aoms/1177729893

R. C. Whaley, An updated set of basic linear algebra subprograms (blas), ACM Trans. Math. Softw.
28 (2) (2002) 135-151. doi:10.1145/567806.567807.

28

http://dx.doi.org/10.1145/567806.567807

	1 Introduction
	2 Motivations
	3 Structure
	4 Citation policy
	5 Programming Requirements
	6 Portability
	7 TRIQS in two examples
	7.1 A DMFT computation in one page of IPython
	7.2 Easy manipulation of Green's functions in C++

	8 Library components
	8.1 Multidimensional arrays (C++)
	8.2 Green's functions (C++ and Python)
	8.3 Monte Carlo tools (C++)
	8.4 Determinant manipulations (C++)
	8.5 CLEF (C++)
	8.6 HDF5 (C++ and Python)
	8.7 Second-quantized operators (C++ and Python)
	8.8 C++/Python wrapping tool

	9 Getting started
	9.1 Obtaining TRIQS
	9.2 Installation
	9.3 Usage

	10 Contributing
	11 Summary
	12 Acknowledgements
	Appendix A A sample application: Interaction expansion continuous-time quantum Monte Carlo algorithm
	Appendix A.1 Formalism
	Appendix A.2 Implementation

