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It is well known that the ground states of a Fermi liquid with and without a single Kondo impurity have
an overlap that decays as a power law of the system size, expressing the Anderson orthogonality
catastrophe. Ground states with two different values of the Kondo couplings have, however, a finite overlap
in the thermodynamic limit. This overlap, which plays an important role in quantum quenches for impurity
systems, is a universal function of the ratio of the corresponding Kondo temperatures, which is not
accessible using perturbation theory or the Bethe ansatz. Using a strategy based on the integrable structure
of the corresponding quantum field theory, we propose an exact formula for this overlap, which we check
against extensive density matrix renormalization group calculations.
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Introduction.—The Anderson orthogonality catastrophe
(AOC) is one of the cornerstones of modern many body
physics. In its simplest formulation, this “catastrophe”
states that the ground states of two Fermi seas with different
local scattering potentials become (if the orthogonality
exponent is nonzero) orthogonal in the thermodynamic
limit. This fact has many important consequences, and is at
the root of the physics of Mahan excitons [1], the Fermi
edge singularity in absorption spectra [2], the nonlinear IV
characteristics in quantum dots, or the Kondo effect [3] in
magnetic alloys. More recently, the AOC has played a
central role in understanding the postquench dynamics
induced by optical absorption in quantum dots tunnel
coupled to Fermi seas [4,5].
The simplest manifestation of the AOC occurs in the case

of a free Fermi sea involving a single channel of non-
interacting electrons that experience two different local
scattering potentials. If the corresponding phase shifts at

the Fermi energy are δð1ÞF , δð2ÞF , a simple argument [6] shows
that the scalar product of the ground states vanishes as

hΩ2jΩ1i ∝ N−ðδð1ÞF −δð2ÞF Þ2=2π2 ; ð1Þ

where N is the total number of electrons. The AOC occurs
as well in interacting systems. In the k-channel Kondo
problem for instance, it is known that the scalar product of
the system with and without a Kondo impurity behaves as
hΩðJÞjΩðJ ¼ 0Þi ∝ N−dK where [7] dK ¼ 3=4ðkþ 2Þ and
J is the (antiferromagnetic) Kondo coupling. The simplest
one-channel case, to which we will restrict ourselves in
this Letter, corresponds then to dK ¼ 1

4
. In this case, the

orthogonality of the ground states expresses the fact that at
very low energy, spin up and spin down electrons see a
phase shift of 0ðπ=2Þ with zero (nonzero) Kondo coupling.
An easy generalization of this argument gives the exponent
in the anisotropic Kondo case as well: in the Toulouse limit

in particular, dðTouÞK ¼ 1
8
. No such simple Fermi liquid

calculation exists for k > 1, and sophisticated techniques
have to be used to calculate the overlap, such as integra-
bility or conformal invariance. In the latter setup, the
orthogonality exponent dK is interpreted as the scaling
dimension of a boundary condition changing operator [7].
Note that such exponents are directly related to the power
law tail in the so-called work distribution [8,9] for quenches
when a coupling is suddenly turned on, such as those
studied in Refs. [4,5] in the Kondo case.
The ground state overlap exemplifies the nonperturbative

quantities occurring in quantum impurity problems. An
interesting variant is provided by the overlap hΩ2jΩ1i
between ground states corresponding to two different
nonvanishing Kondo couplings Jð1Þ, Jð2Þ. This overlap is
not expected to vanish when both Jð1Þ, Jð2Þ ≠ 0, even in the
thermodynamic limit. This is because, for any nonzero
Kondo coupling, fermions at very low energy now see the
same phase shift of π=2. Nevertheless, this overlap is
nontrivial, even in the noninteracting Toulouse limit,
because it is determined by the behavior of the whole
Fermi sea, and not just by what happens at the Fermi
energy. This overlap is also nonperturbative: any attempt to
calculate it by expanding in Jð1Þ, Jð2Þ is plagued by infrared
divergences precisely because of the AOC. Overlaps such
as hΩ2jΩ1i arise in quantum quenches where one suddenly
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changes the Kondo coupling Jð1Þ↦Jð2Þ. The system then
has a finite probability of remaining in the ground state at
large times, which translates into a delta function in the
corresponding work distribution [8]: this probability is
precisely the square modulus P1↦2 ¼ jhΩ2jΩ1ij2, and it
could be measured in optical absorption experiments
realizing such quantum quenches [4,5].
Now, the Kondo problem exhibits universal properties at

energy scales much smaller than the bandwidth D. In this
limit, physical quantities depend only on the temperature,
the magnetic field, and a crossover scale that encodes the
Kondo coupling J (see their precise relationship below)—
the Kondo temperature TK . Different (proportional) defi-
nitions of TK exist, but this will not matter for us. Indeed,

provided Tð1Þ
K , Tð2Þ

K ≪ D, scaling arguments show that the
overlap becomes a universal function of the ratio

hΩ2jΩ1i ¼ FðTð1Þ
K =Tð2Þ

K Þ ¼ FðTð2Þ
K =Tð1Þ

K Þ: ð2Þ

In this Letter, we obtain an exact formula for this quantity,
which we also check with extensive density matrix
renormalization group (DMRG) calculations.
Anisotropic Kondo model.—The anisotropic Kondo

problem is initially formulated as a three-dimensional
problem of noninteracting fermions coupled to a local
magnetic impurity. After a spherical waves decomposition,
only the s channel interacts with the impurity, and the
problem can be transformed into one-dimensional gapless
fermions on the half line (the radial coordinate) coupled to a
spin at the origin. “Unfolding” the half line one obtains a
problem of chiral fermions with

H ¼ −ivF
X
α¼↑;↓

Z
∞

−∞
dxψ†

α∂xψα

þ J½jþð0Þσ− þ j−ð0Þσþ� þ Jzjzð0Þσz; ð3Þ

where the spin currents are jþ ¼ ψ†
↑ψ↓, j− ¼ ψ†

↓ψ↑,

jz ¼ ψ†
↑ψ↑ − ψ†

↓ψ↓. We bosonize the fermionic fields ψσ ∼
ei

ffiffiffiffi
4π

p
ϕσ [10], which allows us to separate charge and spin

modes ϕc=s ¼ ðϕ↑ � ϕ↓Þ=
ffiffiffi
2

p
. The charge boson decou-

ples, and the interacting part involves only the spin boson
ϕ ¼ ϕs. After a canonical transformation, H → U†HU
with U ¼ expðiJzϕð0ÞσzÞ, one can then rewrite the
Hamiltonian as

H ¼
Z

∞

−∞
dxð∂xϕÞ2 þ Jðeiβϕð0Þσ− þ e−iβϕð0ÞσþÞ ð4Þ

with β ¼ ffiffiffiffiffiffi
8π

p
− 2Jz and the equal time commutation

relations ½ϕðxÞ;ϕðx0Þ� ¼ ði=4Þsgnðx − x0Þ. The scaling
dimension of the perturbation is β2=ð8πÞ ¼
½1 − ðJz=

ffiffiffiffiffiffi
2π

p Þ�2 ≡ ξ=ðξþ 1Þ, where the last equality

defines the coupling constant ξ. The Kondo temperature
in this framework varies as TK ∝ Jξþ1.
Perturbative results.—It is first natural to try to evaluate

the universal function (2) using perturbation theory. To this
end, we fold the chiral problem (4) to obtain a nonchiral
boson on the half line ð−∞; 0�, scattering off the spin
impurity at x ¼ 0. We then map this ð1þ 1ÞD quantum
impurity system onto a 2D classical statistical mechanics
problem in the half plane, critical in the bulk (correspond-
ing to the c ¼ 1 free boson theory), with the impurity now
acting as a boundary condition (see Fig. 1). We then
calculate the partition function ZðJð1Þ; Jð2ÞÞ of a half-
infinite system with the boundary condition corresponding

to the Kondo temperature Tð1Þ
K everywhere except on a part

of the boundary of length τ where the boundary field is

taken to correspond to Tð2Þ
K . It gives a term linear in

imaginary time (corresponding to a boundary free energy
contribution), a term exponential in imaginary time (cor-
responding to excited states propagating along the boun-
dary), and a term of order 1 that can be seen to be
jhΩ2jΩ1ij2 in the Hamiltonian formalism.
Expanding the overlap jhΩ2jΩ1ij2 in Jð1Þ − Jð2Þ from the

ratio ZðJð1Þ; Jð2ÞÞ=ZðJð1Þ; Jð1ÞÞ is extremely complicated,
since the two-point function of the boundary perturbation
in Eq. (4) is not known in general. At the Toulouse
point (ξ ¼ 1), however, the perturbation can be refermion-
ized, so the spin-spin propagator at a finite value of J
is easily found, and expanding the partition function
yields [11]

jhΩ2jΩ1ijξ¼1 ¼ 1 −
α212
8π2

þOðα412Þ; ð5Þ

FIG. 1 (color online). The overlap jhΩ2jΩ1ij can be extracted
from the partition function of the system with the insertion of a
Kondo impurity and two different values of the coupling. In this
picture, the boundary condition corresponds to the spin impurity
while the bulk describes a critical statistical mechanics problem
associated with the spin mode ϕs.
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where eα12 ¼ Tð2Þ
K =Tð1Þ

K . Even for this noninteracting case,
going beyond this first order expansion becomes quickly
involved, and capturing the full behavior of the function (2)
seems hopeless.
Semiclassical analysis.—The overlap can also be calcu-

lated perturbatively in the semiclassical limit, where
ξ≃ β2=ð8πÞ ≪ 1. In this case, it is convenient to imple-
ment yet another canonical transformation, and bring the
Hamiltonian into the form

H ¼ 1

2

Z
0

−∞
dx½ð∂xΦÞ2 þ ð∂tΦÞ2� þ Jσx þ β

4
∂tΦð0Þσz:

ð6Þ

Using perturbation theory in β, we now calculate the
partition function Z in imaginary time of a system with
two different values of J as shown in Fig. 1. The leading
contribution comes from the configuration where σx ¼ −1
everywhere but between a pair of insertions, spaced by τ, of
the ∂tΦð0Þσz term. Discarding terms that depend on τ and
encode the nonuniversal boundary free energy, we find [11]

jhΩ2jΩ1ij ¼ 1þ ξ

2

�
1 −

α12
2

coth
α12
2

�
þOðξ2Þ: ð7Þ

Once again, going beyond this first order is extremely
involved, and there is, in particular, no chance to capture

the crossover between the two extreme behaviors, Tð1Þ
K ∼

Tð2Þ
K and Tð1Þ

K ≫ Tð2Þ
K .

Exact results from integrability.—For many other
questions in the Kondo problem—such as the study of
thermodynamics properties [12,13], correlation functions
[14], quantum quenches [15], or entanglement [16]—
nonperturbative techniques have led to analytic expressions
in the crossover regions, when the physical scale of interest
(temperature, magnetic field, etc.) is comparable with TK .
Although exact Bethe ansatz wave functions are in prin-
ciple known for different values of TK , overlaps such as
hΩ2jΩ1i have however proven, so far, impossibly hard
to calculate directly. We report here another approach to the
problem based on an axiomatic determination of the
overlaps directly in the field theory limit. This approach
is similar in philosophy to the S-matrix bootstrap from
Ref. [17]. We give the relevant details in the Supplemental
Material [11], and move directly to the main result.
We find that the overlap is given by

hΩ2jΩ1i ¼ ðξþ 1Þ
sinh α12

2ðξþ1Þ
sinh α12

2

gξðα12Þ ð8Þ

with

gξðαÞ ¼ exp

�Z
∞

0

dt
t

sin2ðαt=πÞ
sinh 2t cosh t

sinh tξ
sinh tðξþ 1Þ

�
; ð9Þ

where we recall that eα12 ¼ Tð2Þ
K =Tð1Þ

K . See Fig. 2 for a plot
of this exact solution, illustrating the variation of the
overlap with the anisotropy, as well as the incredibly large

values of the ratio Tð2Þ
K =Tð1Þ

K necessary to bring this overlap
down to 10−1 or less. It is worth mentioning here that the
function gξðα12Þ coincides with properly normalized matrix
elements of the operators e�iβϕð0Þσ∓:

hΩ2je�iβϕð0Þσ∓jΩ1iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΩ2je−iβϕð0ÞσþjΩ2ihΩ1jeþiβϕð0Þσ−jΩ1i

q ¼ gξðα12Þ: ð10Þ

An immediate check is to study the behavior at large

Tð2Þ
K =Tð1Þ

K , where we find

hΩ2jΩ1i≃

8>>>><
>>>>:

Cξ

�
Tð2Þ
K

Tð1Þ
K

�
−ξ=4ðξþ1Þ

ðξ < ∞Þ;

C∞

�
log Tð2Þ

K

Tð1Þ
K

�ð3=4Þ�
Tð2Þ
K

Tð1Þ
K

�
−ð1=4Þ

ðξ ¼ ∞Þ

ð11Þ

for Tð2Þ
K ≫ Tð1Þ

K . This is in agreement with the dimension of
the boundary condition changing operator for the aniso-
tropic Kondo problem, dK ¼ 1

4
ξ=ðξþ 1Þ. For the isotropic

Kondo case (ξ ¼ ∞) we recover the dimension, dK ¼ 1
4
,

of the j ¼ 1
2
SUð2Þ primary. Notice that, since in Eq. (8)

we assume the conventional normalization condition
hΩjΩi ¼ 1, the constants in asymptotic formulas (11)
are universal amplitudes. Their expression can be found
in the Supplemental Material [11]. Of course, one can also
verify that Eq. (8) is consistent with the perturbative results
(5) and (7).

FIG. 2 (color online). Theoretical result for the overlap for
various anisotropies as a function of the ratio Tð2Þ

K =Tð1Þ
K .

The isotropic Kondo problem then corresponds to ξ ¼ ∞. Note
the extreme values on the x axis.
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Numerical results.—We now turn to a detailed numerical
exploration of our result. There are various lattice models
where the overlap (8) can be measured. We have focused on
the XXZ chain with a weak boundary coupling

H ¼
XN
i¼0

tiðSxi Sxiþ1 þ Syi S
y
iþ1 þ ΔSzi S

z
iþ1Þ; ð12Þ

where ti ¼ 1 for i ≠ 0 and t0 ¼ Jl. Standard bosonization
[18] shows that this Hamiltonian is equivalent, at low
energy, to Eq. (4) with the Kondo coupling J ∝ Jl and
β2=ð8πÞ ¼ 1 − ð1=πÞ arccosΔ [19]. From a numerical
point of view, the easiest case to check is of course the
Toulouse point where Δ ¼ 0, for which the overlap (2) can
be expressed as a determinant of a matrix whose size scales
linearly with the number of sites (see, e.g., Ref. [20]).
Results are presented in Fig. 3(a). While the agreement
with the theoretical value is clearly good—note that there is
no free parameter in Eq. (8)—several aspects are important
to notice. First, the overlap varies very slowly with the ratio
of Kondo temperatures. This requires exploring ratios

Tð2Þ
K =Tð1Þ

K of the order of 102 or more. Since the analytical
result is only true in the scaling limit where Jl ≪ 1, this
forces us to explore extremely small values of the bare
coupling. For these values, the Kondo screening length
1=TK ∝ ðJlÞ−2 is in turn very large. To avoid finite size
effects—which seem quite important for the determination
of the overlaps—we finally have to study larger systems

than one would have expected—of the order of 104 sites,
forbidding us in particular from testing the region where the
overlap becomes very small.
The interacting case requires use of the DMRG tech-

nique [21]. We use here a two-site version in the matrix
product state language [22]. In this case, we have been
limited to chains of about 800 sites, for which finite size
effects in the scaling limit remain unfortunately important.
In order to obtain usable results, we have had to perform a
double extrapolation. For finite, small Jl we have first
extrapolated results for different sizes to N ¼ ∞. These
results are represented in Fig. 3(b) for ξ ¼ 1=3. We have
then performed a second extrapolation for different values
of Jl to Jl ¼ 0, represented by the black symbols in the
figure. The result of these extrapolations is found to be
consistent with the analytical result (8). Note that in
principle, one would also need to extrapolate the bond
dimension χ of the variational matrix product state used in
the DMRG calculations to infinity, but we find that keeping
χ ∼ 100–300 was enough for the finite χ effects to be
negligible compared with the more important finite N and
finite Jl effects. We also note that our formula can be
verified very efficiently in the isotropic case (ξ ¼ ∞) [23]
using the numerical renormalization group (NRG) [24].
Discussion.—It is clear a posteriori—in view of its

extremely slow variation with the ratio of Kondo temper-
atures—that the overlap in the crossover would be impos-
sible to obtain perturbatively. It is also difficult to measure
it numerically. The slow variation quantifies the weak

FIG. 3 (color online). Numerical checks of the main result (8). Note that the comparison between numerical and field theory results
does not involve any free parameter. (a) Measures of the overlap in the free-fermion Toulouse case ξ ¼ 1, modeled by a spinless
noninteracting resonant level, tunnel coupled with parameter Jl to two metallic reservoirs with N ¼ 4096 sites each. The dashed line is
the analytical result, with TK ∝ J2l. Inset: finite size scaling. (b) DMRG results for the overlap in the interacting case ξ ¼ 1=3, modeled
by an XXZ spin chain with anisotropy Δ ¼ −1=

ffiffiffi
2

p
and N sites, with an extra site at the edge characterized by a weak link Jl,

corresponding to the impurity. The numerical results for N ¼ 200;…; 800 are extrapolated in the thermodynamic limit N → ∞. The red
line is the analytical result, with TK ∝ J4=3l , and the black symbols correspond to the extrapolation Jl → 0. Inset: examples of finite size

extrapolations for fixed Jl ≡ Jð1Þl and different values of Jð2Þl .
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dependency of the Kondo ground state on the impurity
coupling. It would be interesting to obtain a more quali-
tative understanding of this effect in terms of the screening
cloud. Technically, the exact formula for the ground states
overlap is the building stone for the calculation of general
overlaps between quantum impurity systems with different
boundary conditions. Exact calculations of Loschmidt
echoes and work distributions in quantum quenches then
follow using more traditional techniques [25], which will
be discussed elsewhere.
Despite their importance in the context of quantum

information, the thermodynamic limit of similar ground
state overlaps (fidelities) remains extremely difficult to
access exactly—even for noninteracting systems—and are
often nonperturbative in the relevant expansion parameters.
Our result opens the door to the calculation of such overlaps
in integrable systems.
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