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Abstract

We present the TRIQS/DFTTools package, an application based on the TRIQS library
that connects this toolbox to realistic materials calculations based on density functional
theory (DFT). In particular, TRIQS/DFTTools together with TRIQS allows an efficient im-
plementation of DFT plus dynamical mean-field theory (DMFT) calculations. It sup-
plies tools and methods to construct Wannier functions and to perform the DMFT self-
consistency cycle in this basis set. Post-processing tools, such as band-structure plotting
or the calculation of transport properties are also implemented. The package comes with
a fully charge self-consistent interface to the Wien2k band structure code, as well as a
generic interface that allows to use TRIQS/DFTTools together with a large variety of DFT
codes. It is distributed under the GNU General Public License (GPLv3).
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Program Title: TRIQS/DFTTools
Project homepage: http://ipht.cea.fr/triqs/applications/dft tools
Catalogue identifier: –
Journal Reference: –
Operating system: Unix, Linux, OSX
Programming language: Fortran/Python
Computers: Any architecture with suitable compilers including PCs and clusters
RAM: Highly problem dependent
Distribution format: GitHub, downloadable as zip
Licensing provisions: GNU General Public License (GPLv3)
Classification: 6.5, 7.3, 7.7, 7.9
PACS: 71.10.-w,71.27.+a,71.10.Fd,71.30.+h,71.15.-m, 71.20.-b
Keywords: Many-body physics, Strongly-correlated systems, DMFT, DFT, ab initio calculations
External routines/libraries: TRIQS, cmake.
Running time: Tests take less than a minute; otherwise highly problem dependent.
Nature of problem:
Setting up state-of-the-art methods for an ab initio description of correlated systems from scratch
requires a lot of code development. In order to make these calculations possible for a larger com-
munity there is need for high-level methods that allow to construct DFT+DMFT calculations
in a modular and efficient way.
Solution method:
We present a Fortran/Python open-source computational library that provides high-level ab-
stractions and modules for the combination of DFT with many-body methods, in particular the
dynamical mean-field theory. It allows the user to perform fully-fledged DFT+DMFT calcula-
tions using simple and short Python scripts.

1. Introduction and Motivation

When describing the physical and also chemical properties of crystalline materials,
there is a standard method that is used with great success for a large variety of systems:
density functional theory (DFT). This powerful theory states that the electron density of
a system uniquely determines all ground-state properties. However, in order to find the
electron density in practice one usually resorts to the Kohn-Sham scheme involving an
approximate exchange-correlation potential, such as the local-density or the generalized-
gradient approximations. The solution of the self-consistent Kohn-Sham equations yields
the Kohn-Sham orbitals (also called Bloch bands) |ψkν〉 and the corresponding Kohn-
Sham energies εkν. The index ν labels the electronic band, and k is the wave vector
within the first Brillouin zone (BZ). Below, we will always imply the Kohn-Sham scheme
when talking about DFT.

The solutions of the Kohn-Sham equations form bands of allowed states in momentum
space. These states are filled up to the Fermi level by the electrons according to the Pauli
principle, and one can use this simple picture for example to explain the electronic band
structure of materials such as elementary copper or aluminium. Following this principle
one can try to classify all existing materials into metals and insulators. A system is a
metal if there are an odd number of electrons per unit cell in the valence bands, since
this leads to a partially filled band that cuts the Fermi energy and thus produces a
Fermi surface. On the other hand, an even number of electrons per unit cell can lead
to completely filled bands with a finite excitation gap to the conduction bands, i.e.
insulating behaviour.

2



However, there are certain compounds where this classification into metals and insu-
lators fails dramatically. This happens in particular in systems with partially filled d-
and f -shells. There, DFT predicts metallic behaviour due to the open-shell setting, but
in experiments many of these materials actually show insulating behaviour. This cannot
be explained by band theory and the Pauli principle alone, and a different mechanism
has to be invoked. The insulating behaviour in such systems, among which are the Mott
insulators [1], comes by solely due to correlations between the electrons. Moreover, many
interesting properties, such as transport, photoemission, etc. are temperature-dependent,
which cannot be treated with a ground-state theory such as DFT alone.

In order to describe correlated materials within ab initio schemes one has to go beyond
a standard DFT treatment. One step in this direction is the so called DFT+U approxi-
mation [2] which can induce the opening of a gap through a static shift of the Kohn-Sham
eigenvalues. However, this technique cannot properly describe the physics of correlated
metals, whose low-energy properties are dominated by dynamical many-body effects. In
the mid-nineties, a very successful method was introduced to tackle this problem, namely
the combination of DFT with the dynamical mean-field theory (DMFT) [3, 4, 5]. The
main idea is to add local quantum correlations in the framework of DMFT to the non-
local quantum Hamiltonian obtained by DFT. This method has been since applied to a
large variety of problems, including high-temperature superconductors, organic insula-
tors, iron pnictides, oxide perovskites, and other strongly-correlated materials.

Since the first proposal of DFT+DMFT, there has been a tremendous amount of
new developments of numerical tools, including (fully charge self-consistent) interfaces
between DFT codes and the DMFT [6, 7, 8, 9, 10, 11, 12], and exact algorithms for
solving the DMFT equations [13, 14, 15, 16, 17, 18, 19]. As a result, many more classes
of materials can be studied within this framework on an ab initio basis, with much higher
accuracy than just a decade ago. The drawback of these new methods, however, is that
they require a substantial amount of coding effort to keep up with the state-of-the-art
techniques in the field.

In this paper we present version 1.3 of the TRIQS/DFTTools application, which is based
on the TRIQS library [20]. The purpose of this application is to provide a complete set of
tools to perform fully charge self-consistent ab initio calculations for correlated materi-
als, and it enables researchers in the field of correlated materials to do these calculations
without dedicating time to code their own implementation. The TRIQS/DFTTools package
provides a fully charge self-consistent interface to the Wien2k [21] band structure pro-
gram, as well as an interface that is usable with many other DFT or tight-binding codes,
however, without the possibility of full charge self-consistency. Physical properties that
can be calculated range from spectral functions and (projected) densities of states (DOS),
charges and magnetic moments, to more involved quantities like optical conductivity and
thermopower. The package can handle spin-polarised cases, as well as spin-orbit coupled
systems [22]. It is released under the Free Software GPLv3 license.

The paper is organised as follows. We start with a brief general discussion of the
structure of TRIQS/DFTTools in Sec. 2. In Sec. 3 we show how the interface between DFT
and DMFT is set up, in particular for the Wien2k DFT package. We will also introduce
the projectiveWannier functions that are used as the basis set for the DMFT calculations.
We continue in Sec. 4 with a simple example of a DFT+DMFT calculation, without
charge self consistency. In Sec. 5 the concept of full charge self-consistency is introduced,
followed by a discussion of post-processing tools in Sec. 6. Information on how to obtain
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layer
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Figure 1: General structure of the TRIQS/DFTTools package.

and install the code is given in Sec. 7, and we finally conclude in Sec. 8.

2. General structure of TRIQS/DFTTools

The central part of TRIQS/DFTTools is a collection of Python modules that allow an
efficient implementation of the DMFT self-consistency cycle. Since the input for this
DMFT part has to be provided by DFT calculations, there needs to be another layer
that connects the Python-based modules with the DFT output. Naturally, this interface
depends on the DFT package at hand. Within TRIQS/DFTTools we provide an interface to
the Wien2k band structure package, and a general interface that can be used in a more
general setup. Note that only the Wien2k interface allows fully charge self-consistent
calculations. Support for other codes is in progress.

The basic structure is schematically presented in Fig. 1. After performing a DFT
calculation, the Kohn-Sham orbitals are used to construct localised Wannier orbitals,
and all required information is converted into an hdf5 file. This file is used by the
Python modules of TRIQS/DFTTools to perform the DMFT calculation. The fully charge
self-consistent loop can be closed by taking the interacting density matrix and using it
to recalculate the ground state density of the crystal in Wien2k. This leads to a new
Kohn-Sham exchange-correlation potential, and thus to new orbitals. The full loop has
to be repeated until convergence.

TRIQS/DFTTools also provides tools for analysing the data, such as spectral functions,
densities of states, and transport properties. Depending on the method of solution of
the Anderson impurity problem within the DMFT loop, the user may need to perform
analytic continuation of the self-energy in order to use these tools1.

3. The interface to DFT

3.1. Projective Wannier functions

In order to perform the DMFT calculations one has to choose an appropriate localised
basis set. In this package, we provide a method to calculate projective Wannier functions
|wα,σ

km 〉 based on the Wien2k Kohn-Sham orbitals, as introduced in Ref. [23]. We denote
orbitals in the correlated subspace C where many-body correlations are applied by Latin
letters m, the index of the atom in the unit cell by α, and the spin projection by σ.

1Note that TRIQS/DFTTools itself does not provide any method to perform the analytic continuation.
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Figure 2: DOS of the vanadium t2g-like Wannier functions of SrVO3 produced by
dmftproj, for 3 different choices of projection window. Black line: only vanadium
t2g bands, W = [−2.0, 2.0] eV. Red line: vanadium t2g and oxygen p bands, W =
[−8.0, 2.0] eV. Green line: even larger window, W = [−8.0, 8.0] eV. Note in the latter
case the small additional weight around 7 eV.

The basic idea of the projective Wannier function technique [24] is to expand a set of
local orbitals |χα,σ

m 〉 over a restricted number of Bloch bands

|χ̃α,σ
km〉 =

∑

ν∈W

〈ψσ
kν |χ

α,σ
m 〉|ψσ

kν〉, (1)

where ν is the band index and the sum is carried out over Bloch bands within an energy
window W . Note that the functions |χ̃α,σ

km〉 are not orthonormal due to this truncation.
The orbitals |χ̃α,σ

km〉 can be orthonormalised, giving a set of Wannier functions:

|wα,σ
km 〉 =

∑

α′,m′

Sα,α′

m,m′ |χ̃
α′,σ
km′ 〉, (2)

where Sα,α′

m,m′ =
{
O(k, σ)−1/2

}α,α′

m,m′
andOα,α′

m,m′(k, σ) = 〈χ̃α,σ
km |χ̃α′,σ

km′ 〉 are the overlap matrix

elements. The functions |wα,σ
km 〉 are, in fact, the Bloch transform of the corresponding

real-space Wannier functions |wα,σ
Rm〉, through |wα,σ

km 〉 =
∑

R
eikR |wα,σ

Rm〉.
In practice it is much more convenient to work with projection operators, which

transform quantities from the Bloch band basis to the Wannier orbital basis. We define
these operators as

P̂α,σ(k) =
∑

m∈C

|wα,σ
km 〉〈wα,σ

km |. (3)

The matrix elements of these operators are calculated straight-forwardly using the above
Wannier functions:

Pα,σ
mν (k) =

∑

α′m′

Sα,α′

m,m′ P̃
α′,σ
m′ν (k) (4)

P̃α,σ
mν (k) = 〈χ̃α,σ

m |ψσ
kν〉, ν ∈ W (5)

5



Figure 3: Real-space representation of the vanadium t2g Wannier function of SrVO3.
Left plot: projection only to t2g bands. Right plot: projection to all vanadium d and
oxygen p bands. The blue and red colours indicate the negative and positive phases,
respectively, of the Wannier function. Note the much better localisation of the d-like
Wannier functions in the latter case, without weight around the oxygen positions. The
Wannier functions are constructed using the dmftproj program, their real-space repre-
sentations are generated with the help of the wplot program from the wien2wannier[10]
package. Plots are produced using XCrysDen [25].

These projectors can now be used to calculate, e.g., the local projected non-interacting
Matsubara Green’s function from the DFT Green’s function,

G0,α
mn(iωn) =

∑

k

∑

ν

Pα
mν(k)

1

iωn − εkν + µ
Pα∗
nν (k), (6)

where we have dropped the spin index for better readability. From this non-interacting
Green’s function one can calculate the density of states. As an example, we show in Fig. 2
the DOS for the prototypical material SrVO3. Three different Wannier constructions are
shown. First, a projection where only the vanadium t2g bands are taken into account
is shown in black. The projection that comprises vanadium t2g as well as the oxygen p
bands is shown in red, and the green line is the DOS for a projection using DFT bands
up to 8 eV. The difference in the latter two projections is minor, and consists primarily
in the small transfer of weight to large energies around 7 eV.

In Fig. 3 we show the real-space representation of the Wannier charge density. The
left plot shows a t2g-like Wannier function for a projection of t2g bands only, which
corresponds to the black line in Fig. 2. The right plot is the corresponding Wannier
function when all bands are included in the projection. The effect of increasing the
projection window is obvious: it results in a better localisation of the resulting Wannier
functions.

All necessary steps to construct the orthonormalised set of projection operators from
Wien2k DFT calculations is contained in the program dmftproj that is shipped with
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TRIQS/DFTTools. In Wien2k the Bloch functions are expanded in the LAPW basis set as

ψσ
kν(r) =

NPW∑

G

cν,σ
G

(k)
∑

lm

Aα,k+G

lm uα,σl (r, Eα
1l)Y

l
m(r̂)

+

Nlo∑

nlo=1

cν,σlo

[
Aα,lo

lm uα,σl (r, Eα
1l) +Bα,lo

lm u̇α,σl (r, Eα
1l)

]
Y l
m(r̂)+

+

NLO∑

nLO=1

cν,σLO

[
Aα,LO

lm uα,σl (r, Eα
1l) + Cα,LO

lm uα,σl (r, Eα
2l)

]
Y l
m(r̂),

(7)

where NPW is the total number of plane waves in the basis set, Nlo is the number of local
orbitals, and NLO the corresponding number of auxiliary orbitals for semi-core states.
For more details on the Wien2k basis set we refer the reader to the literature [21, 26, 23].

As initial localised orbitals |χα,σ
m 〉 in our projective Wannier function construction, we

choose the solutions of the Schrödinger equation within the muffin-tin sphere
∣∣uα,σl (E1l)Y

l
m

〉

at the corresponding linearisation energy E1l. Inserting this ansatz into Eq. 1 and using
the orthogonality relations of the solutions of the Schrödinger equation allows to calcu-
late the matrix elements of the projection operators. After some algebra one arrives at
the expressions

P̃α,σ
mν (k) =

〈
uα,σl (E1l)Y

l
m |ψσ

kν〉

= Aν,α
lm (k, σ) +

∑

nLO=1

Cν,α
lm,LO(k, σ),

(8)

with contributions from the LAPW and/or APW+lo orbitals

Aν,α
lm (k, σ) =

NPW∑
G

cν,σ
G

(k)Aα,k+G

lm

+
Nlo∑

nlo=1

cν,σlo Aα,lo
lm +

NLO∑
nLO=1

cν,σLOA
α,LO
lm

(9)

as well as the contribution from the semi-core orbitals,

Cν,α
lm,LO(k, σ) = cν,σLOC

α,LO
lm

〈
uα,σl (E1l)Y

l
m|uα,σl′ (El,LO)Y

l′

m′

〉
(10)

dmftproj takes all the necessary data from Wien2k, evaluates Eqs. 10 and 8 to obtain
the matrix elements of the projection operators, Eqs. 5 and 4. Further information needed
for the DMFT calculation are i) the rotation matrix from local to global coordinate
systems, ii) the Kohn-Sham Hamiltonian within the projection window, and iii) the
symmetry operation matrices for the BZ integration. All this information is extracted
by dmftproj from the Wien2k output.

3.2. Usage

As a prerequisite a self-consistent Wien2k DFT calculation has to be performed. At
this point, the further steps for the interface are
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• writing of necessary data from the Wien2k calculation into files, which is done using
the Wien2k command x lapw2 -almd,

• running dmftproj to calculate the projective Wannier functions,

• conversion of the text output files into the hdf5 file format using the Python modules
provided.

After these steps, all necessary information for a DMFT calculation is stored in a
single hdf5 file. For the details of these steps, and all input/output parameters we refer
the reader to the extensive online documentation of TRIQS/DFTTools and the example below.

3.3. General interface for non-Wien2k users

The TRIQS/DFTTools package also contains an interface layer that can be used in many
situations, albeit without the possibility of full charge self-consistency. In fact, as an
input it takes the correlated subspace Hamiltonian Hmn(k), where m and n are orbital
indices, and the k-mesh spans the first BZ. Unlike the Wien2k converter, the calculation
is done exclusively in Wannier orbital space. The converter takes this Hmn(k), together
with information such as the quantum numbers of the correlated orbitals and the required
electron density, and produces a hdf5 file that can be used for the DMFT calculations.
We note that this interface is completely independent of how the Hmn(k) is produced. It
can use, for instance, output from Wannier90 [27, 28], which is available for many DFT
codes, from NMTO calculations [29], or from any other tight-binding model representing
the non-interacting electronic structure of the system.

4. One-shot DFT+DMFT calculations

Listing 1 Sketch of the Python script for the DMFT self-consistency loop in one-shot

DFT+DMFT calculations. Note that the solver imports, construction and execution must

be appropriately added and modified.

1 # Imports and initialisations
2 from pytriqs .applications.dft .sumk_dft import SumkDFT
3
4 SK = SumkDFT (hdf_file = ’YourDFTDMFTcalculation .h5’)
5 S = Solver (...) # appropriate constructor parameters to be defined
6 n_loops = 15 # define the number of DMFT loops
7
8 for iteration_number in range (n_loops ) : # start the DMFT loop
9

10 # set the self energy as an attribute of the class :
11 SK.set_Sigma ([S.Sigma ])
12 # calculate the chemical potential :
13 chemical_potential = SK.calc_mu ()
14 # extract the local Green ’s function :
15 S.G_iw << SK. extract_G_loc()[0]
16 # finally get G0 (input for the Solver ):
17 S.G0_iw << inverse (S.Sigma_iw + inverse (S.G_iw))
18
19 # now solve the impurity problem :
20 S.solve (...) # appropriate solve parameters to be defined
21
22 # calculate the new double counting correction :
23 dm = S.G_iw.density ()
24 SK.calc_dc (dm , U_interact =U, J_hund =J, orb =0, use_dc_formula=0)
25

8



26 # Save the final results into an archive
27 from pytriqs .archive import HDFArchive
28 import pytriqs .utility .mpi as mpi
29 if mpi.is_master_node ():
30 with HDFArchive (’YourDFTDMFTcalculation .h5’,’a’) as ar:
31 ar[’G’] = S.G_iw
32 ar[’Sigma ’] = S.Sigma_iw

As mentioned in the introduction, TRIQS/DFTTools provides simple modules that allow
the compact and efficient implementation of the DMFT self-consistency cycle. We will
illustrate how to use the package by giving a one-to-one correspondence of the code
statements to the necessary equations. In this section we give a simple Python script for
so-called ‘one-shot’ DFT+DMFT calculations without full charge self-consistency. Note
that the construction of the Wannier functions and the conversion procedures discussed
in the previous section have already been performed. We assume that the hdf5 archive
for the calculation, where everything is stored, is called YourDFTDMFTcalculation.h5.
Furthermore, we assume that a suitable method to solve the quantum impurity problem
is available, such as the TRIQS/CTHYB solver [19]. Note that TRIQS/DFTTools itself does not
provide any impurity solver.

The DMFT calculation as given in Lst. 1 consists of the following steps. First, we
initialise our calculation as done in lines 2 to 6 of Lst. 1. The SumkDFT module is loaded and
initialised with the previously generated hdf5 archive YourDFTDMFTcalculation.h5. We
initialise a solver module, which is used for the solution of the Anderson impurity model,
for instance, the TRIQS/CTHYB package [19]. It is important that the user is familiar with the
details of this solver initialisation, including set-up of the interaction matrix, definition of
the interaction parameters U and J , etc. We request nloops = 15 self-consistency cycles
to be done. This number has of course to be adapted to the problem at hand in order
to reach convergence. After this initialisation step, we begin the self-consistency loop:

1) Impurity self-energy (line 11): The command SK.set_Sigma(Sigma_imp = [ S.Sigma_iw ])

takes an impurity self-energy Σimp
mm′(iω) in orbital space, and sets it as a member

of the SK class. We assume that the object S.Sigma_iw is defined in the solver. At
initialisation, the self-energy can be set to zero, or to its Hartree value to speed up
convergence.

2) Chemical potential determination (line 13): The chemical potential is set according
to the definition

Ne = Tr
∑

k

[
(iωn − εkν + µ)δνν′ − Σνν′

]−1

eiωn0
+

, (11)

where Ne is the required electronic density in the projection window. Please note
that the operation [· · · ]−1 denotes matrix inversions throughout this paper. The
self-energy in band space is defined by

Σνν′(k, iωn) =
∑

α,mm′

Pα∗
mν(k)

(
Σimp

mm′(iωn)− ΣDC
)
Pα
m′ν′(k). (12)

We use the projectors as introduced in Sec. 3, as well as a double-counting correction
ΣDC [2].

3) Local Green’s function (line 15): The local Green’s function is calculated as

Gloc,α
mm′ (iωn) =

∑

k

∑

νν′

Pα
mν(k)

[
(iωn−εkν +µ)δνν′ −Σνν′(k, iωn)

]−1

Pα∗
m′ν′(k), (13)

9



where α is the index of the correlated atom in the unit cell. In Lst. 1 we have only
one inequivalent correlated atomic shell, so we need to take only α = 0.

4) New hybridisation function (line 17): We now calculate the new Weiss field for the
impurity problem using the Dyson equation

G0
mm′(iωn) =

[
Σimp

mm′(iωn) +
[
Gloc

mm′(iωn)
]−1

]−1

. (14)

5) Solve the impurity problem (line 20): We call the solver method S.solve with
the relevant parameters. Again, the user must be familiar with the usage of the
solver of choice and its parameters, in order to produce meaningful and physically
sound results. The solver produces the Green’s function and the self-energy of the
interacting impurity problem. Following the TRIQS/CTHYB convention, we assume for
the example given here that the Green’s function and the self-energy are stored in
S.G_iw and S.Sigma_iw, respectively.

6) Double counting (lines 23-24): We calculate a new double counting (DC) correction
from the impurity density matrix (line 23). As additional parameters one needs
to provide a Hubbard interaction value U and Hund’s exchange J , which have to
be in accordance with the definition of the interaction matrix. TRIQS/DFTTools offers
three different DC corrections: The flag use_dc_formula=0 corresponds to the fully-
localised limit (FLL) correction, use_dc_formula=1 is a variant of FLL that is used
for Kanamori-type Hamiltonians [30], and use_dc_formula=2 is the around-mean-field
(AMF) correction. This step completes the self-consistency loop.

Steps 1 to 6 are now iterated until convergence. After that, we can save the final
solution into the hdf5 archive, as done in lines 27 to 32. We want to note here that
it is sometimes useful to save all data produced by the user in a separate subgroup,
e.g. dmft results, in order to have a clean structure in the hdf5 archive. For details
how to handle the hdf5 archive we refer the reader to Ref. [20] and the online TRIQS
documentation.

We want to stress here that this simple script of about 30 lines2 of Python code is
sufficient for a full DFT+DMFT calculation, which is possible only thanks to the modular
structure of TRIQS/DFTTools and TRIQS.

5. Full charge self-consistency

The one-shot DFT+DMFT calculation can be extended to a fully charge self-consistent
calculation with only marginal additional effort. The basic concept is general, but the
implementation will depend of course on the DFT code that you wish to use for the
calculations. We are presenting the interface to the Wien2k DFT package, which is the
first interface implemented in TRIQS/DFTTools. We describe this interface below. Work is
in progress to include more DFT packages, in particular VASP [31, 32].

First of all, we want to stress that the fully charge self-consistent calculation is con-
trolled by Wien2k scripts. That is why a sound knowledge of Wien2k and how it is used
is absolutely necessary for the considerations in this section.

2The Solver initialisation will take another 10-15 lines, see Ref. [19].
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Figure 4: (Colour online) Sketch of the self-consistency cycle of fully charge self-consistent
calculations.

Listing 2 Code snippet for the calculation of the corrected charge density due to correlations

1 SK.set_Sigma (Sigma_imp = [ S.Sigma_iw ])
2 chemical_potential = SK.calc_mu ( precision = 0.000001 )
3 dN , d = SK. calc_density_correction ( filename = ’case.qdmft ’)
4 SK.save([’chemical_potential ’,’dc_imp ’,’dc_energ ’])

As shown in Fig. 4, the idea is to extend the existing Wien2k self-consistency loop
by including a DMFT step. Instead of simply calculating the charge density from the
Kohn-Sham orbitals as in standard DFT (lapw2 step in Wien2k), we supplement this
charge density with correlation effects. Therefore, the Python scripts that control the
DMFT iteration have to be modified:

• We do not start each DMFT iteration from scratch, but instead from the previous
iteration. This is most conveniently done by storing all necessary data in the hdf5
archive.
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• One DMFT iteration (nloops = 1) is usually sufficient. In cases where convergence
is problematic, more iterations may be needed.

• In order to calculate the correction to the charge density, one has to calculate the
density matrix from the correlated Green’s function at the end of the DMFT step,
as shown in Lst. 2. The first two lines set the chemical potential more accurately.
The important step is line 3, where the correlated density matrix is calculated in
Bloch band space

Nk
νν′ =

∑

n

Gνν′(k, iωn)e
iωn0

+

(15)

Gνν′(k, iωn) =
[
(iωn − εkν + µ)δνν′ − Σνν′(k, iωn)

]−1

, (16)

where Σνν′(k, iωn) is given by Eq. 12. This non-diagonal density matrix is used
instead of the Kohn-Sham density matrix to calculate the charge density in x lapw2

-qdmft, see Fig. 4. Line 4 in Lst. 2 saves properties to the hdf5 archive such that
they are available in the next iteration.

Compared to one-shot calculations, the fully charge self-consistent calculations are
in general not much more demanding. As a rough guide, the additional computational
effort due to an increased number of self-consistency loops is normally around 50%. Of
course, this extra effort depends largely on the problem at hand and whether the DMFT
corrections to the charge density are relevant or not.

This charge self-consistent implementation also allows the calculation of total energies
from DFT+DMFT. The detailed formulas and their derivation can be found in Ref. [33]
and references therein.

For more options of the TRIQS/DFTTools modules, as well as a complete example script
and tutorial for a charge self-consistent calculation, including total energy calculation,
we refer the reader to the online documentation of TRIQS/DFTTools.

6. Post-processing

The main output of a DMFT calculation, be it one-shot or fully charge self-consistent,
is the interacting Green’s function and the self-energy. However, in many cases one is
interested in other quantities that are more closely connected to observables of experi-
ments. For that reason TRIQS/DFTTools provides methods to further process the data and
calculate some physical properties

• (orbitally-projected) density of states

• correlated band structures (spectral function A(k, ω))

• transport properties (resistivity, thermopower, optical conductivity)

For all these methods one needs to use a real-frequency self-energy. In case the solver
provides only quantities on the Matsubara axis, one has to analytically continue the data,
by methods like Pade approximants [20], the maximum entropy method [34], or others.
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Figure 5: Left: Correlated band structure of SrVO3 (grey-shaded plot) compared to the
DFT band structure (black lines). Right: Correlated DOS (black line) and DFT DOS
(grey line).

DOS and band structure. These two quantities are very similar in terms of equations,
since they are both imaginary parts of retarded Green’s functions. For the band structure,
we use

A(k, ω) = −
1

π
Tr ImGνν′ (k, ω + i0+), (17)

where the Green’s function is defined equivalently to Eq. 16, but using a real-frequency
self-energy. The trace is taken in matrix space of Bloch indices ν, ν′. Summing this
quantity over the first BZ gives the DOS.

As an example, we show in Fig. 5 a comparison of the DFT and the DFT+DMFT
band structures (left) as well as the DOS (right) of SrVO3. The projective Wannier
functions were calculated in a large energy window of [−8.5, 7.5] eV. The impurity prob-
lem was solved using the TRIQS/CTHYB solver with interaction parameters U = 6.0 eV and
J = 0.65 eV, and an analytic continuation was performed using stochastic maximum
entropy [35].

The thin black lines are the DFT results. One can clearly identify the mass renor-
malisation of the t2g bands, which is a bit smaller than 2 in our calculation. The oxygen
p, as well as the vanadium eg states are only marginally affected. However, due to the
hybridisation between vanadium t2g and oxygen p states, the bands between −7 and
−2 eV acquire a finite width.

Transport properties. These are evaluated in the Kubo linear-response formalism [5]
neglecting vertex corrections [37, 38], and at the moment their computation is based on
the Wien2k DFT code. In addition to the self-energy, one also needs the velocities vα(k)
which are the matrix elements of the momentum operator in direction α = x, y, z, calcu-
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Figure 6: Optical conductivity of SrVO3 calculated from the DFT+DMFT result (black
solid line) and directly from DFT (red dashed line) compared to experimental data from
Ref. [36] (blue dotted line).

lated with the Wien2k optics package [39]. The conductivity and the Seebeck coefficient
for the combination of directions αα′ are defined as

σαα′ = βe2K0,αβ and Sαα′ = −
kB
|e|

K1,αα′

K0,αα′

(18)

with β the inverse temperature. The kinetic coefficients Kn,αα′ are given by

Kn,αα′ = Nspπ~

∫
dω (βω)

n
f (ω) f (−ω) Γαα′ (ω, ω). (19)

Here Nsp is the spin factor and f(ω) is the Fermi function. The transport distribution
Γαα′ (ω1, ω2) is defined as

Γαα′ (ω1, ω2) =
1

V

∑

k

Tr (vα(k)A(k, ω1)vα′ (k)A(k, ω2)) , (20)

where V is the unit cell volume. In multi-band systems the velocities vα(k) and the
spectral function A(k, ω) are matrices in the band indices ν and ν′. The frequency-
dependent optical conductivity is given by

σαα′(Ω) = Nspπe
2
~

∫
dωΓαα′(ω +Ω/2, ω − Ω/2)

f(ω − Ω/2)− f(ω +Ω/2)

Ω
. (21)

We illustrate the calculation of transport properties again for the example of SrVO3.
We apply the same setup as for the calculation of the band structure given above. For
the k-summation, we use 4495 k-points in the irreducible BZ. At T = 290K we obtain a
DC resistivity of 47µΩcm, which compares reasonably well with the experimental value
of 70µΩcm [40]. The Seebeck coefficient, −8µV/K in our calculation, agrees remarkably
well with the experimental room temperature value of about −11µV/K [41]. The same
holds for the optical conductivity (Fig. 6) obtained from DFT+DMFT (black solid line)
when compared to experimental results (blue dotted line). To show the effect of the
correlations, we also present results without self-energy (red dashed line), which corre-
sponds to evaluating the optical conductivity directly from DFT. Sometimes, scattering
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processes not included in plain DFT+DMFT calculations (e.g., phonons, impurities, or
non-local fluctuations) are important. In this case, the calculated resistivity constitutes
a lower bound to the expected experimental value.

Further details on the use of these tools, including all options and parameters, are
given in the online documentation.

7. Getting started

Detailed information on the installation procedure can be found on the TRIQS/DFTTools

website and current issues and updates are available on GitHub.

7.1. Obtaining TRIQS/DFTTools

The TRIQS/DFTTools source code is available publicly and can be obtained by cloning
the repository on the GitHub website at https://github.com/TRIQS/dft tools. As the
TRIQS project, including its applications, is continuously improving, we strongly recom-
mend users to obtain TRIQS and its applications, including TRIQS/DFTTools, from GitHub.
Bugfixes to possible issues are also applied to the GitHub source.

For users that wish to have a more stable version of the code, without the latest
bugfixes and functionalities, we suggest downloading the latest tagged version from the
GitHub releases page https://github.com/TRIQS/dft tools/releases.

7.2. Installation

Once the TRIQS library has been installed properly, the installation of TRIQS/DFTTools
is straightforward. As for TRIQS we use the cmake tool to configure, build and test the
application. With the TRIQS library installed in /path/to/TRIQS/install/dir, the
TRIQS/DFTTools application can be installed by

$ git clone https://github.com/TRIQS/dft_tools.git src

$ mkdir build_dft_tools && cd build_dft_tools

$ cmake -DTRIQS_PATH=/path/to/TRIQS/install/dir ../src

$ make

$ make test

$ make install

This will first download the code to the src directory, then build, test, and install the
application in the same location as the TRIQS library.

7.3. Citation policy

We kindly request that the present paper is cited in any published work using the
TRIQS/DFTTools package. Furthermore, we request that the original works to this package,
Refs. [23] for the first implementation and [33] for full charge self consistency, are cited
accordingly, too. In addition, since this package is based on the TRIQS library, a citation
to [20] is also requested, along with the appropriate citation to any solver used, e.g.
TRIQS/CTHYB [19].
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7.4. Contributing

TRIQS/DFTTools, as an application of TRIQS, is an open source project. We appreci-
ate feedback and contributions from the user community to this package. Issues and bugs
should be reported through the GitHub website (https://github.com/TRIQS/dft tools/issues).
Before starting major contributions, please coordinate with the team of TRIQS/DFTTools

developers.

8. Summary

In summary we presented the TRIQS/DFTTools package, an application based on the
TRIQS library. This package provides the necessary tools for setting up DFT+DMFT
calculations. We have shown simple examples demonstrating how the code can be used
to calculate Wannier functions, spectral functions, as well as transport properties of the
prototypical material SrVO3.
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