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Nuclear Magnetic Resonance (NMR) relaxation is sensitive to the local structure and dynamics
around the probed nuclei. The Electric Field Gradient (EFG) is the key microscopic quantity to
understand the NMR relaxation of quadrupolar ions, such as 7Li+, 23Na+, 25Mg2+, 35Cl−, 39K+, or
133Cs+. Using molecular dynamics simulations, we investigate the statistical and dynamical properties
of the EFG experienced by alkaline, alkaline Earth, and chloride ions at infinite dilution in water.
Specifically, we analyze the effect of the ionic charge and size on the distribution of the EFG tensor
and on the multi-step decay of its auto-correlation function. The main contribution to the NMR
relaxation time arises from the slowest mode, with a characteristic time on the picosecond time scale.
The first solvation shell of the ion plays a dominant role in the fluctuations of the EFG, all the more
that the ion radius is small and its charge is large. We propose an analysis based on a simplified
charge distribution around the ion, which demonstrates that the auto-correlation of the EFG, hence
the NMR relaxation time, reflects primarily the collective translational motion of water molecules in
the first solvation shell of the cations. Our findings provide a microscopic route to the quantitative
interpretation of NMR relaxation measurements and open the way to the design of improved
analytical theories for NMR relaxation for small ionic solutes, which should focus on water density
fluctuations around the ion. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4935496]

I. INTRODUCTION

Nuclear magnetic resonance (NMR) relaxation is a
powerful tool to explore the structure and the dynamics
of materials over a wide range of time and length scales.
Extracting microscopic information from such experiments
requires a microscopic model whose prediction for the
relaxation rates is compared to the experimental data. For
quadrupolar nuclei (with nuclear spin I > 1/2), the main
relaxation mechanism is the quadrupolar coupling between the
electrostatic quadrupolar moment eQ of the nucleus and the
electric field gradient (EFG) at the site of the nucleus. Redfield
theory provides the connection between the NMR relaxation
rates and molecular motion, in terms of the following spectral
density:

JEFG(ω) =
 ∞

0
⟨Vzz(t)Vzz(0)⟩ eiωtdt, (1)

where Vzz is the zz Cartesian component of the EFG,
evaluated at multiples of the Larmor frequency nω0 = nγIB0
(with n ≤ 2) for the considered nucleus of gyromagnetic
ratio γI in a static magnetic field B0, and brackets denote
an ensemble-average. The spectral density is the Laplace
Transform (taken at imaginary frequency iω) of the EFG
auto-correlation function (EFG-ACF). In the case of simple
molecular liquids, the EFG-ACF decays within a typical time
τ ∼ 1 ps much shorter than the inverse of the Larmor frequency

a)benjamin.rotenberg@upmc.fr

(>10 ns). In this so-called extreme narrowing regime
(ω0τ ≪ 1), the transverse and longitudinal magnetizations
relax exponentially with the characteristic rates,1,2

1
T1
=

1
T2
=

3
8

2I + 3
I2(2I − 1)

(
eQ
~

)2

JEFG(0). (2)

Since the spin I and the nuclear quadrupole eQ
are tabulated nucleus-specific properties, computing the
relaxation rates then only requires the evaluation of spectral
density (1) at zero frequency. Traditionally, relaxation
processes in molecular liquids are interpreted by invoking
Markovian assumptions on the translational and rotational
dynamics of the nucleus of interest and of the surrounding
medium, as well as treating the latter as a continuous
polarizable background.3–11

While such approximations may be in some cases relevant
for large solutes, ignoring structural and dynamical features
at the molecular scale is insufficient for smaller ones,
such as simple ions or molecules. In these cases, resort to
Monte Carlo and Molecular Dynamics (MD) simulations has
provided a wealth of information on the EFG experienced
by the considered nuclei.12–26 Some predictions of continuous
theories were challenged by these results, such as the finding
of a two-step decay of the EFG-ACF for Li+, Na+, and Cl−

or the evidence of the influence of symmetry in the first
solvation shell on the EFG. We have recently shown for
Li+, Na+, K+, and Mg2+ cations in water that a quantitative
prediction of the relaxation rate can be obtained from classical

0021-9606/2015/143(19)/194504/9/$30.00 143, 194504-1 © 2015 AIP Publishing LLC
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MD simulations with an accurate polarizable force field, after
properly connecting the exact EFG to the one induced by
the classical charge distribution corresponding to the solvent
around the ion.27

While molecular simulation provides to date the most
accurate description of the structure and dynamics on
the molecular scale, the large amount of raw information
contained in the atomic trajectories should be thoughtfully
interpreted in order to uncover the relevant processes. Here,
we investigate using classical MD simulations the fluctuations
of the EFG experienced by alkaline (Li+, Na+, K+, Rb+, and
Cs+) and alkaline Earth (Mg2+, Ca2+, and Sr2+) cations as
well as the chloride Cl− anion in water at infinite dilution.
We first quantify the statistical and dynamical features of
these fluctuations, discussing in particular the effects of the
ion radius and charge. We then analyze in more detail the
microscopic origin of the observed properties and propose a
simple model accounting for the fluctuations of the EFG,
which demonstrates the essential role of water density
fluctuations in the first solvation shell of the ions.

II. METHODS

A. Theory

In order to compute the relaxation rate using Eq. (2),
it is necessary to evaluate the EFG-ACF, JEFG(0). To that
end, one must overcome the challenge of simultaneously
accurately predicting the EFG for any given configuration and
simulating its dynamics over sufficiently long time scales to
ensure the statistical convergence of the ACF. The former task
requires in principle all electron ab initio simulations, but the
entailed computational cost is to date not compatible with
the latter constraint. Several approaches have been proposed
to estimate the EFG in classical MD simulations, such as
its computation on selected configurations from calculations
at the Hartree-Fock28 and QM/MM25 levels, or the use of a
function of positions fitted to prior ab initio computations on a
simpler system.29 However, most classical MD studies rely on
the so-called Sternheimer approximation, which postulates the
linear response of the electronic cloud to the EFG arising from
the “external” charge distribution of the classical molecular
model describing the surrounding solvent. This leads to the
following expression of the relaxation rate:

1
T1
=

1
T2
=

3
8

2I + 3
I2(2I − 1)

(
eQ
~

)2

(1 + γ∞)2J(0), (3)

with γ∞ the Sternheimer factor and J the spectral density of
the “external” EFG. For the classical force field used in the
present work, described below, we have recently shown the
validity of the Sternheimer approximation in the case of
the simple ions in water by comparing the classical external
EFG to the ab initio result computed at the Density Functional
Theory (DFT) level with Projector Augmented Waves.27 This
further allowed us to determine numerically the corresponding
Sternheimer coefficients. Here, we focus only on the properties
of the external EFG and the implications for the corresponding
spectral density at zero frequency J(0).

B. Simulation details

Alkaline (Li+, Na+, K+, Rb+ and Cs+) and alkaline Earth
(Mg2+, Ca2+ and Sr2+) cations and the chloride Cl− anion in
water at infinite dilution are modelled by a single ion and
215 water molecules in a cubic box of length 18.65 Å. We
use a recently developed force field, based on the Polarizable
Ion Model (PIM),30 in conjunction with the polarizable water
model of Dang and Chang.31 The PIM is parametrized on
DFT calculations in order to reproduce both the ab initio
forces and dipoles and was shown to accurately describe
the thermodynamic, structural, and dynamical properties of
aqueous ions.30

Classical MD trajectories are generated using the CP2K
simulation package.32 For each ion, 5 independent trajectories
of 500 ps in the NVE ensemble are generated, obtained after
annealing at 1000 K for 150 ps followed by 50 ps equilibration
at 298 K, using a timestep of 1 fs. Periodic boundary conditions
in all directions are used. A cutoff of 9.325 Å is used for short-
range interactions, while electrostatic interactions and the EFG
are computed with Ewald summation.33 Water molecules are
treated as rigid using the SHAKE algorithm.34,35 During
equilibration the temperature is maintained at the target value
using a Nosé-Hoover thermostat36,37 with a time constant
of 1 ps. The EFG-ACF is computed from the EFG every
sampled every 5 fs along the trajectories. Error bars indicate
the standard deviation among the 5 independent trajectories.

III. RESULTS AND DISCUSSION

A. Statistical properties

We begin our examination of the properties of the
EFG tensor induced by the external charge distribution
around the ions by considering its statistical distribution.
In principle, it is fully characterized by the joint probability
P(Vxx,Vxy,Vxz,Vyx,Vy y,Vyz,Vxz,Vyz,Vzz) of its 9 Cartesian
components. However, the EFG is a symmetric and traceless
tensor, so that only 5 components are independent. In addition,
the considered systems are rotationally invariant and it is
common to define the 5 spherical components as follows:38,39

U1 = Vzz/2, (4a)

U2 = Vxz/
√

3, (4b)

U3 = Vyz/
√

3, (4c)

U4 = Vxy/
√

3, (4d)

U5 =
�
Vxx − Vy y

�
/2
√

3. (4e)

It is therefore sufficient to consider the joint distribution
P(U1,U2,U3,U4,U5), which should satisfy the following
properties:39 (1) ⟨Ui⟩ = 0 for i = 1 . . . 5; (2)



UiUj

�
= σ2

cδi j
for i, j = 1 . . . 5 with the same variance σ2

c for all components;
(3) the four marginal distributions P(Ui) for i = 2 . . . 5 are
identical.

Figure 1 shows the marginal distributions P(Ui) for
i = 1 . . . 5 for the potassium ion. Not only are the 4 last
distributions identical as expected for an isotropic system,
but U1 is also identical to the others. It follows from
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FIG. 1. Distribution of the 5 spherical components Ui (see Eq. (4)) of the
Electric Field Gradient (EFG) experienced by a potassium ion in water (in
atomic units). For each spherical component, the Gaussian distribution with
the same variance is shown (lines).

FIG. 2. Distribution P(U1) of the first spherical component of the EFG (in
atomic units) at the site of an ion in a infinite dilute electrolyte (symbols): (a)
alkali ions and (b) alkaline Earth and chloride ions. For each ion, the Gaussian
distribution with the same variance are shown (lines).

this observation that all 5 variances


U2

i

�
= σ2

c are equal.
In addition, it is clear from the parabolic shape on a
logarithmic scale that this distribution is Gaussian. It further
has a vanishing average. All these results also apply to the
other ions considered here, so that it is sufficient to analyze
the distribution for only one of the spherical components,
illustrated in Figure 2, which also reports the Gaussian
distributions with the same variance as the MD data.

Table I indicates the variance of the external EFG, which
is the initial value of the EFG-ACF and is simply obtained
from the common variance of the marginal distributions

TABLE I. Variance


V2� of the electric field gradient (EFG) at the nucleus for

the spherical components Ui of the EFG (see Eq. (4)). For each ion, average
values and standard deviations correspond to 5 independent trajectories.

Ion


V2� (1038 S.I.)

Li+ 521 ± 10
Na+ 109 ± 2
K+ 58.5 ± 0.6
Rb+ 41.2 ± 0.5
Cs+ 27.3 ± 0.3

Mg2+ 150 ± 5
Ca2+ 72.7 ± 0.8
Sr2+ 60.1 ± 1

Cl− 154 ± 2

P(Ui) as


V2� = 

α,β


V 2
αβ


= 6

5
i=1



U2

i

�
= 30σ2

c. A more
quantitative assessment of the Gaussian character of these
distributions can be obtained by computing the normalized
kurtosis γ2 =



U4

i

�
/


U2

i

�2 − 3. The normalized kurtosis is only
of a few % for most ions, confirming the Gaussian behaviour.
The largest deviations are observed for the smaller ions and
the more highly charged ones (γ2 = 14%, 8%, and 37% for
Li+, Na+, and Mg2+, respectively).

Both Figure 2 and Table I show that the variance of
the external EFG decreases with increasing ion radius for a
given ion charge (from Li+ to Cs+ and from Mg2+ to Sr2+). In
addition, in a given row of the periodic table



V2� increases

with the ionic charge (from Na+ to Mg2+, K+ to Ca2+ and Rb+

to Sr2+). This can be understood by noticing that the EFG
due to a water molecule is stronger when its distance r to
the ion is shorter: For a radially oriented dipole, it scales as
∼r−4. This distance, for water molecules in the first solvation
shell of the ion, increases with ion radius and decreases
with increasing ion charge (radial distribution functions for
the force field used in the present work can be found in
Ref. 30). Finally, comparing the isoelectronic K+ and Cl−,
we observe an asymmetry upon charge inversion, due to the
asymmetry of the charge distribution on the water molecule,
as discussed below. Higher order electrostatic multipoles of
the water molecule are known to play a role in the solvation
of ions, in particular, on their hydration free energy.40

Such a Gaussian behaviour has already been reported for
other electrostatic quantities. The Gaussian fluctuations of the
electrostatic potential on an ion are at the basis of Marcus’
theory of electron transfer in solution41,42 and it has been
confirmed in DFT-based ab initio MD.43 The fluctuations of
the electric field in liquid water have also been investigated:
While the field experienced by a proton displays non-Gaussian
features which can be evidenced by IR spectroscopy44,45

and its rare fluctuations are at the origin of water auto-
ionization,46,47 the statistics of the field experienced by ions
are Gaussian in the bulk liquid. Its fluctuations play a role in
the behaviour of ions near the liquid-vapour interface48 and in
the mechanism of ionic pair dissociation.49 It should be noted
that, while the Gaussian behaviour extends to relatively large
deviations from the mean (at least 3 standard deviations),
the present equilibrium simulations only probe fluctuations
around the mean and that advanced sampling techniques
would be required to probe rare fluctuations.

In contrast, the statistics of the EFG on the oxygen and
hydrogen of water are not Gaussian, as a result of the local
anisotropy of the charge distribution (see the supplementary
material50). The fact that the components of the EFG
experienced by the ions follow a Gaussian statistics, while
not surprizing from the known behaviour of the electrostatic
potential and of the electric field, is not trivial since these
quantities do not scale similarly with the distance to the
ion. Therefore individual molecules in a given configuration
contribute differently to the various observables, which in turn
obey different statistics. As an illustration, Figure 3 reports
the statistics of the force on the ion, which displays fat tails
(leptokurtic behaviour) arising from the short-range binary
collisions with the closest molecule—a feature analyzed in
detail in the case of simple fluids.51,52
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FIG. 3. Distribution of the Cartesian components of the force (α = x, y, z) on
alkaline (a), alkaline Earth and chloride (b) ions at infinite dilution in water.
For each ion, the Gaussian distribution with same variance is also shown to
highlight the leptokurtic behaviour of the force distribution.

The fact that all marginal distributions of the spherical
components are equal and Gaussian suggests that the EFG
tensor itself may follow the statistics of the Gaussian Isotropic
Model (GIM) developed by Czjzek et al.,38,39,53

PGIM(U1,U2,U3,U4,U5) =
5

i=1

e−U
2
i
/2σ2

c
2πσ2

c

. (5)

Such a model not only implies the equality of the marginal
distributions but further requires the absence of correlations
between the 5 spherical components. This stronger constraint
can be tested in the present case by analyzing the statistics
of the eigenvalues of the EFG tensor. Indeed, under the
assumptions of the GIM, the largest positive eigenvalue
(v > 0) tensor should be distributed according to

P(v) = 1
σc


2
π

(
3v2

8σ2
c

− 1
)

e−v
2/8σ2

c

+

(
1 − v2

3σ2
c

)
e−v

2/6σ2
c


. (6)

Figure 4 shows the marginal distributions of the three
eigenvalues of the EFG felt by a potassium ion, together with
the prediction of the GIM. While not perfect, the agreement
with Eq. (6) is very good. It suggests that correlations between
the spherical components may be limited. In turn, this implies
some correlations between the Cartesian components of the
EFG, which reflect the local structure of the solvent around
the ions. Nevertheless, the above discussion of the effects of

FIG. 4. Distribution of the three eigenvalues (v1 > v2 > v3) of the EFG at the
site of a potassium ion in water. The analytical result for the largest eigenvalue
in the Gaussian Isotropic Model of Czjzek, Eq. (6) is also shown (blue line).

ion radius and charge on the variance, which captures the
simulation results by accounting only for the bare effect of
the distance from the ion and neglecting symmetry effects,
suggests that the former may play the dominant role in the
present case.

B. Dynamics of EFG fluctuations

We now turn to the dynamical side of EFG fluctuations
and analyze the normalized ACF,

Cnorm
EFG (τ) = ⟨V(τ) : V⟩


V2
� =

1

V2

�

α,β



Vαβ(τ)Vαβ

�
(7)

and its running integral

Inorm
EFG (τ) =

 τ

0
Cnorm

EFG (t)dt . (8)

Both quantities are shown in Figure 5 for the ions considered
in the present work. For all ions, the normalized ACF decays
to zero within a few ps. This decay occurs in a non-trivial way,
suggesting that several processes are at play. Such a multi-
step was already reported by Engström and Jönsson,15 Roberts
and Schnitker,16 and Odelius.18 Importantly, this observation
invalidates simple continuous theories usually invoked to
interpret the NMR relaxation of aqueous ions, which predict
a mono-exponential decay with a single characteristic time
scale. However, the molecular mechanisms leading to the
observed multi-step decay remain to be clarified. To that end,
we first analyze quantitatively the EFG-ACF.

FIG. 5. Normalized correlation functions Cnorm
EFG and their integrals (inserts)

of the EFG at the nucleus site of different ions at infinite dilution in water: (a)
alkali ions (b) alkaline Earth and chloride ions. Error bars indicate standard
deviations over 5 independent trajectories, while dotted lines correspond to a
fit of the data to Eq. (9).
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FIG. 6. Normalized correlation functions for the aqueous lithium ion: EFG at
the site of the nucleus (black) and velocity (red). Error bars indicate standard
deviations over 5 independent trajectories.

While the decay is monotonic for most ions, the
EFG-ACF displays oscillations for lithium and magnesium.
In the Li+ case, the origin of these oscillations can be assessed
by comparing the auto-correlation of the EFG to that of the
ion velocity (VACF). Both normalized correlation functions
are reported in Figure 6. Both these correlation functions
oscillate in-phase at short times. This striking result can be
traced back to the smaller mass of the ion (7 g/mol) compared
to water molecules (18 g/mol). Due to the larger inertia of
the solvent, the motion of Li+ can be thought of, over a short
lapse of time (∼200 fs), as one in a frozen external potential.
As the Li+ ion oscillates in this potential, it runs through the
EFG hypersurface and consequently the EFG-ACF oscillates
in phase with the VACF.

For all ions (leaving now aside the oscillations for Li+ and
Mg2+), the EFG-ACF decays approximately in two steps, with
a fast and substantial decrease within a short characteristic
time τf ∼ 100 fs and a slower second regime with a longer
characteristic time τs ∼ 1 ps, corresponding to a fraction
αs ∼ 20%–30% of the decay. More precisely, in the absence
of a definite molecular mechanism to interpret the data at this
stage, we fit the normalized EFG-ACF by two exponentials
corresponding to the above-mentioned two steps,

Cnorm
f it (τ) = (1 − αs)e−τ/τ f + αse−τ/τs. (9)

The resulting characteristic times and amplitudes are
summarized in Table II, together with the integral of the
EFG-ACF J(0) and the fraction of this integral arising from the
slow contribution obtained by integrating the corresponding
part in Eq. (9): Js(0) = 


V2� αsτs.
The characteristic time τf for the fast process increases

when going down in a given column of the periodic table
(except for Cs+), while it decreases (by a factor of ∼2) along
rows. In contrast, the characteristic time τs for the slow
process decreases along the alkaline Earth series (from ∼2 ps
for Mg2+ to ∼1.2 ps for Sr2+) and displays a non-monotonic
behaviour along the alkaline series, with a maximum for K+,
similar to that already reported for the mobility of these ions
in water.54,55 For the only considered anion, Cl−, the short
time τf is comparable to that of alkaline cations, while the
long time τs is closer to that of alkaline Earth cations.

The weight αs of the slow process in the EFG-ACF
increases along columns and decreases along rows of the
periodic table. It remains small for all ions and ranges from

TABLE II. Characteristic times for the fast (τ f ) and slow (τs) decay of the
EFG, fraction αs of the decay arising from the slow mode, spectral density
at zero frequency J (0) and fraction of the latter due to the slow decay,
Js(0)/J (0)= 
V2�αsτs/J (0).

τ f τs αs J (0) Js(0)/J (0)
Ion (fs) (fs) (%) (1027 S.I.) (%)

Li+ 22 950 14 9.37 75
Na+ 63 1070 21 3.11 81
K+ 91 1140 26 2.19 79
Rb+ 97 900 29 1.54 69
Cs+ 86 760 34 0.90 78

Mg2+ 26 1990 4 1.65 72
Ca2+ 45 1300 17 2.0 80
Sr2+ 55 1180 19 2.44 54

Cl− 74 1370 31 7.57 87

4% for Mg2+ to 34% for Cs+. Nevertheless, the slow process
accounts for most of the contribution to the integral J(0),
which is the quantity appearing in expression (2) of the
relaxation time. Indeed, the ratio Js(0)/J(0) (for which no
clear trend emerges from Table II) is usually larger than 70%,
with the exception of Sr2+ (54%).

The above analysis suggests that the evolution of J(0)
=


V2� limτ→∞ Inorm

EFG (τ) can be rationalized by considering the
effects on the one hand of



V2�, already discussed in Sec.

III A (see Table I), and on the other hand on the product αsτs.
In particular, J(0) decreases by a factor of 10 from Li+ to Cs+,
while it increases by ∼50% from Mg2+ to Sr2+. This should be
compared to the decrease in



V2� for both series, by a factor

of ∼20 for the alkaline ions and 2.5 for the alkaline Earth ions
(see Table I). Given the moderate variations of τs compared to
that of αs and



V2�, we can conclude that the evolution of J(0)

is dominated by the competition between these last two terms.
While at this stage it is impossible to assess the microscopic
origin of the two-step decay, we can hypothesize that the two
regimes arise from distinct processes, each contributing to the
variance



V2�. Both contributions decrease with increasing

ionic size, but the one corresponding to the slow process
decreasing less than the other one.

We conclude this quantitative study of the dynamical
fluctuations of the EFG by mentioning that at very long times
a mode-coupling theory of Bosse et al. predicts an algebraic
decay (as t−5/2) for the EFG-ACF.56 Such a decay should arise
from the hydrodynamic fluctuations of the solvent, which
result in particular in the well-known t−3/2 scaling of the
velocity auto-correlation function.57 However, the effect of
these fluctuations can only manifest themselves for sufficiently
large systems and time scales covering several orders of
magnitude, so that we could not identify such a scaling in our
simulations (results on a logarithmic scale not shown).

C. First solvation shell

Finally, we examine the microscopic origin of the
fluctuations of the EFG. Specifically, we aim at identifying the
main contribution to the EFG in the charge distribution from
which it arises. In the discussion of the statistical properties
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of the EFG, it already appeared that the EFG is a rather
short-ranged quantity. This suggests to determine, as done
previously by others,12,13,15 the contribution of molecules
closest to the ions, i.e., in their first coordination shell. The
latter can be defined from the radial distribution function
and we refer the reader to Ref. 30 for the present model of
ions at infinite dilution. Therefore, we investigate here the
EFG computed for each configuration by considering only
the water molecules in its first solvation shell (Solvent Shell
Model, SSM).

In addition, the charge distribution associated with these
few molecules may be further simplified, by replacing the
partial charges and the induced dipole of the Dang-Chang
water model by a single radial dipole identical for all
molecules, placed on the oxygen atom, of norm µ

eff
r to be

determined. This Radial Dipole Model (RDM), schematically
illustrated in the inset of Figure 7, is thus a very crude
approximation of the charge distribution. The corresponding
EFG at the site of the ion reads

VRDM = 3 µ
eff
r SRDM = 3 µ

eff
r


i∈S

3ri ⊗ ri − r2
i I

r6
i

, (10)

where the sum defining the tensor SRDM runs over oxygen
atoms i in the first solvation shell S, at positions ri relative
to the ion, and where I is the identity tensor. In particular,
changes in VRDM reflect only the translational dynamics of
water within the first solvation shell.

Figure 7 shows the Cartesian components of the exact
EFG V as a function of that of the two simple models just
described: VSSM and SRDM. In both cases, a linear relation is
found. The corresponding slopes kSSM and kRDM = 3µeff

r are
reported in Table III, together with the relative errors,

σX (V) =
 


δV2
�



V2

� =


1
N

N
i=1 |Vi − kXV X

i |2
1
N

N
i=1 |Vi |2

, (11)

where the sum runs over the Cartesian components of the EFG
tensor for 104 configurations. This quantity allows to measure

FIG. 7. Correlation between the exact EFG V and two models calculated
from restricted charge distributions, corresponding to the first solvation shell
only (SSM, left) and to the radial dipole model (RDM, right). For the latter,
the EFG is reported as a function of the SRDM tensor defined by Eq. (10). The
inserts depict the two models. The slopes of the linear regression, kSSM and
kRDM = 3µeff

r are given in Table III. For each ion, 6 Cartesian components of
the EFG (in atomic units) are shown for 100 configurations.

TABLE III. Proportionality coefficient k between the exact EFG V and
two EFGs calculated from restricted charge distributions, corresponding to
the first solvation shell only (SSM) and to the radial dipole model (RDM,
see text). For the RDM, the slope is given in terms of the effective radial
dipole µ

eff
r = k

RDM/3 and compared to the average radial dipole from the full
atomistic model, ⟨µr⟩. Errors on the slopes are smaller than 1%. The errors
between the two model EFGs relative to the exact one, σ (V) (see Eq. (11)),
are also indicated.

µ
eff
r = k

RDM/3 ⟨µr⟩
Ions kSSM σSSM(V) (a.u.) σRDM(V) (a.u.)

Li+ 0.92 0.42 0.77 0.56 0.89
Na+ 0.64 0.77 0.63 0.62 0.58
K+ 0.53 0.94 0.64 0.64 0.54
Rb+ 0.47 1.06 0.60 0.68 0.47
Cs+ 0.43 1.12 0.47 0.77 0.41

Mg2+ 0.97 0.37 0.99 0.70 1.16
Ca2+ 0.80 0.55 0.89 0.68 0.97
Sr2+ 0.49 1.0 0.87 0.67 0.92

Cl− 0.80 0.55 −1.52 1.16 −0.67

the accuracy of the models X = SSM and RDM describing the
contribution of the first solvation shell.

Despite the simplicity of both models, the linear
correlation confirms that the first solvation shell plays an
important role on the EFG at the nucleus site. Considering
first the full charge distribution of these molecules (SSM), we
observe that the slope for Li+ and Mg2+ is close to unity, with
the smallest relative errors (40%) between the contribution of
molecules in the first solvation shell and the total EFG. For a
given ion size the contribution of molecules beyond the first
solvation shell is less important for more highly charged ions
For isovalent ions, the slope decreases with increasing ionic
radius and the correlation between the SSM and exact EFG
deteriorates. Nevertheless, the fact that a linear correlation
remains suggests that it may be possible to encompass the
contribution of molecules beyond the first solvation shell
within the framework of a polarizable continuum. Conversely,
one may also consider the response of the first solvation shell
as resulting from the competition between its polarization by
the fluctuating polarizable continuum around it58 and that by
the electric field of the ion, as well as more molecular packing
and orientational effects. The stronger the field of the ion, i.e.,
larger charge or smaller radius, the less important the impact
of the surrounding solvent on the structure of the first solvation
shell — hence on the EFG experienced by the ion. To our
knowledge, the implications of the now standard discussion of
specific ionic effects on the structure of water (“kosmotrope”
and “chaotrope” ions)59–61 on the EFG and NMR relaxation
of ions had not been considered previously.

We now turn to the even simpler RDM. The linear
correlation between the EFG and the SRDM tensor may be all
the more surprizing that the associated error is smaller for
most ions than with the SSM model, which describes the full
charge distribution in the first solvation shell. However, one
should keep in mind that the slope kRDM = 3µeff

r is fitted to
minimize this error, whereas the slope kSSM is not an adjustable
parameter. The fact that the slope kRDM is in the range 1.5-3
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FIG. 8. Distribution of the radial component µr of the dipole of water
molecules in the first solvation shell, including the induced dipole (in atomic
units), for selected ions. Vertical lines indicate the value of the effective radial
dipole µ

eff
r of the radial dipole model.

(or −4.5 in the case of Cl−, discussed below) indicates that
several (possibly competing) effects are lumped together into
the effective radial dipole µ

eff
r , such as the orientation of each

water molecule, its multipolar distribution and its polarization
by the local electric field, or even the effect of molecules
beyond the first solvation shell. Nevertheless the predictions
of this extremely simple model are in good agreement with
the total EFG.

In order to further assess its physical relevance, we
compare µ

eff
r to the average radial dipole ⟨µr⟩ of water

molecules in the first solvation shell, also reported in Table III.
For all cations, the effective radial dipole is in good agreement
with the average one (within 10%-20%) confirming the
relevance of the RDM in this case. As an illustration,
Figure 8 reports the distribution of the radial component
of the dipole of water molecules in the first solvation shell of
various ions (including the induced dipole), together with the
corresponding µ

eff
r . In contrast, for the chloride anion, despite

the expected negative sign of the µ
eff
r , the magnitude differs

by a factor ∼2.2 from the average one. In fact, it does not even
fall within the range of values sampled during the simulation
(see Figure 8). Such a failure for this anion is consistent with
the fact that the water molecules in the first solvation shell
are not radially oriented but rather tend to donate a hydrogen
bond to the anion.62

The good performance of the RDM for cations and the
physical relevance of the corresponding effective radial dipole
suggest that the EFG experienced by these ions depends
primarily on the position of the water molecules around it.
Indeed, this simple model relies only on the positions of the
oxygen atoms and not on their orientation. The simple SRDM

tensor is sufficient to capture the effect of the structure of the
first solvation shell, including the collective symmetry effects
relevant to the EFG. The latter have been shown to play an
important role on the EFG16 and indeed we could not correlate
the EFG with any quantity (position or orientation) associated
with single molecules.

Overall, the above discussion indicates that the EFG-ACF
reflects the collective translational motion of water molecules
in the first solvation shell of the cations. We finally consider
the implications of such an assertion on the NMR relaxation
rate by computing the spectral density at zero-frequency J(0)
within the SSM and RDM models. Results are summarized

TABLE IV. Spectral density at zero frequency J (0) computed using the
exact EFG and two EFGs calculated from restricted charge distributions,
corresponding to the first solvation shell (SSM) and to the radial dipole model
(RDM, see text).

J (0) (1027 S.I.)
Ions Exact SSM RDM

Li+ 9.37 6.91 9.79
Na+ 3.11 4.40 2.46
K+ 2.19 2.43 1.86
Rb+ 1.54 1.77 1.07
Cs+ 0.90 0.94 0.47

Mg2+ 1.65 2.04 1.29
Ca2+ 2.00 1.67 1.79
Sr2+ 2.44 2.76 2.22

Cl− 7.57 5.0 6.78

in Table IV. While not quantitative, the predictions of both
models are in relatively good agreement with the exact result,
in particular, they provide the correct order of magnitude and
capture the trends along the columns and rows of the periodic
table (excepted for calcium within the SSM). Importantly, the
RDM provides an even better estimate despite its coarser
description of the charge distribution giving rise to the
EFG. As explained above, this is due to the fact the use
of an effective radial dipole as an adjustable parameter, even
physically relevant since it follows the average radial dipole,
accounts for several effects simultaneously. Nevertheless, the
good predictions of the RDM for the spectral density at
zero-frequency J(0) underline that the dynamical fluctuations
of the EFG experienced by cations can be well described by
a model involving only the collective translational motion of
water molecules in their first solvation shell.

IV. CONCLUSION

Using molecular dynamics simulations, we have investi-
gated the statistical and dynamical properties of the electric
field gradient,. experienced by alkaline, alkaline Earth, and
chloride ions at infinite dilution in water. This microscopic
quantity is the key to understand the NMR relaxation of
quadrupolar ions, such as 7Li+, 23Na+, 25Mg2+, 39K+, or 137Cs+.
Specifically, we analyzed the effect of the ionic charge and
size on the distribution of the EFG tensor and on its auto-
correlation function. The instantaneous EFG tensor can be
reasonably well described by the Gaussian isotropic model
of Czjzek et al. and the variance of the EFG induced by
the surrounding solvent depends primarily on the distance
of water molecules to the ions. The decay of the EFG-ACF
occurs approximately in two steps, with a fast process on
the 10–100 fs time scale contributing to most of the decay
followed by a slower one on the 1 ps time scale. The main
contribution to the integral of the EFG-ACF, to which the
NMR relaxation time is proportional, is in fact this second
process. In the case of the lithium cation, oscillations of the
EFG-ACF correspond to the rattling of this light ion in its
solvation cage.
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The first solvation shell plays the dominant role in the
fluctuations of the EFG, all the more that the ion is small
and charged. We proposed an extremely simple model of the
charge distribution around the ion, whereby all the molecules
in the first solvation shell are represented by radial dipole
with an identical magnitude. The effect of the ionic size
and charge on the EFG can be understood by considering
the effect of the corresponding electric field on the water
molecules surrounding the ion. This radial dipole model is
less relevant in the case of the chloride anion, as expected.
Our analysis demonstrates that the EFG-ACF, hence the NMR
relaxation time, reflects primarily the collective translational
motion of water molecules in the first solvation shell of the
cations. Other contributions, such as further molecules or the
orientation of water molecules in the first solvation shell play
a less important role.

The molecular simulation approach followed in the
present work provides a microscopic route to the quantitative
interpretation of NMR relaxation measurements. Conversely,
such experiments can thus shed new light on the debate
on the molecular structure and dynamics around ions62–65 by
complementing other experimental techniques such as neutron
scattering or infrared, Raman and THz spectroscopies.66–69

Our findings also open the way to the design of improved
continuous theories for NMR relaxation for small ionic
solutes, which should focus on water density fluctuations
around the ion. Accurate simplified models are indeed
essential for the extension of the present approach to complex
systems involving larger length- and longer time scales such
as ions in the vicinity of biological molecules or confined
in anisotropic materials such as clays.70–74 In such systems,
the extreme narrowing assumption may break down due to
the long time scales involved. It might then be possible to
evaluate the spectral density at finite Larmor frequency by
combining molecular simulations with coarse-grained models
such as the lattice method recently introduced in the context
of NMR spectroscopy.75
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