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Abstract. We study the collapse of two-dimensional polymers, via an O(n) 
model on the square lattice that allows for dilution, bending rigidity and short- 
range monomer attractions. This model contains two candidates for the theta 

point, ΘBN and ΘDS, both exactly solvable. The relative stability of these points, 
and the question of which one describes the ‘generic’ theta point, have been the 
source of a long-standing debate. Moreover, the analytically predicted exponents 

of ΘBN have never been convincingly observed in numerical simulations. 
In this paper, we shed a new light on this confusing situation. We show in 

particular that the continuum limit of ΘBN is an unusual conformal field theory, 
made in fact of a simple dense polymer decorated with non-compact degrees of 
freedom. This implies in particular that the critical exponents take continuous 
rather than discrete values, and that corrections to scaling lead to an unusual 
integral form. Furthermore, discrete states may emerge from the continuum, but 
the latter are only normalizable—and hence observable—for appropriate values 
of the model’s parameters. We check these findings numerically. We also probe 
the non-compact degrees of freedom in various ways, and establish that they are 
related to fluctuations of the density of monomers. Finally, we construct a field 

theoretic model of the vicinity of ΘBN and examine the flow along the multicriti- 
cal line between ΘBN and ΘDS. 

Keywords: conformal field theory, loop models and polymers, classical Monte 
Carlo simulations 
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1. Introduction 

Two-dimensional self-avoiding walks  with  additional  generic  short-range  attraction 
are believed to experience a collapse transition as the temperature is lowered [1, 2]. 
The high-temperature phase is in the universality class of ordinary self-avoiding walks 
(SAWs), also known as dilute polymers, with well-known exponents. The low-tempera- 
ture phase is in the universality class of so-called dense polymers, also with well-known 
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Θ 

Θ 

exponents [3]5. Between these sits the so-called theta point, where the polymers are 
somewhat more compact than in the dilute phase, but still have a fractal dimension 
strictly smaller than two. 

The theta point is clearly identified in the language of the O(n) field theory (in the 

polymer limit n → 0) as a tricritical point [1, 2], while the ordinary SAWs correspond 
to the usual critical point. Non-generic attraction between monomers would lead to 
higher criticality for the transition point, leading to what is sometimes called a theta 
prime point [10, 11]. 

It is unfortunately di cult to identify ‘the’ theta point based on its expected tri- 
critical nature. When dealing with geometrical problems, the counting of physical 
observables—many of which are, in a sense, non-local—is ambiguous. Moreover, in two 
dimensions, the Landau–Ginzburg picture is hardly able to organise the zoo of known 
universality classes, which is rendered even more complicated by the lack of unitarity 
inherent to geometrical problems. Finally, producing reliable numerical results turns 
out unexpectedly hard. This means the identification of the theta point critical expo- 
nents has led to a long-standing controversy. 

In 1987, Duplantier and Saleur [12] were able to exactly solve a model (first pro- 
posed by Coniglio et al [13]) of SAWs on the honeycomb lattice with a particular type 
of attractive interaction. They conjectured that this interaction was generic enough to 
put the model in the theta universality class, and obtained the exponents 

νΘ = 

γΘ = 

φΘ = 

4 
≈ 0.571, 

7 
8 

≈ 1.143, 
7 
3 

≈ 0.429. (1) 
7 

Later, the same authors [14] carried out extensive numerical simulations to explore 
the stability of their conjectured theta point against additional attractions, and con- 
cluded that indeed, the exponents they had obtained described  the  generic  (tri- 
critical) theta point. These exponents were also found in agreement with numerical 
simulations of interacting self-avoiding walks on other lattices [15], but it is fair to 
say that the proximity of the dense phase with very strong corrections to scaling 
rendered these results a little less definite than one would have liked. For the square 
lattice and presumably generic nearest-neighbour attractions, the best recent numeri- 
cal results are [16] 

νnum = 0.570(2), 

φnum = 0.46(3).  (2) 

Meanwhile, in a beautiful series of papers [17–20], Nienhuis and collaborators man- 
aged to find an exactly solvable O(n)  model on the  square lattice with a rich set  of 

phase transitions. One of these has, for n → 0, all the required characteristics of the 
 

5 The zero-temperature case, where the walks are fully packed, is known as Hamiltonian walks. It presents 
more subtle features and strong non-universality, with critical exponents that are lattice-dependent [4–7] and 
depend continuously on the sti ness for models of semi-flexible walks [8, 9]. We will not discuss this further here. 
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theta point, but leads, disturbingly, to critical exponents6 which are di erent from 
those of [12]: 

νBN = 
12 

≈ 0.522, 
23 

γBN 
= 

53 
≈ 1.152. 

46 
(3) 

It was suggested at the time in [20] that this solvable point might be in fact ‘the’ generic 
theta point, implying that the point obtained by Duplantier and Saleur [12] was, in fact, 
a higher multicritical point—although it is hard to see how the exponent ν in (1) for a 
higher multicritical point could be larger than the one (3) for the generic theta point. 

To complicate the matters further, the exponents obtained in [20], despite the 
impeccable derivation obtained via the Bethe Ansatz, have never quite been observed 
in numerical simulations. Frustratingly, for the very model discussed in [20], and using 
the most state-of-the-art numerical techniques available today, the exponents obtained 
in direct simulations [22] read 

νnum = 0.576(6), 

γnum = 1.045(5). 
(4) 

 

and are, bizarrely, close to the ones (1) obtained by Duplantier Saleur! Similar conclu- 
sions were drawn in [21] in the context of the measure of surface critical exponents, 
both from transfer matrix and DMRG calculations. 

The discrepancy with respect to the analytical results (3) is essentially unheard of 
in the field of exactly solvable models and conformal field theory in two dimensions, 
where, usually, theory and numerical experiments match almost perfectly7. Of course, 
one important point is that in [20], the quantities which are studied involve a grand 
canonical ensemble of walks where the length fluctuates, while in the simulations of 
[22] polymers have a fixed length, and the ensemble is canonical. However, this point 
is usually easily taken care of by considerations of Legendre transform, and has never, 
in all the other cases studied so far, led to any particular di culty. 

While evidence gathered over the last several years (see, e.g. [23, 24] for recent 
contributions) has confirmed that the exponents obtained in [12] indeed are those of 
the generic theta point, the meaning of the exactly solved model in [20] has remained 

totally unclear: what is its universality class in the O(n) field theory language? Why 
are the exponents so hard to observe numerically? 

The detailed answer to this question is the object of this paper and turns out to be 
a rather long story. It can however be summarised rather succinctly: The universality 
class of the model in [20] is profoundly di erent from the one of ordinary SAWs. While 
for the latter, the spectrum of critical exponents is discrete—as is the case for most 
familiar models8 of statistical mechanics—for the former, the critical exponents form in 

6 The subscript BN refers to Blöte and Nienhuis [17] and will be used extensively throughout this work. 
7 To give but one example of an (at least seemingly) very comparable situation, the exponent γ for Hamil- 

tonian walks on the square lattice was found numerically to be [6] γ = 1.0444(1), in perfect agreement with the 

subsequent analytical solution [7] γ = 117 ≈ 1.0446. 
112 

8 A few noticeable exceptions have nevertheless appeared in the recent literature [26–29]. 
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Figure 1. Configuration of the semi-flexible vertex-interacting self-avoiding walk 
(VISAW). 

 

fact a continuum, of which the values (3) obtained in [20] are simply the lower bounds. 
While, as we shall see below, this explains the numerical di culties encountered so far, it 
also shows that the continuum field theoretic description is profoundly di erent from the 

O(n → 0) model Φ6 theory expected for the theta point. The field theoretic descrip- tion 
instead involves a non-compact target, and is related with the Black Hole sigma model 
conformal field theory that has been discussed intensively in the string theory literature 
[30–32]. 

 

2. The polymer model and its phase diagram 

 
The model considered in [20] is one of a single polymer on the square lattice, where 
edges can be visited at most once. The polymer is not allowed to cross itself, but colli- 
sions where two pieces of the polymer barely avoid each other are allowed at all sites: 

an energy −εt is associated to this in order to take into account the presence of medium- 
range attractions in the physics of the theta point (see figure 1). 

Additionally, it is convenient to also allow for some sti ness, and thus associate 

with two parallel consecutive monomers an energy −εs. The resulting object is called 
a semi-flexible VISAW (vertex-interacting self-avoiding walk), in the notations of [22] 
that we follow here. The partition function of a polymer made of N monomers is thus 
given by 

ZN (τ, p) = ∑ 
VISAW 

τ number of doubly visited sites pnumber of straight segments, 
 

(5) 

with  τ ≡ eβεt   and  p ≡ eβεs.  While  Monte  Carlo  simulations  focus  on  polymers  of  fixed 
large length N, the integrable model deals instead with a grand canonical ensemble 
where the monomers have a fugacity K, so the partition function is 

∞ 

G = ∑ 
N =0 

KNZN (τ, p). (6) 

The phase diagram in the (p, K, τ) parameter space, which has been the object of 
several numerical studies [33–35], is depicted schematically in figure 2. For small values 
of the interaction parameter τ, the physics is essentially the same as for usual (non- 
interacting) SAWs: for small values of the fugacity K the polymer is in a massive phase 
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Figure 2. Schematic phase diagram of the two-dimensional VISAW. The nature 
of the di erent phases and transitions between them is explained in the main 

text. The two candidates, ΘDS and ΘBN, for the theta point universality class are 
represented, respectively, by an orange (DS) and a green (BN) dot. 

 

and remains of finite total length as the size of the system is sent to infinity, whereas 
for high values of K the polymer is in a critical, dense phase where it covers a finite 
fraction of the lattice edges in the thermodynamic limit; the two phases are separated 
at intermediate K by a di erent, dilute critical phase (represented by a red surface in 
figure 2). 

In order to investigate the e ect of larger values of τ, it is instructive to consider Ising 
degrees of freedom living on the faces of the square lattice, such that two Ising spins on 
adjacent faces share the same orientation i  they are separated by a monomer. While 
this Ising degree of freedom is disordered in the usual SAW dense phase, it is clearly 
ordered in the so-called completely packed (Eulerian walk) limit of large K and τ, and 
therefore some critical Ising surface should be expected in the phase diagram (shown in 
blue in figure 2). Above this critical surface, the transition between the mas- sive and 
dense (ordered) phases is now of first order, and is represented by a dashed surface in 
the figure. 

Whereas all the phases described so far are by now well understood9, this is not the 
case of the multicritical line joining the dilute, Ising critical, and first-order surfaces, 
and which contains both candidates under consideration for the theta point physics: 

 

• The integrable point ΘBN [20], depicted as a green dot in figure 2, which will be 
our main focus throughout this paper. 

• The universality class of [12] is known [20] to describe the particular integrable 

point ΘDS situated at p = 0, that we depict as an orange dot in figure 2. 

The precise location in the (p, K, τ) phase diagram of  the  points ΘBN and ΘDS,  as 
well as that of three further integrable points, follows from the integrable solution [17] 
and various transformations, of which we shall review the necessary details in section 3. 
Su ce it to say, here the integrable model can be formulated in terms of a loop model 
with the following nine di erent local configurations around each lattice site: 

9 Note however that the p = 0 plane reveals some surprises for generic n [35] that we plan to unravel in a 
future piece of work [36]. 
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2 

2 

  J 

( 

 
 

 
ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 ρ9 

 

(7) 

The corresponding Boltzmann weights are ρ1, …, ρ9 as indicated, and there is an addi- 
tional non-local weight n per loop. We set the loop weight n = 0 to obtain polymers. 
The integrable model gives the same weights to local configurations that are related by 
a horizontal and/or vertical reflection, so that ρ2 = ρ3 and ρ4 = ρ5. It contains a further 

(so-called spectral) parameter and various gauge factors ±1 that can be adjusted to 
obtain isotropic solutions for which we have also ρ2 = ρ4 and ρ8 = ρ9. The correspon- 
dence between (ρ1, ρ2, ρ6, ρ8) with the parameters used in figure 2 is then easily seen 
to be 

p = 
ρ6 , 
ρ2 

K = 
ρ2 , 
ρ1 

τ = 
ρ1ρ8 . 

(ρ2)2 (8) 

We also note that [22] prefers to trade τ for another parameter defined by w = K 2τ = ρ8/ρ1. 
The integrable model studied in [17–20] is defined in terms of trigonometric weights 

(ρ1, …, ρ9; n) whose periodicities are such that, after constraining to isotropic n = 0 
cases, there are in fact four distinct solutions for the parameters (p, K, τ). These are 
referred to as branches 1, 2, 3, 4 in [17], and as regimes I, II, III in [20] (regime I cor- 

responds to two branches). The point ΘBN corresponds to regime III (or branch 3) and 
the weights are 

pBN = sin
)
| 

 π |
| ≈ 0.275 899, 

16 
「 ) π |) 1 ) π || 

−1
 

KBN = 
 
|2 cos|

  16 J
||
 

1 + tan
 
| 

16 J
||
J
|
]
 ≈ 0.446 933, 

τBN = 
1 

2 + + 
2 

) ≈ 2.630 986. 
 

(9) 

The other three solutions can be shown to correspond to [17] a point in the dense phase 
(above the blue surface in figure 2); a point at the Ising ordering transition (on the blue 
surface); and a point in the dilute phase (on the red surface in figure 2)10. 

The point ΘDS is derived from another—simpler—integrable model in which only 
ρ8 and ρ9 are non-zero. We denote the loop weight in this completely packed model 

by ñ.  It  is  equivalent  to  the Q = ñ2  state  critical  Potts  model  [37],  and  is  referred  to 
as branch 0 in [17]. One can show that it is equivalent to a model of the type (7) with 
non-zero ρ1 via a simple trick [17] that we now recall. Indeed, consider a loop model 

with only vertices ρ8 and ρ9 and loop weight n˜ = n + 1. Draw each loop independently 
in black and white, giving weight n to black loops and 1 to white loops. The trivial 
weight given to white loops means that we do not need to keep track of their number, 

 
10 For completeness, we notice that there is another point in the dilute phase which is extremely well studied  

and whose position is exactly known. It is the critical point Kc of the combinatorial SAW model, with p = 1 and 

τ = 0, in which vertex-avoiding walks are simply weighted by K per monomer. This is well suited for exact enu- 
meration studies, of which the most recent [38] confirms to almost 12 decimal places the validity of a twenty year 

old conjecture [39] that Kc is the positive real root of the polynomial 581K4 + 7K 2 − 13. 
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2 

i 

( ( ) ( )) 

1 

2 2 

so the colour white can be considered invisible. This produces a model of the type (7) 
in which ρ6 = ρ7 = 0. Starting from the completely packed model with normalised, 
isotropic weights, ρ8 = ρ9 = 1, we obtain a dilute model with ρ2 = ρ3 = ρ4 = ρ5 = 1 and 

ρ1 = 2. Setting in particular n = 0 we finally obtain 

pDS = 0, KDS = 
1 

, 
2 

τDS = 2. 
 

(10) 

By means of the n˜ = n + 1 mapping, this model is equivalent to percolation (the Q = 1 
state Potts model), just as the theta point model originally exhibited in [12]. In par- 

ticular, the critical exponents at ΘDS coincide with those of (1). 

 
 

3. Relation with the O(n) loop and Izergin–Korepin vertex models 

 
An important fact—which is at the root of the exact solution in [20]—is that the point 
ΘBN is just the particular n  = 0 case of a more general solvable loop model related to 
the Izergin–Korepin Rˇ-matrix. We now review this in some detail. 

The Izergin–Korepin Rˇ-matrix (also known as the a(2) Rˇ-matrix) is a solution of the 
Yang–Baxter equations acting on two copies of the spin-1 representation of Uq(sl2). It 
is most conveniently expressed in terms of the quantum group projectors Ps on spins 

s = 0, 1, 2: 

ˇ(2) q4x − 1 
 

 

q6x + 1 
 

R ∝ P2 + 

q4 − x 
P1 +

 q6 + x 
P0.

 
(11) 

We will set in the following q = 
γ 

e 2   and x = e2λ, in order to match the notations of [40]. 

While  the  most  natural  context  to  interpret  such  an Rˇ-matrix is in terms of a 
19-vertex model, it turns out that a few simple transformations allow a reinterpretation 
in terms of a dilute loop model [41]11. 

In order to discuss this—and in view of the extensive literature on the subject—it is 
useful to review normalisations and conventions in detail. First, let us fix the normali- 

sation  of  the Ř-matrix.  We  start  from  the  matrix ŘGM  given  in  [40],  which  is  related 
to (11) by 

ˇ (q 2 − x )(q 3 + x ) ˇ(2) 
 

RGM = i 
5 

R   , 
xq 2 

(12) 

where q = q2. We then define our model by 

Ř = 
  1 

ŘGM. 

2 sin γ − sin 5γ 

 
 
 

(13) 

 
 
 

11  This is somewhat similar to what happens for the a(1) model Ř-matrix, which is both related with the 6-ver- 

tex model and with a completely packed O(n) loop model [42]. 
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Next, we graphically represent the edges with Sz = 0 by empty edges, and those 
with Sz = ±1 by oriented lines. We then apply the following gauge transformations on 
the matrix elements of Rˇ: 

α−1 α α α−1 

with α = ieiγ−λ. Then perform the following transformation 

β β−1 β−1 β−1 

with β = −ie−iγ. Considering now the model as a gas of dilute loops, each loop carrying 
the sum over its two possible orientations, the local configurations around a vertex are 
precisely those shown in (7). The latter gauge transformation amounts to assigning to 
every closed loop a weight 

n = β2 + β−2 = −2 cos(2γ), 

and the weights ρ1, …, ρ9 assigned to each vertex configuration are the following 

(14) 

ρ  = 1 + 
sin uZB sin(3λZB − uZB) 

,
 

1 sin 2λZB sin 3λZB 

ρ2 = ρ3 = 
sin(3λZB − uZB) 

, 
sin 3λZB 

ρ = ρ =
 sin uZB 

,
 

4 5 sin 3λZB 

ρ = ρ = 
sin uZB sin(3λZB − uZB) 

,
 

6 7 sin 2λZB sin 3λZB 

ρ8 = 
sin(2λZB − uZB) sin(3λZB − uZB) 

, 
sin 2λZB sin 3λZB 

ρ  = − 
sin uZB sin(λZB − uZB) 

,
 

9 sin 2λZB sin 3λZB 

n  = −2 cos 4λZB. 

 

 
(15) 

The model (7) with weights (15) is precisely the integrable dilute O(n) model [17–20], 
here written in the conventions of [41]12. In the following we parameterise the anisot- 
ropy by λ (spectral parameter) and the loop weight by γ (crossing parameter), as in 
(14). These are linked to the notation [41] through the relations 

λZB = 
π 

− 
γ 

, 
2 2 

 
(16) 

uZB = iλ. 

In all the following we also rescale ρ4 and ρ5 by a factor −1. As noticed in [17] this 
simple gauge transformation changes neither the partition function nor the correlation 

 
12 The subscript ZB refers to Zhou and Batchelor [41]. 
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2  

2 

2  

2 

4 

π 

4 

) 

4 

functions, and it has the advantage of rendering all the Boltzmann weights at the poly- 
mer point positive, as shown explicitly in (9). This is an important point to us, since 
we want to show that this dilute polymer model has a non-compact continuum limit 
(i.e. with a continuous spectrum of critical exponents), although the only non-unitary 
ingredient stems from the non-locality of the loop weight n. This should be compared in 
particular with the earlier examples of statistical mechanics models with a non-compact 
continuum limit, that were defined in terms of negative Boltzmann weights [26, 27, 29]. 

With these conventions, the weights (15) admit two isotropic points which are 

λ   = i
)
| 

3γ 
± 

π |
|. 

± 4 4 J 
(17) 

and for each of those there are two polymer (n = 0) points in the fundamental inter- 

val γ ∈ [0, π], namely γ = π and γ = 3π. The correspondence with the three regimes of 
4 

[20] and the four branches of [17] is as follows. With u = u+ , we are in regime I, cor- 

responding to dense polymers (branch 1) for γ = π, and to dilute polymers (branch 2) 

for γ = 
3π. Explicitly this leads to the weights 
4 

π 
pden = cos 

16 
≈ 1.387 04, 

Kden =
  1 

≈ 1.003 15, 
cos π − 2 sin π  

16 16 

τden = 1 +
 1   

− ≈ 0.783 227 (18) 

 

and  

pdil = 

 

sin 
3π

 
16 

 

≈ 0.785 695, 

sin 3π 
Kdil = 16 ≈ 0.408 391, 

1 + cos 
8 

τdil = 1 −
 1   

+ ≈ 0.675 577. (19) 
 

With u = u−, we are in regime III (branch 3) for γ = π, corresponding to the point ΘBN 

already given in (9), and in regime II (branch 4) for γ = 3π with weights 
4 

pII = cos 
3π 

≈ 1.175 88, 
16 

4 sin 3π sin π 
KII = 16 8 ≈ 15.4476, 

1 − 8 sin π sin2 3π 

 
τII 

8 
 

= −|
 

1 − 

16 

cos π  
  16 

cos 3π 
16 

 

≈ −0.089 7902. 

 
 

(20) 

2  

1 
+

 1 

2 2   2 

2  

1 
− 

1 

2 2 2 

2  

1 
+ 

1 

2 2 2 
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Unlike the other integrable points (9), (18) and (19), this latter point (20) does not 
seem to allow for a gauge transformation that will render all Boltzmann weights explic- 
itly positive. 

 

 
4. Transfer matrix spectrum and critical exponents 

 
4.1. O(n) model transfer matrix 

Consider the O(n) loop model on a square lattice of size L × H sites in the horizontal 
and vertical directions respectively, and take periodic boundary conditions in the for- 
mer. The corresponding (grand canonical) partition function can be written as 

ZL,H  = ∑ ρ N1 ⋯ ρ N9nNloops, 
1 9 (21) 

C 

where the sum is over all possible loop configurations, Ni (with i = 1, …, 9) is the num- 
ber of occurencies of each type of vertex (7), and Nloops is number of closed loops within 
each configuration. Note that both closed contractible loops and loops winding around 
the horizontal periodic boundary condition contribute to Nloops. It is possible to give a 
di erent weight to these two loop types by twisting the model, and we shall make use 
of this possibility in the sequel. 

It is convenient to introduce a transfer matrix formalism [17] in which (21) is com- 
puted by decomposing the lattice into horizontal slices. Each configuration of the ver- 
tices within the lowermost t horizontal slices induces a connectivity among the L edge 
mid-points that form the intersection of the lattice with a horizontal line cutting the 

system between row t and row t + 1. Some of these L points can be empty, and the 
remaining points are either connected pairwise via an arc (a contiguous part of loop 
situated below the intersection line), or they connect all the way through the system 
via a leg (a contiguous loop segment that sends at the bottom of the lattice). 

The set of all possible connectivities for a system of size L = 3, labeled by the num- 
ber of legs l, can be drawn as follows: 

A = 0 A = 1 A = 2 A = 3 
 

 

 

 

 

 

We note that since the vertices (7) do not allow the crossing of loop segments, the 
configurations can all be drawn in a non-crossing fashion. In particular a leg is never 
trapped inside an arc. The horizontal periodic boundary condition however implies that 

for l > 0 some of the arcs will need to cross the boundary. 
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ji 

0 

α 

From a configuration corresponding to a given set of connectivities at height H, the 

possible configurations at height H + 1 are obtained by acting with all the compat- 
ible vertices (7) on each of the L vertices within a row. Each connectivity carries a 
statistical weight, corresponding to the Boltzmann weights appearing in the partition 

function (21) for a partially constructed lattice. The addition of the (H + 1)th hori- 
zontal row can thus be represented by the so-called geometrical (row-to-row) transfer 
matrix T (L), whose non-zero elements provide the transitions between configurations at 

height H and H + 1. More precisely, the matrix element T (L) is equal to the product of 

Boltzmann weights (7) for the L vertices within the (H + 1)th row—including a factor 
of n for each closed loop—summed over the diagrams from (7) that produce connectiv- 

ity j for the system of size H + 1, starting from the connectivity i for the system of size 
H. The transfer matrix can be depicted as follows 

1 2 L 

where each crossing represents the Rˇ-matrix of section 3 in its loop representation, and it is 
understood that the left and right ends of the horizontal line have to be joined to recover 
the periodic boundary conditions. This is exactly equivalent to equation (2.12) in [17]. 

It is easily seen that the transfer matrix T(L)has a block-triangular structure, as the 
number of legs l can only be lowered (by contracting one leg with another) or kept 
fixed from one row to the next. As will become clear soon all the information we need 
is encoded in the transfer matrix’s eigenspectrum, so we can focus on the diagonal part, 
and hence study separately the di erent subsectors of fixed l. Note that the transfer 
matrix is not symmetric, which means it is not necessarily diagonalisable. It could also 
be that some of the eigenvalues are complex. However, numerical study shows that, for 
generic n, the matrix is indeed diagonalisable and all the low-lying eigenvalues (which 
are those that matter in the scaling limit) are real. For degenerate values of n (such 
that q is a root of unity), the transfer matrix is usually not fully diagonalisable, and 
exhibits Jordan cells [43, 44], even in the low lying sectors, indicating that the corre- 
sponding conformal field theory is logarithmic [45]. This is, however, a technical detail 
which does not matter much here, and in general we do not distinguish genuine and 
generalised eigenvalues. 

Since the model is critical, this geometrical transfer matrix has a large number of 

very close eigenvalues Λα, whose scaling with the size of the system is related with 
critical exponents, following the usual conformal invariance prediction. Calling Λ(L) the 

largest of these, and Λ(L) any of the following eigenvalues13, we have [46, 47] 
log Λ(L) πc 

—  0    = f∞ − + o(L−2), 
L 6L2 

log Λ(L) log Λ(L) 2πxα 
—  α   + 0    = + o(L−2), (22) 

L L L2 
 

13 It is convenient to view our two-dimensional statistical mechanics model as a one-dimensional quantum 
model (spin chain) evolving in imaginary time. In this picture the leading and next-to-leading transfer matrix 
eigenlevels are the ground state and low-lying excitations of the corresponding quantum Hamiltonian. We shall 
frequently refer to this equivalent point of view in the following. 
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i 

h  Rh1 Rh2 hL , 

vertex h  Rh1 Rh2 hLe 

where f∞ is the free energy per vertex of the infinite system, c is called the central 

charge, and xα = ∆α + ∆α, where (∆α, ∆α) are the holomorphic and antiholomorphic 
conformal weights of the operator associated with the state α. The central charge and 
set of conformal weights associated with the leading transfer matrix eigenlevels encode 
the whole set of critical exponents, as will be illustrated in the following sections. 

 
4.2. Relation with the IK transfer matrix, and exact results 

In order to investigate the critical content at the ΘBN point, our next task is therefore 
to identify the leading eigenlevels of the O(n) model transfer matrix, or alternatively, 
those of the Izergin–Korepin model transfer matrix. The latter is defined similarly in 

terms of the Ř
(2) 

matrix (11), and it acts in the product (C3)
⊗ L  of spin-1 representations 

(see [28] for more details). It commutes with the total magnetisation 
L 

m = ∑ Sz, (23) 
i=1 

which is the vertex model counterpart of the geometrical quantum number l mentioned 
earlier (see also below). A crucial point is to control the relationship between the loop 
model and the di erent gauge transformed variants of the vertex (Izergin–Korepin) 
model. There are well-defined procedures to do so, based either on algebraic consider- 
ations [48], or on explicit calculations of generating functions of levels [49]. Note that 
this is not only a technical question: as the loop model is essentially non-local, the kind 
of question—typically, a geometrical correlation—one wants to answer will a ect the 
details, or even the nature, of the correspondence. In what follows, we restrict ourselves 
to the eigenvalues of the ‘natural’ polymer transfer matrix, discussed in [17]: it encodes 
in particular all the exponents we are interested in, and that have been studied in the 
literature. As a matter of fact, the precise relationship between the O(n) and Izergin– 

Korepin eigenvalues depends crucially depends on the number of through-lines l: 

• In sectors l > 0, the eigenvalues of the loop transfer matrix are found in the 
spectrum of the vertex transfer matrix with periodic boundary conditions, 

T (L) = Tr ( ˇ
(2)  ˇ(2) 

… Ř
(2)

)
 

(24) 

in the sector of magnetisation m = l (or, equivalently, m = −l). Here the trace is 

taken over the horizontal space h = C3. 

• Things are slightly di erent in the sector l = 0 where the loop model allows for 
noncontractible loops, that is, closed loops that wrap around the cylinder. These 
must be weighted n—the same as the contractible loops—which requires taking 
for the vertex model the following twisted transfer matrix 

T (L) 
= Tr ( ˇ

(2)  ˇ(2) 
… Ř

(2)  iϕSz )
 (25) 

in the sector of zero magnetisation, m = 0. This transfer matrix di ers from the 
periodic  one  by  the  presence  of  a  boundary  twist  term eiϕSz,  where  Sz  is  now  the 
magnetisation along the horizontal (or auxiliary) space h. Summing over the two 

J
. S

ta
t. M

e
c
h
. (2

0
1

5
) P

0
9
0
0

1
 

http://dx.doi.org/10.1088/1742-5468/2015/09/P09001


A new look at the collapse of two-dimensional polymers 

doi:10.1088/1742-5468/2015/09/P09001 14 

 

 

2 

l 

4 4 
). The leading excitations with zero momentum in the 

3 

possible orientations of a non-contractible loop yields a weight eiϕ + e−iϕ, which 

can be made equal to n of equation (14) by taking ϕ = π − 2γ. The eigenvalues 
of the loop model transfer matrix are a subset of those of the vertex model with 
this particular value of the twist. 

 
Let us again recall that the Izergin–Korepin model exhibits several regimes. We find 

it convenient, in order to identify these regimes, to restrict to γ ∈ [0, π], and use the 
symmetries of the weights. The model (11) has two particular values of the spectral 

3 3 

parameter, x = ±iq 2, for which the weights are isotropic. The case x = iq 2 corresponds 

to the so-called regime I, whereas the case x = −iq 
3 

splits into regime II for π < γ < π, and regime III for 0 < γ < π. The point Θ 
3 π 

3
 BN that we are interested in corresponds to 

x = −iq 2 and γ = . In the notations of [20], this is Ψ = π, θ = − π. Regime III has been 
4 4 4 

studied in details in [28], and we will heavily borrow results from this reference in the 
following. 

 

4.2.1. Structure of the leading transfer matrix eigenlevels. Regardless of whether we 
consider the vertex or loop formulation, the transfer matrix commutes with the lattice 
momentum operator P (L), which is defined so that eiP (L)   

amounts to a horizontal trans- 
lation by one lattice unit. The transfer matrix eigenvalues can therefore be classified 

according to the value of the momentum, p(L) = 2π p with  p = 0, 1, …, L − 1, which in 
L 

turn is equal to the conformal spin, ∆ −∆ = p14. 
From the integrability of the Izergin–Korepin model, the transfer matrix eigenval- 

ues can be computed exactly in terms of a set of complex numbers, the so-called Bethe 
roots which are solutions of the Bethe Ansatz equations [28]. Crucially, the number 
of Bethe roots (and equations) increases linearly with the size L of the system (more 
precisely, the number of Bethe roots associated with states in the sector of magnetisa- 

tion m is m1 = L − m), whereas straight-forward diagonalisation of the transfer matrix 
would involve solving a set of equations whose number increases exponentially with L. 

It is convenient to first discuss the structure of  the  leading  transfer  matrix  eigen- 
levels in regime III for the untwisted case (i.e. with periodic boundary conditions). The 

ground state (largest eigenvalue) is found in the m = 0 sector, and corresponds to a 
root configuration made of a ‘Fermi sea’ of L 2-strings (pairs of conjugate roots with 

imaginary parts close to ±(π  
− γ )  

4

 

m = 0 sector are obtained by taking an arbitrary number j of 2-strings o  the Fermi 
sea and replacing them by j pairs of anticonjugate roots on the axis of imaginary part π. 

2 
 

14 Note that the loop model in the sector l > 0 has more eigenvalues than the vertex model with periodic 
boundary conditions and magnetisation m = ±l. 

This is because, for a given l, one can take each of the l through-lines around the axis of the cylinder with- 
out a ecting the Boltzmann weights, if every such line acquires in doing so a phase which is an lth root of unity. 

This means that some of the polymer eigenvalues are obtained by taking the vertex model with m = and twisted 
2iπp 

boundary conditions, the twist being of the form e l , with p ∧ l = 1 and p integer. The corresponding critical 

exponents then satisfy ∆− ∆= p + integer. These exponents are crucial in determining for instance the winding 
angle distribution of the polymers [50]. They are, however, not so important for our purposes, and therefore we 
will not study them further here. 
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The story is essentially the same in other magnetisation sectors, and from now on 
we will therefore label the leading eigenvalues of the transfer matrix by two integers, 
(m, j). 

We can now extend this to generic values of the twist. There are minor changes 
in the  qualitative description  of  Bethe root  configurations,  but the  global  structure 

of eigenlevels unchanged. Going back to (22) we therefore have Λ0 ≡ Λ(0,0), and we 
shall define the critical exponents xm,j = ∆m,j + ∆m,j (where we recall that 
in the zero-momentum sector) or, equivalently, the e ective central charges 

cm,j ≡ c − 12xm,j ≡ c0,0 − 12xm,j. 

4.2.2. Sectors with 𝓁 > 0 (m ≠ 0). In the case of non-zero magnetisation, we have 
already seen that the twist is zero. It follows from our Bethe Ansatz analysis that the 
leading e ective central charges have the form 

−cm,j   
= − 

1 
+ m2

 γ 
+ (N 

)2 A(γ)  
12 6 4π m,j 

[B
 (γ) + log L]2 (26) 
m,j   

where j labels the excitations. Here, the Nm,j are integers satisfying 

Nm,j = 2j + 
1 

(3 − (−1)m ), 
2 

and the function A(γ) is 

 
 

 
(27) 

A(γ) = 
5 γ(π − γ) 

. 
2 (π − 3γ)2

 

 
(28) 

The functions Bm,j(γ) are not known accurately at this stage, but are believed to be 
universal functions with no L dependence at this order. 

In the limit L → ∞, the L-dependent term on the right-hand side of (26) goes to 
zero at fixed j, suggesting that the ground state in this sector is infinitely degenerate. 
Although this is, in a sense, true, it is better to interpret what happens by observing 

that, if one scales j with log L so as to keep s ∼ j  
log L 

finite  (and  continuous),  equa- 

tion (26) can now be interpreted as the signature of a continuous spectrum of critical 
exponents. 

Such a spectrum  is  not  so  familiar  in  statistical  mechanics.  It  occurs  frequently 
in string theory, where the ‘targets’ of associated conformal field theories are not 
compact. This non-compactness leads to continuous spectra of critical exponents just 
like, in ordinary quantum mechanics, free particles on a non-compact space (e.g. a 
real line) have a continuous spectrum of eigenvalues. In most problems of statistical 
mechanics, by contrast, these ‘targets’ are compact. This is well-known in the case of 

the Coulomb gas representation, for instance, where the bosonic field Φ is compact, 

that is, Φ≡ Φ+ 2πR, where R is known as the ‘compactification radius’ [51]. In the 
IK model the continuous spectrum can be interpreted as arising instead from a ‘non- 

compact boson’, that is, a bosonic degree of freedom Φ for which, formally, R = ∞. 
More precisely, the log L dependence in equation (26) can be thought of as arising from 

an e ective compactification radius R(L) that diverges as L → ∞. 

∆m,j = ∆m,j 
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x = ∆ + ∆̄ x = ∆ + ∆̄ 

 

 
m = 3  

 

 
m = 1  

 
m = 2  

 
 
 
 

 
m = 0  

j =/0 

 
j = 0 

 

Figure 3. Structure of the spectrum of critical exponents in the sectors m > 0 
(left), and m  = 0 (right). In the latter case there is a gap between the ground state 
(j = 0) and the continuum of j > 0 excitations, whose magnitude is obtained from 
(29) and (30) as x = −

c0,1 − c0,0    =   γ     − 1. g 12 
π − γ 4 

 
We represent qualitatively the spectrum of critical exponents in the sectors with 

m > 0 as shown on the left panel of figure 3. Each spectrum has a ‘socle’, above which 
a continuum starts immediately. We will discuss below what this means for the cor- 
relation functions. 

 

4.2.3. The  sector  with  no  through  lines  (m = 0).  The main di erence with the case of 

l, m ≠ 0 is that the leading eigenvalue (which determines the central charge) is separated 
from a continuum of critical exponents by a gap. This has to do with the fact that, 
in the IK model, the whole spectrum contains both continuous and discrete 
states—just like, for quantum mechanics on the line in the presence of a potential, one 
can have a spectrum made of both a continuous and a discrete part. The ground state 

(with j = 0 and m = 0) at this value of the twist is given by a discrete state, and leads 
to the central charge 

12γ2
 

c0,0 = −1 + 
π(π − γ) 

.
 

 
(29) 

This coincides with the prediction of Nienhuis et  al: see equation (7.3c) in [20], where 

the notation θ = −γ is used. The excited states j > 0 in the m = 0 sector form part of 
the continuum, leading to the e ective central charges 

c = 2 − 
12γ

 — 12(N )2 A(γ)   
(30) 

0,j 
π
 0,j 

[B0,j (γ) + log L]2
 

These observations can be summarised as shown in the right panel of figure 3. 
From all this we can deduce the so-called watermelon exponents of the loop model. 

The m-leg exponent is defined as 
cm,0 − c0,0 

xm =− , 
12 

(31) 

where the e ective central charge is measured at the appropriate twist parameter as 

detailed above, and the L → ∞ limit is taken such that the non-compact part does not 
contribute. We find then 
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m 2 

1 m2γ γ2 
xm =− + − 

4 4π π(π − γ) 
,
 

(32) 

which agrees, once again, with [20]: see equation (7.5) in that reference. 
 

4.2.4. Leading exponents at the polymer point. From these results we recover the cen- 

tral charge c = 0 and the leading watermelon exponents at the polymer point, which 

corresponds to γ = π, hence loop weight n = 0: 
4 

xm =  − 
1 

. 
16  6 

(33) 

This means in particular that 

x1 =− 
5 

, 
48 

x2 = 
 1 

, 
12 

x4 = 
5 

. 
6 

 

(34) 

This leads, by the usual scaling relations [3] (namely η = 2x1, ν =    1    , and γ = 2 − η) 
2 − x2 ν 

to the exponents given in (3). In addition we identify, like at the usual theta point, the 
four-leg operator with the thermal operator coupled to the monomer-monomer attrac- 
tion energy, which drives the problem away from the (tri)critical point towards the 
dilute or massive phase. By the scaling relation x4 = 2 − 1 one finds ν′ = 6, and  thus 

the crossover exponent 
ν′ 5 

φ =
 ν 

= 
ν′ 

10 
. (35) 

23 

 

 
5. Physical consequences of non-compactness at the ΘBN point 

 
5.1. Correlation functions 

In the polymer problem, one is typically interested in the correlation functions of 
observables which are most easily defined in lattice terms, such as the polymer limit 

(n → 0) of the spin–spin correlation function. The latter can be expressed as a sum over 
all configurations of (in this case, vertex-interacting) self-avoiding walks joining two 
given points: 

G1(I , J ) = ∑ 
VISAW: I → J 

K number of   monomers τnumber of  doubly visited sites pnumber of   straight segments. 

(36) 

Such correlation function become, at the critical point and in the continuum limit— 

that is, here, at distances much larger than the lattice spacing—a complicated sum 
over correlation functions of conformal fields. The point is that a given lattice observ- 
able never corresponds exactly to a pure scaling field: rather, it can be expanded as an 
infinite sum over scaling fields, typically of the form 

O latt = C1ε x1O1 + C2ε x2O2 + … , (37) 
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∫ 
r 

i=1 i 

where  the Oi  are  pure  scaling  fields  whose  two-point  function  is  normalised  to 1/(zz )xi 

(for simplicity, we only mention scalar contributions in this analysis). The analysis of 
the correlation function (36) must take into account both this expansion of operators 
and a similar expansion of the lattice Hamiltonian, which di ers from its continuum limit 
counterpart also by a sum of irrelevant operators. In models with a discrete spec- trum 
of critical exponents, this simply leads to 

) ε | ) ε | 1 

G1(I , J ) ∝ | 
IJ 

2x

1 
 

J 

+ C | 
IJ 

2x′ 

 

J 
+… , 

 

(38) 

where x1′ > x1 is the exponent of the first corrections to scaling term. The discrete 
spectrum here guarantees that the contributions of the various correction terms to 
G1 can be well separated at large distance, and that the asymptotic behaviour is fully 
determined, at leading order, by x1. This problem is well-known, and has been studied 
extensively, for instance for the six-vertex model in [52]. 

Meanwhile, when the theory admits a continuous spectrum of critical exponents, 
one expects sums such as (37) and (38) to be replaced by integrals: 

G (I , J ) ≈ 
∞ 

ds 
f1(s) 

. 
1 

0 2x1+2a1s2 (39) 
IJ 

We have here written the continuous part of the spectrum simply as x1 + a1s2, with 

s ∼ i  

log L and a1 = 4A(π/4),  by  expanding  (26)  and  (27)  to  leading  order.  We  could 

absorb a1 into the definition of the quantum number s, but we refrain from doing so, 
because s has a precise meaning when the conformal field theory is interpreted in terms 
of a non-compact coset sigma model. The amplitude f 1(s) is meanwhile determined 
by several factors, including the matrix elements between the lattice spin observable 

and the eigenstates with quantum numbers (m, j) = (1, i) and the (properly defined) 
density of states. Even though the theory is non-unitary, we expect the function f 1 to 
be positive15. 

Interestingly, expressions such as (39) have appeared before in statistical mechan- 
ics. Most noticeably, at the plateau transition in the quantum Hall e ect for instance, it 
is expected that the q th moment of the transmission coe cient between two point contacts 
at distance r reads [53] 

(Tq) = ∫ |(Vq, V *0|λq)|2 r−2∆λµ(λ) dλ, 

where the scalar products and the measure µ(λ) are known, while the exponents ∆λ only 
have a conjectured form. In this case as well, the presence of the integral is ultimately 
related with the non-compactness of the target. 

The  practical  point  of  an  expression  such  as  (39)  is  that  the  term  going  as  r−2x1
 

—which is the only one identified by the naive determination of the one-leg operator— 
predicts the leading behaviour of the correlation function only at extremely large r. It 
is di cult to say much more without having a better idea of the function f 1, but it is 

 
15 This positivity was checked numerically on cylinders of sizes L = 4, 6, 8, 10, where we explicitly computed 

the matrix elements (1, j| ∑L   S(+)|0, 0)). 
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1 

「   

1 

nonetheless clear from the outset, that any attempt to match an expression such as 

(39) with a pure power law r−2x will lead to an e ective exponent x > x1. In the specific 
context of numerical simulations, it is of course well-known that the results based on 
the study of a system of linear size L provide only an e ective exponent x1(L), which 
will have to be extrapolated by using finite-size scaling. Our point is that such extrapo- 
lations are usually thought to contain only power law corrections, and this does not 
correctly take into account the presence of log L in (26). 

Writing now 

G1(r ) = r−2x1
 

∞ 

ds f (s)e−2a1s
2 ln r , 

0 

 

(40) 

there are known techniques [54] to extract an asymptotic expansion for G1 based on 
the analyticity properties of f 1 near the origin. We will restrict ourselves to the leading 
term here, and simply observe that if 

f1(s) = sz[b0 + sb1 + …], for 

we will have 

s → 0, (41) 

G1(r ) = r−2x1(ln r )−(1+z )/2|
 
c0 + 

   c1 
 

 

+ …|
]
. 

 

(42) 

 
 

5.2. Grand canonical Monte-Carlo simulations 

Let us compare these predictions with Monte-Carlo sampling  of  the  function  G1(r), 

both at the point ΘBN and at the point ΘDS. At the latter point the peculiar e ects of 

non-compactness are not expected, and indeed it is well-known [12] that x  = 1. The 4 

polymer configurations are sampled on square lattices of sizes L × L with periodic 
boundary  conditions  in  both  directions,  with  one  polymer  end  fixed  at  the  center. 
The second end evolves according to an improved version of the backbite algorithm 
[55, 56] that properly takes into account the Boltzmann weight of doubly visited sites 
and straight segments16. 

The trivial, empty configuration which is just represented as a point-like polymer 
at the center of the L × L lattice is assigned the winding numbers wx = 0, wy = 0. 
Whenever the polymer crosses one vertical or horizontal boundary the corresponding 

winding number is increased by ±1. We proceed as follows: 

1. Start from the trivial, point-like configuration; 

2. Run 500 × L × L time steps to decorrelate from this initial configuration; 

 
 

16 To be precise, the pure backbite algorithm [55] applies to the fully-packed (Hamiltonian walk) case. It can 
be adapted to dilute walks by adjoining grow and retract moves, in a Metropolis scheme, following the last few 
lines of [56]. Finally, the possibility of having doubly visited sites introduces a few additional complications. The 
most subtle of these concerns the situation where a polymer end point resides precisely at a doubly visited site, in 
which case a special backbite-type move is introduced, under which the end point moves infinitesimally across the 
other loop strand visiting the concerned site [57]. 
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log L 

1 

αL 

2(x′ −x1) 

L 

3. Then run 107 × L × L time steps, and sample the configurations with wx = wy = 0, 
measuring the end-to-end distance r between the two ends of the polymer. 

 

This produces a histogram of r 2 of the form 

H (r ) = ∑ 
|J−0|2 =r 2 

G1(0, J ) + … , 
 

(43) 

where the dots indicate the finite-size corrections related to the fact that the polymer 
interacts with itself if part of it goes around the torus in either direction. In practice, 
we produce for each size several such histograms (between 10 or 20 depending on the 
size), and compute the corresponding average and error bars. The function G1(0, J ) can 
be extracted from H(r), either by a binning procedure, or for each integer value of r 2 by 
dividing H(r) by the number of di erent possible J such that  J − 0|2 = r 2, eliminating 

those for which no such J exist (for instance r 2 = 3 cannot be obtained on the square 
lattice). 

After normalizing G1(0, 1) = 1, for a separation of one lattice spacing, the function 
we eventually consider is G1(r ) = G1(0, r ), measured for r equal to a fixed ratio of L, 
that is, r = αL with α   1. In practice α = 0.25 will turn out convenient. This ensured 
that with respect to the total size of the lattice the polymer is almost closing on itself, 
and therefore the corrections coming from walks going around the torus and back 
should scale as L−2x2, where x2 is the two-leg watermelon exponent, which is positive for 
both ΘBN and ΘDS. From the previous section we expect for large L: 

• For ΘDS (and other usual cases) 
)
| 

 ε  |
| 

1
 

2(x′ −x1) 

log G1(αL) = −2x1 log L + A + C 
  αL J 

+ … 

• For ΘBN, 

(44) 

 

log G1(αL) = −2x1 log L + A − 
1 + z 

log log L +
    c1 + … 

2 

 
(45) 

As shown in figure 4 (where in the former case we set C( ε ) 1 
→ −B, which takes 

correct account of the corrections to leading order, while in the latter case B ≡ 1 + z ), 
2 

these expectations are nicely corroborated by our results. At ΘDS we find x1    0.245, 
which is close to the expected x1 = 1. At ΘBN we used a fit keeping only the first three 4 

5  

terms on the right-hand side of (45), and we plugged in the known value of x  =− . 
48 

This yields z 1.7; but note that this estimation is very sensitive to the presence of 
higher corrections in the fit, and therefore we shall not trust it too much quantitatively. 

It is quite striking that, even though x1 < 0—and therefore at very large distances the 
function G1(r) should be an increasing function of r —at the distances that could be 
achieved in these simulations G1(r) is a decreasing function of r, leading to an e ective 

exponent x1 > 0 at intermediate distances. 
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Figure 4.  Fit of log G1(0.25L) against log L, measured from Monte-Carlo sampling 

at the points ΘDS (top) and ΘBN (bottom) for L = 10, …, 100 (the error  bars  are 
also plotted, but are smaller than the size of the symbols). In the first case, a fit 
of the form (44) seems in good agreement with the numerical data, and yields 
x1    0.245. In the second case, such a fit is clearly not appropriate (orange curve), 
and we find much better agreement with (45) (blue curve). 

 

Albeit the numerical results presented in this section seem rather satisfactory, it 
could of course well be that f 1 has a behaviour quite di erent from that predicted by 
(41). Unfortunately, at this stage very little is known about this problem. 

 
5.3. Further speculations 

In most of the lattice Monte Carlo simulations presented in the literature [22], the 
quantity usually studied is however the canonical (fixed length) partition function, 

Z1(I , J ) = ∑ τnumber  of  doubly  visited sites 

VISAW: I → J 

pnumber of straight segments. 
 

(46) 

Even if the function f 1 were known, going from G1(I, J ) to Z1(I, J ) would require mak- 
ing hypotheses on the scaling form of the correlation function in the vicinity of the 

critical point, K ≠ KBN, and inverting the corresponding expressions of G1 considered 
as a Laplace transform of Z1. There seems little point in speculating about what may 
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BN 

BN 

4 

{ 

˜ 

ν 

happen until more detail is available for the function f 1. A short-cut is however pro- 
vided by the following argument. Recall the scaling relation 

γ 
= 2 − η, (47) 

 

where η = 2x1. Since the two-point function involves a mix with values of x1 greater than 
the bottom of the tower, this should lead to estimates (ν being what it is) for γ which are 

smaller than the true value. Indeed, the numerical result [22] reads γnum = 1.045 < 1.152. 
Meanwhile, from x2 = 2 − 1 we see that ν =   1   . Since similarly x2 is decorated by the 

ν 2 − x2 

tower on top of the minimum value, it will appear larger than its asymptotic value as 

the polymer length goes to infinity, which means that 2 − x2 will appear smaller and 

thus ν larger. Indeed, the numerical result [22] is νnum = 0.576 > 0.522. So the discrep- 
ancy between numerics and exact results is compatible with our scenario. 

 

 
6. The polymer phase diagram 

 
The main question now concerns the relationship between the theta points ΘBN and 
ΘDS, and more generally the nature of the phase diagram for the VISAW. 

It is certainly tempting to consider the ΘBN point as an unphysical, infinitely multi- 
critical point. This is because the spectrum in the sector with no through-lines is 
continuous  above  the  main  gap  given  by  ∆  = c0,0 − c0,j=1    =  1 .  This  means  there  is  an 

g 24 24 

infinity of relevant operators in  the  thermal  sector,  with ∆g “ ∆ “ 1,  corresponding 
formally to an infinity of relevant directions, hence an infinite order of criticality. On 

the other hand, it is troubling that the the ΘBN point seems so natural, and only neces- 
sitates the fine-tuning of a couple of parameters in our phase diagram. Moreover, our 
experience with the stability of RG fixed point with continuous spectra of relevant 

exponents is limited: one should not be too hasty in deciding that the ΘBN universal- 
ity class is unphysical. We must now try to understand this universality class and its 
vicinity in more detail. 

 
6.1. The second virial coefficient 

At ΘBN (γ = π), the ground state of the Izergin–Korepin model with twist ϕ is deter- 
mined by two possible values of the central charge: 

{ 

|c* ≡ 2 − 
c(ϕ) = 

12ϕ2
 

 
 

π2 

 
, for ϕ “ 

π 
, 

4 

 

 
(48) 

|−1 +
 4 

(π − ϕ)2, for ϕ “ 
π 

. 
π2 4 

We must take ϕ = π to make the weight n = 2 cos ϕ of non-contractible loops equal to 
2 

zero, which leads to c = 0. This is indeed the value expected for the theta point. It is 
now interesting to consider what happens near ϕ = π. First, the leading eigenvalue of 

2 

the transfer matrix takes the form 
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log Λ πc(ϕ) 

1 

(L) 

—  0    = f∞ − + o(L−2), 
 

(49) 
L 6L2 

where f∞ is independent of ϕ, and there are no corrections of order 1 because we 

use periodic boundary conditions. When ϕ ≠ π 
L 

, loops  that  wind  around  the  axis  of 

the cylinder are allowed, with fugacity n˜ = 
2 

2 cos ϕ. Setting ϕ = π − ε , this becomes 
2 2 

n˜ = ε + O(ε 3). Meanwhile, we can expand the central charge at this order, and thus the 
logarithm of the leading eigenvalue: 

(L) 1 ) ñ ñ2 | 
 

log Λ0 
= 

L 
|
  3  

+ 
6π 

|
J
,
 

(50) 

where we have used the natural normalisation where the partition function at n = n˜ = 0 
is unity (hence f∞ = 0). Imagine now taking a long cylinder of length L′: the partition 
function to leading order will be 

L′ ) ñ ñ2 | 
 

ln Z ≈ 

L 
|
  3  

+ 
6π 

|
J
.
 

(51) 

Meanwhile, this partition function can be expanded in powers of n˜: 

ln Z = ñz1 + ñ2   z   − 
1 

z2|
| 

+ … , 
 

 

 (52) 

2 1J 
 

where z1 is the partition function with one non-contractible loop anywhere on the cyl- 
inder, and z2 the one with two such loops. Comparing, we find the result 

z2 − 
1 

z2 = 
2 1 

L′ 1   
L 6π 

 
(53) 

The left hand side combination can be considered as a sort of second virial coe cient [1]. 
Such terms are not particularly inspiring in general. What is remarkable here is that 
this di erence is positive. This is related to the positive curvature of the second line 
of (48) for the central charge as a function of ϕ. In models of polymers, such a 
term is usually negative, like in the first line of (48), leading to the opposite sign for 
the combination of partition functions (53). It is easy to understand why such a term is 
negative for instance for ordinary self avoiding walks: the point is that every term in z2 
occurs also in 1 z2, while there are plenty of terms in 1 z2 that are not in z2—all the terms 

2   1 2 1 

where two non-contractible loop from each of the z1 have a non-zero overlap. When 
the model involves bending and attraction, it is not so easy to establish the sign of this 
term before hand. For instance, there are terms in z2 where two non-contractible loops 
are close to each other, contributing a mutual attraction energy which is not present 

in the corresponding (geometrically identical) term subtracted in 1 z2. Nonetheless, in 
2 

all models known to us—in particular the theta point ΘDS—the combination remains 
negative. The fact that it is positive in our case indicates the attraction between mono- 
mers at the ΘBN point is unusually strong, a significant fact confirming the belief that 

ΘBN is a higher order critical point. 
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m 

m 

α 
2   J 2 |

 
D − | 

2 

6.2. Relationship with the dense phase 

To proceed, we make the simple but crucial observation that the radius of the compact 
boson for a given value of γ—that is, for a given value of the fugacity of contractible 
loops—in regime III is the same as the radius for the compact boson describing the 
corresponding dense phase of the vertex or O(n) model. The dense phase of the vertex 
model is obtained by increasing the fugacity K of the monomers in the loop version of 
the problem, and is in the same universality class as the ‘completely packed’ model, 
which is nothing but the ordinary six-vertex model. The corresponding dense phase 
of the O(n) model is obtained in the same way, the only di erence being that non- 
contractible loops get fugacity n, instead of two for the vertex model. This observation 

can be illustrated by considering the polymer case (n = 0). The m-leg (watermelon) 
exponents are found to be [28] 

 

xm =  − 
1 

, 
16  6 

 
(54) 

while they are 
 

xD = 

 
m2 − 4 

16 

 

 
(55) 

in the case of dense polymers. These two formulas are quite close, since 

xD = xm −
 1 

. 

 

 
(56) 

m 12 

The identical m2 term arises from the fact that both theories involve the same compact 

boson. The shift of − 1   occurs because of the non-compact boson. More precisely, the 
12 

scaling of the associated eigenvalue in the dense polymer case 

log Λ(L) 
—  α   = f∞ + 

2π )
|x −

 
 

 

c  |
|
 

 
 

 (57) 

 
involves 

L 
 
 

D cD 
 

 

L2    

m2 1 
 

  

12 J 

 
1B 

 
 

c1B 

xm − = − = xm − 
12 16 12 12 

with cD = −2 for dense polymers, while we have for our critical point 
c m2 1 

 
   

1B c2B 
 xm − = − = xm − . 

12 16 6 12 

Here, c1B = 1 denotes the central charge of one boson, while c2B = 2 is the central charge 
of a system of one compact and one non-compact boson—or the e ective central charge 
of the Black Hole theory. We see therefore that if we took the leading eigenvalue in the 
m-leg sector and made the non-compact boson massive, the scaling would simply evolve 
from our model to the dense polymer case: 

— 
log Λ(L) 

L 
= f∞ + 

2π )
|x −

 

L 

 c  |
| → f∞ +

 

12 

2π ) 
x 

L 

c1B | 

12 J
.
 

 
(58) 
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Meanwhile, we also notice that the central charge (that is, the scaling for the ground 
state energy) is given in our model by a discrete state, which involves the non-compact 
boson. Recall indeed the general formula (48) in our case for a twist ϕ. We must 

take ϕ = π 
2 to make the weight of non-contractible loops equal to zero, which leads to 

c = 0, while c* = −1. This result for c* comes from the central charge c = 1 of the non-
compact boson, and the central charge of the twisted compact boson which must be c 

= −2. We see that, if we made the non-compact boson massive while leaving the 
compact one untouched, the discrete level would disappear, and the value of the cen- 

tral charge would become c = −2 as required for dense polymers. Therefore, in many 

respects, the point ΘBN—and more generally, the critical point in regime III—looks like 
a dense polymer supplemented by a non-compact degree of freedom17. This confirms the 

peculiar nature of the ΘBN critical point, whose features are profoundly di erent from 
those expected at an ordinary tricritical point. 

 
6.3. Probing degrees of freedom 

It is interesting now to study numerically the behaviour of the model when the mono- 

mer fugacity K is increased, K > KBN ≡ ΘBN. In figure 5 we have plotted the average 
density of monomers per lattice edge, evaluated from the derivative of the (ground 
state) free energy f 0 with respect to the fugacity K (the results are presented both in 

the untwisted case where non-contractible loops are assigned a weight n˜ = 2 and in 
the twisted case where all loops are given the same weight n˜ = n). We find very clear 
evidence of a first order phase transition, with a discontinuity in the monomer density, 
therefore recovering the conclusions drawn in [25] from a corner transfer matrix analy- 

sis. In the K > KBN phase, the fluctuations of density are not critical, and the physics of 
the model is simply that of the six-vertex model, or ordinary dense loops. 

More generally, we refer to figure 6, where it is apparent that the levels with j ≠ 0 
become massive on both the K < KBN and K > KBN sides of the transition point ΘBN. 

These observations strongly suggest that the non-compact degree of freedom is asso- 
ciated with fluctuations of monomer density, since these fluctuations become non-critical 
precisely when the non-compact degree of freedom disappears. This is, after all, not so 
surprising. The emergence of a compact boson in the continuum limit of the six-vertex 
model follows from the reformulation in terms of a model of heights defined on the dual 
lattice, with heights on neighbouring sites defined recursively by the orientation of the 
arrows separating them. Study of the RG flow shows that the dynamics of these heights 
is described by a free bosonic theory. This theory is compactified because, on a torus, 
the periodicity of the heights cannot be guaranteed, and the boson much be identified 
with its shifts by 2πR [51]. In dilute loop models, the corresponding vertex model (viz., 
the IK model) also admits edges that do not carry an arrow. In the regime I of the 
IK model, these edges do not have much implication on the continuum limit, as they 
simply lead to a renormalisation of the e ective coupling constant (radius) of the free 
boson; the physics is essentially the same as the one of the dense model. It is however 
perfectly possible to imagine a scenario where the continuum limit of the theory is more 

 
17 It should nevertheless be borne in mind that the two bosonic degrees of freedom are eventually coupled, 

leading to more subtle e ects. 
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∂ 

0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 

 

 
 
 
 

 

 

Figure 5. Average density of monomers − ∂f0 , evaluated numerically from the 
K 

ground state free energy f0 = − 1 log Λ , as a function of the monomer fugacity K 
L 

around the point ΘBN. The top panel corresponds to the ‘loop case’, where both 

contractible and non-contractible loops are assigned the same weight n = 0. The 
bottom panel corresponds to the ‘untwisted case’, where non-contractible loops 

are assigned a weight n˜ = 2. In the former case there is a level crossing at K KBN, 
which is not present in the latter, but in both cases it is apparent that in the limit 

L → ∞ the density of momomers is discontinous across KBN. 

 

complicated, and, while the arrow-carrying edges still correspond to height jumps in a 
height model with a dynamics described by a free boson at large scales, the arrow-free 
edges correspond to some additional non-trivial degrees of freedom in the continuum 
limit. This is in fact exactly what happens in regime II, where these edges are related 
with the emergence of an Ising degree of freedom in the continuum limit. 

What we propose now is that the edges that do not carry an arrow—and which 
correspond, in the loop model, to edges not carrying a monomer—have a dynamics 
described in the continuum limit by a non-compact boson. Note that, since the total 
number of edges on the lattice is of course a constant, the number of empty edges and 
number of monomer-carrying edges are related. This means that, in a certain sense, the 
dynamics of the density at the critical point of regime III should be related with the non-
compact degree of freedom. 
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∫ µ 

k 

 

 

 
 

 

Figure 6. Eigenlevels f = − 1 log Λi in the sector l = 0, measured for L = 8 as a 
 

i L 

function of the monomer fugacity K around the point ΘBN, in the ‘untwisted case’, 
where non-contractible loops are assigned a weight n˜ = 2. The black continuous 
lines are the levels (0, j) (with j = 0, 1, 2 from bottom to top). For  j ≠ 0, these 
levels become massive away from K = KBN. Similar results are observed in other 
magnetisation sectors and for other values of the weight n˜. 

 

6.4. A model for K ≈ KBN 

It is now time to recall a few facts about the Black Hole sigma model which, according 
to our earlier work [28], describes the critical O(n) model in regime III. As discussed 
in the previous sections, the question of the twist plays an important role. The Black 
Hole sigma model as discussed, e.g. in [30, 32, 58] corresponds, strictly speaking, to the 
periodic vertex model underlying the O(n) model. In the geometrical formulation in 
particular, this means that the non-contractible loops have a weight of two. The model 
where non-contractible loops have weight di erent from two is described by a twisted 
version of the sigma model. For simplicity, we start with the untwisted model, where 
we recall we have seen the same behaviour—in particular, the possibility of a first order 
phase transition—as in the twisted one. In the semi-classical limit, the action reads (for 
simplicity we do not write the dilaton term) 

A = 
4π ∫ d2x 

|∂µΨ|2 
 

 

1 + |Ψ|2 

 
(59) 

and describes a sigma model on a target with the shape of a cigar. The compact boson 

is obtained by considering the model in the limit of large Ψ where the action can be 

approximated, setting Ψ = ρeiθ, by 

A ≈ 
 k 

d2x (∂ θ)2. 
4π 

 

(60) 

The non-compact degree of freedom is, very roughly speaking, the distance along the 

axis of the cigar, that is, Ψ . There are some crucial subtleties here having to do with 
normalisability, and the best way to understand them is to discuss briefly the mini- 
superspace approximation [58]. Physically, this is obtained by considering the model 
on a cylinder of very tiny radius, so that fluctuations in one direction can be neglected, 
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n 

n n 

2 2 2 

and the model becomes e ectively a zero-dimensional quantum mechanics problem. 
The Hamiltonian is then nothing but the Laplacian on the target, 

∆ = − 
2 

[∂2+(coth r + tanh r )∂ + coth2r ∂2], 

k r r θ (61) 

where we have set Ψ ≡ sinh r eiθ. There are no L2-normalisable eigenfunctions, but only δ-

function normalisable eigenfunctions. They depend on two parameters: one is n ∈ Z, the 

angular momentum of rotations around the axis, and j = − 1 + is is related with the 
2 

momentum s along the r-direction (the axis) of the cigar. The corresponding eigenvalue 
of the Laplacian is 

x = ∆+ ∆ = − 
2j( j + 1) 

k 

n2 
. 

2k 

 
(62) 

The full wave functions read (recall that in the mini-superspace approximation, the 
wave functions coincide with the expressions of the (conformal) fields in terms of the 
degrees of freedom in the action) 

Γ2(−j + 
| n | ) 

 φj =−  2 
einθ n Γ(|n| + 1)Γ(−2j − 1) 

sinh|n| 
)
|  + 1 + 

|n| 
, −j + 

|n| 
, |n|+1, − sinh2 r

|
|.  (63) 

rF 
 
j 

2 2 J
 

Setting j = − 1 + i p, and using the notation φp for the corresponding eigenfunction, it 
2 2 n 

is possible normalise things in such a way that 

(φp, φp′)= δnn′[2πδ(p − p′) + R0(p′, n)δ(p + p′)], 

where the scalar product uses the volume element dv = k sinh 2r dr dθ. 
One finds, for the classical reflection amplitude, the expression 

Γ(ip)Γ2( 1  
− ip  + n ) 

 

R0(p, n) = 2 2 2 . 
(65) 

Γ(−ip)Γ2(1  
+ ip  + n ) 

A crucial and general aspect of these wave functions is that they are not simple expres- 

sions of the Ψ degree of freedom. Moreover, while these eigenfunctions have a ‘normal’ 

behaviour at small Ψ —namely φj ∝ Ψn for n > 0 (or Ψ−n for n < 0)—their behaviour at 

large Ψ is definitely not usual in quantum field theory. To see this, it is convenient to 
decompose the eigenfunction as 

φp = φp + R0(p, |n|)φp    . (66) 
 

Here, 

n L,n  R,n  

 
) 1 

 
ip + n   1 

 
ip − n 

 
     1 | 

p 
L,n  

= einθ(sinh r )−1−ipF | + , + 
2 2 2 

;1 + ip; − 
2 sinh2 r J 

∼ e−r e−ipr+inθ, for r → ∞ 
(67) 
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  J 

0 

φ e 

0 

1 

−1 

n 

− 

and 
 
 

 
p 
R,n  

 
) 1 

= einθ(sinh r )−1+ipF | 
2 

 
— 

ip + n 
,
 1 

2 2 

 
— 

ip − n 
2 

 
 

;1  − ip; − 

 
     1 |

| 

sinh2 r 

∼ e−r eipr+inθ, for r → ∞. (68) 

We see therefore that the normalisable eigenfunctions all vanish like ∝ −r ∝ 1 at 
|Ψ| 

large Ψ . Meanwhile, eigenfunctions which are polynomial in Ψ all are non-normalis- 
able. Examples include 

φj=1 ∝ (1 + 2|Ψ|2 ), 

φj=2 ∝ (1 + 6|Ψ|2 +6|Ψ|4 ) 

or 

φj=1/2 ∝ Ψ, 

φj=1/2 ∝ Ψ. 

(69) 
 
 
 

(70) 

These ‘normal’ fields all correspond therefore to non-normalisable states, as can easily 
been checked since 

∫ d2x |φj∈Z+1/2|2 = ∞. 

 

(71) 

To proceed, we now try to refine the connection between the monomer density and 

the non-compact degrees of freedom in the CFT. The operator coupled to K − KBN may 
be associated with a non-normalisable or with a normalisable state (for a discussion of 
the state-operator correspondence in CFT with non-compact targets, see, e.g. [59]). In 

the first case, the conformal weight in the c = 2 +  6    theory is negative, so the gap 
k 2 

over the ceff = 2 theory is 

∆ −
 c   

= − 
j( j + 1) 

−
 1 

−
 2 

. (72)
 

24 k − 2 4(k − 2) 24 

Such negative values of ∆ would lead to exponents ν < 1, and there are no indications of 
2 

such values in the numerical analysis. This means that the operator coupled to K − KBN 
must be normalisable. While there is a continuum of choices (because of the continuous 
imaginary part of j), it is reasonable, in the absence of other indications, to focus on 

the bottoms of the continuum, corresponding to j = − 1. Since monomer pieces involve 
2 

moreover two links, the most conservative operators one can think of are associated to 

j = −1/2, n = 0 and j = −1/2, n = 2. From the exact form of the spectrum (beyond 
the mini superspace approximation (62)), 

∆(∆) = − 
j( j + 1) 

+ 
(n ± kw )2

 

k − 2 4k 
,
 

(73) 

we see in particular that operators with w ≠ 0 have too large a dimension to be relevant, 
and we do not consider them. 
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eff 

2 

While the operator with j = −1/2, n = 0 has conformal weight zero with respect 
to the e ective central charge, it is not necessarily trivial, as can be seen in the mini- 

superspace formulation, where it corresponds to a wave function F (1/2, 1/2; 1, −|Ψ|2 ). 

We propose therefore that the perturbation coupled to K − KBN can be represented by 
the action 

≈ 
 k   

∫
 {

{ 
|∂µΨ|2    

+ ( −
 

 
 

)[α   ( −|Ψ|2 ) + β(Ψ2 + Ψ2)  ( 
 

−|Ψ|2 )]} 

A 
4π 

d x 
  1+|Ψ|2 

K KBN F  1/2, 1/2; 1, F  3/2, 3/2; 3, 
J 

(74) 
with some coe cients α, β. For simplicity let us first look at the physics in the case 

where β = 0. 
 

6.4.1. β = 0case. The hypergeometric  function  is  monotonically  decreasing  from 
F = 1 for Ψ = 0 to F ∼ 1   when 

|Ψ| Ψ| → ∞. If K < KBN, we see that the action is mini- 

mised when F is at its maximum, so Ψ| = 0. This corresponds to a massive theory, with 
no critical degrees of freedom left. If K > KBN, the action is minimised when F is as 

small as possible, so Ψ| → ∞. For K < KBN, the classical action is A ≈ ∫ d2x (K − KBN)α 

and for K > KBN it is zero, so we expect a discontinuity of the first-order derivative, 
that is, a first-order phase transition. 

In the phase K > KBN the fact that Ψ is infinite does not mean that the theory is 
trivial. In fact, this region is precisely the cylinder limit of the cigar, and one recovers 

the same  free  boson  theory as the compact component of the critical point K = KBN. It 

is reasonable to consider therefore the K > KBN phase in our problem as a broken sym- 
metry phase, and the compact boson describing the dense vertex model as a Goldstone 
boson. 

In fact, the phenomenology we propose is similar in spirit to the first-order phase 
transition occurring in systems described by a complex boson, with action 

A = ∫ d2x |∂µΨ|2 +(K − KBN)|Ψ|2 (1−|Ψ|2 ), 

a model known to describe the superfluid transition (see, e.g. [60]). 

 

(75) 

 

6.4.2. Generic case. More behaviours are possible when α and β are non-zero. Of course, 

the α term is always the most relevant and dominates whenever α ≠ 0. When α = 0 
exactly, on the other hand, the phenomenology is quite di erent from what we see in the K 

> KBN perturbation. This is because the function x 2F (3/2, 3/2; 3, −x 2) has a maximum 

at a finite value of x. Irrespective of the sign of K − KBN, the action is then minimised at 

this maximum, and for 2θ = 0 or π: both degrees of freedom then become massive. Since 
cos 2θ is meanwhile relevant, it is very likely that this scenario persists in the presence of 
fluctuations, and does not lead to the observed first-order phase transition. 

We conclude from this discussion that the transition when K crosses KBN in the 
untwisted model is driven by a field of dimension 0 with respect to the e ective cen- tral 

charge c = 2, and of dimension ∆ = 1 with respect to the central charge of 
4(k − 2) 

the Black Hole theory. Unfortunately, the literature on perturbed field theories having 

J
. S

ta
t. M

e
c
h
. (2

0
1

5
) P

0
9
0
0

1
 

http://dx.doi.org/10.1088/1742-5468/2015/09/P09001


A new look at the collapse of two-dimensional polymers 

doi:10.1088/1742-5468/2015/09/P09001 31 

 

 

non-normalisable ground states is lacunary, and we are not sure how these values 
of conformal weights are related with the scaling of physical quantities as K crosses 
KBN. Certainly, both ∆ = 0 and ∆ =    1 are very small in the domain of values of k 

4(k − 2) 

reachable in regime III, leading to values of ν very close to ν = 
1. The accuracy of our 
2 1 

numerical calculations did not allow us to determine the possible di erence ν − 
2 

reasonable accuracy. 

with 

Turning now to the loop model, it is generally believed—and we have checked this 
numerically—that the ground-state energy of the theory (or the free energy per site in 
the 2D statistical point of view) is independent of the boundary conditions. This means 

that the scaling should be described by the operator with weight ∆ =    1  
4(k − 2) 

again, 

unless—as happens in the case of the six-vertex model and its loop formulation for 
instance—the change of boundary conditions leads to the cancellation of some terms, 
and another related but di erent scaling dimension (see, e.g. [61] for a discussion of this 
point). In our case however, the corresponding value 

ν = 
2(k − 2) 

4k − 9 

 

(76) 

seems to fit numerics reasonably well. Moreover, it is definitely the correct value for 
k = 8, n = 0. In this case indeed, one can directly identify the operator coupled to 
K − KBN with the two-leg operator, well-known in polymer theory, and whose dimen- 
sion is ∆ = 1  at this point. We conclude with the natural result that, to lowest order 

24 

in the density, we have indeed that the monomer density is proportional to Ψ|2. 
 
 

6.5. The multicritical line 

The analysis of the perturbations from the Black Hole CFT at ΘBN into the dense and 
massive phases can, at first sight, be extended to the perturbation along the multicriti- 
cal line (the violet  line in  the phase  diagram of  figure  2). But  while it  is very  natural 
to expect that this perturbation is relevant (and thus that there is a flow away from 

ΘBN in all directions of the phase diagram in figure 2), the numerical evidence for this 
scenario is disappointing. 

Of course, investigating the critical behaviour along the multicritical line is a very 

complicated task. The precise location of the multicritical points away from ΘBN and 

ΘDS is unknown, and numerical estimations of critical exponents are plagued by the 
flow towards the dense or massive phases, as well as the proximity with the Ising or 
dilute critical surfaces. At this stage, we feel that an exploration of the phase diagram 
with conclusive numerical results is beyond the scope of this work. Here, we will con- 
tent ourselves by investigating a much simpler question, namely what happens to the 

non-compact boson precisely at ΘDS. This can be done by following continuously the 
levels (m, j) from ΘBN. Moreover, we restrict for simplicity to the twisted case, where 
non-contractible loops have weight n. 

Before doing so, it is useful to recall a few results about the physics at the point ΘDS. 
The latter belongs to a more general integrable line labeled ‘branch 0’ in [17], and which 
was solved exactly by Bethe Ansatz in [62]. Most of the results can actually be derived 

J
. S

ta
t. M

e
c
h
. (2

0
1

5
) P

0
9
0
0

1
 

http://dx.doi.org/10.1088/1742-5468/2015/09/P09001


A new look at the collapse of two-dimensional polymers 

doi:10.1088/1742-5468/2015/09/P09001 32 

 

 

2 

3 

x = 

0,2 

0,j 

+ 

from the observation (reviewed above in section 2) that the configurations of the model 

with weights (n, KDS, pDS, τ DS) = (n, 1 , 0, 2) can be mapped onto the configurations of 

completely packed loops with weights n˜ = n + 1, or equivalently, onto a Q = (n + 1)2 
state Potts model. The latter model is critical for Q “ 4, and well understood from a 
Coulomb gas construction [51]: the continuum limit is described by a compact boson, 

and parametrizing n˜ = −2 cos πg the central charge reads 

e2 

c = 1 − 6 0 , 
g 

(77) 

where e0 is related to the weight n˜nc of non-contractible completely packed loops by 
n˜nc = 2 cos πe0. In particular, for the ‘pure loop’ case where contractible and non-con- 
tractible loops have the same weight, e0 = 1 − g so that 

(1 − g)2
 

 
c = 1 − 6 . 

g 
(78) 

 

The point ΘDS corresponds to n = 0, that is g = 2, and so c = 0. Turning to the critical 
exponents, they read 

e(e − e0) 
e,m  

2g 

 
gm2 

, 
2 

 

 
(79) 

that is, at ΘDS, 

xe,m = 

 
e(3e − 1) 

 

 
m2 

. 

 

 
(80) 

4 3 

We now come back to the levels (m, j). Contrary to what was observed in the case 

of K perturbations, these appear to remain critical at ΘDS. In particular, we have stud- 
ied in detail the first few levels (0, j) in the sector of zero magnetisation. The following 
observations hold: 

 

• (0, 0) is still the ground state at ΘDS (there is no level crossing); 

• (0, 1) has at ΘDS the conformal weight ∆DS = g ; 
0,1 2 

• (0, 2) has at ΘDS the conformal weight ∆DS = 2g. 

From these observations it is quite natural to conclude that the levels (0, j) degenerate 

with the magnetic excitations of the compact boson at ΘDS, namely 

∆DS = x0,j. (81) 

It is easy to imagine scenarios where the non-compact boson becomes massive, and 
the compact boson keeps its radius (as in the flow to the dense phase), or acquires a 
new value of the radius. It is also possible to imagine scenarios involving the emergence 
of Ising degrees of freedom, as observed on the blue surface in figure 2—this would 
simply correspond, in the complex field picture, to the introduction of an additional 
gauge field [63]. But for now we cannot imagine a simple scenario connecting highly 
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degenerate conformal weights at the ΘDS point to the continuum of weights at the ΘBN 
point. This will have to wait for further studies. Incidentally this will require, in par- 

ticular, furthering our understanding of the physics in the p = 0 plane [36]. 

 
 

7. Conclusion 

 
In this paper we have partly unraveled the mystery of the theta point in two dimen- 
sions. We have established that the BN point found in [17] is very peculiar from the 
point of view of critical systems: its correlation functions do not decay as discrete sums 
of power laws at large distance, but involve instead a continuum of critical exponents. 
This is expected to lead to extremely strong corrections to scaling, and explains why 
the results of numerical simulations have always been ‘o ’ compared to the well-estab- 
lished theoretical values. We have also seen that the BN point is extremely unstable, 
and represents, in a certain sense, an infinite order of criticality. We note that these 
features are somewhat similar to the ones of the theta point for interacting trails. As 
discussed in [64], this point is described also by a non-compact CFT, albeit of a rather 
trivial type (a Goldstone phase sigma model, free at low energy [65]), with trivial criti- 
cal exponents. 

One question that we have unfortunately not been able to fully answer is the role 

of the ΘBN point in the phase diagram of polymers. We still believe that the point ΘDS 
is the tricritical point for generic lattices and short distance interactions. It may be 
that it is also the generic tricritical point for the model we discuss in this paper, where 
loops osculate at the vertices (with weight τ, see figure 1). This is what conventional 

thinking would suggest, since the critical theory at the ΘBN point involves an infinity 
of relevant operators. Moreover, it is certainly di cult to imagine a flow from ΘDS— 

essentially described by a single boson—to ΘBN, which involves so many more degrees 
of freedom. On the other hand, we have not seen convincing numerical evidence for this 
flow. On top of this, it turns out that for the model in figure 1, the solvable point with 

universality class of ΘDS enjoys an additional symmetry, which is broken as soon as 
‘straight segments’ are allowed: the number of monomers on the even sub lattice minus 
the number of monomers on the odd sub lattice is indeed conserved by the interactions. 
This means in fact that the model enjoys an underlying SU(n) symmetry, larger than 
the O(n) symmetry present in the rest of the phase diagram [36]. From this point of 

view, it is tempting to expect that there is an RG flow towards ΘBN, which was sug- 
gested in the original paper [17]. But we have not seen clear numerical evidence for this 
either. It could be that there is a—yet unidentified—intermediate fixed point making 
these observations compatible. We hope to be able to report on this soon. 
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