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Abstract

We propose a new method for the computation of quantum three-point
functions for operators in su(2) sectors of N = 4 super Yang–Mills the-
ory. The method is based on the existence of a unitary transformation
relating inhomogeneous and long-range spin chains. This transforma-
tion can be traced back to a combination of boost operators and an in-
homogeneous version of Baxter’s corner transfer matrix. We reproduce
the existing results for the one-loop structure constants in a simplified
form and indicate how to use the method at higher loop orders. Then
we evaluate the one-loop structure constants in the quasiclassical limit
and compare them with the recent strong coupling computation.
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1 Introduction

Integrability has already proven to be a powerful tool for finding a solution to the spectral
problem of supersymmetric gauge theories (see e.g. [1]), and to test their duality to string
theories [2]. In the last few years, the applications of integrability methods were largely
extended to other fundamental objects in gauge theory, such as scattering amplitudes
or Wilson loops (see e.g. [3]) as well as to correlation functions. The majority of these
computations was concerned with N = 4 super Yang–Mills (SYM) theory which is also
subject to this work.

The first computations of correlation functions were performed in the early days of the
AdS/CFT correspondence for protected BPS operators [4]. For non-protected operators
at weak coupling, progress was made using the map to spin chains [5–7]. The most
advanced results concerning “heavy” operators, i.e. operators with large R-charge, were
obtained at tree-level and in the su(2) sector [7–10], but results for the su(3) [11,12] and
sl(2) [13] sectors are also available. To extend the computation of structure constants
to higher loops, one needs as a crucial input the field-theoretical computation of loop
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corrections to the three-point function [6,14,15]. Results at loop order were obtained for
the su(2) sector in [16–18] using the spin chain technology, and in [19] using the coherent
state representation and the Landau-Lifshitz model. At strong coupling, an important
effort was invested in formulating the problem and in computing special configurations of
three-point functions, both using integrability methods [20,21] and string techniques [22].
Here the conformal bootstrap was also successfully applied [23].

Each of these results covers a particular case of three- (or higher-) point functions, and
we do not yet have a comprehensive understanding of the generic structure of correlation
functions, as we do for the spectrum. In particular, we do not yet have a method which
provides an acceptable recipe for obtaining a particular three-point function. Nevertheless,
a coherent picture starts to emerge, and an important step forward is the very recent
calculation of su(2) correlation functions by Kazama and Komatsu at strong coupling [21].

In this work, we revisit the computation of quantum three-point functions in [16–18],
with the purpose 1) to get reliable expressions in the semi-classical limit, which can be
compared to the strong coupling results and 2) to set up a systematic formalism for
proceeding to higher loop orders. In order to extend the results from tree-level to loops,
we need to have a good description of the wave functions and scalar products of long-range
interacting spin chains.

With this motivation in mind, we study a method of generating long-range defor-
mations of nearest-neighbor spin chains. Here we consider the case of the XXX spin
chain with spin equal to 1/2, since it is directly applicable to the computation of corre-
lation functions in the su(2) sector of N = 4 super Yang–Mills theory. As a prototype
of long-range deformation, we consider the BDS model proposed by Beisert, Dippel and
Staudacher [24], which was shown [25] to be equivalent to a spin-sector reduction of the
one-dimensional Hubbard model at half-filling. The method we use here is very general
and it encompasses a large class of deformations.

Several different methods were employed to describe and solve long-range spin chains,
at least partially. Historically, one of the first methods to completely solve a long-range
system is based on so-called Dunkl operators [26], and it was used successfully for the
Haldane-Shastry model, and for some aspects of the infinite length Inozemtsev model
[27, 17]. The drawback of this method is that an explicit representation of the Dunkl
operators is known only for a restricted class of models. Another restriction is that, with
the exception of the Haldane-Shastry model, the Dunkl operators cannot be rendered
periodic on a finite lattice. The price to pay for rendering the lattice finite is to introduce
a defect [28]. The advantage is that explicit exact expressions for the monodromy matrix
can be obtained, and the scalar products are relatively straightforward to compute [17].
Another method to deform the XXX spin chain uses so-called boost and bilocal charges
and was proposed in [29, 30]. This method works again fairly well for long spin chains,
but does not include wrapping interactions.

Here, we use yet another method, which is to map the inhomogeneous XXX model to a
long-range model. The authors of [24] noticed that the spectral equations, (i.e. the Bethe
ansatz equations) of the long-range model they have proposed, can be obtained from those
of an inhomogeneous spin chain by carefully choosing the values of the inhomogeneities.
This equivalence ceases to hold when wrapping interactions, i.e. interactions of range
equal or greater than the length of the spin chain, are taken into account. However, the
Hamiltonian of the inhomogeneous spin chain is not a homogeneous long-range spin chain,
because it depends on inhomogeneities, which are site-dependent. The observation of BDS
was taken further in [30], where it was noticed that if the two spin chains have the same
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spectrum, then they should be related by a unitary transformation, which was computed
up to two-impurity order (or two-loop order in N = 4 SYM terms). This unitary operator
was not explicitly used before to construct the eigenfunctions of the long-range spin chain.
Instead, the wave functions of long-range spin chains were constructed via another relation
to inhomogeneous spin chains [16,18] or by the relation to Dunkl operators [17,28].

In this paper we elaborate on the observation by Bargheer, Beisert and one of the
authors [30] and give a systematic method to construct eigenvectors and scalar products
of the BDS model which are exact up to wrapping order. We emphasize that we consider
the periodic model. The computation of scalar products is straightforward if the existence
of the unitary similarity transformation (the S-operator) from the inhomogeneous to the
long-range spin chain is assumed. The method is general and it applies to all spin chains
that can be obtained perturbatively with boost deformations from the XXX model. To
compute explicitly the wave functions, one needs the explicit expression of the unitary
transformation S, which we derive here up to quadratic order in the inhomogeneities.1

We find that the unitary transformation can be constructed using the long-range boost
deformations and an inhomogeneous version of Baxter’s corner transfer matrix:

Inhomogeneous spin chain
with inhomogeneities θk

S-operator
←→

Homogenous long-range spin chain
with coupling constants σn =

∑
k θ

n
k

For verification, we demonstrate that applying the following two operations, repro-
duces the differential operator found in [16,18] plus the required boundary terms: 1) shift-
ing the inhomogeneities from zero to their non-zero (e.g. BDS-like) values and 2) applying
the unitary transformation S which transforms the chain to a homogeneous long-range
chain. The procedure, although relatively tedious, is straightforward and can be applied
at higher orders. It furthermore proves the conjectures and observations on the all-loop
norms (without dressing phase) in [16, 18]. The results are relatively simple and elegant,
due to the manifest structure of the transformations.

In the next step, we apply the method described above to the computation of three-
point correlation functions in the su(2) sector of N = 4 SYM theory in the planar limit.
The key property that we use is the freedom to choose the values of the inhomogeneities,
as long as their symmetric sums σn are kept at the model-specific values. This can be
done in perturbation theory for sufficiently large chains. The results for the three-point
function are summarized in Section 1.1.

Our result resembles the asymptotic solution of the spectral problem in the su(2)
sector, where fixing the inhomogeneities in the Bethe ansatz to the BDS values was
enough to obtain the long-range Bethe ansatz encoding the higher loop spectrum. Here
we get the long-range three-point function in a similar way: We take the inhomogeneous
three-point vertex, and after fixing the inhomogeneities, we add a correction given by an
operator that acts merely on the splitting points of the involved spin chains.

The result is a very concise expression for the structure constant in terms of the rapidi-
ties of the three states. An attractive property of this expression is that it allows to obtain
without pain the semiclassical limit of three heavy operators. We computed the quasiclas-
sical limit of the one-loop structure constant and compared it with the Frolov–Tseytlin
limit of the result of [21]. Both expressions are given by contour integrals of dilogarithm
functions, up to terms that vanish in the Frolov–Tseytlin limit. In the Frolov–Tseytlin
limit the insertions at the splitting points are of subleading order, and the gauge theory

1For the specific BDS inhomogeneities this unitary transformation was already given in [30].
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result is given by the inhomogeneous three-point vertex, after fixing the inhomogeneities.
We find that the integrands match, which is already a strong evidence that the corre-
spondence with the string theory persists at one loop. Moreover, we reveal through this
comparison the reason for the asymmetric form of the gauge theory structure constant,
while the string theory result is completely symmetric with respect to permutations of the
three operators. To complete the result one should also compare the integration contours.
This is a subtle issue which is still lacking complete understanding, both in the gauge and
in the string theory. At the present stage the contours of integration are chosen case by
case by taking into account the analytic properties of the solution.

The structure of the paper is the following: In Section 2 we remind of the definition
of the inhomogeneous XXX spin chain and we define its conserved charges. In section
2.1 we define the corner transfer matrix (CTM) and its inhomogeneous version and we
remind of the link between the CTM and the (first) boost operator. Section 3 is devoted
to long-range spin chains, including the BDS spin chain, and more generally to the local
boost deformations of the XXX Hamiltonian. In Section 4, we make explicit the map
between the local boost deformations and inhomogeneous spin chains, by defining the
operator S and determining it to order g2. We compare with the result obtained from
the CTM and then compute the scalar products up to wrapping order. We also explore
the morphism of the Yangian algebra defined by the operator S and we derive the action
of this morphism on the elements of the monodromy matrix and on the Bethe vectors.
In Section 5 we show how to compute the three-point function at one-loop order. In
Section 6 we take the semiclassical limit of the one-loop expression and compare it with
the Frolov–Tseytlin limit of [21].

1.1 The Result for the Three-Point Function

In this section we summarize our results for the three-point function of operators in
different su(2) sectors taking the generic form

〈O(1)(x1)O(2)(x2)O(3)(x3)〉 =
N−1
c

√
L(1)L(2)L(3) C123(g2)

|x12|∆(1)+∆(2)−∆(3)|x13|∆(1)+∆(3)−∆(2)|x23|∆(2)−∆(3)−∆(1)
. (1.1)

The operators are chosen such that they have definite conformal dimensions ∆(1), ∆(2)

and ∆(3), and belong to two different su(2) sectors

O(1) ∈ {Z,X}, O(2) ∈ {Z̄, X̄}, O(3) ∈ {Z, X̄} . (1.2)

In the language of spin chains, they are characterized by three Bethe vectors |u(1)〉, |u(2)〉,
and |u(3)〉 with lengths L(1), L(2) and L(3), respectively. By u(a) we denote the set of the

magnon rapidities {u(a)
1 , . . . , u

(a)

N(a)}. The renormalization scheme invariant part C123(g2)
can be expressed in the spin-chain language as [6, 5]

C123(g2) =
〈u(1),u(2),u(3)〉

(〈u(1)|u(1)〉〈u(2)|u(2)〉〈u(3)|u(3)〉)1/2
. (1.3)

In the expression above, 〈u(a)|u(a)〉 are the square norms of the Bethe vectors, which were
evaluated in [7,10] using the Gaudin-Korepin formula [31]. Our result for the three-point
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function concerns the loop expression of the cubic vertex

〈u(1),u(2),u(3)〉 =
(

1 + g2∆̂21 +O(g4)
)

Au(1)∪u(2),θ(12)

(
1 + g2∆̂03 +O(g4)

)
Au(3),θ(13) .

(1.4)
Above, the functional Au,θ is expressible in terms of a determinant, see Section 4.2, where
the set of inhomogeneities θ(ab) is given by the BDS-like values [24,25]

θ
(ab)
l = 2g sin

2πl

L(ab)
, l = 1, . . . , L(ab) , 2L(ab) = L(a) + L(b) − L(c) . (1.5)

It gives the main contribution to the loop-order three-point function and captures the
main effect of the mixing of operators at loop order, at least for heavy operators. The
operators ∆̂21 and ∆̂03 in (1.4) compute the effect of the insertions [6, 14] and of the
mixing near the splitting points. The operators ∆̂ab act as follows (by convention we take
the vacuum to be the state |u(0) = ∅〉 = |Ω〉)

∆̂ab Au(a)∪u(b),θ(bc) =

(
∂

(b)
1 ∂

(b)
2 − iδE2∂

(b)
1 + iδE3 −

1

2
δE2

2

)
Au(a)∪u(b),θ(bc)

∣∣∣
θ=0

,

with ∂
(a)
j ≡ ∂/∂θ

(a)
j and δEr = E

(b)
r − E

(a)
r being the difference of the conserved charges

between the ket and bra states.
We obtained the quasiclassical limit of (1.4) and compare it with the Frolov–Tseytlin

[32] limit2 of the strong coupling result of [21]. In the quasiclassical limit the roots from
the set u(a) condense into one or several cuts (describing macroscopic Bethe strings) and
the state |u(a)〉 is characterised by its quasimomentum p(a), which has discontinuities
across the cuts. Up to terms that can be neglected in the Frolov–Tseytlin limit,3 the
logarithm of the structure constant is given by the contour integral

logC123(g) '
∮

C(12|3)

du

2π
Li2
(
eip

(1)(u)+ip(2)(u)−iq(3)(u)
)

+

∮
C(13|2)

du

2π
Li2
(
eip

(3)(u)+iq(1)(u)−iq(2)(u)
)
− 1

2

3∑
a=1

∫
C(a)

dz

2π
Li2
(
e2ip(a)(z)

)
. (1.6)

The integration contours should be placed taking into account the analytical properties of
the integrand. The three quasimomenta p(a) depend on g through the distribution of the
inhomogeneities. The functions q(a) are obtained from p(a) by subtracting the resolvent
for the Bethe roots u(a). Assuming that the contours of integration are the same, the
difference between (1.6) and the contour integral obtained in [21] resides in the integrand.4

In this paper we show that the integrand of (1.6) coincides with the linear order in g2

of the expansion of the integrand in the string solution. The comparison shows that the
asymmetry of the integrand in (1.6) in the three quasimomenta is a consequence of the
specific choice of the three su(2) sectors in so(4) used in the weak coupling computation.

2If we introduce a scale for the lengths, with L(a) → ∞, L(a)/L and N (a)/L finite, then the Frolov–
Tseytlin limit means that g/L� 1.

3The subleading terms are the contributions of the operators ∆̂ab.
4Also, there are certain terms that vanish by kinematical reasons in the gauge theory computation

and which do not seem to vanish in the string theory computation. We believe that this issue will be
resolved soon.
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2 Inhomogeneous XXX Spin Chain

In this section we gather some well-known facts about the (periodic) inhomogeneous XXX
spin chain. It is is defined by the expression of its monodromy matrix

Mα(u; θ) =
L∏
k=1

Rαk(u− θk − i
2
), (2.1)

where the rational R-matrix takes the form5

Rαβ(u) =
u

u+ i
Iαβ +

i

u+ i
Pαβ. (2.2)

and the operator Pαβ represents a permutation of the spins in the spaces α and β. The
monodromy matrix Mα(u; θ) obeys the Yang-Baxter equation6

Rαα′(u− v)Mα(u)Mα′(v) = Mα′(v)Ma(u)Rαα′(u− v). (2.3)

When the inhomogeneities θk are set to zero, or they are all equal to each other, this
is the usual homogeneous XXX spin chain. The inhomogeneities can be interpreted as
some extra degrees of freedom which have been frozen. It will be convenient to write the
monodromy matrix in the auxiliary space denoted by the index α:

Mα(u) =

(
A(u) B(u)
C(u) D(u)

)
α

(2.4)

As for the homogeneous spin chain, the transfer matrix

T(u) = Trα Mα(u) = A(u) + D(u) (2.5)

commutes with itself for any value of the spectral parameter (i.e. [T (u), T (v)] = 0) and
it therefore generates the integrals of motion.

Since M(u) obeys the Yang-Baxter equation with the rational R-matrix R(u) = (u +
iP)/(u+ i) the algebra of the matrix elements is the same as for the homogeneous XXX
model:

A(v)B(u) =
u− v + i

u− v
B(u)A(v)− i

u− v
B(v)A(u) ,

D(v)B(u) =
u− v − i
u− v

B(u)D(v) +
i

u− v
B(v)D(u) .

(2.6)

The Hilbert space is spanned by states obtained from the pseudo vacuum |Ω〉 = | ↑↑ . . . ↑〉
by acting with the “raising operators” B(u):

|u〉 = B(u1) . . .B(uM)|Ω〉 . (2.7)

5This normalization for the R matrix is convenient for obtaining the good conserved quantities, how-
ever, for constructing the eigenvectors we find it more convenient to use the normalization R′ = I + iP/u.

6In the following we will skip the variables θ = {θ1, . . . , θL} from the notations, since the algebraic
relations are generic. To denote the homogeneous (short-range) quantities we will use the index [0] or
SR.
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If the rapidities u = {u1, . . . , uM} are generic, the state is called “off-shell”, and the sate
is called “on-shell” if the rapidities obey the Bethe ansatz equations

a(uj)

d(uj)
=

M∏
k=1
k 6=j

uj − uk + i

uj − uk − i
, (2.8)

where a(u) and d(u) are the eigenvalues of the diagonal operators A(u) and D(u):

a(u) = 1 d(u) =
L∏
l=1

(
u− i

2
− θl

)(
u+ i

2
− θl

) . (2.9)

The “on-shell” states are eigenstates of the transfer matrix T(u) with the eigenvalue

t(u) =
Q(u− i)
Q(u)

+
d(u)

a(u)

Q(u+ i)

Q(u)
, with Q(u) =

M∏
k=1

(u− uk) . (2.10)

We define the integrals of motion of the inhomogeneous spin chain model conventionally
as the logarithmic derivatives of the transfer matrix T(u) around the point u = i/2:

Qθ
r =

1

i(r − 1)!

dr−1

dur−1
ln T(u)

∣∣∣∣
u=i/2

. (2.11)

Any combination of the above integrals of motion is an integral of motion and we are
going to use later this property in order to define a more convenient basis of charges.
The definition given above is convenient if the values of the inhomogeneities are small,
θk ∼ g, where g is a perturbation parameter which will be specified later. It extends the
definition of the homogeneous case (i.e. θk = 0), for which the first conserved quantity is
the shift operator:

U0 ≡ T0( i
2
) = Trα

L∏
k=1

Pαk = PL−1,LPL−2,L−1 . . .P12 . (2.12)

The homogeneous shift U0 translates the chain by one lattice spacing, that is we have

U0Pk,k+1U−1
0 = Pk−1,k. (2.13)

Periodicity of the chain means that UL
0 = 1. The first homogeneous Hamiltonians take

the form

QSR
2 =

L∑
k=1

Hk, 2QSR
3 = i

L∑
k=1

[H]k−1, 3QSR
4 =

L∑
k=1

(
[[H]]k−1 + Hk[H]k−1 − [H]k−1 − Hk

)
,

(2.14)

where we have introduced the compact recursive notation

Hk = Ik,k+1 − Pk,k+1, [H]k = [Hk,Hk+1], [[H]]k = [[H]k,Hk+2]. (2.15)

For completeness we note that in terms of the R-matrix the nearest-neighbor Hamiltonian
is given by

Hk = −iR−1
k,k+1(u)

dRk,k+1(u)

du

∣∣∣∣
u=0

, (2.16)
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and the homogeneous transfer matrix can be expressed in the convenient form

T0(u+ i
2
) = U0 exp

[
i

L∑
r=2

ur−1QSR
r

]
. (2.17)

In the inhomogeneous case the conserved quantities do not take the simple form (2.14),
but it is useful for later purposes to write them as an expansion in the value of the inho-
mogeneities. The momentum is no longer a conserved quantity, since the inhomogeneous
chain is not translationally invariant. However, the periodicity condition UL

0 = 1 still
holds. The conserved quantity which replaces the shift U0 is the operator

Uθ = Trα

L∏
k=1

Rαk(−θk) , (2.18)

whose expansion in θ exponentiates to7

Uθ = U0 exp
[
− i
∑
k

θkHk −
1

2

∑
k

θk−1θk[H]k−1 +O(θ2)
]
. (2.19)

Note that for θk = −u the inhomogeneous shift Uθ gives back the homogeneous transfer
matrix T0(u + i/2) (2.17). The expansion of the inhomogeneous Hamiltonian takes the
form

Qθ
2 =

L∑
k=1

[
Hk− iθk[H]k−1 +θ2

k

(
Hk[H]k−1− [H]k−1−Hk

)
+θkθk+1[[H]]k−1

]
+O(θ3). (2.20)

The M -magnon eigenvalues Er of the conserved quantities Qr are the sum over one-
magnon eigenvalues

Eθ
r =

M∑
j=1

qr(uj) +O(θL), (2.21)

where qr(u) takes the standard form of the XXX one-magnon eigenvalues

qr(u) =
i

r − 1

(
1

(u+ i
2
)r−1
− 1

(u− i
2
)r−1

)
. (2.22)

Here u1, . . . , uM are solutions of the Bethe ansatz equations (2.8) and as such they depend
on the values of the inhomogeneities θk.

2.1 Corner Transfer Matrix

An interesting quantity with regard to the construction of integrals of motion is Baxter’s
corner transfer matrix (CTM) [33]. After a brief review of some aspects of the CTM for
homogeneous spin chains, we define an inhomogeneous CTM that will be useful in the
subsequent sections.

7We assume periodic boundary conditions, k + L ≡ k.
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1 2 3 4 5

. . .

Figure 1: Corner transfer matrix (CTM) acting on a spin chain. We assume an
infinite lattice on the right hand side. The small discs denote R̂-matrices defined
in (2.24).

Homogeneous chains. Let us briefly review the definition of a homogeneous CTM and
its relation to the so-called nearest-neighbor boost operator, cf. [33–35]. In the following
we will assume to work on infinite chains (L → ∞) or in the bulk of a periodic chain,
respectively.8 First we introduce a half-row matrix GA ranging from site A(< L) to site
L:

GA(u) = R̂L−1,L(u)R̂L−2,L−1(u) . . . R̂A+1,A+2(u)R̂A,A+1(u). (2.23)

Here we have defined the symbol R̂(u) as the R-matrix times the permutation operator:9

R̂k,k+1(u) = Pk,k+1Rk,k+1(u). (2.24)

Then we define the CTM as a stack of half-row matrices of different lengths according to
(cf. Figure 1)

A(u) = G1(u) . . .GL−2(u)GL−1(u). (2.25)

Note that the triangular definition of the CTM originates in the context of vertex models.
In fact, this matrix can be defined for every quadrant of a square lattice of R-matrices
(vertices). In the bulk the half-row matrix GA has (up to the shift) the same structure as
the parity inverted row-to-row transfer matrix T−1(−u + i

2
) and consequently a similar

expansion10

GA(u) = 1 + iu

L∑
k=A

Hk +O(u2). (2.26)

This form makes it clear that the CTM expands as

A(u) = 1 + iuB[QSR
2 ] +O(u)2, (2.27)

where B[QSR
2 ] denotes the so-called boost operator of the nearest-neighbor Hamiltonian

QSR
2 =

∑
k Hk. For a generic local operator L with local density Lk, the boost is defined

as
B[L] =

∑
k

kLk. (2.28)

8Note that typically some spins on the edge of the CTM are fixed.
9Usually the CTM is defined in terms of ordinary R-matrices or vertex weights and the ingoing site k

is identified with the outgoing site k + 1 when mapping the vertex model to a spin chain. Here it seems
convenient to circumvent the vertex model interpretation to avoid confusion.

10Note that R−1(u) = R(−u).
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It is well-known that the boost of the nearest-neighbor Hamiltonian allows to obtain
higher integrable Hamiltonians of a short-range spin chain model based on a rational (or
trigonometric) R-matrix [36]:

QSR
r+1 = − i

r
[B[QSR

2 ],QSR
r ]. (2.29)

In fact, on infinite chains the homogeneous CTM can be expressed as the exponential of
the nearest-neighbor boost operator as shown in [33,34] for the XYZ model:

A(u) = exp
(
iuB[QSR

2 ]
)
. (2.30)

Since the row-to-row transfer matrix T(u) is the generating function of the local integrals
of motion, (2.29) is equivalent to the differential equation [34,37]

d

du
T(u+ i

2
) = i[B[QSR

2 ],T(u+ i
2
)], T( i

2
) = U0, (2.31)

where we have fixed the initial value of the transfer matrix to be the homogeneous shift
operator. This implies that a finite boost transformation corresponds to a shift of the
rapidity parameter of the row-to-row transfer matrix:

A−1(u)T(v)A(u) = T(u+ v). (2.32)

In particular, one can understand the row-to-row transfer matrix as being generated by
the CTM through a transformation of the shift operator U0 = T(i/2):

T(u+ i
2
) = A−1(u)U0A(u). (2.33)

Inhomogeneous chains. Now we would like to extend the above considerations to
inhomogeneous spin chains. We define the inhomogeneous CTM as a stack of homogeneous
half-row matrices with different rapidity shifts:11

Aθ(u) = G1(u− θ1)G2(u− θ2) . . .GL(u− θL). (2.34)

Expanding this inhomogeneous CTM evaluated at u = 0 in terms of the inhomogeneities
θ we find12

Aθ(0) = exp
[
i
∑
k

νkHk −
1

2

∑
k

ρ̂k[H]k−1 +O(θ3)
]
. (2.35)

where the coefficients νk and ρ̂k are given by

νk = −
k∑
x=1

θx, ρ̂k = −θkνk −
k∑
x=1

θ2
x. (2.36)

In analogy to (2.33) we may interpret the inhomogeneous shift operator as being generated
by the operator Aθ on infinite chains:

Uθ = A−1
θ (0) U0Aθ(0). (2.37)

11In [38] it was speculated on the connection of the long-range deformations discussed in the subsequent
sections to an inhomogeneous version of the CTM. We have not found any discussion of the inhomogeneous
CTM defined in (2.34) in the literature.

12For an expansion of the inhomogeneous CTM at order θ3 see Appendix A.
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While we have no proof for this transformation property in general, we have verified
it up to order g2. Similarly one can check that the inhomogeneous bulk Hamiltonian is
generated according to Qθ

2 = A−1
θ (0)QSR

2 Aθ(0), at least up to order g2. In Section 4 we will
rediscover the inhomogeneous CTM in the context of a map between inhomogeneous and
long-range spin chains. It would be very interesting to investigate in greater detail how
this CTM generates the asymptotic inhomogeneous spin chain model from an ordinary
short-range chain.

3 Long-Range Integrable Models

By deforming the homogeneous short-range XXX model, one can obtain long-range spin
chain models. One possibility is to define these models exactly, for any value of the
deformation parameter and for any length of the chain. For example this is the case for
the Inozemtsev model [39] whose Hamiltonian takes the form

HI =
L∏
k=1
k 6=l

PL,iπ/κ(k − l) Pkl. (3.1)

Here PL,iπ/κ is the Weierstrass function with periods L and iπ/κ. At κ→∞ this model
gives back the short-range Heisenberg model. Another limiting case of this model is the
κ→ 0 limit, which yields the Haldane-Shastry model [40], and which was widely studied in
connection with exclusion statistics. Another possibility to define long-range deformations
is to define the model through a series expansion in the deformation parameter. This
was done for example for the dilatation operator of N = 4 SYM theory [41], which
corresponds to an (asymptotically) integrable spin chain Hamiltonian. Integrability can
then be defined perturbatively; for example if the deformed conserved charges are given
by an expansion in the deformation parameter g of the form13

Qr(g) =
∑
k≥0

Q[k]
r g

2k, (3.2)

then the terms in the expansion can be computed order by order and to test integrability
to order `, one checks that

[Qr(g),Qs(g)] = O(g2(`+1)) . (3.3)

We say then that the model is integrable up to `-loop order.

The BDS Spin Chain. An important example of a long-range spin chain that we will
use in this work is the BDS chain [24]. It was defined in the perturbative sense as a long-
range spin chain whose first three orders coincide with the dilatation operator of N = 4
supersymmetric Yang–Mills theory in the su(2) sector:

D(g) = L+ 2
∑
k≥1

g2kD[k−1] . (3.4)

13Here we suppose that only even powers of g appear in the small g expansion, as it is the case for the
N = 4 SYM dilatation operator in the su(2) sector.

12



The coupling constant g is related to the ’t Hooft coupling constant of the gauge theory
as λ = 16π2g2. The first three non-trivial orders of the dilatation operator were computed
by Beisert, Kristjansen and Staudacher [41] and they are given by

D[0] =
L∑
k=1

(1− Pk,k+1) , (3.5)

D[1] =
L∑
k=1

(4Pk,k+1 − Pk,k+2 − 3) ,

D[2] =
L∑
k=1

(−14Pk,k+1 + 4Pk,k+2 + 10− Pk,k+3Pk+1,k+2 + Pk,k+2Pk+1,k+3) .

In the initial BDS paper [24], the model was defined beyond three-loop order by the Bethe
ansatz equations it was supposed to obey:(

x(uj + i
2
)

x(uj − i
2
)

)L
=

M∏
k=1
k 6=j

uj − uk + i

uj − uk − i
, eip =

x(u+ i
2
)

x(u− i
2
)
, (3.6)

with the rapidity map x(u) and its inverse given by the Zhukovsky relation

x(u) =
u

2

(
1 +

√
1− 4g2

u2

)
, u(x) = x+

g2

x
. (3.7)

In [25] it was shown that the Hamiltonian (3.4) and the Bethe ansatz (3.6) can be obtained
by reducing the one-dimensional half-filled Hubbard model to the spin sector. In principle,
the higher order terms in (3.4) can be computed from perturbation theory of the Hubbard
model, and at increasing perturbative order they involve interactions connecting more and
more spins. The difference between the Hubbard model prediction and the Bethe ansatz
equations appears at order g2L, which is the order at which wrapping interactions start
to contribute.

Notably, the above Bethe equations for the BDS model equal the inhomogeneous Bethe
equations (2.8) up to wrapping, if the inhomogeneities are fixed to [24]14

θBDS
k = 2g sin

2πk

L
. (3.8)

In consequence, the spectra of the two models are the same up to wrapping order and
their Hamiltonians can be related by a similarity transformation [30]. In the subsequent
sections we will pursue the investigation of this relation between the two spin chain models.

Beyond three loops neither the Hubbard model nor the inhomogeneous or BDS Hamil-
tonian yield the correct asymptotic dilatation operator of N = 4 super Yang–Mills theory.
The different physical quantities obtained from these models have to be corrected by the
so-called dressing phase contributions [42,43].

14For odd values of the length L one should add a twist to the inhomogeneities that we neglect here
for simplicity [25].
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3.1 Boost Operators

In this section we review a general method for the construction of long-range spin chains
using a deformation equation that preserves integrability [29, 30]. We then discuss the
BDS spin chain in this context.

The starting point for these long-range deformations is a given short-range system with
mutually commuting Hamiltonians QSR

r , r = 2, 3, . . . , (e.g. generated through (2.29)) that
act locally and homogeneously on a spin chain. The long-range charges Qr(g) are then
defined by the deformation equation

d

dg
Qr(g) = i[X(g),Qr(g)], Qr(0) ≡ Q[0]

r = QSR
r , (3.9)

whose solutions Qr(g) are mutually commuting by construction. The generators of long-
range deformations X(g) are constrained by the requirement that the Qr(g) are local and
homogeneous operators. In [29, 30] two main classes of generators X were identified and
their physical interpretation was studied:15

Boost charges: X = B[Qr] = [I|Qr] (rapidity map) (3.10)

Bilocal charges: X = [Qr|Qs] (dressing phase) (3.11)

Here the bilocal composition of two local operators L1 and L2 is defined as

[L1|L2] =
∑
k<`

L1,kL2,`. (3.12)

Furthermore one may deform the charges by local operators X = L which amounts to a
similarity transformation not changing the spectrum; deformations with local conserved
charges X = Qr are trivial. As mentioned before, the basis of local charges can be trans-
formed without spoiling integrability. Typically the initial basis of short-range Hamilto-
nians is chosen in such a way that the charge Qr(0) acts on at most r neighboring spin
chain sites at the same time.

Let us note that the boost operator (2.28) transforms under translations as

U0 B[L] U−1
0 = B[L] + L, (3.13)

and is therefore not well-defined globally, since it is not compatible with the periodicity
condition UL

0 = 1. However, if L is a conserved charge, the above boost recursions
(2.29, 3.9) are well-defined locally, since the defining relations yield a local homogeneous
operator. The fact that the boost is not well-defined globally insures that the deformation
(3.9) is not just a similarity transformation and that the spectrum of the deformed model
is different from the spectrum of the undeformed model. Similar arguments apply to
deformations with bilocal charges.

The BDS spin chain introduced in the previous sections is obtained from a specific
combination of the above boost deformations and basis transformations. Therefore we will
here focus on boost deformations (3.10) of the XXX chain and leave the study of bilocal
deformations in this context for future work. In order to obtain the full integrable model
describing the asymptotic su(2) sector of N = 4 SYM theory (including the dressing

15Note that more types of generators can be specified depending on the deformed short-range model
(see for instance the discussions of open boundary conditions [44] or the XXZ model [45]).
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phase contributions), also the bilocal charges (3.11) have to be switched on. The BDS
and the full N = 4 SYM theory chain in the su(2) sector correspond to a specific choice
of parameters in the large class of different long-range models that can be generated by
the above method.

It is important to note that generically the interaction range of the solutions Qr(g) to
(3.9) increases with each order of the coupling parameter g. This implies that for a given
spin chain, the range of the charge Qr(g) exceeds the length of the chain from a given
perturbative order in g. It is not known how to define the action of the charges beyond
this so-called wrapping order. Hence, the validity of the considered long-range model is
limited to the asymptotic regime of long states.

For our purposes in the following sections it is useful to distinguish two sets of com-
muting charges defined as deformations of the same short-range spin chain model (below
we will consider deformations of the homogenoeus XXX spin chain). The charges Qr(g)
and Q̄r(g) are defined by the following two deformation equations:16

d

dg
Qr(g) =

∞∑
k=3

τki[B[Q̄k(g)],Qr(g)], (3.14)

d

dg
Q̄r(g) =

∞∑
k=3

τk
(
i[B[Q̄k(g)], Q̄r(g)] + r+k−2

k−1
Q̄r+k−1

)
. (3.15)

Furthermore we set Qr(0) = Q̄r(0) such that the two sets of charges differ only by the
perturbative basis transformation on the r.h.s. of (3.15). As indicated above, the charges
from the two sets commute among themselves by construction. In addition, the charges
from different sets commute among each other since we have

d

dg
[Qr(g), Q̄s(g)] =

∞∑
k=3

τk
(
i[B[Q̄k(g)], [Qr(g), Q̄s(g)]] + r+k−2

k−1
[Qr(g), Q̄s+k−1(g)]

)
. (3.16)

Thus, if the charges commute at order zero (e.g. they are deformations of the same short-
range model), they also commute at higher orders in g. We conclude that both sets of
charges should have the same basis of eigenstates.17 Following the lines of [30], one finds
that both sets of charges are diagonalized by the same Bethe ansatz equations:(

f(u+ i
2
)

f(u− i
2
)

)L
=

M∏
i=1
i 6=k

uj − uk + i

uj − uk − i
, eip =

f(u+ i
2
)

f(u− i
2
)
, (3.17)

where the rapidity map f(u) is related to τk by

df(u)

dg
= −

∞∑
k=3

τk
(k − 1)

1

fk−2
. (3.18)

16For a more detailed discussion of the relation between long-range deformations and the Bethe ansatz
see [29,30]. For comparison to the notation used in [30] we note that τk = Πk/dg, where Πk is a one-form
defined in that paper.

17Below we will fix τk such that the charges Q̄r(g) correspond to the BDS charges with minimized
interaction range at each order in g. Ultimately we will be interested in comparing the eigenstates of the
BDS charges to the eigenstates of the inhomogeneous model; for this purpose the basis of charges Qr(g)
is more convenient.
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When expressed as functions of the rapidity u, the one-magnon eigenvalues of the charges
Qr take the ordinary short-range form (2.22) and the deformation enters only via the
Bethe equations. For the charges Q̄r, the one-magnon eigenvalues are given by

q̄r(u) =
i

r − 1

(
1

f(u+ i
2
)r−1
− 1

f(u− i
2
)r−1

)
. (3.19)

The eigenvalue functions turn out to be related by the following relation [45]:

q̄r(u) = qr(u) +
∞∑

s=r+1

γr,s(g)qs(u),
1

f(u)r−1
=
∞∑
s=r

γr,s(g)
r − 1

s− 1

1

us−1
, (3.20)

where γr,s(g) is defined by expansion of the second equation. Similarly, the corresponding
charge operators should be related to each other.

Let us now compare the Bethe Ansatz equations (3.17) for the deformed spin chain
with those for the inhomogeneous spin chain (2.8). We notice that they look similar, up
to terms of order θL at least, if we write

d ln f(u)

du
=

1

L

∞∑
k=0

σk
uk+1

, with σk =
L∑
i=1

θki , (3.21)

and we relate τk to the symmetric sums σk as prescribed by the relations (3.18) and
(3.21). Since the functional form of the charge eigenvalues qr(u) also coincides with
(2.22), we conclude that the spectra of the inhomogeneous model and the corresponding
deformed model are the same. Because the spectrum depends only on the value of the
symmetric sums, any permutation of the values of the impurities gives a model with the
same spectrum (but not the same Hamiltonian). One may therefore suspect that the
two types of models are mutually related by a unitary transformation, cf. [30]. In the
next sections, this transformation is defined, and determined explicitly for the first two
orders in perturbation. The values of the symmetric sums σk in (3.21) can be translated
into values of the coupling constants τk for the long-range deformations. These coupling
constants define a whole family of long-range integrable models, since the values of the first
L symmetric sums can be tuned independently. Among these models we are particularly
interested in the BDS model.

The BDS spin chain. Let us consider the recursive definition of the BDS chain in some
more detail. In this case the rapidity map and its inverse are given by fBDS(u) ≡ x(u),
see (3.7). We may use this explicit form to evaluate (3.18) according to

− dx(u)

dg
=
du(x)

dg

/
du(x)

dx
=

2gx

x2 − g2
=
∞∑
k=3

τBDS
k

(k − 1)xk−2
, (3.22)

such that writing the left hand side as a series we find the BDS expressions

τBDS
2k = 0, τBDS

2k+1 = 4kg2k−1. (3.23)

Then the BDS charges are given by Q̄r(g) as defined by (3.15), where the Q̄r(0) ≡ Q̄
[0]
r

denote the integrable charges of the XXX Heisenberg spin chain. In Appendix B we give
explicit solutions for the BDS charges in terms of boost deformations up to four-loop
order.
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In the following we will be interested in studying the effect of the above deformation
on eigenstates of the charge operators and compare them to the inhomogeneous spin chain
model. For this purpose it is more convenient to consider the charges Qr(g). As indicated
above, these charges have the same eigenstates as the BDS Hamiltonians Q̄r(g), and they
have the same eigenvalues as those of the inhomogeneous models with the values of the
symmetric sums given by18

σBDS
2k+1 = 0 , σBDS

2k = Lg2k (2k)!

(k!)2
. (3.24)

In particular this is true for the model with the inhomogeneities specified in formula (3.8).
We thus consider the deformation equation (3.14) evaluated for the BDS connection

(3.23). We may solve this equation in the form

Qr(g) = eiΦ(g) Q[0]
r e−iΦ(g) ≡ SBQ[0]

r S−1
B , (3.25)

where Q
[0]
r = QSR

r is the nearest-neighbor charge, and at the first perturbative orders we
have

Φ(g) = g2 Y[0] +
g4

2
Y[1] +

g3

6

(
Y[2] +

i

2
[Y[1],Y[0]]

)
+O(g8), (3.26)

with

Y[`] = 2
`+1∑
k=1

k B[Q̄
[`−k+1]
2k+1 ] . (3.27)

This explicitly defines the unitary boost transformation SB = exp[iΦ(g2)] up to terms
corresponding to the four-loop order in N = 4 SYM theory and can easily be written
down to higher loops. Note that the local density Φk(g) of the operator Φ(g) is not
periodic in the spin chain site k since it is defined in terms of boost charges.

4 Map from Long-Range to Inhomogeneous Models

In this section we elaborate on the relation between long-range and inhomogeneous spin
chains. After studying the unitary transformation S that relates the charge operators
of the two models at leading orders, we argue that the operator S originates from a
combination of boost operators and an inhomogeneous version of Baxter’s corner transfer
matrix discussed above. Finally we comment on the morphism defined by the S-operator
and the relation to the theta-morphism introduced in [18].

4.1 S-Operator

We would like to understand better how the inhomogeneous spin chain model is related
to the long-range system. To this end we follow the observation in [30] that the inho-
mogeneous charge operators can be mapped to the BDS charges by a unitary similarity
transformation S. In [30] this transformation was specified for the BDS model and up to

18Let us emphasize that two inhomogeneous models obtained from one another by permutation of
inhomogeneities have the same spectrum but different conserved charges, so they can be considered as
being different.
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terms of order g2. Here we study the relation between the inhomogeneous charges Qθ
r and

generic long-range charges Qr(g) obtained by the method of boost deformation:19

Qr(g) = S Qθ
r S−1. (4.1)

The existence of the operator S is motivated by comparison of the spectra of the BDS
chain and the inhomogeneous model for the BDS-values of the inhomogeneities [24].

Definition of the S-operator. In order to define the operator S, it is simplest to
evaluate the same transformation as for the local charges on the shift operator

U(g) = S Uθ S−1, (4.2)

and to extract the form of S from this equation. Since both shift operators U(g) and
Uθ are defined to all orders, this yields an all-order definition of the S-operator in the
parameter g. On the one hand, the inhomogeneous shift operator is defined by equation
(2.18) from which we can read off its expansion (θ ∼ g):

Uθ = U0

[
1− i

L∑
k=1

θkHk −
1

2

L∑
k,l=1

θkθlHkHl −
1

2

L∑
k=1

θk−1θk[H]k−1

]
+O(g3). (4.3)

For the boost induced long-range models on the other hand, we may apply the deformation
equation (3.14) to the shift operator in analogy to deforming the local charges:

d

dg
U(g) = i

∞∑
k=3

τk[B[Q̄k(g)],U(g)], U(0) = U0. (4.4)

Here τk is defined by the rapidity map f(u), which in turn is defined by the spectrum of
the shift operator of the underlying model, cf. (3.17,3.18) and [29,30].

Let us assume that the expansion of τ2k+1 starts at g2k−1 and that τ2k = 0.20 Then we
can use the shift property (3.13) of the boost charges ([B[L],U0] = −U0L) to write down
the first two non-trivial orders of U(g2):

U(g2) = U0

[
1− iτ̄3QSR

3 + τ̄ 2
3

(
[B[QSR

3 ],QSR
3 ]− 1

2

(
QSR

3

)2
)
− i
(
τ̄5 + τ̄ 2

3

)
QSR

5

]
+O(g6). (4.5)

Here we have defined21

τ̄k =

∫ g

0

τk(g
′)dg′. (4.6)

Thus, both shift operators Uθ and U(g) are defined to all orders in g and (4.2) furnishes
an all-order definition of the operator S. In the following Section 2.1 we will elaborate
more on the generic structure of the S-operator.

19Note that the Qr differ from the charges with minimized interaction range (e.g. the BDS charges) by
a basis transformation as explained above. This does not make any difference for the transformation of
eigenstates.

20The former assumption is motivated by the interaction range of the local charges being constrained
by the gauge theory. The latter assumption corresponds to a parity conserving model. Both assumptions
are satisfied for the BDS chain.

21For instance we have τ̄BDS
2k+1 = 2g2k.
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Let us now explicitly derive the perturbative expression for the unitary transformation
that relates the two models up to order g2. We make the same ansatz as in [30], namely

S = exp i
∑
k

[
νkHk +

i

2
ρk[H]k−1 +O(g3)

]
, (4.7)

but do not fix the constants νk and ρk to their BDS values. Instead we will obtain generic
expressions for νk and ρk in terms of the periodic inhomogeneities θk that obey certain
constraints. Here we assume that θk ∼ g, νk ∼ g and ρk ∼ g2. We can now compare the
two shift operators (4.3) and (4.5) and derive the constraints following from (4.2).

First order. We apply the ansatz (4.7) for the S-operator to the inhomogeneous shift
and evaluate the expression at order g:

S Uθ S−1 = U0

[
1− i

L∑
k=1

Hk(νk − νk−1 + θk) + (νL − ν0)H1

]
+O(g2). (4.8)

Here we have used that HkU0 = U0Hk+1. Since the long-range shift operator has no
contribution at order g1, (4.2) yields the constraints

νk − νk−1 + θk = 0, νL − ν0 = 0. (4.9)

These equations are solved by the explicit expression

νk = ν0 −
k∑
x=1

θx, (4.10)

and the periodicity condition for the first-order parameters yields

νk+L = νk ⇒
L∑
x=1

θx = 0. (4.11)

The latter condition guarantees that the operator S is periodic, i.e. it represents a well-
defined transformation on a periodic spin chain at the considered order.

Second order. Proceeding to terms at order g2 in (4.2) we assume that the above
constraints (4.9) hold. Also at this order we require S to be periodic which amounts to
ρk+L = ρk. We may again evaluate the right hand side of (4.2) and after some manipula-
tions (cf. Appendix C) we arrive at

S Uθ S−1 = U0

[
1 +

1

2

L∑
k=1

(
ρk − ρk−1 + νk−1(θk − θk−1)

)
[H]k−1

]
+O(g3). (4.12)

We may now compare this expression to the long-range shift operator (4.5) which gives
the constraint equation for the second order parameters ρk:

ρk − ρk−1 = τ̄3 − νk−1(θk − θk−1). (4.13)

This equation is solved by (here we assume for simplicity ν0 = 0)

ρk = ρ0 + τ̄3k −
k∑
x=1

νx−1(θx − θx−1) = ρ0 + τ̄3k − θkνk −
k∑
x=1

θ2
x, (4.14)
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and periodicity for the second order parameter yields

ρk+L = ρk ⇒
L∑
x=1

θ2
x = σ2 = τ̄3L. (4.15)

Conclusion. In this section we have given an all-order definition of the operator S by
the transformation relating the inhomogeneous and long-range shift operators (4.2). We
have then computed the operator S up to terms of order g2. The S-operator takes the
form

S = exp i
[
τ̄3B[QSR

3 ] +
L∑
k=1

(
νkHk +

i

2
ρ̂k[H]k−1

)]
+O(g3), (4.16)

and for the inhomogeneities set to the BDS values it gives the expression already deter-
mined in [30]. Notably the S-operator can be split into two contributions

S = SB × S−1
θ , SB = exp iΦ, S−1

θ = exp iΘ. (4.17)

Here the boost and inhomogeneous generator are given by

Φ = τ̄3B[QSR
3 ] +O(g4), Θ =

L∑
k=1

(
νkHk +

i

2
ρ̂k[H]k−1

)
+O(g3). (4.18)

and we have defined the inhomogeneous parameter ρ̂k to separate the boost and inhomo-
geneous piece:

ρ̂k = ρ0 − θkνk −
k∑
x=1

θ2
x. (4.19)

Note that the boost part agrees with the first order of (3.26) as expected. This splitting
into a boost and an inhomogeneous piece is natural knowing that the boost deformations
generate the long-range model from the short-range (here Heisenberg) model (cf. Sec-
tion 3.1). In particular this implies two important features for the inhomogeneous part
S−1
θ of the S-operator:

• In the bulk, S−1
θ sets all inhomogeneities to zero and hence represents the generator

of the inhomogeneous rapidity shift as indicated in Section 2.1.

• At the boundary, S−1
θ completes SB to a periodic operator S.

Remarkably, the expression for S−1
θ in (4.17) agrees with the expansion of the inhomoge-

neous corner transfer matrix Aθ (2.35). That is to say that the parameters νk and ρ̂k are
the same functions of θ as defined in (2.36) (for ν0 = 0 and ρ0 = 0). We have thus found
that the expansion of S−1

θ is identical with the expansion of the inhomogeneous CTM at
first orders:

S−1
θ = Aθ(0) +O(θ3). (4.20)

Assuming that the map between Sθ and Aθ holds at higher orders, it seems natural to
use the CTM to define the operator Sθ. In fact, the inhomogeneous CTM is defined
to all orders in θ according to (2.34) in terms of R-matrices. Together with the boost
deformations discussed in the previous sections this could furnish an explicit definition
of the complete S-operator. Note that at higher orders it remains to be shown that an
operator Sθ defined in this way has the desired property to combine with the boost part
into the transformation translating between long-range and inhomogeneous spin chains.
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4.2 Morphism Property and Scalar Products

In the previous chapter we have shown how to obtain the integrals of motion for the
long-range (LR) model by transforming the inhomogeneous integrals of motion with the
unitary operator S. The same unitary transformation can be applied to the monodromy
matrix M as well,

MLR(u) = S M(u;θ) S−1 , (4.21)

where the values of θ are chosen as explained in (3.21). It is straightforward to show
that the monodromy matrix of the long-range model MLR(u) obeys the Yang-Baxter
equation, and that its matrix elements obey the same algebra as the inhomogeneous (or
homogeneous) ones (2.6). The unitary transformation is therefore a morphism of the
Yangian algebra,

MLR
α (u) MLR

β (v) = S Mα(u;θ) Mβ(v;θ) S−1 , (4.22)

for any spaces α and β. It is important to note that this morphism works for periodic
chains of arbitrary length, up to wrapping order g2L. This is in contradistinction to the
morphism considered in [17,28], based on the Dunkl operators, where a defect was added
at the point where the chain closes. Of course, the difference between the two is small for
large chains. Let us explore the consequences of this morphism. First, the Bethe vectors
for the long-range model, on-shell or of-shell, can be written simply as

|u〉LR = S |u;θ〉 , LR〈u| = 〈u;θ| S−1 . (4.23)

This means that the scalar products, including the norms, are the same for the long-range
model and the corresponding inhomogeneous model,

LR〈v|u〉LR = 〈v;θ|u;θ〉 . (4.24)

The evaluation of the scalar products in the long-range model, up to wrapping order, is
then straightforward. According to Slavnov [46], the scalar product of an on-shell and
and off-shell vector can be written in terms of a determinant

〈v;θ|u;θ〉 =
N∏
j=1

d(uj)a(vj) Su,v , Su,v =
detjkΩ(uj, vk)

detjk
1

uj−vk+i

. (4.25)

The Slavnov kernel Ω(u, v) is22

Ω(u, v) = t(u− v)− e2ipu(v) t(v − u) , t(u) =
1

u
− 1

u+ i
, (4.26)

where pu(u) is the quasimomentum defined modulo π by

e2ip(u) =
Qu(u+ i)

Qu(u− i)
Qθ(u− i/2)

Qθ(u+ i/2)
. (4.27)

Here Qθ(u) =
∏L

j=1(u − θj) and Qu(u) =
∏N

j=1(u − uj) are Baxter polynomials. Taking
the limit v→ u, one obtains a determinant expression for the norm (the Gaudin-Korepin
determinant)

〈u;θ|u;θ〉 =

∏N
j=1 2 d2(uj)∏
j<k(uj − uk)2

det
jk

(
(1− δjk)
u2
jk + 1

+ ∂upu(u)
∣∣∣
uj
δjk

)

=

∏N
j=1 2 d2(uj)∏
j<k(uj − uk)2

det
jk
∂ujpu(uk). (4.28)

22We are using a different normalization than in the original paper [46].
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The diagonal term in the above determinant should be understood as ∂upu(u)
∣∣
u=uj

.

In [47] the Slavnov determinant formula was simplified, based on the results in [10],
to the symmetric-looking formula23

〈v;θ|u;θ〉 =
N∏
j=1

d(uj)a(vj) A +
u∪v,θ =

N∏
j=1

d(uj)d(vj) A −
u∪v,θ (4.29)

where the functional A ±
w,θ is defined as follows:

A ±
w,θ ≡

1

Ψw,θ±i/2

2N∏
j=1

(1− e±i∂/∂wj)Ψw,θ±i/2, Ψw,θ =

∏2N
j<k(wj − wk)2∏2N

j=1

∏L
l=1(wj − θl)

. (4.30)

The two representations are compatible due to the identity below, which follows directly
from the definition,

A +
w,θ =

2N∏
j=1

Q−θ (wj)

Q+
θ (wj)

A −
w,θ, w = u ∪ v, (4.31)

where we use the consequence of the Bethe equations,

N∏
j=1

Q−θ (uj)

Q+
θ (uj)

≡
N∏
j=1

d(uj)

a(uj)
= 1. (4.32)

As a consequence, the functionals A + and A − differ by a phase factor, with the phase
equal to the total momentum of the magnons with rapidities v of the off-shell state.
Since the phase factor does not have physical meaning, sometimes we will omit the ±.
The A -functional can be also written in the form of a Fredholm-like determinant [48]

A ±
u,θ = det

jk

(
δjk −

i E±j
uj − uk + i

)
, E±j ≡

Qθ(uj ∓ i/2)

Qθ(uj ± i/2)

∏
k( 6=j)

uj − uk ± i
uj − uk

. (4.33)

The inhomogeneous A -functional is a symmetric function of the variables θ and it can
be straightforwardly transformed into a long-range A -functional, Au,θ = A LR

u +O(g2L),
with

A LR,±
u = det

jk

(
δjk −

i ELR,±
j

uj − uk + i

)
, ELR,±

j ≡
(
f(uj ∓ i/2)

f(uj ± i/2)

)L ∏
k(6=j)

uj − uk ± i
uj − uk

. (4.34)

The function f(u) was defined in (3.21) in terms of the symmetric sums σk =
∑

j θ
k
j and it

enters the long-range Bethe ansatz (3.17). A formula equivalent to (4.34) is implicit in [17]
and was subsequently conjectured and checked for the norms in [18]. Let us emphasize
that we do not need to know the explicit form of the operator S in order to compute the
scalar products of the long-range spin chain. The above formulas are readily adapted for
going to the semiclassical limit where L and N are large.

23In proving (4.29) it is essential that the rapidities u are on-shell. In [47] only the first identity is
proved; the second one is obtained by the same method. With the chosen normalization of the monodromy
matrix we should use the second representation.
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The dressing phase and the inhomogeneities. The inhomogeneities can also be
used to emulate the effect of the dressing phase, provided that we allow their value to
depend on the value of the rapidities. This amounts to allowing the symmetric sums to be
symmetric functions of the rapidities u (σk = σk(u)) so that we have for the eigenstates
of the model with the dressing phase, for example with the BES phase [43],

|u〉BES = S(u)|u;θ(u)〉. (4.35)

Since the operator S(u) depends now on the state on which it acts, we cannot compute
the scalar products in the same straightforward manner, but at least we can compute the
norms of the Bethe ansatz vectors,

BES〈u|u〉BES = 〈u;θ(u)|u;θ(u)〉 = lim
v→u
〈v;θ(u)|u;θ(u)〉 (4.36)

The above scalar product can be computed as a usual scalar product in the inhomogeneous
model. In particular, the last expression, before taking the limit, is a usual scalar product
with one vector on-shell and the other off-shell, which can be computed using (4.25).
After replacing the symmetric sums with their values σk(u) we get the matrix (4.26),
with pu(v) replaced by pBES

u (v). After taking the limit v→ u, we obtain

BES〈u|u〉BES =

∏N
j=1 2 d2(uj)∏
j<k(uj − uk)2

det
jk

(
(1− δjk)
u2
jk + 1

+ ∂up
BES
u (u)

∣∣∣
uj
δjk

)
. (4.37)

This formula looks different from the conjecture for the norm with the dressing phase
given by Gromov and Vieira [18].

4.3 Morphism and Theta-Morphism

In this section we analyze the relation between the unitary S-transformation and the
“theta-morphism” introduced by Gromov and Vieira [16, 18]. The idea of Gromov and
Vieira was to construct the states of the BDS long-range model by acting with a differential
operator, which they called theta-morphism, on the states of the inhomogeneous model.
We find that a purely differential operator cannot realize the morphism property, see
below. The failure to fulfill the morphism property results in the cross-terms of [18].
Instead, we introduce the morphism associated to the S-operator via

MBDS(u) = S M(u;θBDS) S−1 ≡ DθM(u;θ)|θ=0 . (4.38)

This definition has the following advantages:

• Unlike the Gromov-Vieira theta-morphism, the inhomogeneity translation plus the
unitary transformation amounts to an exact morphism of the Yangian algebra. It
works not only on Bethe vectors, but on arbitrary elements of the monodromy
matrix.

• The S-transformation produces the required boundary terms and therefore it is free
of the “cross-term” issue which complicates the computation in [18].

• The relation to boost deformations and the inhomogeneous corner transfer matrix
indicates a natural extension to higher orders.
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We find that, up to terms of order O(g3), the action of Dθ on (an arbitrary matrix element
of) the monodromy matrix M amounts to

DθM(u;θ)|θ=0 (4.39)

≡ M− g2

2

L∑
k=1

D2
kM− g2

L∑
k=1

DkM(Pk,k+1 + δk,LQ2) + g2

[
Q2

2

2
+ iQ3 + P1LQ2,M

]∣∣∣∣∣
θ=0

.

To avoid cumbersome notations, in this section and below, we drop the indices on Q
[0]
r =

QSR
r to denote the leading order charges simply by Qr, and we have24

Dk ≡ i(∂k − ∂k+1) = i(∂θk − ∂θk+1
) .

The operator Dθ differs from the theta-morphism of Gromov and Vieira [18] given by

DGV
θ = 1− g2

2

L∑
k=1

D2
k +O(g4), (4.40)

by the last two terms in the second line of equation (4.39). These two extra terms account
for the cross-terms in [18] and they insure that the morphism property is exact

Dθ (M(u1;θ)M(u2;θ)) |θ=0 = DθM(u1;θ)|θ=0 DθM(u2;θ)|θ=0 . (4.41)

On the Bethe vectors, the action of the operator Dθ reduces to

|u〉BDS = S|u;θBDS〉 = Dθ|u;θ〉|θ=0 =

(
DGV
θ +

g2

2

(
Q2

2 + 2iQ3 + 2P1LQ2

))
|u;θ〉|θ=0 .

(4.42)

To obtain this expression, we use that
∑

k Dk = 0 and that the vacuum eigenvalues of
Q2 and Q3 are zero. If the Bethe vectors are on-shell, the charges Q2 and Q3 become
numbers and we obtain

|u〉BDS =
[
DGV
θ + g2

(
1
2
E2

2 + E2 + iE3 − H1LQ2

) ]
|u;θ〉|θ=0

=
[
1 + g2

(
1
2
E2

2 + E2 + iE3

) ]
|u〉GV

BDS . (4.43)

We thus see that our eigenvectors differ from those of Gromov and Vieira by a state-
dependent factor. The imaginary contribution does not affect the norms, while the real
part changes the normalization. The scalar products of two arbitrary Bethe states, on-
shell or off-shell, is:

BDS〈u|v〉BDS = Dθ〈u;θ|v;θ〉|θ=0 = DGV
θ 〈u;θ|v;θ〉|θ=0 . (4.44)

Let us now sketch the derivation of the expression (4.39). More details are given in
Appendix D. First, we account for the shift in the inhomogeneities by

M(u;θBDS) = exp

(
L∑
j=1

θBDS
l ∂θl

)
M(u;θ)|θ=0 . (4.45)

24Our definition of Dk differs from that of [18] by a factor of i.
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The second ingredient is to transform the action of the permutation operators contained
in S into derivatives. The simplest ones were given in [16],

[Hk,M(u)] = (Q2 δk,L −Dk) M(u;θ)|θ=0 . (4.46)

At higher orders in the expansion we have to deal with multiple permutations. The case
of non-overlapping permutations is simple,

[Hl, [Hk,M]] = (Q2 δl,L −Dl)(Q2 δk,L −Dk) M , |l − k| > 1 . (4.47)

For overlapping permutations in the bulk, k 6= L− 1, L, we obtain,

[[H]k,M] = 1
2

(
D2
k −D2

k+1

)
M + DkMPk,k+1 −Dk+1MPk+1,k+2 , (4.48)

[{H}k,M]] = 1
2

(
D2
k + D2

k+1

)
M + DkMPk,k+1 + Dk+1MPk+1,k+2 (4.49)

+2DkDk+1M + 2DkMPk+1,k+2 + Dk+1MPk,k+1,

where [H]k = [Hk,Hk+1] and {H}k = {Hk,Hk+1}. When k = L− 1, L the action in (4.48)
has to be supplemented with boundary terms,[

[H]L−1,M
]

= [[H]L−1,M]bulk + [δbound − 2iQ3,M] (4.50)

[[H]L,M] = [[H]L,M]bulk − [δbound,M] , δbound =
(

1
2
Q2

2 + iQ3 + P1LQ2

)
.

These expressions, together with the action of overlapping Dk and Hl that are derived in
Appendix D, are all we need to obtain (4.39), provided that we choose ν0 = ρ0 = 0. Let
us notice that the expressions (4.48,4.49,4.50) obey the Leibniz rule, e.g.

[[H]k,M1M2] = M1[[H]k,M2] + [[H]k,M1]M2 . (4.51)

We can thus safely replace M by any product of monodromy matrices in all the commu-
tators above. This feature is at the origin of the morphism property.

5 Three-Point Function of su(2) Fields Beyond Tree

Level

We consider operators which have definite conformal dimensions ∆(1), ∆(2) and ∆(3). The
three-point function of three renormalized operators O(1),O(2) and O(3) in the N = 4
gauge theory is almost entirely fixed by conformal symmetry,

〈O(1)(x1)O(2)(x2)O(3)(x3)〉 =
N−1
c

√
L(1)L(2)L(3) C123(g2)

|x12|∆(1)+∆(2)−∆(3)|x13|∆(1)+∆(3)−∆(2) |x23|∆(2)−∆(3)−∆(1)
. (5.1)

The only part which remains to be evaluated is the scheme-independent structure constant

C123(g2) =
∑
k≥0

C
[k]
123 g

2k. (5.2)
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A particular embedding of su(2) fields in the so(4) sector. The structure con-
stant depends on the quantum numbers of the three su(2) fields. Each su(2) type field
is characterized by an on-shell Bethe state in the XXX chain, as well as by the embed-
ding of the su(2) sector in so(6).25 The correlation function considered here, as well as
in [11, 7, 8, 18], corresponds to a particular choice of the su(2) sectors to which the three
operators belong. With this choice, the three su(2) operators are traces of two complex
bosons

O(1) ∈ {Z,X}, O(2) ∈ {Z̄, X̄}, O(3) ∈ {Z, X̄}, (5.3)

for example O(1)(x1) ∼ TrZZXXX . . .XXZX(x1). Chosen in this way, the three su(2)
operators belong to the so(4) ∼ su(2)

R
⊕ su(2)

L
subsector of so(6). The two su(2) groups

act by left and right multiplication of the complex matrix(
Φ1 + iΦ2 Φ3 + iΦ4

−Φ3 + iΦ4 Φ1 − iΦ2

)
=

(
Z X
−X̄ Z̄

)
. (5.4)

The operators O(1) and O(2) belong to the su(2)R sector, while the operator O(3) belongs
to the su(2)L sector. Under the right multiplications, {Z,X} and {−X̄, Z̄} transform as
su(2) doublets. Under the left multiplications, the pairs of fields {Z,−X̄} and {X, Z̄}
transform as su(2)R doublets [50].

The spin-chain lengths and the magnon numbers of the three states are related to the
two so(4) charges by

L(1) = +J
(1)
1 + J

(1)
2 , N (1) = +J

(1)
2 ,

L(2) = −J (2)
1 − J

(2)
2 , N (2) = −J (2)

2 ,

L(3) = +J
(3)
1 − J

(3)
2 , N (3) = −J (3)

2 .

(5.5)

In order to have a non-zero three-point function, the sum of the R-charges of the three
operators must be zero:

3∑
a=1

J
(a)
1 =

3∑
a=1

J
(a)
2 = 0. (5.6)

The conservation of charges gives

N (1) = N (2) +N (3), 2N (3) = L(1) + L(3) − L(2).

The tree-level structure constant for the case when O(2) is a BPS field was computed
in [7, 8], and in the general case in [10]. Here we will apply the formalism of this paper
to compute the one-loop result, previously obtained in [16, 18]. Our computation agrees
with that of [16, 18], giving the result in a concise and elegant form. The classical limit
of the one loop result is taken in Section 6.

25 The choice of the su(2) sector is determined by a set of global coordinates (angles). One can argue
that the dependence of the three-point function on the global angles factorizes [49], but we will not discuss
this issue here.
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123

Figure 2: Structure of contractions captured by the operator O12 defined by

(5.9) and by the vector 〈↑ L(23)

. . . ↑↓ L(13)

. . . ↓ | .

5.1 Three-Point Functions at One Loop

In the language of integrable spin chains one identifies

TrZZXXX . . .XXZX ↔ | ↑↑↓↓↓ . . . ↓↓↑↓〉,

and the three operators are in correspondence with three eigenstates |u(1)〉, |u(2)〉 and
|u(3)〉 of the dilatation operator. The structure constant is expressed as [7]

C123(g2) =
〈u(1),u(2),u(3)〉

(〈u(1)|u(1)〉〈u(2)|u(2)〉〈u(3)|u(3)〉)1/2
, (5.7)

with the cubic vertex in the numerator given by [18]26

〈u(1),u(2),u(3)〉 ≡ 〈u(2)| I2 O12 I1 |u(1)〉 〈↑ L(23)

. . . ↑↓ L(13)

. . . ↓ | I3 |u(3)〉 . (5.8)

The operator O12 captures the particular structure of the contractions of the elementary
fields at the splitting point, cf. Figure 2:

O12 =
∑

i1...iL(12)=↑,↓

|i1 . . . iL(12) ↑ L(23)

. . . ↑〉〈i1 . . . iL(12) ↓ L(13)

. . . ↓ | . (5.9)

The insertions I1,2,3 represent the Hamiltonian insertions and they have to be deter-
mined by perturbative gauge theory computations. Up to one-loop order they have been
computed in [6, 14]

I1 = 1− g2(H
(1)

L(12) + H
(1)

L(1)) + . . . ,

I2 = 1− g2(H
(2)

L(12) + H
(2)

L(2)) + . . . , (5.10)

I3 = 1− g2(H
(3)

L(31) + H
(3)

L(3)) + . . . .

The knowledge of the Hamiltonian insertions at higher order is one of the main
obstructions in computing the three-point function at two loop and higher. The other

26We prefer to use the formulation from [18] for the three-point functions, since it is free from the
complications which arise when considering “flipping”.

27



obstructions are to take into account the dressing factor and the wrapping contributions.
Let us show now how to compute the three-point function at one loop. First, we are
going to choose carefully the inhomogeneities corresponding to the three operators. Since
we are splitting and joining the chains, it is convenient to have the same values of the
inhomogeneities for the pieces that we are matching, i.e.

θ(1) = θ(12) ∪ θ(13), θ(2) = θ(12) ∪ θ(23), θ(3) = θ(13) ∪ θ(23).

Moreover, we are going to choose the values of the three groups of inhomogeneities as
follows

θ
(ab)
l = 2g sin

2πl

L(ab)
, l = 1, . . . , L(ab) . (5.11)

This choice is compatible with the following values of the coefficients defined in (4.10)
and (4.14)

ν
(ab)
0 = ν

(ab)

L(ab) = 0 , ρ
(ab)
0 = ρ

(ab)

L(ab) = 0

ρ
(ab)
1 = ρ

(ab)

L(ab)+1
= 2g2 . (5.12)

To compute the cubic vertex, we shall split each of the S(a)-operators into pieces
which commute with the insertions and among themselves, S(ab), and pieces which do not
commute with the insertions and the rest, δS(a),

S(1) = S(12) S(13) δS(1) , S(2) = S(12) S(23) δS(2) , S(3) = S(13) S(23) δS(3) . (5.13)

For the one-loop three-point function, this splitting is done as follows

S(ab) = exp

i L(ab)−1∑
k=1

ν
(ab)
k H

(ab)
k − 1

2

L(ab)−1∑
k=2

ρ
(ab)
k [H]

(ab)
k−1 + . . .

 , (5.14)

δS(1) = 1− g2([H]
(1)

L(1) + [H]
(1)

L(12)) + . . . ,

δS(2) = 1− g2([H]
(2)

L(2) + [H]
(2)

L(12)) + . . . ,

δS(3) = 1− g2([H]
(3)

L(3) + [H]
(3)

L(13)) + . . . . (5.15)

Inserting the split expressions into the equation (5.8), one can see that the S(ab) parts
cancel, S(12) because it commutes with O12, and S(13) and S(23) because they act on totally
symmetric pieces. One is left with

〈u(1),u(2),u(3)〉 = involved× simple, (5.16)

involved = 〈u(2);θ(2)|δS−1
2 I2 O12 I1 δS1 |u(1);θ(1)〉

simple = 〈↑ . . . ↑↓ . . . ↓ | I3 δS3 |u(3);θ(3)〉 ,

where we used the notations from [18] to facilitate the comparison. The leading (tree-
level) contribution to the correlator can be computed by fixing the inhomogeneities and
using the freezing method of [9]. The basic idea of the freezing trick is to get a sequence of
down spins by synchronizing the rapidities of a number of magnons with the same number
of inhomogeneities. The simplest example is

| ↑ . . . ↑↓ . . . ↓〉 = B(z
(23)
1 ) . . .B(z

(23)

L(23))|Ω〉 = |z(23);θ(3)〉 with z
(ab)
k ≡ θ

(ab)
k − i

2
, (5.17)
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so that we obtain

〈↑ . . . ↑↓ . . . ↓ |u(3);θ(3)〉 = 〈z(23);θ(3)|u(3);θ(3)〉 , (5.18)

and, similarly,

〈u(2);θ(2)|O12 |u(1);θ(1)〉 = 〈u(2) ∪ z(13);θ(1)|u(1);θ(1)〉 . (5.19)

Both of these expressions are scalar products of a Bethe eigenstate with an off-shell vector,
and as such they can be expressed in terms of Slavnov determinants. Let us point out
that the two scalar products (5.18,5.19) are no longer symmetric under the permutation
of inhomogeneities θ(3) and θ(1), respectively. Instead, as we show in Appendix F (see
also [10]) the expression (5.18) does not depend at all on the group of inhomogeneities
θ(23) but only on θ(13) and, similarly, (5.19) does not depend on θ(13) but only on θ(12).

Now let us proceed with the calculation of the one-loop corrections. The norms are
computed as

〈u(a)|u(a)〉 = 〈u(a),θ(a)|u(a),θ(a)〉, (5.20)

where the inhomogeneities on the r.h.s. are given by the values (5.11). The corrections
to the cubic vertex coming from the Hamiltonian insertions and the insertions of the
S-operators can be easiest evaluated by transforming them into derivatives. For this
purpose, we use the relations

H
(a)

L(a) |u(a),θ(a)〉 = (Q
(a)
2 −D

(a)

L(a))|u(a),θ(a)〉 ,

H
(a)

L(ab) |u(a),θ(a)〉 = −D
(a)

L(ba)|u(a),θ(a)〉 ,

[H]
(a)

L(ba) |u(a),θ(a)〉 =
(

1
2
(D

(a)2

L(ba) −D
(a)2

L(ba)+1
) + (D

(a)

L(ba) −D
(a)

L(ba)+1
)
)
|u(a),θ(a)〉 ,

[H]
(a)

L(a)|u(a),θ(a)〉 =
(

1
2
(D

(a)2

L(a) −D
(a)2
1 ) + (D

(a)

L(a) −D
(a)
1 )− δ(a)

bound

)
|u(a),θ(a)〉 , (5.21)

with

δ
(a)
bound|u

(a),θ(a)〉 =
(

1
2
Q

(a)2
2 + iQ

(a)
3 + P1L(a)Q

(a)
2

)
|u(a),θ(a)〉

=
(
iE

(a)
3 − 1

2
E

(a)2
2 + E

(a)
2 (1 + D

(a)

L(a))
)
|u(a),θ(a)〉 .

Above, it is understood that the inhomogeneities are set to zero after acting with the
derivatives. After performing the algebra, see appendix G, we obtain for the factor
simple:

simple = 〈z(23);θ(3)| I3 δS3 |u(3);θ(3)〉 (5.22)

= 〈z(23);θ(3)|u(3);θ(3)〉

+ g2

(
∂

(3)
1 ∂

(3)
2 − iE

(3)
2 ∂

(3)
1 + iE

(3)
3 −

1

2
E

(3)2
2

)
〈z(23);θ(3)|u(3);θ(3)〉

∣∣∣
θ=0

,

and for the factor involved:

involved = 〈u(2);θ(2)| δS−1
2 I2 O12 I1 δS1 |u(1);θ(1)〉

= 〈u(2) ∪ z(13);θ(1)|u(1);θ(1)〉 (5.23)

+ g2

(
∂

(1)
1 ∂

(1)
2 − iδE2∂

(1)
1 + iδE3 −

1

2
δE2

2

)
〈u(2) ∪ z(13);θ(1)|u(1);θ(1)〉

∣∣∣
θ=0

,
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where we have used the notation δEr = E
(1)
r − E

(2)
r . In the main terms in the equations

(5.22) and (5.23) the inhomogeneities are set to their BDS values (5.11), while in the last
term they are set to zero. Since here we are interested only in the one-loop order, it is not
important whether we set the inhomogeneities to zero or not, after taking the derivatives.
The two expressions (5.22) and (5.23) look similar, the first being a particular limit of
the second. When computing the three-point function, only the modulus square of the
overlaps is relevant, since the phase can be always changed by a redefinition of the states.
By this argument, we should drop the imaginary part in the above expressions, e.g. the
terms containing E

(a)
3 with a = 1, 2, 3. Gromov and Vieira argued in [18] that the term

containing iδE2∂
(1)
1 + 1

2
δE2

2 is also imaginary. By the same argument, the term containing

iE
(3)
2 ∂

(3)
1 + 1

2
E

(3)2
2 should be imaginary, too.

Let us check now that our results are compatible with those of [16,18]. Written in our
notations, their result is given by27 (see (4.29) and Appendix F)

simple =

1− g2

2

L(3)∑
k=1

D
(3)2
k

 Au(3),θ(13) + . . . , (5.24)

involved =

1− g2

2

L(1)∑
k=1

D
(1)2
k

 Au(1)∪u(2),θ(12) + . . . , (5.25)

where the dots on the r.h.s. stand for terms which are supposed to be imaginary or of
higher order in g. The functionals Au(3),θ(13) and Au(1)∪u(2),θ(12) are not symmetric in all

the variables θ(3) and θ(1), respectively, since they do not depend at all on θ(23) and θ(13),
respectively. This means that the action of the derivatives does not simply amount to the
substitution of the inhomogeneities by the BDS values (5.11) (as it would be the case for
symmetric functionals). The symmetry default can be cured by rewriting (5.24,5.25) as
symmetric differential operators in the variables θ(13) and θ(12) acting on the functionals
A :

simple =

1− g2

2

L(13)∑
k=1

D
(13)2
k +

g2

2

(
D

(13)2

L(13) −D
(3)2

L(3) −D
(3)2

L(13)

) Au(3),θ(13) + . . .

= Au(3),θ(13) + g2∂1∂L(13) Au(3),θ(13) + . . . (5.26)

involved =

1− g2

2

L(12)∑
k=1

D
(12)2
k +

g2

2

(
D

(12)2

L(12) −D
(1)2

L(1) −D
(1)2

L(12)

) Au(1)∪u(2),θ(12) + . . .

= Au(1)∪u(2),θ(12) + g2∂1∂L(12) Au(1)∪u(2),θ(12) + . . . (5.27)

These are exactly the results in (5.22) and (5.23), up to the terms supposed to be imag-
inary. We conclude that our results agree with those of [16, 18]. The advantage of our
formulation is that we can straightforwardly take the classical limit, while in the formu-
lation of [18] this limit is hardly possible to take, due to the complexity of the answer.
Knowing the insertions at two loops would allow to compute the two-loop correlation
function in the same manner as above. If the two-loop insertions are restricted to a few
sites around the splitting points, then the corresponding correction would be given by

27We neglected the factors d(uj)d(vj) because they cancel with the norms in the denominator, and we
dropped the superscript from A −u,θ to use just Au,θ.
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terms containing four derivatives with respect to inhomogeneities around the splitting
points. This kind of contribution is subdominant in the Frolov–Tseytlin limit, as we show
in Section 6.3. We hope to be able to report on this point in a separate work.

6 Three-Point Functions in the Semi-Classical Limit

In this section we evaluate the one-loop three-point function obtained in the previous
section, in the limit of three heavy operators, also called semi-classical or thermodynamical
limit. We send N,L → ∞ but the mode numbers are kept finite. In this limit, which
is interesting from the point of view of comparison with string theory, the Bethe roots
arrange themselves into a small number of macroscopic strings [51, 50]. The solution of
the Bethe equations in this limit is described by a Riemann surface with a finite number of
cuts.28 The general finite zone solution in the su(2) sector is described by a hyperelliptic
complex curve [50].

6.1 Scalar Products and Norms in the Semi-Classical Limit

An N -magnon Bethe state with magnon rapidities u = {u1, . . . , uN} is characterized by
its quasi-momentum p(u), which is defined modulo π by (4.27). The quasi-momentum of
an on-shell Bethe state satisfies N conditions

e2ip(u)
∣∣∣
u=uj

= −1 (j = 1, 2, , . . . , N), (6.1)

which are equivalent to the Bethe equations for the roots u. In the thermodynamical
limit the quasi-momentum is given by

p(u) ' Gu(u)− 1

2
Gθ(u) + πn, (6.2)

with Gu and Gθ being the resolvents for the magnon rapidities and the inhomogeneities,

Gu = ∂ logQu, Gθ = ∂ logQθ. (6.3)

The resolvent corresponding to the distribution of the rapidities (3.8) is

Gθ(u) =
L√

u2 − 4g2
. (6.4)

The semi-classical limit of the scalar product and the norm follow from that of the
functional (4.30) [52, 10]29

log A ±
u,θ = ±

∮
C

du

2π
Li2
(
e±iGu(u)∓iGθ(u)

)
+O(1), L→∞, N/L ∼ 1, (6.5)

where the contour C surrounds the rapidities u and leaves outside θ. As a consequence,
the scalar product (4.29) is expressed through the sum of the two quasi-momenta:

log 〈u(1);θ|u(2);θ〉 =

∮
C(1)∪ C(2)

du

2π
Li2
(
eip

(1)(u)+ip(2)(u)
)
, (6.6)

28In [50], the spectral parameter was rescaled as u = Lx with x ∼ 1. We will not introduce a new
rescaled variable, but will keep in mind that u ∼ L.

29 The two expressions differ by a phase factor. This also follows from the functional relation for the

dilogarithm Li2( 1
ω ) = −Li2(ω)− π2

6 −
1
2 log2(−ω).
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where the contour C(a) surrounds the set of rapidities u(a) and leaves outside the set of
the inhomogeneities θ. In the classical limit the derivative of the quasimomentum p(a) is
defined on a four-sheeted Riemann surface and the discrete set of points u(a) condenses
into a set of cuts on the main sheet (similarly for the set θ(a)).

The norm of a Bethe eigenstate is obtained in the classical limit by taking u(1) =
u(2) = u in (6.6):

log 〈u;θ|u;θ〉 =

∮
C

du

2π
Li2
(
e2ip(u)

)
, (6.7)

where the contour of integration surrounds the rapidities u and leaves outside θ. The
determination of the contour is a subtle issue because of the logarithmic branch cuts
starting at the points where the argument of the dilogarithm equals 1. The contour must
avoid these cuts and its choice depends on the analytic properties of the quasimomenta.

6.2 One-Loop Three-Point Function in the Semi-Classical Limit

By the computation of the previous subsection, the structure constant up to two-loop
corrections is given by

〈u(1),u(2),u(3)〉 ≡ eF123 =
(

1 + g2∆̂
)
eF123(θ) +O(g4), (6.8)

F123(θ) ≡ log Au(2)∪u(1),θ(12) + log Au(3),θ(13) . (6.9)

where the differential operator ∆̂ is defined as (δEr = E
(1)
r − E

(2)
r )

∆̂ =
(
∂

(3)
1 ∂

(3)
2 − iE

(3)
2 ∂

(3)
1 + iE

(3)
3 − 1

2
E

(3)2
2

)
+
(
∂

(1)
1 ∂

(1)
2 − iδE2∂

(1)
1 + iδE3 − 1

2
δE2

2

)
. (6.10)

Thus the one-loop result for the structure constant is expressed in terms of the tree-level
quasiclassical expression with the inhomogeneities entering as free parameters (6.6). Using
the quasiclassical formula (6.5), one obtains in the thermodynamical limit

F123(θ) '
∮

C(1)∪ C(2)

du

2π
Li2
(
eip

(1)(u)+ip(2)(u)−iq(3)(u)
)

+

∮
C(3)

du

2π
Li2
(
eip

(3)(u)+iq(1)(u)−iq(2)(u)
)
. (6.11)

Here p(a) are the three quasimomenta and q(a) are their singular parts:

p(a) = Gu(a) + q(a) q(a) = −1
2
Gθ(a) (a = 1, 2, 3). (6.12)

For the complete phase in (6.8) we obtain

F123 = F123(θ) + g2 δF123 +O(g4), (6.13)

where the inhomogeneities in the first term on the r.h.s. are fixed to their BDS values,
and the second term

δF123 = e−F123(θ)∆̂ eF123(θ)
∣∣∣
θ=0

(6.14)
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will be computed below. The first term F123(θ) is an infinite series in g2 from which only
the O(g0) and the O(g2) terms should be retained.

In order to evaluate δF123 one should compute the derivatives in θ1,2 of the phase
F123(θ). The computation of the derivatives in θ1,2 is done using the representation (6.5)
of the A -functional:

∂

∂θ1

log Au,θ = −i
∮
C

du

2πi

1

u2
log
(
1− eiGu−iGθ

)
,

∂

∂θ1

∂

∂θ2

log Au,θ = −
∮
C

du

2πi

1

u4

1

1− eiGu−iGθ
.

(6.15)

Below we will neglect the term with the second derivative, which is of order 1/L compared
to the other terms. Then we have

δF123 = iE
(3)
3 − 1

2
E

(3)2
2 + iE

(1)
3 − iE

(2)
3 − 1

2
(E

(1)
3 − E

(2)
3 )2

−(E
(1)
2 − E

(2)
2 )

∮
C(1)∪C(2)

du/u2

2πi
log
(

1− eip(1)+ip(2)−iq(3)
)

−E
(3)
2

∮
C(3)

du/u2

2πi
log
(

1− eip(3)+iq(1)−iq(2)
)

−
[∮
C(3)

du/u2

2πi
log
(

1− eip(3)+iq(1)−iq(2)
)]2

−
[∮
C(1)∪C(2)

du/u2

2πi
log
(

1− eip(1)+ip(2)−iq(3)
)]2

. (6.16)

The complete result for logC123 is obtained by subtracting from F123+δF123 the logarithms
of the norms of the three states, given by the contour integrals (6.7).

As we mentioned earlier, the choice of the integration contours is a non-trivial problem.
The heuristic derivations of the quasiclassical limit in [8, 10] require that the contour of
integration C(a) encircles the cuts u(a) and leaves outside the the θ-cut. However this
prescription does not determine the contours completely because it says nothing about
the logarithmic singularities of the integrand at the points where the argument of the
dilogarithm takes value 1. A necessary condition on the integration contours is that they
should not cross any of the cuts produced by these singularities. In the contour integral
along C(a) ∪ C(b) the positions of the singularities depend on the analytic properties of
both p(a) and p(b). Let us denote by C(ab|c) the contour which encircles the cuts u(a) and
u(b), leaves outside the θ-cut and does not cross any of the logarithmic cuts ending at the
other singularities of the integrand:

C(a) ∪ C(b) → C(ab|c) .

In order to determine the contour of integration C(ab|c), one can consider a family of
solutions characterised by their global filling fractions α(a) = N (a)/L(a), solve for the
singular points in the limit α(a) � 1 (a = 1, 2, 3) and place the contours C(ab|c) so that
they return to the same sheet. When α(a) increases, the contour deforms in a continuous
way.

The above rule works only if the logarithmic singularities at the points where the
argument of the dilogarithm equals 1 are macroscopically far from the cuts formed by
condensation of Bethe roots. If a singular point gets close or crosses such a cut, the
integration contour should be closed on the second sheet, possibly through infinity, as in
the example considered in [10].

33



6.3 Comparison with the String Theory Results

The semiclassical limit of the one-loop result in the SYM theory is expected to match
the strong coupling result in the Frolov–Tseytlin [32] limit, where the gauge coupling g
is large, but the typical length L is even larger, so that the effectve coupling g′ = g/L is
small. This is however not obvious because of the order-of-limits problem [53,27].

The hope that such a comparison is meaningful is based on the observation that the
first two orders of the expansion in g′2 = g2/L2 of the anomalous dimension of a heavy
operator in the weakly coupled gauge theory, and of the energy of the corresponding
classical string state, coincide. Since the computation of the correlation function requires
the knowledge of the wave functions one order beyond, it is reasonable to expect that for
the three-point functions the match is to the linear order in g′2.

A string theory computation of the three-point function at strong coupling was car-
ried out very recently by Kazama and Komatsu [21]. Kazama and Komatsu expressed the
three-point function in terms of the quasimomenta p(1), p(2), p(3) obtained from the mon-
odromy matrix for a solution of the so(4) sigma model at strong coupling. They obtained
for the logarithm of the structure constant an expression in terms of contour integrals,
very similar to (6.11). The arguments of the dilogarithm functions are p(a) + p(b) − p(c)

for a, b, c ∈ {1, 2, 3}, as well as p(1) + p(2) + p(3), and the expression is symmetric in the
permutations of the three operators.

Here we will compare the Frolov–Tseytlin limit of the strong-coupling answer of [21]
with the quasiclassical limit of our solution (1.4) to the linear order in g′2, assuming that
the integration contours coincide, which is very likely to be the case. The main obstacle
in going to two loops is that the Hamiltonian insertions have not yet been computed,
although the computation seems doable and we hope to be able to report on it separately.

Let L be the length scale such that L(a)/L ∼ 1 for a = 1, 2, 3. The operators O(a)

correspond to solutions of the Bethe equations consisting of a few macroscopic Bethe
strings. Since the typical distance between the roots forming such a string is ∼ 1, the
spectral parameter scales as u ∼ L, which implies for the conserved charges Er ∼ L1−r

(r=1,2, . . . ). As a consequence, the correction δF123 to the phase (6.13) scales as30

g2 δF123 ∼ g′2. (6.17)

On the other hand, the one-loop correction in F123(θ) due to the inhomogeneities, which
comes from replacing L/u→ Gθ = L/u + 2Lg2/u3 + . . . , scales as L× Lg2/L3 = Lg′2.31

Therefore the correction g2δF123/F123 ∼ 1/L can be neglected in the Frolov-Tseytlin limit
and our one-loop result reads simply

〈u(1),u(2),u(3)〉 ' expF123(θ). (6.18)

The fact that δF123 disappears in the Frolov–Tseytlin limit is easy to explain: unlike the
“bulk” corrections, the insertions are localised at the splitting points, and are suppressed
by a factor of 1/L.

30The fact that δF123 does not contain a factor of L in the Frolov-Tseytlin limit is not trivial in our
computation presented in Section 5.1, because Hamiltonian insertions scale as Lg′2 and δS also contains
terms that scale as Lg′2. These two contributions nicely cancel each other leaving us with a net result
scaling as g′2. We suspect that similar cancellations will happen also at higher loop orders.

31The additional factor of L comes from the differential du in (6.11).
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In the Frolov–Tseytlin limit the result of Kazama and Komatsu for F123 (section 7.5
of [21]) consists of four terms,

FKK
123 '

∮
Li2
(
eip

(1)+ip(2)−ip(3))+

∮
Li2
(
eip

(3)+ip(1)−ip(2))
+

∮
Li2
(
eip

(2)+ip(3)−ip(1))+

∮
Li2
(
eip

(2)+ip(3)+ip(1)
)
.

(6.19)

Comparing this with (6.11), we see that the first two terms resemble the two terms of
(6.11), while the last two terms do not have counterparts in the weak coupling result.
The correspondence with the gauge theory requires that the last two terms vanish, but it
is not clear if this is the case. In this paper we will discuss only the first two terms.

We will compare the first two terms (6.19) with the one-loop result (6.11). We will
give an interpretation of the exponent in (6.18) in terms of the complex curves of the
three heavy fields. Obviously the asymmetric form of the tree-level expression (6.11) is a
consequence of the specific choice of the su(2) sectors for the three operators (O1,O2 ∈
su(2)R and O2 ∈ su(2)L). Since the left and the right su(2) sectors do not talk to each
other perturbatively, the dependence on the third operator factors out. This factorisation
is accidental and is a consequence of the choice of the three su(2) sectors and the weak
coupling limit. At strong coupling, there is no reason to expect that the three-point
function factorises.

Below we are going to show that the arguments of the dilogarithm function in (6.11)
are the g/L→ 0 limit of symmetric combinations of the three quasimomenta, e.g. p(3) +
q(1) − q(2) is obtained as a limit of p(3) + p(1) − p(2). For that we assume that the three
operators are on-shell Bethe states from the so(4) sector. This makes sense at strong
coupling when the so(4) sector is closed.32 Then the linear combination of the three
quasimomenta is a meromorphic function with a four-sheeted Riemann surface as the one
depicted in Figure 3.

The natural parametrization of the momenta in the strong coupling limit is by the
Zhukovsky variable x defined by (3.7). The a-th quasimomentum is determined by the

set of N (a) rapidities x(a) = {x(a)
1 , . . . , x

(a)

N(a)}, which are related to the rapidities u(a) by
the Zhukovsky map (3.7). Instead of (6.12), we have

p(x) = G(x)− ∆/2

x− g2/x
, (6.20)

where ∆ = L+ δ is the conformal dimension and the resolvent

G(x) =
∑
j

x′j
x− xj

, x′j ≡
1

1− g2/x2
j

, (6.21)

32The so(4) sectors at weak and at strong coupling have different nature and the comparison should be
taken with caution, see the discussion in [54]. In the XXX spin chain (with or without inhomogeneities)
the length of the chain L = ∆|g=0 is expressed in terms of the two conserved R-charges. At perturbative
level the length of an operator is conserved, since the dimension ∆ of the states that contain n pairs XX̄
and have the same R-charges is separated by a gap 2n from the states belonging to the su(2) sector and
are unreachable perturbatively. On the contrary, in the sigma model there is no such gap and to the
states of given charge one can add X and X̄ as constituent fields, since this combination has zero total
charge. The length of a state is not a conserved charge and it is not defined at strong coupling. The
so(4) sector is therefore not stable for finite g, but in the limit g → ∞ it becomes stable again, as the
so(4) sigma model is classically stable.
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Figure 3: The Riemann surface for the three quasimomenta in the u-
parametrization. For simplicity we assumed one-cut solutions. The left (sheets
1,4) and the right (sheets 2,3) sectors are connected by Zhukowsky cuts. In the
limit g → 0 the Zhukovsky cuts shrink to points and the so(4) Riemann sur-
face decomposes into two disconnected two-sheet Riemann surfaces describing the
su(2)R and the su(2)L sectors.

is related to the resolvent in the u-plane by

G(u) = G(x) + G(g2/x)− G(0). (6.22)

The left and the right su(2) sectors in so(4) are related by the inversion symmetry
x↔ g2/x, which exchanges right and left quasimomenta, p

R
and p

L
[50, 55]:

p
R

(x) = −p
L
(g2/x)− 2πm, m ∈ Z. (6.23)

This allows to go from the four-sheeted Riemann surface in the u-parametrization to a
two-sheet Riemann surface in the x-parametrization. We will use the convention

p
R

(u) = p(x)
∣∣∣
|x|>g

, p
L
(x) = p(x)

∣∣∣
|x|<g

. (6.24)

With this convention the left and right quasimomenta are assembled into a single quasi-
momentum p(x) without inversion symmetry, defined on the whole x-plane [50]. The
quasimomentum p(x) is thus an analytic function defined on a hyper-elliptic Riemann
surface, with poles at x = 0, x = ∞ and at the fixed points of the inversion symmetry
x = ±g. The behavior of the quasimomentum near these poles is [50]33

p(x) '


(N − 1

2
L)/x (x→∞);

−1
2
∆/(x− g2/x) (x→ ±g);

2πm+ 1
2
Lx/g2 (x→ 0).

(6.25)

For the problem we are interested in, p(1) and p(2) belong to the su(2)R sector, while p(3)

belongs to the su(2)L sector. Therefore the linear combinations of the type p(1) +p(2)−p(3)

should be understood as

p(1) + p(2) − p(3) → p(1)(x) + p(2)(x) + p(3)(g2/x);

p(3) + p(1) − p(2) → p(3)(x)− p(1)(g2/x) + p(2)(g2/x).
(6.26)

33In our convention the quasimomentum has negative sign compared to [50].
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In the limit g2 → 0, as it is clear from the asymptotics (6.25) of the quasimomentum
at the origin, we obtain exactly the combination that appeared in the arguments of the
dilogarithm in (6.11)! Since the quasimomentum appears only in the exponent, the term
2πm can be neglected.

Now let us see if the the r.h.s. of (6.26) and the arguments of the dilogarithm in (6.11)
match at linear order in g′2 = g2/L2. This will be the case if the function p(g2/x) + q(x)
vanishes up to g′4. We have from (6.20)

p(g2/x) + q(x) =
N∑
j=1

x′j
g2/x− xj

+
∆/2

x− g2/x
− L/2

x− g2/x

= 2πm+ g4

(
E2

x3
− 2E3

x2

)
+O(g6). (6.27)

Therefore, if the second two terms in (6.19) can be ignored, the Frolov–Tseytlin limit of
the strong coupling result from the string theory side matches, up to the subtleties related
to the choice of the contour, with the one-loop result from the SYM side at order g2/L2.
In any case, if the results match at tree level, they will match also at one loop. Note that
if the Hamiltonian insertions at two loops are located only at the splitting points, there
will be disagreement at two-loop order in the Frolov–Tseytlin limit.

We also see that the factorisation of the structure constant into two pieces, the first
depending on u(1) and u(2) and the second depending on u(3), takes place only in the weak
coupling limit and it is a consequence of the fact that at g → 0 the spectral curve for the
so(4) sector splits into two components connected by a vanishing cycle (the Zhukowsky
circle |x| = g). Returning to the u-parametrization, the three operators are defined on
the Riemann surface for the so(4) sector sketched in Figure 3. The Riemann surface splits
into two disjoined hyperelliptic surfaces in the limit g → 0, when the two Zhukovsky cuts
disappear.

7 Conclusions & Outlook

In this work we have considered the relation between inhomogeneous and boost-induced
long-range spin chains which share the same spectrum.34 We followed the philosophy that
both models can be generated from a homogeneous XXX spin chain using different kinds of
transformations. In one case the generators of the transformation are the boost operators
studied in [29,30] and the transformation can be written as a singular unitary operator SB.
In the other case, the transformation from a homogeneous to an inhomogeneous chain is
generated by Sθ and agrees at least up to terms of order g2 with an inhomogeneous version
of Baxter’s corner transfer matrix. Since both deformations have the same spectrum, they
should be related by a unitary non-singular operator S = SBS−1

θ . Using the map between
the two models, we have determined the scalar products of the long-range model.35 We
have determined the unitary operator S up to terms of order g3, the highest order being
obtained from the comparison with the corner transfer matrix. The method works for
a large class of long-range deformations of the spin 1/2 XXX spin chain and can be
straightforwardly extended to similar deformations of higher-rank or higher-spin models.

The map that we have discussed here is also a morphism of Yangian algebras. In
particular, in the case of N = 4 super Yang–Mills theory, this morphism allows to relate

34Up to wrapping interactions.
35The explicit expression of the operator S is not important for computing the scalar product.
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the Yangian algebra of the higher loop dilatation operator to the Yangian of an inhomo-
geneous spin chain. A similar Yangian algebra was found for scattering amplitudes in
this gauge theory (see e.g. [56] and references therein). It would be interesting to inves-
tigate whether this morphism can also be used to exploit the integrability of amplitudes
at higher loops.

We have used the map between long-range and inhomogeneous spin chains in order to
compute the three-point function of three operators in different su(2) sectors of N = 4
super Yang–Mills theory. The necessary ingredients are the wave functions of the dilata-
tion operator at higher loop order, plus the diagrammatic field-theoretical corrections.
These corrections have not yet been computed at two-loop order, and thus we have not
performed the computation of the three-point function at two loops.

We have re-derived the results of Gromov and Viera at one loop [16,18] at finite length,
in a form that allows to straightforwardly take the semi-classical limit. In the so-called
Frolov–Tseytlin limit the results of the classical limit agree with the conjecture in [17].
We have compared the one-loop computation with the strong coupling result obtained
recently by Kazama and Komatsu [21] and we have found that if the results match at tree
order, they match also at one loop. If the Hamiltonian insertions at two loops are located
only at the splitting points, there will possibly be disagreement at two-loop order.

In order to go to three loops and beyond, one has to take into account the dressing
phase as well. To include the dressing phase into this framework, we note that the
generator of the corresponding long-range model S[Q|Q] is known from the investigations
in [29, 30]. For the dressing phase contributions, this operator furnishes the analogue of
the boost generator SB discussed above. However, extending the correspondence to an
asymptotically dual model, like the inhomogeneous spin chain, should be more involved
because the values of the inhomogeneities will be state-dependent.
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A Inhomogeneous CTM at Order θ3

It is instructive to expand the inhomogeneous CTM to order θ3. In the bulk we find up
to terms proportional to the identity

Aθ(0) = exp

[
· · ·+ 1

6

L∑
k=1

(
− µ[a]

k Hk + µ
[b]
k

(
Hk[H]k−1 − [H]k−1

)
+ µ

[c]
k [[H]]k−1

)
+O(θ4)

]
,

(A.1)

where the individual coefficients are functions of the inhomogeneities given by

µ
[a]
k = −2

k∑
x=1

θ3
x − 2(θk+1 − θk)

k∑
x=1

νx−1θx − ρ̂k(2θk + θk+1)− νk(θ2
k + θkθk+1),

µ
[b]
k = −2

k∑
x=1

θ3
x − 3ρ̂kθk − 2νkθ

2
k,

µ
[c]
k = −2

k∑
x=1

θ3
x + (θk+1 − θk)

k∑
x=1

νx−1θx − ρ̂k(2θk + θk+1)− 2νkθ
2
k, (A.2)

The coefficients µ vanish for θk = u as expected.

B The BDS Charges from Boost Deformations

Here we give explicit solutions for the BDS charges up to four loop order. We may restrict
the construction introduced in [29,30] to the BDS model using the above expression (3.23)
for τk to find the deformation equation (3.15) for the BDS Hamiltonians:

d

dg
Q̄r(g) =

∞∑
k=1

2g2k−1
(

2ki[B[Q̄2k+1(g)], Q̄r(g)] + (r + 2k − 1)Q̄r+2k(g)
)
. (B.1)

Solving the above equation perturbatively one finds the following contributions at order
g2, g4 and g6:

Q̄[2]
r =2i[B[Q̄

[0]
3 ], Q̄[0]

r ] + (r + 1)Q̄
[0]
r+2,

Q̄[4]
r =

1

2

[
2i[B[Q̄

[2]
3 ], Q̄[0]

r ] + 2i[B[Q̄
[0]
3 ], Q̄[2]

r ] + (r + 1)Q̄
[2]
r+2

+ 4i[B[Q̄
[0]
5 ], Q̄[0]

r ] + (r + 3)Q̄
[0]
r+4

]
,

Q̄[6]
r =

1

3

[
2i[B[Q̄

[4]
3 ], Q̄[0]

r ] + 2i[B[Q̄
[2]
3 ], Q̄[2]

r ] + 2i[B[Q̄
[0]
3 ], Q̄[4]

r ] + (r + 1)Q̄
[4]
r+2

+ 4i[B[Q̄
[2]
5 ], Q̄[0]

r ] + 4i[B[Q̄
[0]
5 ], Q̄[2]

r ] + (r + 3)Q̄
[2]
r+4

+ 6i[B[Q̄
[0]
7 ], Q̄[0]

r ] + (r + 5)Q̄
[0]
r+6

]
. (B.2)

When the Q̄
[0]
r are chosen to be the XXX charges, these expressions give the BDS Hamil-

tonians at two, three and four gauge theory loops.
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C Derivation of the S-operator at order g2

In this appendix we compute the S-operator to higher order. We explicitly evaluate the
right hand side of (4.2) to find

SUθS
−1 =

U0

[
1 + i

L∑
k=1

νk−1Hk −
1

2

L∑
k,l=1

νk−1νl−1HkHl −
1

2

L∑
k=1

ρk−1[H]k−1

]

×
[
1− i

L∑
k=1

θkHk −
1

2

L∑
k,l=1

θkθlHkHl −
1

2

L∑
k=1

θk−1θk[H]k−1

]

×
[
1− i

L∑
k=1

νkHk −
1

2

L∑
k,l=1

νkνlHkHl +
1

2

L∑
k=1

ρk[H]k−1

]
+O(g3). (C.1)

Here we assumed periodicity of νk and ρk to commute the shift operator with the first
bracket. Making use of the above constraints on the paramter νk that guarantee a van-
ishing contribution at g1, this immediately evaluates to

· · · = U0

[
1 +

1

2

L∑
k,l=1

(
2νk−1θl − 2θkνl + 2νk−1νl − νk−1νl−1 − νkνl

)
HkHl

− 1

2

L∑
k,l=1

θkθlHkHl −
1

2

L∑
k=1

θk−1θk[H]k−1 +
1

2

L∑
k=1

(ρk − ρk−1)[H]k−1

]
+O(g3).

(C.2)

and using again (4.9) the first line can be simplified according to(
2νk−1θl − 2θkνl + 2νk−1νl − νk−1νl−1 − νkνl)HkHl = θkθlHkHl + νkθl[Hk,Hl]. (C.3)

Combining the terms finally results in (4.12).

D From Permutations to Derivatives

In this appendix, we explain how to convert the action of any permutation operators on
the monodromy matrix of Bethe states into derivatives with respect to impurities. We
shall call this kind of relations PD relations. We derive the PD relations both in the bulk
and at the boundary.

D.1 PD Relations in the Bulk

We start with algebraic Bethe ansatz. For simplicity, we choose a different normalization
from the main text. The R-matrix at each site is given by

R′αn(u) = Iαn +
i

u
Pαn, n = 1, . . . , L (D.1)

and it is related to the one in the main text by

R′αβ(u) =
u+ i

u
Rαβ(u) . (D.2)
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Here α denotes the auxiliary space and n is the quantum space. I and P are identity and
permutation operators, respectively. The monodromy matrix is defined as in the main
text

Mα(u,θ) ≡
L∏
n=1

R′αn(u− θn − i/2) (D.3)

which becomes, in the homogeneous limit where θk → 0,

Mα(u) =
L∏
n=1

R′αn(u− i/2) . (D.4)

The authors in [16] found the following relation

[Pk,k+1,Mα(u)] = i(∂k − ∂k+1)Mα(u,θ)|θ=0 , ∂k ≡
∂

∂θk
, (D.5)

where in the r.h.s. one first takes the derivatives with respect to the impurities and
then sends all impurities to zero. For simplicity, we will denote the r.h.s. of (D.5) by
i(∂k − ∂k+1)Mα(u) and adopt the same convention for all PD relations. As in the main
text, we introduce the following notation

Dk ≡ i(∂k − ∂k+1), DL = i(∂L − ∂1) . (D.6)

We will generalize (D.5) to the case when several permutations act on the monodromy
matrix. To this end, we first notice that if the action of permutation and derivatives do
not overlap, they will act independently. This means, for example

∂j[Pk,k+1,Mα(u)] = ∂jDkMα(u), if j 6= k, k + 1 . (D.7)

The case where permutations and derivatives overlap needs to be considered more care-
fully. From the definition of monodromy matrix, one can derive the following relations

∂nk [Pk,k+1,Mα(u)] = −(∂nk − ∂nk+1)Mα(u)Pk,k+1 +
1

n+ 1
(i∂n+1

k − i∂n+1
k+1 )Mα(u) (D.8)

∂nk+1[Pk,k+1,Mα(u)] = (∂nk − ∂nk+1)Mα(u)Pk,k+1 +
1

n+ 1
(i∂n+1

k − i∂n+1
k+1 )Mα(u)

∂mk ∂
n
k+1[Pk,k+1,Mα(u)] =

m!n!

(m+ n+ 1)!
(i∂m+n+1

k − i∂m+n+1
k+1 )Mα(u)

for any m,n ∈ N. Relations (D.8) can also be written as

Pk,k+1∂
n
k+1Mα(u) = ∂nkMα(u)Pk,k+1 +

1

n+ 1
(i∂n+1

k − i∂n+1
k+1 )Mα(u) (D.9)

Pk,k+1∂
n
kMα(u) = ∂nk+1Mα(u)Pk,k+1 +

1

n+ 1
(i∂n+1

k − i∂n+1
k+1 )Mα(u)

Pk,k+1∂
m
k ∂

n
k+1Mα(u) =

m!n!

(m+ n+ 1)!
(i∂m+n+1

k − i∂m+n+1
k+1 )Mα(u) + ∂mk ∂

n
k+1Mα(u)Pk,k+1 .

By the help of (D.9), we can derive the general PD relation. To see how this works, let
us consider the following example

[Pk,k−1Pk,k+1,Mα(u)] = [Pk,k−1,Mα(u)]Pk,k+1 + Pk,k−1[Pk,k+1,Mα(u)] (D.10)
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= Dk−1Mα(u)Pk,k+1 + iPk,k−1(∂k − ∂k+1)Mα(u)

= Dk−1Mα(u)Pk,k+1 +
i2

2
(∂2
k−1 − ∂2

k)Mα(u) + i∂k−1Mα(u)Pk,k−1

− i∂k+1Mα(u)Pk,k−1 − i2∂k+1(∂k−1 − ∂k)Mα(u)

=
1

2
(D2

k−1 + 2Dk−1Dk)Mα(u) + Dk−1Mα(u)Pk,k+1 + (Dk−1 + Dk)Mα(u)Pk,k−1 .

Similarly, we can derive

[Pk,k+1Pk,k−1,Mα(u)] = (D.11)

=
1

2
(D2

k + 2Dk−1Dk)Mα(u) + DkMα(u)Pk,k−1 + (Dk−1 + Dk)Mα(u)Pk,k+1 .

It is straightforward to generalize this calculation to [P ,Mα(u)] where P is a product of
Pk,k+1. In order to apply PD relation on a Bethe state instead of monodromy matrix, one
has also need to show the PD relation has morphism property. This means, given two
functions of the monodromy matrix X(u) and Y(u), we have

[Pk,k−1Pk,k+1,XY] =
1

2
(D2

k + 2Dk−1Dk)(XY) + Dk(XY)Pk,k−1 + (Dk−1 + Dk)(XY)Pk,k+1 .

(D.12)

One can show this is true by explicit calculation. Using PD relation and morphism
property we can derive the following relations, which will be useful in later discussion

Hk−1Hk|u〉 = [Pk,k−1, [Pk,k+1,B(u)]]|Ω〉 (D.13)

= [Pk,k−1Pk,k+1,B(u)]|Ω〉 − [Pk,k+1,B(u)]|Ω〉 − [Pk,k−1,B(u)]|Ω〉

=
1

2
(D2

k−1 + 2DkDk−1)|u〉+ Dk−1|u〉 ,

where we use the shorthand notation B(u) ≡ B(u1) · · ·B(uN). Similarly, we have

HkHk−1|u〉 = 1
2
(D2

k + 2DkDk−1)|u〉+ Dk|u〉 . (D.14)

Taking the sum and difference of (D.13) and (D.14), we obtain

[Hk−1,Hk]|u〉 = [H]k−1|u〉 =
(

1
2
(D2

k−1 −D2
k) + Dk−1 −Dk

)
|u〉 (D.15)

{Hk−1,Hk}|u〉 =
(

1
2
(D2

k−1 + D2
k) + Dk−1 + Dk + 2DkDk−1

)
|u〉 . (D.16)

Higher order PD relations can be determined along the same lines.

D.2 PD Relations at the Boundary

The PD relations at the boundary are more subtle. In this section, we will derive the
boundary PD relations for one and two overlapping permutations, at least one of them
involving the bond 1L. The key observation is to notice that Dk should satisfy the
following trivial constraint

L∑
k=1

Dk = 0 . (D.17)
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At first order, we have

DL|u〉 = −
L−1∑
k=1

Dk|u〉 =
L−1∑
k=1

Hk|u〉 = E2|u〉 − HL|u〉 , (D.18)

hence we find the boundary term at first order,

HL|u〉 = −DL|u〉+ E2|u〉 . (D.19)

We consider now the square,

D2
L = (D1 + · · ·DL−1)2 (D.20)

such that

1
2
(D2

L −D2
1)|u〉 = 1

2
(D2

2 + 2D1D2)|u〉+ · · ·+ 1
2
(D2

L−1 + 2DL−2DL−1)|u〉+ non-connected
(D.21)

where “non-connected” are the terms 2DjDk|u〉 with |j − k| ≥ 2. Using (D.14),

1

2
(D2

k + 2Dk−1Dk)|u〉 = HkHk−1|u〉 −Dk|u〉 (D.22)

we have

1

2
(D2

L −D2
1)|u〉 =(H2H1 + · · ·+ HL−1HL−2)|u〉 − (D2 + · · ·DL−1)|u〉+ non-connected ,

(D.23)

which is the same as(
1

2
(D2

L −D2
1) + (DL −D1)

)
|u〉 =

L−1∑
k=2

HkHk−1|u〉+ 2DL|u〉+ non-connected . (D.24)

Similarly, using (D.13) we have(
1

2
(D2

L −D2
L−1) + (DL −DL−1)

)
|u〉 =

L−1∑
k=2

Hk−1Hk|u〉+ 2DL|u〉+ non-connected .

(D.25)

Taking the difference of (D.24) and (D.25), we have(
1

2
(D2

L −D2
1) + (DL −D1)

)
|u〉 −

(
1

2
(D2

L −D2
L−1) + (DL −DL−1)

)
|u〉 (D.26)

=−
L−1∑
k=2

[Hk−1,Hk]|u〉 = (2iQ3 + [HL−1,HL] + [HL,H1])|u〉 = (2iE3 + [H]L−1 + [H]L)|u〉 .

If we take instead the sum of (D.24) and (D.25), we have(
1

2
(D2

L −D2
1) + (DL −D1)

)
|u〉+

(
1

2
(D2

L −D2
L−1) + (DL −DL−1)

)
|u〉 (D.27)

=
L−1∑
k=2

{Hk−1,Hk}|u〉+ 4DL|u〉+ cross terms =

(
L−1∑
k=1

Hk

)2

|u〉+ 2DL|u〉 ,
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where we have used the fact that

L−1∑
k=1

H2
k|u〉 = 2

L−1∑
k=1

Hk|u〉 = −2
L−1∑
k=1

Dk|u〉 = 2DL|u〉 . (D.28)

Now we plug
∑L−1

k=1 Hk = Q2 − HL into (D.27),(
1

2
(D2

L −D2
1

)
+ (DL −D1))|u〉+

(
1

2
(D2

L −D2
L−1) + (DL −DL−1)

)
|u〉 = (D.29)

=(Q2 − HL)2|u〉+ 2DL|u〉 = (E2
2 + 2E2 − 2E2HL)|u〉 − [Q2,HL]|u〉

=(E2
2 + 2E2 − 2E2HL)|u〉 − [H]L−1|u〉+ [H]L|u〉 ,

where we have used (D.19). Taking the sum of (D.26) and (D.29), we find that

[H]L|u〉 =

(
1

2
(D2

L −D2
1) + (DL −D1)

)
|u〉+ E2HL|u〉 − C(u)|u〉 , (D.30)

[H]L−1|u〉 =

(
1

2
(D2

L−1 −D2
L) + (DL −D1)

)
|u〉 − E2HL|u〉+ C(u)|u〉 − 2iE3|u〉 .

where C(u) is a function of rapidities defined by

C(u) =
1

2
[E2

2(u) + 2E2(u) + 2iE3(u)] . (D.31)

In the derivation above, we use the fact that the second and third conserved charge read

Q2 =
L∑
k=1

Hk, Q3 =
i

2

L∑
k=1

[H]k (D.32)

and Qr|u〉 = Er|u〉 when |u〉 is on-shell.

E From S-Transformation to Theta-Morphism

In this section, we will show how the theta morphism can be derived from the S-operator.
Up to the order g2, the S-operator reads

S = exp

(
L∑
k=1

iνkHk −
1

2
ρk[H]k−1

)
. (E.1)

Let us first recall the main result of this section

S|u; θ〉 =

(
1− g2E2HL −

g2

2

L∑
k=1

(D2
k + 2Dk)

)
|u〉 − g2C|u〉 . (E.2)

For simplicity, we compute the action of S on an eigenstate |u〉, but the action on a
product of elements of the monodromy matrix can be computed along the same lines.
The derivation of (E.2) makes use of the PD relations. At first order, we use

Hk|u〉 = −Dk|u〉, k = 1, · · ·L− 1 (E.3)

HL|u〉 = −DL|u〉+ E2|u〉

44



At the second order, we use (D.15) in the bulk and (D.30) at the boundary and

HjDk|u〉 = −HjHk|u〉 (E.4)

Now we start the derivation. The BDS eigenstate can be obtain from the homogeneous
XXX state as follows

|u〉BDS = S|u; θ〉 = S exp

(
L∑
k=1

θk∂k

)
|u〉 = S exp

(
i

L∑
k=1

νkDk

)
|u〉 = Dθ|u〉 (E.5)

where θk is related to νk by the relation (4.9) with νL = 0, and we define the operator

Dθ ≡ S exp

(
i

L∑
k=1

νkDk

)
= 1 +

∞∑
k=1

gkD (k)
θ (E.6)

We shall show this operator reproduce theta-morphism up to order g2. At first order,

gD (1)
θ |u〉 =

(
i

L∑
k=1

νkHk + i
L∑
k=1

νkDk

)
|u〉 =

(
−i

L∑
k=1

νkDk + i
L∑
k=1

νkDk

)
|u〉 = 0 , (E.7)

where we have used (E.3). Hence the first order contribution vanishes. Note that by our
choice of parameter µL = µ0 = 0 hence we do not need to consider the boundary operator.
As for the second order, we consider separately the non-local and local contributions,

D (2)
θ = D (2)

NL + D (2)
L . (E.8)

By non-local contribution we mean the case where two operators act independently

g2D (2)
NL|u〉 =

∑
|j−k|≥2

νjνk

(
−1

2
HjHk −

1

2
DjDk + HjDk

)
|u〉 = 0 , (E.9)

hence the non-local terms do not contribute. Note that again since νL = 0, we do not
need consider the boundary terms for non-local terms. For the local terms, we have

g2D (2)
L |u〉 = −1

2

L∑
k=2

ρk[H]k−1|u〉 −
1

2

L∑
k=1

νkνk−1{Hk−1,Hk}|u〉 (E.10)

−
L∑
k=1

νkνk−1DkDk−1|u〉 −
L∑
k=1

νkνk−1(HkDk−1 + Hk−1Dk)|u〉

− 1

2

L∑
k=1

ν2
k(H2

k + D2
k + 2HkDk)|u〉 −

ρ1

2
[H]L|u〉 .

Using (E.4),

g2D (2)
L |u〉 = −1

2

L∑
k=2

ρk[H]k−1|u〉+
1

2

L∑
k=1

νkνk−1{Hk−1,Hk}|u〉 (E.11)

−
L∑
k=1

νkνk−1DkDk−1|u〉 −
1

2

L∑
k=1

ν2
k(D2

k + 2Dk)|u〉 − g2[H]L|u〉 .
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Now we use (D.15) to simplify the first line of (E.11),

1

2

L∑
k=2

ρk[H]k−1|u〉 =
1

4

L∑
k=2

ρk[(D
2
k−1 + 2Dk−1)− (D2

k + 2Dk)]|u〉 (E.12)

=
1

4

L∑
k=1

(ρk+1 − ρk)(D2
k + 2Dk)|u〉+

g2

2
[(D2

1 + 2D1)− (D2
L + 2DL)]|u〉 .

We now use the equation (4.13) with τ3 = 2g2,

ρk+1 − ρk = 2g2 + (νk+1 − 2νk + νk−1)νk , (E.13)

that we substitute into (E.12)

−1

2

L∑
k=2

ρk[H]k−1|u〉 = −g
2

2

L∑
k=1

(D2
k + 2Dk)|u〉 −

1

4

L∑
k=1

(νk−1νk + νk+1νk)(D
2
k + 2Dk)|u〉

(E.14)

+
1

2

L∑
k=1

ν2
k(D2

k + 2Dk)−
g2

2
[(D2

1 + 2D1)− (D2
L + 2DL)]|u〉 .

We can also express the action of the anticommutators, using equation (D.16),

1

2

L∑
k=1

νkνk−1{Hk−1,Hk}|u〉 (E.15)

=
1

4

L∑
k=1

νk−1νk[(D
2
k−1 + 2Dk−1) + (D2

k + 2Dk)]|u〉+
L∑
k=1

νk−1νkDkDk−1|u〉

=
1

4

L∑
k=1

(νkνk−1 + νkνk+1)(D2
k + 2Dk)|u〉+

L∑
k=1

νk−1νkDkDk−1|u〉 .

Last, we consider the boundary term, from (D.30),

−g2[H]L|u〉 = −g
2

2
[(D2

L + 2DL)− (D2
1 + 2D1)]|u〉 − g2E2H1,L|u〉 − g2C|u〉 . (E.16)

Plugging (E.14), (E.15) and (E.16) into (E.11), we obtain

g2D (2)
L |u〉 = −g

2

2

L∑
k=1

(D2
k + 2Dk)|u〉 − g2E2H1,L|u〉 − g2C|u〉 = g2D (2)

θ |u〉 , (E.17)

since D (2)
NL|u〉 = 0. Therefore, we have derived our main result (E.2).

F Reduction Formula

In this section we prove a reduction formula for the functional A that we use together
with the freezing method.

Reduction formula: Let θ̃ = {θ̃l}L̃l=1 and θ̃± = {θ̃l ± i
2
}L̃l=1. Then
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A ±
u∪θ̃±,θ∪θ̃ = A ±

u,θ . (F.1)

The proof is based on the representation of the scalar product (4.29) and a reduction
formula for the functional A defined by (4.30).

Proof: By the definition (4.30),

A ±
u,θ =

1

∆u

∏
j

(
1−

Qθ(uj ∓ i
2
)

Qθ(uj ± i
2
)
e±i ∂/∂uj

)
∆u . (F.2)

Now compute the l.h.s., replacing in the last expression u→ u ∪ θ̃± and θ → θ ∪ θ̃:

A ±
u∪θ̃±,θ∪θ̃ =

1

∆u∆θ̃±
∏

j,l(uj − θ̃l ∓
i
2
)

∏
j

(
1−

Qθ̃∪θ(uj ∓ i
2
)

Qθ̃∪θ(uj ± i
2
)
e±i ∂/∂uj

)
(F.3)

×
L̃∏
l=1

(
1− Qθ̃∪θ(θ̃l)

Qθ̃∪θ(θ̃l ± i)
e±∂/∂θ̃l

)
∆u∆θ̃±

∏
j,l

(uj − θ̃l ∓ i
2
). (F.4)

Since Qθ̃∪θ(θ̃l) = 0, the factors containing shift operators in θ̃l are equal to 1. But
then we can also remove the Vandermonds ∆θ̃± from both sides and write, using that
Qθ(u− i/2) = Qθ±(u),

A ±
u∪θ̃±,θ∪θ̃ =

1

∆u

∏
j,l(uj − θ̃l ∓

i
2
)

∏
j

(
1−

Qθ̃∪θ(uj ∓ i
2
)

Qθ̃∪θ(uj ± i
2
)
e±i ∂/∂uj

)
∆u

∏
j,l

(uj − θ̃l ∓ i
2
)

=
1

∆u

∏
j

(
1−

Qθ̃(uj ∓ i
2
)

Qθ̃(uj ± i
2
)

Qθ̃∪θ(uj ∓ i
2
)

Qθ̃∪θ(uj ± i
2
)
e±i ∂/∂uj

)
∆u

=
1

∆u

∏
j

(
1−

Qθ(uj ∓ i
2
)

Qθ(uj ± i
2
)
e±i ∂/∂uj

)
∆u = A ±

u,θ . �

As a consequence of the reduction formula, denoting z = θ−,

〈z(23);θ(3)|u(3);θ(3)〉 = Az(23)∪u(3),θ(3) = Az(23)∪u(3),θ(13)∪θ(23) = Au(3),θ(13) ; (F.5)

〈u(2) ∪ z(13);θ(1)|u(1);θ(1)〉 = Au(2)∪z(13),θ(1) = Au(2)∪z(13),θ(12)∪θ(13) = Au(2),θ(12) . (F.6)

G Calculation of Three-Point Function

In this section, we give the details of the computation of the three- point function. We
have to compute the two factors, denoted simple, respectively involved in [18],

simple = 〈↑ . . . ↑↓ . . . ↓ | I3 δS3 |u(3);θ(3)〉, (G.1)

involved = 〈u(2);θ(2)|δS−1
2 I2 O12 I1 δS1 |u(1);θ(1)〉.
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The Hamiltonian insertions Ij and the operators δSj are given in equations (5.10) and
(5.15), respectively. As explained in the main text, we are going to use the freezing trick,
which allows to express

〈↑ . . . ↑↓ . . . ↓ |u(3);θ(3)〉 = 〈z(23);θ(3) |u(3);θ(3)〉 , (G.2)

〈u(2);θ(2)| O12 |u(1);θ(1)〉 = 〈u(2) ∪ z(13);θ(1)| |u(1);θ(1)〉 .

We have shown in the previous appendix that 〈z(23);θ(3)|u(3);θ(3)〉 does not depend on the
inhomogeneities θ(23) and moreover it is a symmetric function of the remaining inhomo-
geneities θ(13). Using the equations (5.21) to transform the permutations into derivatives,
we obtain

〈z(23);θ(3)| I3 δS3 |u(3);θ(3)〉 = 〈z(23);θ(3)|u(3);θ(3)〉+ (G.3)

g2
(
D

(3)
1 +D

(3)

L(13)+1
+ E

(3)
2 D

(3)

L(3) + iE
(3)
3 + 1

2
(D

(3)2
1 + D

(3)2

L(13)+1
−D

(3)2

L(3) −D
(3)2

L(13)−E
(3)2
2 )

)
〈z|u(3)〉

= 〈z(23);θ(3)|u(3);θ(3)〉+ g2
(
−iE(3)

2 ∂
(3)
1 + iE

(3)
3 + ∂

(3)
1 ∂

(3)
2 − 1

2
E

(3)2
2

)
〈z|u(3)〉

The involved factor in (5.8) can be evaluated similarly; let us first consider

O12 I1 δS1 |u(1);θ(1)〉 = O12 |u(1);θ(1)〉

+ g2
(

D
(1)
1 + D

(1)

L(12)+1
+ E

(1)
2 D

(1)

L(1)

+ iE
(1)
3 +

1

2
(D

(1)2
1 + D

(1)2

L(12)+1
−D

(1)2

L(1) −D
(1)2

L(12) − E
(1)2
2 )

)
O(12)|u(1)〉

= O12 |u(1);θ(1)〉

+ g2
(

D
(2)
1 + D

(2)

L(12)+1
+ E

(1)
2 D

(2)

L(2)

+ iE
(1)
3 + 1

2
(D

(2)2
1 + D

(2)2

L(12)+1
−D

(2)2

L(2) −D
(2)2

L(12) − E
(1)2
2 )

)
O12|u(1)〉.

(G.4)

In the last line we have used that O12|v〉 does not depend neither on θ(23) nor on θ(13),

so we can replace the derivatives D
(1)
k by D

(2)
k . Similarly, we obtain for the action on the

bra vector

〈u(2);θ(2)| δS−1
2 I2 = 〈u(2);θ(2)|+ (G.5)

g2
[
−D

(2)
1 −D

(2)

L(12)+1
−E

(2)
2 D

(2)

L(2)− iE
(2)
3 + 1

2
(D

(2)2
1 + D

(2)2

L(12)+1
−D

(2)2

L(2)−D
(2)2

L(12)− E
(2)2
2 )

]
〈u(1)|,

where we used that the action of the operators Dk on the left vectors is (Dk|u〉)† = −Dk〈u|.
Using the Leibniz rule, we have Dk(〈u|v〉) = 〈u|Dk|v〉+ Dk(〈u|)|v〉. This quantity is zero
unless k = L(a) or L(ab), for the type of vectors we use in this section. We also have

D2
k(〈u|v〉) = D2

k(〈u|)|v〉+ 〈u|D2
k(|v〉) + 2Dk(〈u|)Dk(|v〉), (G.6)

and 2Dk(〈u|)Dk(|v〉) = 4〈u|Dk|v〉. For k = L(12) we use that

D2
L(12)(〈u|O12|v〉) = D

(2)2

L(12)(〈u|)O12|v〉+ 〈u|D(1)2

L(12)(|v〉)− 2〈u|H(2)

L(12)O12H
(1)

L(12) |v〉, (G.7)

with the last term being zero because H
(2)

L(12)O12H
(1)

L(12) = 0, as noticed already in [18]. For

k = L(2) one has

D2
L(2)(〈u|O12|v〉) = D

(2)2

L(2)(〈u|)O12|v〉+ 〈u|D(1)2

L(1)(|v〉)− 2〈u|D(2)

L(2)O12D
(1)

L(1)|v〉 . (G.8)
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Proceeding as previously, we get

0 = 〈u|H(2)

L(2)O12H
(1)
L1
|v〉 = 〈u|(E(2)

2 −D
(2)

L(2))O12(E
(1)
2 −D

(1)
L1

)|v〉 , (G.9)

so that

〈u|D(2)
L2
O12D

(1)
L1
|v〉 = 〈u|(E(2)

2 + E
(1)
2 )D

(2)
L2
O12|v〉 − E(2)

2 E
(1)
2 〈u|O12|v〉 . (G.10)

Putting together the various identities above, we obtain for involved

〈u(2);θ(2)| δS−1
2 I2 O12 I1 δS1 |u(1);θ(1)〉 = 〈u(2);θ(2)| O12 |u(1);θ(1)〉 (G.11)

+
g2

2

(
D

(2)2
1 + D

(2)2

L(12)+1
−D

(2)2

L(2) −D
(2)2

L(12)

− (E
(1)
2 − E

(2)
2 )2 + i(E

(1)
3 − E

(2)
3 )
)
〈u(2);θ(2)| O12 |u(1);θ(1)〉.

Since the scalar product 〈u(2);θ(2)| O12 |u(1);θ(1)〉 does not depend on the inhomogeneities
θ(13) or θ(23) and is a symmetric function of the inhomogeneities θ(12), one can write

〈u(2);θ(2)| δS−1
2 I2 O12 I1 δS1 |u(1);θ(1)〉 = 〈u(2);θ(2)| O12 |u(1);θ(1)〉 (G.12)

+
g2

2
(2∂1∂2 − (E

(1)
2 − E

(2)
2 )2 + i(E

(1)
3 − E

(2)
3 ))〈u(2);θ(2)| O12 |u(1);θ(1)〉 .

This finishes our derivation of the three-point function at one loop.

References

[1] N. Beisert, C. Ahn, L. F. Alday, Z. Bajnok, J. M. Drummond et al., “Review of
AdS/CFT Integrability: An Overview”, Lett. Math. Phys. 99, 3 (2012), arxiv:1012.3982.

[2] J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity”,
Adv. Theor. Math. Phys. 2, 231 (1998), hep-th/9711200.

[3] J. M. Drummond, J. M. Henn and J. Plefka, “Yangian symmetry of scattering amplitudes
in N=4 super Yang-Mills theory”, JHEP 0905, 046 (2009), arxiv:0902.2987. •
T. Bargheer, N. Beisert, W. Galleas, F. Loebbert and T. McLoughlin, “Exacting N=4
Superconformal Symmetry”, JHEP 0911, 056 (2009), arxiv:0905.3738. • G. Korchemsky
and E. Sokatchev, “Superconformal invariants for scattering amplitudes in N=4 SYM
theory”, Nucl. Phys. B839, 377 (2010), arxiv:1002.4625. • J. Drummond, L. Ferro and
E. Ragoucy, “Yangian symmetry of light-like Wilson loops”, JHEP 1111, 049 (2011),
arxiv:1011.4264. • N. Beisert, J. Henn, T. McLoughlin and J. Plefka, “One-Loop
Superconformal and Yangian Symmetries of Scattering Amplitudes in N=4 Super
Yang-Mills”, JHEP 1004, 085 (2010), arxiv:1002.1733. • L. F. Alday, J. Maldacena,
A. Sever and P. Vieira, “Y-system for Scattering Amplitudes”,
J. Phys. A43, 485401 (2010), arxiv:1002.2459. • S. Caron-Huot and S. He,
“Jumpstarting the All-Loop S-Matrix of Planar N=4 Super Yang-Mills”,
JHEP 1207, 174 (2012), arxiv:1112.1060. • D. Correa, J. Maldacena and A. Sever, “The
quark anti-quark potential and the cusp anomalous dimension from a TBA equation”,
JHEP 1208, 134 (2012), arxiv:1203.1913. • N. Drukker, “Integrable Wilson loops”,
JHEP 1310, 135 (2013), arxiv:1203.1617. • A. Sever, P. Vieira and T. Wang, “From
Polygon Wilson Loops to Spin Chains and Back”, JHEP 1212, 065 (2012),
arxiv:1208.0841. • L. Ferro, T. Lukowski, C. Meneghelli, J. Plefka and M. Staudacher,
“Spectral Parameters for Scattering Amplitudes in N=4 Super Yang-Mills Theory”,

49

http://dx.doi.org/10.1007/s11005-011-0529-2
http://arxiv.org/abs/1012.3982
http://arxiv.org/abs/hep-th/9711200
http://dx.doi.org/10.1088/1126-6708/2009/05/046
http://arxiv.org/abs/0902.2987
http://dx.doi.org/10.1088/1126-6708/2009/11/056
http://arxiv.org/abs/0905.3738
http://dx.doi.org/10.1016/j.nuclphysb.2010.05.022
http://arxiv.org/abs/1002.4625
http://dx.doi.org/10.1007/JHEP11(2011)049
http://arxiv.org/abs/1011.4264
http://dx.doi.org/10.1007/JHEP04(2010)085
http://arxiv.org/abs/1002.1733
http://dx.doi.org/10.1088/1751-8113/43/48/485401
http://arxiv.org/abs/1002.2459
http://dx.doi.org/10.1007/JHEP07(2012)174
http://arxiv.org/abs/1112.1060
http://dx.doi.org/10.1007/JHEP08(2012)134
http://arxiv.org/abs/1203.1913
http://dx.doi.org/10.1007/JHEP10(2013)135
http://arxiv.org/abs/1203.1617
http://dx.doi.org/10.1007/JHEP12(2012)065
http://arxiv.org/abs/1208.0841


arxiv:1308.3494. • D. Chicherin, S. Derkachov and R. Kirschner, “Yang-Baxter
operators and scattering amplitudes in N = 4 super-Yang-Mills theory”,
arxiv:1309.5748. • D. Mller, H. Mnkler, J. Plefka, J. Pollok and K. Zarembo, “Yangian
Symmetry of smooth Wilson Loops in N = 4 super Yang-Mills Theory”,
JHEP 1311, 081 (2013), arxiv:1309.1676. • B. Basso, A. Sever and P. Vieira,
“Space-time S-matrix and Flux-tube S-matrix at Finite Coupling”,
Phys. Rev. Lett. 111, 091602 (2013), arxiv:1303.1396. • B. Basso, A. Sever and
P. Vieira, “Space-time S-matrix and Flux tube S-matrix II. Extracting and Matching
Data”, arxiv:1306.2058. • H. Elvang and Y.-t. Huang, “Scattering Amplitudes”,
arxiv:1308.1697.

[4] S. Lee, S. Minwalla, M. Rangamani and N. Seiberg, “Three point functions of chiral
operators in D = 4, N = 4 SYM at large N”, Adv. Theor. Math. Phys. 2, 697 (1998),
hep-th/9806074. • D. Z. Freedman, S. D. Mathur, A. Matusis and L. Rastelli,
“Correlation functions in the CFT(d) / AdS(d+1) correspondence”,
Nucl. Phys. B546, 96 (1999), hep-th/9804058.

[5] R. Roiban and A. Volovich, “Yang-Mills correlation functions from integrable spin
chains”, JHEP 0409, 032 (2004), hep-th/0407140.

[6] K. Okuyama and L.-S. Tseng, “Three-point functions in N = 4 SYM theory at one-loop”,
JHEP 0408, 055 (2004), hep-th/0404190.

[7] J. Escobedo, N. Gromov, A. Sever and P. Vieira, “Tailoring Three-Point Functions and
Integrability”, JHEP 1109, 028 (2011), arxiv:1012.2475.

[8] N. Gromov, A. Sever and P. Vieira, “Tailoring Three-Point Functions and Integrability
III. Classical Tunneling”, JHEP 1207, 044 (2012), arxiv:1111.2349.

[9] O. Foda, “N=4 SYM structure constants as determinants”, JHEP 1203, 096 (2012),
arxiv:1111.4663.

[10] I. Kostov, “Three-point function of semiclassical states at weak coupling”,
J. Phys. A45, 494018 (2012), arxiv:1205.4412.

[11] J. Escobedo, N. Gromov, A. Sever and P. Vieira, “Tailoring Three-Point Functions and
Integrability II. Weak/strong coupling match”, JHEP 1109, 029 (2011), arxiv:1104.5501.

[12] M. Wheeler, “Multiple integral formulae for the scalar product of on-shell and off-shell
Bethe vectors in SU(3)-invariant models”, Nucl. Phys. B875, 186 (2013),
arxiv:1306.0552. • O. Foda, Y. Jiang, I. Kostov and D. Serban, “A tree-level 3-point
function in the su(3)-sector of planar N=4 SYM”, JHEP 1310, 138 (2013),
arxiv:1302.3539.

[13] G. Georgiou, “SL(2) sector: weak/strong coupling agreement of three-point correlators”,
JHEP 1109, 132 (2011), arxiv:1107.1850. • V. Kazakov and E. Sobko, “Three-point
correlators of twist-2 operators in N=4 SYM at Born approximation”,
JHEP 1306, 061 (2013), arxiv:1212.6563. • E. Sobko, “A new representation for two-
and three-point correlators of operators from sl(2) sector”, arxiv:1311.6957. • P. Vieira
and T. Wang, “Tailoring Non-Compact Spin Chains”, arxiv:1311.6404.

[14] L. F. Alday, J. R. David, E. Gava and K. Narain, “Structure constants of planar N = 4
Yang Mills at one loop”, JHEP 0509, 070 (2005), hep-th/0502186.

[15] J. Plefka and K. Wiegandt, “Three-Point Functions of Twist-Two Operators in N=4
SYM at One Loop”, JHEP 1210, 177 (2012), arxiv:1207.4784. • G. Georgiou, V. Gili,
A. Grossardt and J. Plefka, “Three-point functions in planar N = 4 super Yang-Mills
Theory for scalar operators up to length five at the one-loop order”,
JHEP 1204, 038 (2012), arxiv:1201.0992.

50

http://arxiv.org/abs/1308.3494
http://arxiv.org/abs/1309.5748
http://dx.doi.org/10.1007/JHEP11(2013)081
http://arxiv.org/abs/1309.1676
http://dx.doi.org/10.1103/PhysRevLett.111.091602
http://arxiv.org/abs/1303.1396
http://arxiv.org/abs/1306.2058
http://arxiv.org/abs/1308.1697
http://arxiv.org/abs/hep-th/9806074
http://dx.doi.org/10.1016/S0550-3213(99)00053-X
http://arxiv.org/abs/hep-th/9804058
http://dx.doi.org/10.1088/1126-6708/2004/09/032
http://arxiv.org/abs/hep-th/0407140
http://dx.doi.org/10.1088/1126-6708/2004/08/055
http://arxiv.org/abs/hep-th/0404190
http://dx.doi.org/10.1007/JHEP09(2011)028
http://arxiv.org/abs/1012.2475
http://dx.doi.org/10.1007/JHEP07(2012)044
http://arxiv.org/abs/1111.2349
http://dx.doi.org/10.1007/JHEP03(2012)096
http://arxiv.org/abs/1111.4663
http://dx.doi.org/10.1088/1751-8113/45/49/494018
http://arxiv.org/abs/1205.4412
http://dx.doi.org/10.1007/JHEP09(2011)029
http://arxiv.org/abs/1104.5501
http://dx.doi.org/10.1016/j.nuclphysb.2013.06.015
http://arxiv.org/abs/1306.0552
http://dx.doi.org/10.1007/JHEP10(2013)138
http://arxiv.org/abs/1302.3539
http://dx.doi.org/10.1007/JHEP09(2011)132
http://arxiv.org/abs/1107.1850
http://dx.doi.org/10.1007/JHEP06(2013)061
http://arxiv.org/abs/1212.6563
http://arxiv.org/abs/1311.6957
http://arxiv.org/abs/1311.6404
http://dx.doi.org/10.1088/1126-6708/2005/09/070
http://arxiv.org/abs/hep-th/0502186
http://dx.doi.org/10.1007/JHEP10(2012)177
http://arxiv.org/abs/1207.4784
http://dx.doi.org/10.1007/JHEP04(2012)038
http://arxiv.org/abs/1201.0992


[16] N. Gromov and P. Vieira, “Quantum Integrability for Three-Point Functions”,
Phys. Rev. Lett. 111, 211601 (2013), arxiv:1202.4103.

[17] D. Serban, “A note on the eigenvectors of long-range spin chains and their scalar
products”, JHEP 1301, 012 (2013), arxiv:1203.5842.

[18] N. Gromov and P. Vieira, “Tailoring Three-Point Functions and Integrability IV.
Theta-morphism”, arxiv:1205.5288.

[19] A. Bissi, T. Harmark and M. Orselli, “Holographic 3-Point Function at One Loop”,
JHEP 1202, 133 (2012), arxiv:1112.5075.

[20] R. A. Janik, P. Surowka and A. Wereszczynski, “On correlation functions of operators
dual to classical spinning string states”, JHEP 1005, 030 (2010), arxiv:1002.4613. •
R. A. Janik and A. Wereszczynski, “Correlation functions of three heavy operators: The
AdS contribution”, JHEP 1112, 095 (2011), arxiv:1109.6262. • Y. Kazama and
S. Komatsu, “On holographic three point functions for GKP strings from integrability”,
JHEP 1201, 110 (2012), arxiv:1110.3949. • Y. Kazama and S. Komatsu, “Wave
functions and correlation functions for GKP strings from integrability”,
JHEP 1209, 022 (2012), arxiv:1205.6060. • J. Caetano and J. Toledo, “χ-Systems for
Correlation Functions”, arxiv:1208.4548.

[21] Y. Kazama and S. Komatsu, “Three-point functions in the SU(2) sector at strong
coupling”, arxiv:1312.3727.

[22] K. Zarembo, “Holographic three-point functions of semiclassical states”,
JHEP 1009, 030 (2010), arxiv:1008.1059. • M. S. Costa, R. Monteiro, J. E. Santos and
D. Zoakos, “On three-point correlation functions in the gauge/gravity duality”,
JHEP 1011, 141 (2010), arxiv:1008.1070. • E. Buchbinder and A. Tseytlin, “On
semiclassical approximation for correlators of closed string vertex operators in AdS/CFT”,
JHEP 1008, 057 (2010), arxiv:1005.4516. • A. Bissi, C. Kristjansen, D. Young and
K. Zoubos, “Holographic three-point functions of giant gravitons”, JHEP 1106, 085 (2011),
arxiv:1103.4079. • E. Buchbinder and A. Tseytlin, “Semiclassical correlators of three
states with large S5 charges in string theory in AdS5 × S5”,
Phys. Rev. D85, 026001 (2012), arxiv:1110.5621. • T. Klose and T. McLoughlin, “A
light-cone approach to three-point functions in AdS5 × S5”, JHEP 1204, 080 (2012),
arxiv:1106.0495. • J. A. Minahan, “Holographic three-point functions for short
operators”, JHEP 1207, 187 (2012), arxiv:1206.3129. • T. Bargheer, J. A. Minahan and
R. Pereira, “Computing Three-Point Functions for Short Operators”, arxiv:1311.7461.

[23] M. S. Costa, J. Penedones, D. Poland and S. Rychkov, “Spinning Conformal
Correlators”, JHEP 1111, 071 (2011), arxiv:1107.3554. • J. Caetano and J. Escobedo,
“On four-point functions and integrability in N=4 SYM: from weak to strong coupling”,
JHEP 1109, 080 (2011), arxiv:1107.5580. • L. F. Alday and A. Bissi, “Higher-spin
correlators”, JHEP 1310, 202 (2013), arxiv:1305.4604.

[24] N. Beisert, V. Dippel and M. Staudacher, “A Novel long range spin chain and planar
N=4 super Yang-Mills”, JHEP 0407, 075 (2004), hep-th/0405001.

[25] A. Rej, D. Serban and M. Staudacher, “Planar N=4 gauge theory and the Hubbard
model”, JHEP 0603, 018 (2006), hep-th/0512077.

[26] D. Bernard, M. Gaudin, F. Haldane and V. Pasquier, “Yang-Baxter equation in long
range interacting system”, J. Phys. A26, 5219 (1993).

[27] D. Serban and M. Staudacher, “Planar N=4 gauge theory and the Inozemtsev long range
spin chain”, JHEP 0406, 001 (2004), hep-th/0401057.

[28] D. Serban, “Eigenvectors and scalar products for long range interacting spin chains II: the
finite size effects”, JHEP 1308, 128 (2013), arxiv:1302.3350.

51

http://dx.doi.org/10.1103/PhysRevLett.111.211601
http://arxiv.org/abs/1202.4103
http://dx.doi.org/10.1007/JHEP01(2013)012
http://arxiv.org/abs/1203.5842
http://arxiv.org/abs/1205.5288
http://dx.doi.org/10.1007/JHEP02(2012)133
http://arxiv.org/abs/1112.5075
http://dx.doi.org/10.1007/JHEP05(2010)030
http://arxiv.org/abs/1002.4613
http://dx.doi.org/10.1007/JHEP12(2011)095
http://arxiv.org/abs/1109.6262
http://dx.doi.org/10.1007/JHEP06(2012)150, 10.1007/JHEP01(2012)110
http://arxiv.org/abs/1110.3949
http://dx.doi.org/10.1007/JHEP09(2012)022
http://arxiv.org/abs/1205.6060
http://arxiv.org/abs/1208.4548
http://arxiv.org/abs/1312.3727
http://dx.doi.org/10.1007/JHEP09(2010)030
http://arxiv.org/abs/1008.1059
http://dx.doi.org/10.1007/JHEP11(2010)141
http://arxiv.org/abs/1008.1070
http://dx.doi.org/10.1007/JHEP08(2010)057
http://arxiv.org/abs/1005.4516
http://dx.doi.org/10.1007/JHEP06(2011)085
http://arxiv.org/abs/1103.4079
http://dx.doi.org/10.1103/PhysRevD.85.026001
http://arxiv.org/abs/1110.5621
http://dx.doi.org/10.1007/JHEP04(2012)080
http://arxiv.org/abs/1106.0495
http://dx.doi.org/10.1007/JHEP07(2012)187
http://arxiv.org/abs/1206.3129
http://arxiv.org/abs/1311.7461
http://dx.doi.org/10.1007/JHEP11(2011)071
http://arxiv.org/abs/1107.3554
http://dx.doi.org/10.1007/JHEP09(2011)080
http://arxiv.org/abs/1107.5580
http://dx.doi.org/10.1007/JHEP10(2013)202
http://arxiv.org/abs/1305.4604
http://dx.doi.org/10.1088/1126-6708/2004/07/075
http://arxiv.org/abs/hep-th/0405001
http://dx.doi.org/10.1088/1126-6708/2006/03/018
http://arxiv.org/abs/hep-th/0512077
http://dx.doi.org/10.1088/0305-4470/26/20/010
http://dx.doi.org/10.1088/1126-6708/2004/06/001
http://arxiv.org/abs/hep-th/0401057
http://dx.doi.org/10.1007/JHEP08(2013)128
http://arxiv.org/abs/1302.3350


[29] T. Bargheer, N. Beisert and F. Loebbert, “Boosting Nearest-Neighbour to Long-Range
Integrable Spin Chains”, J. Stat. Mech. 0811, L11001 (2008), arxiv:0807.5081.

[30] T. Bargheer, N. Beisert and F. Loebbert, “Long-Range Deformations for Integrable Spin
Chains”, J. Phys. A42, 285205 (2009), arxiv:0902.0956.

[31] M. Gaudin, B. M. McCoy and T. T. Wu, “Normalization sum for the Bethe’s hypothesis
wave functions of the Heisenberg-Ising chain”, Phys. Rev. D 23, 417 (1981). • V. Korepin,
“Calculation of Norms of Bethe Wave Functions”, Commun. Math. Phys. 86, 391 (1982).

[32] S. Frolov and A. A. Tseytlin, “Semiclassical quantization of rotating superstring in
AdS5 × S5”, JHEP 0206, 007 (2002), hep-th/0204226.

[33] R. Baxter, “Corner transfer matrices of the eight-vertex model. 1. Low-temperature
expansions and conjectured properties”, J. Statist. Phys. 15, 485 (1976).

[34] H. B. Thacker, “Corner Transfer Matrices and Lorentz Invariance on a Lattice”,
Physica 18D, 348 (1986).

[35] H. Itoyama and H. Thacker, “Lattice Virasoro Algebra and Corner Transfer Matrices in
the Baxter Eight Vertex Model”, Phys. Rev. Lett. 58, 1395 (1987).

[36] M. Tetelman, “Lorentz group for two-dimensional integrable lattice systems”,
Sov. Phys. JETP. 55, 306 (1982).

[37] E. Sklyanin, “Quantum inverse scattering method. Selected topics”, hep-th/9211111.

[38] F. Loebbert, “Integrable Spin Chains in N = 4 super Yang–Mills Theory”, PhD thesis.

[39] V. Inozemtsev, “Integrable Heisenberg-van Vleck chains with variable range exchange”,
Phys. Part. Nucl. 34, 166 (2003), hep-th/0201001.

[40] F. Haldane, “Exact Jastrow-Gutzwiller resonating valence bond ground state of the spin
1/2 antiferromagnetic Heisenberg chain with 1/r2 exchange”,
Phys. Rev. Lett. 60, 635 (1988). • B. Sriram Shastry, “Exact solution of an S = 1/2
Heisenberg antiferromagnetic chain with long ranged interactions”,
Phys. Rev. Lett. 60, 639 (1988).

[41] N. Beisert, C. Kristjansen and M. Staudacher, “The Dilatation operator of conformal
N=4 superYang-Mills theory”, Nucl. Phys. B664, 131 (2003), hep-th/0303060.

[42] G. Arutyunov, S. Frolov and M. Staudacher, “Bethe ansatz for quantum strings”,
JHEP 0410, 016 (2004), hep-th/0406256. • N. Beisert, R. Hernandez and E. Lopez, “A
Crossing-symmetric phase for AdS5 × S5 strings”, JHEP 0611, 070 (2006),
hep-th/0609044.

[43] N. Beisert, B. Eden and M. Staudacher, “Transcendentality and Crossing”,
J. Stat. Mech. 0701, P01021 (2007), hep-th/0610251.

[44] F. Loebbert, “Recursion Relations for Long-Range Integrable Spin Chains with Open
Boundary Conditions”, Phys. Rev. D85, 086008 (2012), arxiv:1201.0888.

[45] N. Beisert, L. Fivet, M. de Leeuw and F. Loebbert, “Integrable Deformations of the XXZ
Spin Chain”, J. Stat. Mech. 2013, P09028 (2013), arxiv:1308.1584.

[46] N. A. Slavnov, “Calculation of scalar products of wave functions and form factors in the
framework of the algebraic Bethe ansatz”,
Theoretical and Mathematical Physics 79, 502 (1989).

[47] I. Kostov and Y. Matsuo, “Inner products of Bethe states as partial domain wall partition
functions”, JHEP 1210, 168 (2012), arxiv:1207.2562.

[48] I. K. Eldad Bettelheim, “in preparation”.

52

http://dx.doi.org/10.1088/1742-5468/2008/11/L11001
http://arxiv.org/abs/0807.5081
http://dx.doi.org/10.1088/1751-8113/42/28/285205
http://arxiv.org/abs/0902.0956
http://dx.doi.org/10.1103/PhysRevD.23.417
http://dx.doi.org/10.1007/BF01212176
http://dx.doi.org/10.1088/1126-6708/2002/06/007
http://arxiv.org/abs/hep-th/0204226
http://dx.doi.org/10.1007/BF01020802
http://dx.doi.org/10.1103/PhysRevLett.58.1395
http://arxiv.org/abs/hep-th/9211111
http://arxiv.org/abs/hep-th/0201001
http://dx.doi.org/10.1103/PhysRevLett.60.635
http://dx.doi.org/10.1103/PhysRevLett.60.639
http://dx.doi.org/10.1016/S0550-3213(03)00406-1
http://arxiv.org/abs/hep-th/0303060
http://dx.doi.org/10.1088/1126-6708/2004/10/016
http://arxiv.org/abs/hep-th/0406256
http://dx.doi.org/10.1088/1126-6708/2006/11/070
http://arxiv.org/abs/hep-th/0609044
http://dx.doi.org/10.1088/1742-5468/2007/01/P01021
http://arxiv.org/abs/hep-th/0610251
http://dx.doi.org/10.1103/PhysRevD.85.086008
http://arxiv.org/abs/1201.0888
http://dx.doi.org/10.1088/1742-5468/2013/09/P09028
http://arxiv.org/abs/1308.1584
http://dx.doi.org/10.1007/JHEP10(2012)168
http://arxiv.org/abs/1207.2562


[49] D. Serban, “Unpublished”.

[50] V. Kazakov, A. Marshakov, J. Minahan and K. Zarembo, “Classical/quantum integrability
in AdS/CFT”, JHEP 0405, 024 (2004), hep-th/0402207.

[51] B. Sutherland, “Low-Lying Eigenstates of the One-Dimensional Heisenberg Ferromagnet
for any Magnetization and Momentum”, Phys. Rev. Lett. 74, 816 (1995).

[52] I. Kostov, “Classical Limit of the Three-Point Function of N=4 Supersymmetric
Yang-Mills Theory from Integrability”, Phys. Rev. Lett. 108, 261604 (2012),
arxiv:1203.6180.

[53] J. Callan, Curtis G., H. K. Lee, T. McLoughlin, J. H. Schwarz, I. Swanson et al.,
“Quantizing string theory in AdS5× S5: Beyond the pp wave”, Nucl. Phys. B673, 3 (2003),
hep-th/0307032.

[54] J. A. Minahan, “The SU(2) sector in AdS/CFT”, Fortsch. Phys. 53, 828 (2005),
hep-th/0503143.

[55] N. Beisert, V. Kazakov and K. Sakai, “Algebraic curve for the SO(6) sector of
AdS/CFT”, Commun. Math. Phys. 263, 611 (2006), hep-th/0410253.

[56] T. Bargheer, N. Beisert and F. Loebbert, “Exact Superconformal and Yangian Symmetry
of Scattering Amplitudes”, J. Phys. A44, 454012 (2011), arxiv:1104.0700.

53

http://dx.doi.org/10.1088/1126-6708/2004/05/024
http://arxiv.org/abs/hep-th/0402207
http://dx.doi.org/10.1103/PhysRevLett.74.816
http://dx.doi.org/10.1103/PhysRevLett.108.261604
http://arxiv.org/abs/1203.6180
http://dx.doi.org/10.1016/j.nuclphysb.2003.09.008
http://arxiv.org/abs/hep-th/0307032
http://dx.doi.org/10.1002/prop.200410204
http://arxiv.org/abs/hep-th/0503143
http://arxiv.org/abs/hep-th/0410253
http://dx.doi.org/10.1088/1751-8113/44/45/454012
http://arxiv.org/abs/1104.0700

	Title Page
	Contents
	1 Introduction
	1.1 The Result for the Three-Point Function

	2 Inhomogeneous XXX Spin Chain
	2.1 Corner Transfer Matrix

	3 Long-Range Integrable Models
	3.1 Boost Operators

	4 Map from Long-Range to Inhomogeneous Models
	4.1 S-Operator
	4.2 Morphism Property and Scalar Products
	4.3 Morphism and Theta-Morphism

	5 Three-Point Function of su(2) Fields Beyond Tree Level 
	5.1 Three-Point Functions at One Loop

	6 Three-Point Functions in the Semi-Classical Limit 
	6.1 Scalar Products and Norms in the Semi-Classical Limit
	6.2 One-Loop Three-Point Function in the Semi-Classical Limit
	6.3 Comparison with the String Theory Results

	7 Conclusions & Outlook
	Acknowledgements

	Appendix
	A Inhomogeneous CTM at Order 3
	B The BDS Charges from Boost Deformations
	C Derivation of the S-operator at order g2
	D From Permutations to Derivatives
	D.1 PD Relations in the Bulk
	D.2 PD Relations at the Boundary

	E From S-Transformation to Theta-Morphism
	F  Reduction Formula 
	G Calculation of Three-Point Function

