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We study the response of a highly excited time-dependent quantum many-body state to a sudden local
perturbation, a sort of orthogonality catastrophe problem in a transient nonequilibrium environment. To this
extent we consider, as a key quantity, the overlap between time-dependent wave functions, which we write
in terms of a novel two-time correlator generalizing the standard Loschmidt echo. We discuss its physical
meaning, general properties, and its connection with experimentally measurable quantities probed through
nonequilibrium Ramsey interferometry schemes. Then we present explicit calculations for a one-
dimensional interacting Fermi system brought out of equilibrium by a sudden change of the interaction,
and perturbed by the switching on of a local static potential. We show that different scattering processes
give rise to remarkably different behaviors at long times, quite opposite from the equilibrium situation. In
particular, while the forward scattering contribution retains its power-law structure even in the presence of a
large nonequilibrium perturbation, with an exponent that is strongly affected by the transient nature of the
bath, the backscattering term is a source of nonlinearity which generates an exponential decay in time of the
Loschmidt Echo, reminiscent of an effective thermal behavior.

DOI: 10.1103/PhysRevLett.112.246401 PACS numbers: 71.10.Pm, 05.70.Ln, 72.15.Qm

Introduction.—The response of gapless quantum many-
body systems to sudden local perturbations is a remarkably
nonlinear phenomenon; even a weak disturbance substan-
tially changes the structure of the many-body state.
Signatures of this orthogonality catastrophe (OC) emerge
in various condensed matter settings [1], from x-ray spectra
inmetals [2] and Luttinger liquids (LLs) [3–6] to the physics
of the Kondo effect [7–11], and typically results in power-
law decays of dynamical correlations. Recently, impressive
experimental developments with ultracold atomic gases [12]
havemade it possible to create and probe local excitations in
a quantummany-body system with single-site and real-time
resolution [13,14], bringing fresh new input to this venerable
problem [15]. While most of the attention has been tradi-
tionally devoted to perturbations acting on systems in their
ground state or—more recently—in driven stationary non-
equilibrium conditions [16–22], much less is known about
the response of explicitly time-dependent quantum states,
such as, for example, those obtained by rapidly changing in
time some parameter of an otherwise isolated system. The
problem is of current experimental relevance since ultracold
gases have proven to be natural laboratories where dynami-
cal quantum correlations can be probed in the time domain.
In addition, it also raises a number of intriguing theoretical
questions. A coherent time-dependent excitation, such as a
sudden global quench, creates an effective nonequilibrium
time-dependent bath for the local degrees of freedom. What
is the effect of such an environment on the OC phenomenon
and its associated power laws? For a generic, nonintegrable,

quantum many-body system one might expect this envi-
ronment to be, at sufficiently long times, effectively thermal,
turning the power-law decay of the OC correlator into an
exponential. Yet, strongly interacting quantum systems may
often get trapped into long-lived metastable prethermal
states which may still show genuine quantum correlations
[23–27]. Investigating the local spectral properties of these
transient states of nonequilibrium quantum matter is among
the purposes of this Letter.
Transient OC protocol.—We begin with a general dis-

cussion of the nonequilibrium protocol that will be the focus
of this Letter. We consider a quantum many-body system
initially prepared at time t0 ¼ 0 in the ground state jΨ0i of
some Hamiltonian H0. We then let the system evolve up
to some time t > t0 with a new Hamiltonian H, i.e.,
jΨðtÞi ¼ e−iHtjΨ0i, which differs from H0 by a sudden
change of some global parameter. This global quantum
quench injects extensive energy into the system and triggers
transient nonequilibrium dynamics. To gain insights into the
structure of this transient state wewill then switch on a local
perturbation V loc for an interval τ between t and t0 ¼ tþ τ
and compare the states obtained at time t0, respectively, in the
presence or absence of the local perturbation. In the spirit of
an OC problem we study the overlap

Dðt0; tÞ≡ hΨðt0ÞjΨtþðt0Þi; ð1Þ
where jΨtþðt0Þi≡ e−iHþðt0−tÞjΨðtÞi, with Hþ ¼ Hþ V loc.
This overlap can be written suggestively as a two-time
dynamical correlator,
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Dðt0; tÞ ¼ hΨðtÞjeiHðt0−tÞe−iHþðt0−tÞjΨðtÞi: ð2Þ

One immediately sees that when the initial state jΨ0i is
the ground state of H; then, Dðt0; tÞ≡DeqðτÞ ¼
hΨ0jeiHτe−iHþτjΨ0i; i.e., it becomes time-translational
invariant and reduces to the familiar OC correlator, also
known as the core-hole Green’s function in the x-ray edge
problem [2] or the Loschmidt echo amplitude [28–31],
which recently has attracted renewed interest in the context
of work statistics [32–36]. In equilibrium, the large-time
asymptotics of DeqðτÞ gives rich information on the ground
state jΨ0i and its low-lying excitations. In particular a
power-law decay reflects an orthogonality catastrophe in
the low-energy sector induced by the local perturbation,
mirroring the one introduced by Anderson for stationary
(ground) states [1]. Considering the enormous principle
importance of this phenomenon for equilibrium quantum
many-body physics, it is natural to investigate its fate for
time-dependent excited states, as we are going to do in the
following. Before turning to an example, it is useful to
discuss some general features of our transient OC correlator.
We start by writing it in terms of the exact eigenstates ofH,
HjΦni ¼ EnjΦni [37],

Dðτ; tÞ ¼
X
nm

ρnmðtÞhΦmjeiHτe−iHþτjΦni; ð3Þ

where ρnmðtÞ ¼ hΦnjΨðtÞihΨðtÞjΦmi. Differently from the
equilibriumcase, here both diagonal and off-diagonalmatrix
elements contribute toDðτ; tÞwith a time-dependent ampli-
tude ρnmðtÞ encoding information about the state of the
systembefore the switching on of the local perturbation. The
result highlights the very nature of our transient correlator as
a sensitive probe of OC in excited many-body states. By
averaging Eq. (3) over the waiting time t and taking the
Fourier transform with respect to τ we obtain [37] PðWÞ≡R
dτeiWτDðτ; tÞ as

PðWÞ ¼
X
nα

δðW − ~Eα þ EnÞjhΦnj ~Φαij2ρnnð0Þ; ð4Þ

where we have introduced the eigenstates of the full
Hamiltonian, Hþj ~Φαi ¼ ~Eαj ~Φαi, in the presence of the
local perturbation. PðWÞ is the probability distribution of
the work done, starting from a nonequilibrium state
described by the diagonal ensemble ρnn, and suddenly
switching on the local potential. This extends to the non-
equilibrium case the connection between the OC correlator
and work statistics and represents an interesting result on its
own, in view of recent theoretical interest in characterizing
the work statistics and its universal properties in nonthermal
ensembles [38,39].While it is known that in equilibrium the
work statistics of local quenches shows zero-temperature
edge singularities [9,32], we will see below how this is
modified in the presence of bulk excitations.
Finally, it is interesting to discuss experimental protocols

to measure the transient OC correlator. Recent proposals

outline how the equilibriumOC correlator may be measured
[15,31,40–45]. The key is to use an auxiliary two-level
system (TLS) or qubit, coupled to the system through the
local perturbation, H½σz� ¼ Hþ V locð1þ σzÞ=2. Cold
atoms and other hybrid systems, such as circuit QED units,
represent the natural platforms to realize this. Here we
extend these ideas to design nonequilibrium Ramsey
interferometry schemes to manipulate the TLS in such a
way as to obtain Dðt0; tÞ out of simple local TLS measure-
ments. For example, the real part of the transient OC
correlator can be obtained by measuring the x component
of TLS magnetization [37],

ReDðt0; tÞ ¼ hΦtðt0ÞjσxjΦtðt0Þi; ð5Þ
where jΦtðt0Þi is a state obtained with a specific protocol
involving (i) a first evolution up to time t, (ii) a Ramsey π=2
pulse, and (iii) a second time evolution up to time t0 ¼ tþ τ.
Alternatively, one can obtainDðt0; tÞ from a TLS dynamical
correlator, a nonequilibrium analog of the core-hole Green’s
function in the x-ray edge problem [37].
Quenched Luttinger liquid in a transient local

potential.—We now focus our attention on a one-dimen-
sional spinless interacting Fermi system described by the
Luttinger model [46] and brought out of equilibrium by a
sudden quench of the interaction. In the bosonization
language, the Hamiltonian of the system after the quench
can be written in terms of collective LL degrees of freedom
ϕðxÞ, θðxÞ as

H ¼ u
2π

Z
dx

�
Kð∂xθðxÞÞ2 þ

1

K
ð∂xϕðxÞÞ2

�
; ð6Þ

where the initial state jΨ0i corresponds to the ground state
of Eq. (6) with the Luttinger parameter K0 ≠ K [62]. The
dynamics after this global quantum quench has been
studied in great detail [47]. Since we are interested in
the correlator defined in Eq. (2) we have to discuss the
nature of the local perturbation. Here we consider a static
potential that couples to the electron density through a
forward (fs) and a backward (bs) scattering term [46,48]
which in bosonic variables is

V loc ≡ Vfs þ Vbs ¼ gfs∂xϕðxÞjx¼0 þ gbs cos 2ϕðx ¼ 0Þ:
ð7Þ

The evaluation of the transient OC correlator Dðt0; tÞ
greatly simplifies by noticing that, as in equilibrium, the
forward- and backward-scattering processes are decoupled;
i.e., they involve independent degrees of freedom [37]. As a
result, we find that the OC correlator factorizes
into Dðt0; tÞ ¼ Dfsðt0; tÞDbsðt0; tÞ.
Forward scattering.—Let us start by discussing the

forward-scattering contribution, which can be computed
exactly using a method due to Schotte and Schotte [48,49].
The final result is
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Dfsðt0; tÞ ¼ hTe−iηθð0;t0Þeiηθð0;tÞi; ð8Þ

with η ¼ gfsK=u, which can be evaluated in terms of local
correlators of the quenched LL [37]. It is useful to write the
OC correlator as a function of the variables t0 − t ¼ τ and t,

Dfsðτ; tÞ ¼
e−iφðτÞ

½1þ ðΛτÞ2�δocneq=2 ftðτÞ; ð9Þ

where Λ is an ultraviolet cutoff and the transient function
ftðτÞ is

ftðτÞ ¼
� ½1þ Λ2ð2tþ τÞ2�2
½1þ ð2ΛtÞ2�½1þ 4Λ2ðtþ τÞ2�

�
δoctr =4

; ð10Þ

where the phase φðτÞ ¼ g2fs
2u2 KsgnðτÞ arctanðΛτÞ, while the

two exponents read, respectively, δocneq=tr ¼ ðg2fs=2u2ÞKneq=tr

withKneq=tr ¼ K0ð1� K2=K2
0Þ=2. We immediately see that

for K ¼ K0 the above expression reduces to the well-
known result for the equilibrium LL, Deq

fs ðτÞ ∼ ð1=ΛτÞδeqoc ,
with an OC exponent δeqoc ¼ K0g2fs=2u

2 [3,48,50]. In the
case of a bulk quench, K0 ≠ K the situation is more
interesting. As we see from Fig. 1 when both time argu-
ments are longer than the microscopic time scale, i.e., t,
τ ≫ 1=Λ, the OC correlator features two distinct power-
law regimes, with a crossover scale set by the total
time t after the bulk quench. The intermediate-time regime,
1=Λ ≪ τ ≪ t, when the duration of the local perturbation is

much shorter than that of the global bulk excitation, can be
described by a completely dephased nonequilibrium envi-
ronment which gives a decayDfs ∼ τ−δ

oc
neq. While this would

be the leading power-law behavior for a strictly infinite
waiting time, the transient nature of the environment results
in a different power-law decay at longer times; i.e., for
τ ≫ t we have Dfs ∼ αtτ

−δocnew , with a prefactor αt ∼ 1=tδ
oc
tr =2

that depends on the waiting time t. Here δocnew ¼ δocneq −
δoctr =2 ¼ ðKneq − Ktr=2Þg2fs=2u2 can be larger or smaller
than the short-time OC exponent δocneq depending on the sign
of Ktr, i.e., whether K≷K0.
Back scattering.—We now consider the backscattering

potential and start with a perturbative calculation of
Dbsðt0; tÞ. Using the linked-cluster theorem we may write

Cðt0; tÞ≡ logDbsðt0; tÞ ¼ hΨ0jTe−i
R

t0
t
dt1Vbsðt1ÞjΨ0ic; ð11Þ

where only connected (c) averages contribute, Vbs is
defined in Eq. (7), and VbsðtÞ is in the interaction
representation of the post-quench global Hamiltonian.
Expanding in powers of Vbs we get to lowest order

Cð2Þðt0; tÞ¼−
g2bs
2

Z
t0

t
dt1dt2hT½cosð2ϕðt1ÞÞcosð2ϕðt2ÞÞ�ic:

ð12Þ
The result can be evaluated in terms of local correlators of
the quenched LL [37]. In equilibrium, K0 ¼ K, the OC
correlator is a function only of τ ¼ t0 − t and the integral
(12) can be evaluated analytically [48]. The result shows
that for K > 1 the correlator goes to a constant at long
times; i.e., perturbation theory in Vbs is well behaved. In
contrast, for K < 1 the perturbative correction blows up at
long times, Λτ ≫ 1, as ReCð2ÞðτÞ ∼ −ðg2bs=Λ2ÞðΛτÞ2ð1−KÞ,
consistent with the result that the backscattering potential
is relevant in this regime [5]. A crossover time scale τeq� ðKÞ
can be extracted by setting Cð2Þðτeq� Þ ∼ 1, to give
Λτeq� ∼ ðΛ=gbsÞ1=ð1−KÞ. In the strong-coupling phase
(K < 1) one can show that at long times (τ ≫ τeq� ) the
correlator Cð2ÞðτÞ can be resummed into a logarithmic
divergence, which gives rise to a universal power law
for DbsðτÞ ∼ 1=τ1=8 [3,51–56]. Finite-temperature effects
generally change this power law to an exponential decay of
the OC correlator [37].
Let us now study the nonequilibrium case, K0 ≠ K,

which is considerably richer. We use the same parametri-
zation as in the forward-scattering case, in terms of τ ¼
t0 − t and the total time t after the quench, i.e., Cð2Þ

t ðτÞ. The
integral (12) cannot be evaluated in closed analytical form
for K0 ≠ K, yet the structure of the solution can be
understood from numerics. To simplify the discussion let
us assume first an infinite waiting time after the quench,
i.e., t → ∞, at fixed τ. In Fig. 1 we plot −ReCð2Þ∞ ðτÞ, which
reveals two different behaviors depending on the values of
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FIG. 1 (color online). Top panel: Forward-scattering contribu-
tion to the OC correlator Dfsðτ; tÞ, for K0 ¼ 4, K ¼ 0.1. The
dynamics features two distinct power-law regimes: a short-time
regime with exponent δocneq and a long-time one with exponent
δocnew, with the crossover controlled by the total time t. Bottom
panel: Lowest-order back-scattering contribution to the OC
correlator, ReCð2Þ

∞ ðτÞ. In the left panel for K0 ¼ 1.5 and K ¼
0.5; 0.75; 1.0; 2.5 (top to bottom) corresponds to the thermal
regime, with a linear power-law divergence. In the right panel
the transition to the strong coupling regime forK0 ¼ 0.75 andK ¼
0.25; 2.5 (top to bottom), respectively, below and aboveK⋆ ≃ 0.43.
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K0 and K. For K0 > 1 or K0 < 1 and K > K⋆ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K0ð1 − K0Þ

p
(see lower right panel in Fig. 2), correspond-

ing to Kneq > 1=2, the leading long-time behavior has a

linear divergence ReCð2Þ∞ ðτÞ ∼ −γ⋆τ with a prefactor that can
be evaluated in closed form, (all energy scales in units of Λ)

γ⋆ ¼ g2bs

�
2π

2Kneq ½2Kneq − 1�
�

Γð2KneqÞ
ΓðKneq þ KÞΓðKneq − KÞ ;

ð13Þ
where ΓðxÞ is the Gamma function. Such behavior results,
through Eq. (11), in an exponential decay of the OC
correlator DbsðτÞ ∼ exp ð−γ�τÞ, implying a Lorentzian work
distribution PðWÞ of width γ⋆, which is reminiscent of an
equilibrium finite-temperature behavior [37].
To further investigate this regime we define a time-

dependent relaxation rate γðτÞ ¼ −∂τReC
ð2Þ
∞ ðτÞ and plot it

in Fig. 2 (top panels) for different values of K0, K. From
this we see that upon approachingK → K⋆ (right panel) the
relaxation rate diverges and—quite differently from the
thermal equilibrium case—we find a region of parameters
for K0 < 1 and K < K⋆ (see lower right panel in Fig. 2),

corresponding to Kneq < 1=2, where the correlator Cð2Þ
∞ ðτÞ

still diverges as a power law at long times but with a new

exponent, ReCð2Þ∞ ðτÞ ∼ −ðg2bs=Λ2ÞðΛτÞ2ð1−KneqÞ. Such a
divergence suggests that the problem retains in this regime
a strong-coupling nature and allows us to define a non-
equilibrium crossover time scale Λτneq� ∼ ðΛ=gbsÞ1=ð1−KneqÞ
controlling the flow of the backscattering potential (see
below). While these results have been obtained assuming
an infinite waiting time after the quench, finite-time effects
do not seem to qualitatively change this behavior [37].

We now consider the effect of higher-order backscatter-
ing terms using a time-dependent renormalization group
(RG) method recently developed for the bulk Sine-Gordon
problem [57]. We refer the reader to the Supplemental
Material [37] for details about the derivation of the RG
flow, and here we discuss the main results. At two-loop
order we obtain renormalization corrections to the vertex
gbs as well as to the quadratic part of the action, which we
parametrize in terms of a dissipation η (an effective friction
for the local coordinate due to its coupling to the bulk
degrees of freedom) and an effective temperature Teff
[37,58]. Setting Λ ¼ 1, we obtain flow equations,

dgbs
d ln l

¼ gbs

�
1 −

�
Kneq þ

Ktr

1þ 4T2
m

��
ð14Þ

dη
d ln l

¼ 2g2bsIηðTmÞ; ð15Þ

dðηTeffÞ
d ln l

¼ ηTeff þ g2bsITeff
ðTmÞ;

dTm

d ln l
¼ −Tm; ð16Þ

where Tm is the time after the quench, and IηðTmÞ, ITeff
ðTmÞ

are given in the Supplemental Material [37]. The initial
conditions for the RG are ηðl¼1Þ¼2=ðπKÞ, Teffðl ¼
1Þ ¼ 0. If we take the long-time (Tm → ∞) limit, from
the RG flow we immediately see the following: (i) for
Kneq > 1 the backscattering is irrelevant, and yet it generates
an effective temperaturewhose value is Teff ∼ g2bsITeff

ðTm ¼
∞Þ=ηðl ¼ 1Þ; (ii) for Kneq < 1 the problem flows to strong
coupling on time scales larger than τneq� , and yet a well
defined effective temperature can still be identified, at least
as long as the relaxation rate γ� or the local dissipation η stays
finite, i.e., for Kneq > 1=2 (see Fig. 2). Deep in the strong-
coupling phase the perturbative analysis suggests that the
OC correlator might eventually keep its power-law behav-
ior; this result would be remarkable, but from the current
analysis we cannot firmly conclude whether a genuine
nonequilibrium strong-coupling regime remains intact or
if higher-order corrections eventually cut the RG flow.
We note that the effective-temperature Teff is not

equivalent to a true temperature T, since the latter implies
a relaxation rate in the OC correlator γT ∝ g2bsT

2K−1 (see
Supplemental Material [37]), while the former gives a
relaxation rate γ� ∝ Teff=ð2Kneq − 1Þ. Thus even in the
long-time limit, and for a local nonlinearity, important
differences arise between the OC physics in the presence of
a thermalized bath and the one studied in this paper, where
the bath is in a nonequilibrium prethermalized state. It is
interesting to note that an effective temperature is also
generated in very different contexts, such as nonequili-
brium steady states arising due to externally imposed
voltage bias [20] and noise [22].
Conclusions.—We have introduced a nonequilibrium

OC problem, highlighting its experimental relevance,
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FIG. 2 (color online). Top panels: Time-dependent relaxation
rate γðτÞ for K0 ¼ 1.5 (left panel) and K0 ¼ 0.75 (right panel)
and different values of K. For K0 < 1 and upon approaching
K → K⋆ ¼ 0.43 the relaxation rate diverges. Bottom panels:
Long-time limit of the relaxation rate γðτÞ → γ⋆ as a function of
K, K0 with γ⋆ ∼ g2bsðK0 − KÞ2 for K → K0 (left panel), and a
summary of different dynamical regimes (right panel).
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and have studied it in detail for one-dimensional interacting
fermions out of equilibrium due to a global quench. We
have discussed how the nonequilibrium environment
affects the forward- and backward-scattering contribution
to the OC correlator. We have shown that, while the former
retains its power-law structure even in the presence of a
strong nonequilibrium perturbation, the latter is a source of
nonlinearity that generates locally an exponential decay in
time of the OC correlator. Such a result appears to be
consistent with a recent numerical study on Loschmidt
echo decay in a one-dimensional spin chain after a local
quench starting from a highly excited state [59].
We expect the physics of this quench-induced

decoherence to be relevant in other contexts as well, most
notably in steady-state transport, where it will result in a
nonvanishing zero bias conductance in the weak-link limit
as well as a nonzero backscattering correction in the dual
limit [60], a result which is consistent with the nonvanish-
ing impurity density of states recently found in Ref. [61].
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