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Abstract 

We initiate a novel formalism for computing correlation functions of trace operators in the planar       4 

SYM theory. The central object in our formalism is the spin vertex which is the weak coupling analogy of 

the string vertex in string field theory. We construct the spin vertex explicitly for all sectors at the leading 

order using a set of bosonic and fermionic oscillators. We prove that the vertex has trivial monodromy, 

or put in other words, it is a Yangian invariant. Since the monodromy of the vertex is the product of the 

monodromies of the three states, the Yangian invariance of the vertex implies an infinite exact symmetry 

for the three-point function. We conjecture that this infinite symmetry can be lifted to any loop order. 

 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3. 

1. Introduction 

The old idea of ’t Hooft [1] about the possibility of an exact correspondence between the 

multicolor QCD and some string theory has been realized two decades later for the simpler, 

conformal invariant “supersymmetric QCD”, the maximally super-symmetric Yang–Mills theory 

[2–4]. Even more excitingly, it has been discovered that the theory is likely to be integrable for all 

couplings. After a crucial insight by Minahan and Zarembo [5], and a great amount of collective 

work for one decade (see, for example the review [6]) it became clear that the spectral problem in 

AdS/CFT can be reformulated in terms of integrable spin chains, for which there exists a package 
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of well developed mathematical methods originated from the Bethe Ansatz. The spectral problem 

was formulated very elegantly in terms of the so-called Quantum Spectral Curve [7]. We know 

in principle how to classify the eigenstates   α   of the dilatation operator, which is represented 

by the Hamiltonian of the integrable spin chain, and to compute their correlation functions 

(Oα (x) Oβ 
  δαβ Na  

(1.1) 

|x − y|∆α +∆β 

(It is convenient to use a normalization in which the constants α are given by the norms squared 

of the corresponding on-shell Bethe states.) 

In the last few years the challenge moved from the spectral problem, i.e. the structure of 

the conformal dilatation operator by which is nowadays considered solved in principle, to the 

computation of the correlation functions, amplitudes and Wilson loops. Understanding of the 

structures of these objects in the maximally supersymmetric theory would help devising efficient 

computation techniques for perturbative QCD. The structure of the interactions is encoded in the 

operator product expansion 

Oα(x)Oβ(y) ∼ Cαβ Oγ (y) |x − y|∆γ −∆α −∆β , (1.2) 

or equivalently, in the three-point function of operators with given conformal weights: 

Cαβγ 

(Oα(x)Oβ(y)Oγ (z))= 
|x − y|∆α +∆β−∆γ |x − z|∆α +∆γ −∆β |y − z|∆β +∆γ −∆α 

. (1.3) 

The two sets of constants are related by 

αβ = Cαβγ /Nγ . (1.4) 

The structure constants involve trace operators with non-restricted lengths L1, L2, L3. There are 

two limits in which the problem can be approached by the available techniques, depending on 

the value of ’t Hooft coupling λ ∼ g2   Nc: that of extremely weak coupling λ → 0, and that of 

extremely strong coupling, λ . Furthermore, the methods applied in each of the two limits 

depend on the values of the spin and the R-charges of the three operators. 

At strong coupling, λ , a general framework for computation is given by string theory. 

The methods depend on the type of operators. The heavy operators have large spin of R-charge 

and correspond to classical strings moving in the AdS space. In the case of three heavy operators, 

the problem reduces to a generalization of the Plateau problem, namely to find a minimal surface 

embedded in the AdS background and having prescribed singularities at three punctures. The 

method to compute the classical action is based on the classical integrability of the string sigma 

model [8]. Each of the three states represents a classical solution of the sigma model, described 

by the spectral curve of the classical monodromy matrix. A major ingredient of the method is a 

condition on the monodromies associated with the three punctures [9]. Namely, the product of the 

three monodromies must be equal to one, because the path can be contracted, but on other hand it 

gives a non-trivial information about the solution, which is sufficient to reconstruct the classical 

action. In [9], the contribution from the AdS2 part was evaluated for a string rotating only on the 

sphere. The full problem was solved in [10]. The case of three GKP strings, which requires also 

a construction of the vertex operators, was solved in [11,12], which led to a remarkably simple 

formula in terms of contour integrals in the spectral plane. 

In the case of two heavy and one light operator, the methods are slightly different, but still 

based on the integrability. This case was solved in [13,14]. The solution was recently given a 

major revision in [15], where a missing modular integral was added. This allowed to the authors 

C 
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of [15] to relate the computation with the form factor formalism [15,16], where the world-sheet 

integrability can be effectively used [17]. Finally, the case of three short/medium operators has 

been worked out in [18–20]. 

In the opposite limit λ 0 the gauge theory splits into a set of non-interacting massless gaus- 

sian fields, a gauge boson, 6 scalars and 8 fermions, all in the adjoint representation of the gauge 

group U (Nc). This limit is however not well defined because the spectrum of the fields is highly 

degenerate: all traces of length L have the same dimension ∆  L. One can lift the degeneracy 

by switching on temporarily the interaction, compute the one-loop eigenstates, and then take 

again λ 0. Then the operator α is described by an on-shell Bethe state of the integrable spin 

chain1 and is typically a sum of terms the number of which grows factorially in the length of the 

chain. This is what makes the problem difficult. Nevertheless, in the su(2) sector, a spectacular 

progress has been done in a series of works [21–25] where the procedure called Tailoring was 

developed. Tailoring reduces the computation of the structure constant to the evaluation of the 

scalar products of pairs of off-shell Bethe states representing segments of spin chains. 

There is no efficient way to compute such scalar products, except for very short chains. For- 

tunately, the structure constant in the Escobedo–Gromov–Sever–Vieira (EGSV) configuration 

studied in [21] can be expressed in terms of on-shell/off-shell scalar products [26,27], for which 

there exists a nice determinant formula [28]. 

The determinant representations allowed to generalize the results of [21–24] to the case of 3 

non-BPS fields in the EGSV configuration [29,30], to the case when one of the fields is su(3) 
type [31], and extend the result to the one-loop order [32–35]. One of the exciting observations 

made in [35] is the match (up to some subtleties in choosing the integration contours) of the 

one-loop structure constant with the λ result obtained in [10], in the Frolov–Tseytlin limit 

[36]. Unfortunately the structure constant is generically not a determinant and all these results 

cannot be used as a basis for a systematic procedure. In the same time, progress has been made 

in the computation of the correlation functions in the non-compact sl(2) sector, based on very 

different techniques: the method of separation of variables and the use of light ray representation 

for the operators [37–42]. 

To summarize, in spite of these impressive achievements in various particular cases, and in 

contrast with the spectral problem, there is still no unified scheme for computing the correlation 

functions of trace operators in    4 SYM, which comprises all sectors at any coupling. The 

search of such a guiding principle based on the integrability is the main subject of this paper. 

There is no doubt that such a universal formalism should be based on the notion of spin chain, 

which gives a description of the theory for any coupling. The spin chain can be also perceived as 

an integrable discretization of the string embedded in AdS5 S5. The pertinence of such a picture 

comes from the fact that in the limit λ 0 the string becomes tensionless and the indivisible units 

of the string, the string bits, can be identified with the elementary non-interacting fields in SYM. 

We conjecture that the monodromy condition, which determines the structure constant in the 

λ , can be in principle extended to any coupling down to λ 0. Since we don’t know the 

wave functions for finite λ, the only check of this conjecture we can afford at the moment is at 

λ 0. In this limit the gauge theory becomes a theory of 8 fermionic and 8 bosonic Nc Nc non-

interacting matrix fields. In the string bit setup, we will represent each of the fields by a pair of 

oscillators (one copy for each site) and the color indices will be taken care of by the planarity 

constraints. We are thus going to reformulate the techniques used in different computations in 

 
1 This is well understood in the su(2) and the sl(2) sectors and not quite well understood for the general eigenstates. 
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gauge theory in a language which is close to the formalism used in string theory, and which we 

think will be adequate for the description of the interactions. A central concept of this formalism 

is the analogue of the string field theory cubic vertex, which we call spin vertex. This vertex 

should satisfy the monodromy condition or, put in other words, should be Yangian invariant. The 

Yangian invariance of the spin vertex implies a condition on the correlation function of the three 

operators. If we restrict ourselves to the compact sector, this can be formulated as a condition of 

the structure constant itself. 

In this paper we consider only the tree level limit, but we hope that the formalism can be 

extended for finite λ. We first revisit the analysis by Alday, David, Gava and Narain [43] of the 

oscillator representation of the super-conformal algebra psu(2, 2 4) based on its maximal com- 

pact subalgebra and its relation with the standard representation, based on the stability (little) 

group transforming the fields at x  0. A key point in [43] is that the non-unitary rotation U , 

which relates these two representations, plays an important role in the computation of the cor- 

relation functions and should be taken explicitly into account. In Section 2, we improve on the 

ADGN construction of the operator U , namely we show that this operator should act nontrivially 

to the fermionic oscillators. The full operator is a product of a bosonic and a fermionic piece, 

U UUF . 
The Hilbert space for the states representing trace operators of length L is a tensor product of 

L one-particle Fock spaces V built on the Fock vacuum 0 . The space V includes a lowest 

weight module of the superconformal algebra. The correlation functions contain an insertion of 
the operator UU†, which transforms the bosonic creation operators into annihilation operators. 

Therefore we need a second, highest state module V−, generated by the action of the annihilation 
operators on the conjugate vacuum  0̄     U2 0  . According to the formalism developed in [43], 

the two-point function of length-L trace operators is a bilinear form defined in the tensor product 

V ⊗L V ⊗L, which can be translated, by the action of the operator U, into a bilinear form defined 

on V ⊗L V ⊗L. The main result of our work is to redefine the object introduced by ADGN [43] 
and which realizes the bilinear map. We are alternatively using two definitions, 

|V12) ∈ V+
⊗L ⊗ V+

⊗L  , |V12) = U2  
)|V12) ∈ V−

⊗L ⊗ V+
⊗L

 

 

(1.5) 

The object 12 , which we will refer to as 2-vertex, is locally invariant under the super-conformal 

algebra, 
  

EAB(1) + EAB(2)
   

|V12)= 0 , s = 1 , . . . ,L  (1.6) 

 

where EAB(k) are the generators of u(2, 2 4) at site s on chain (k). The invariant 12 enters the 

expression of the two point function as 

(O2(y)O1(x)) = (V12| ei(L1
+x+L2

+ y)|O2) ⊗ |O1) , (1.7) 

with L+
k   generators in the oscillator representation associated to the momentum operator. 

The same strategy can be used to reformulate the three point function, 

(O2(y)O3(z)O1(x)) = (V123| ei(L1
+x+L+

2 y+L3
+z)|O2) ⊗ |O3) ⊗ |O1) , (1.8) 

using the three-point invariant |V123) defined, at tree level, as 

|V123)= |V12)⊗ |V13)⊗ |V32) . (1.9) 
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Fig. 1. The two point correlation function and |V12). 
 

 

    

Fig. 2. The three point correlation function and |V123). 
 
 

 

 

 
 

Fig. 3. The basic relation of vertex operator, the two states connected by the dashed line is identified. 

 
The objects entering the correlation functions are schematically depicted in Figs. 1 and 2. Such 

an interpretation of the correlation functions is close in spirit to the construction in [44],2 but it 

is also heavily inspired from the ideas in string field theory, where the object similar to 123 is 

the string vertex [45–51]. 

Compared to the previous works, the step forward we take here is to reformulate the local 

symmetry (1.6) as a non-local symmetry realized by the Yangian. Of course, our aim is to re- 

formulate the symmetry conditions for the three point functions at arbitrary coupling in terms 

of integrability. Here, we show that at the tree level the spin vertex   123 is a Yangian invari- 

ant, 

T123(u)|V123)= |V123) , (1.10) 

with the monodromy matrix T (123)(u) built from the pieces of the three chains, as shown in 

Fig. 4, 

T123(u) = t (12)(u) t (13)(u) t (31)(u) t (32)(u) t (23)(u) t (21)(u) . (1.11) 

The building block used for the monodromy condition is property of the two-site vertex 12 

carrying on the sites 1 and 2 the physical representation, as represented schematically in 

Fig. 3, 

R01(u)R02(u)|V12)= |V12) . (1.12) 

 
2 We thank S. Komatsu for bringing this paper to our attention. 
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Fig. 4. The three-point spin vertex and monodromy condition. 

 

 
This relation can be traced back to the unitarity property of the R matrix, R01(u)R01(    u)      1, 

plus a version of the crossing relation mediated by the vertex. Let us mention that the specific 

form of the monodromy property (1.12) concerns the full psu(2, 2 4) R matrix and it changes 

when reduced to particular subsectors. The integrable structure displayed by the vertex is instru- 

mental in computing even the tree-level correlation functions [52], some of which were known 

previously. We think that the integrable structure will be maintained at higher loops, and that the 

integrability constraints combined with few general constraints will be sufficient to determine 

the three point function, very much as the integrability constraints were sufficient to determine 

the spectrum of anomalous dimensions [6]. 

The structure of the paper is as follows: in Section 2 we are reviewing the oscillator repre- 

sentation for the tree level psu(2, 2 4) algebra, as well as the ADGN approach to computing 

the correlation functions using the Fock space representation and the vertex. In Section 3 we 

construct the spin vertex at tree level and we characterize its properties, in particular how it 

flips outgoing states into incoming states. Section 3.2.2 shows how to reduce the computation of 

correlation functions in the so(6) sector to overlaps, and how to retrieve the results obtains by 

EGSV [21]. In Section 4 we formulate the monodromy condition and verify that it is satisfied for 

the auxiliary space in the defining representation. We end with conclusions and some comments 

about the extension of the results at higher loops. 

Note: We acknowledge that a part of the subjects discussed in this paper is also investigated 

independently in the paper by Y. Kazama, S. Komatsu and T. Nishimura [54]. Partial results of 

the two groups were presented at the APCTP workshop in Pohang [55,56]. 

 
2. Oscillator representation and the free N = 4 SYM 

 
In determining the spectrum, the spin chain representation of the dilation operator was very 

important. This representation can be easily understood using the oscillator representation of the 

algebra psu(2, 2 4) [57–59]. The oscillator representation, valid for the free field theory, is a 

good starting point for setting up the perturbation theory. The same representation is also useful 

in computing the correlation functions, since our aim is to reduce the computation of structure 

constants to the evaluation of overlaps of wave functions of the spin chains. In this section we are 

reviewing the link between the oscillator representation of psu(2, 2 4) and the standard unitary 

presentation of the super-conformal group, link which is explained at length in Ref. [43]. We 

refer to this article for further details. 
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Let us first discuss the oscillator representation of the compact version of psu(2, 2|4), 
psu(4|4). It uses four copies of bosonic oscillators, ai, bi, i = 1, 2 and four copies of fermionic 

oscillators, ck, k = 1, . . . ,  4, 
† † † 

[ai , aj ] = δij , [bi, bj ] = δij  , {ck, cl } = δkl , i, j = 1, 2 , k, l = 1, . . . , 4 . (2.1) 

We organize the oscillators in an eight-dimensional vector 

φ = ( ai bi ck ) (2.2) 

such that the generators of u(4|4) can be written as 

AB 
compact = φA†φB with   EAB† 

BA 
compact . (2.3) 

It is straightforward to check that they satisfy the commutation relations of the u(4|4) algebra, 

[EAB ,ECD]= δBCEAD  − (−1)(|A|+|B|)(|C|+|D|)δAD ECB  , (2.4) 

with , meaning commutator or anti-commutator, depending on the grading of the generators, 

and the grading is A 0, 1 for bosonic and fermionic indices respectively. The non-compact 

form u(2, 2 4) can be obtained after a particle–hole transformation for one group of bosonic 

oscillators, say b, 

AB AB 
compact (b → −b†, b† → b) . (2.5) 

The commutation relations (2.4) are preserved by the particle–hole transformation, but the Her- 

mitian conjugate of the generators are now 

EAB† = γ EBAγ , γ = diag(12, −12, 14). (2.6) 

Sometimes, for the sake of symmetry, it is convenient to perform also a particle–hole transfor- 

mation of the fermionic oscillators 

di = c† , d† = ci+2 i = 1, 2 . (2.7) 

Unlike the bosonic particle–hole transformation, the fermionic one is unitary and therefore it 

does not change the real form of the algebra. We will use alternatively the two notations. The 

Lie-algebra generators are expressed in terms of these oscillators as 

EAB = ψ̄ Aψ B , (2.8) 

with 

ψ = ( ai −b† ci d† ), ψ̄ = ψ †γ  = ( a† bi c† di ). (2.9) 

The projective condition in 2 2 4   is obtained by imposing that the identity generator 
.

A E
AA = ψ̄ ψ , a central charge of the algebra, is zero, 

  
EAA = 

    
(Na — Nbi + Nci + Nc 

 
i+2 — 1) 

A i=1,2 

= (Nai  − Nbi  + Nci  − Ndi ) = 0 , (2.10) 

i=1,2 

where Na, Nb, Nc, Nd are the number of the respective types of bosons and fermions in the 
two types of representations. The above condition selects two types of modules, lowest weight 

V+ and highest weight V−, built upon two vacua |0) and |0̄) respectively, dual to each other 

E 

i 
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|0) = |0)B ⊗ |0)F  , |0̄) = |0̄)B ⊗ |0̄)F  , 

(ai , bi , ci , di)|0) = 0 , (a†, b†, c†, d†)|0̄) = 0 , i = 1, 2 . (2.11) 

It is worth mentioning that the particle–hole transformation (ai, bi, ci, di) → (−a†, −b†, c†, d†) 

and (a†, b†, c†, d†) → (ai, bi, ci, di) helps defining another copy of the psu(2, 2|4) generators 

that act naturally in the dual module V and which are the particle–hole transformed of the 

generators (2.8). The new generators can be shown to be equal to 

Ē AB  = −(−1)|B|ψ Aψ̄ B  = −(−1)|B|+|A||B|EBA − (−1)|B|δBA 

= −(EAB + (−1)|B|δBA)t , (2.12) 

where the index t stands for the super transposition. 

Let us now concentrate on the conformal subalgebra in four dimensions so(2, 4) su(2, 2). In 
the above oscillator representation, there is a natural grading with respect to the maximal compact  

subalgebra u(1) ⊗ su(2) ⊗ su(2). The grading is given by the value of the u(1) generator E 

[E, L±]= ±L± , [E, L0]= 0 . 

In other words, the generators L0 from the maximal compact subgroup preserve the number of 

bosons, while L± increase or decrease the number of bosons by 2. We are going to use later the 
explicit representation of these operators in terms of oscillators, 

E = 1 + 1 (Na + Nb) = 1 (a†a + bb†), (2.13) 

L+
μ  = −a†σ̄μb† , L−

μ  = bσμa , (2.14) 

with σμ (   1, σ ), and σμ ( 1, σ ) and summation over indices of the bosonic operators is 

understood. For the R charge sector, the generators are those of the su(4) algebra 

Rkl = c†c − 
1 

δ c†c . (2.15) 

We will now identify the above generators with the standard presentation of the conformal 

group, which is the group of rotations in a six-dimension space with signature ηPQ = diag(− + 
+ + +−). We adopt the same convention as in [43] and call the directions in the six-dimensional 

space P, Q = 0, 1, 2, 3, 5, 6, with the first four directions corresponding to the Minkovski space, 

μ, ν = 0, 1, 2, 3. The commutation relation is 

[MPQ, MRS]= i(ηQRMPS − ηPRMQS − ηQSMPR + ηPSMQR), (2.16) 

and the identification of the generators for translations Pμ, special conformal transformations 

Kμ and dilatation D are made as 

Pμ = Mμ6 + Mμ5 , Kμ = Mμ6 − Mμ5 , D = −M56 . (2.17) 

On the other hand, the u(1) generator in the oscillator representation E is given by 

E = M06 = 1 (P0 + K0). (2.18) 

The authors of [43] suggested that the oscillator representation and the standard representation 
above can be related by a transformation which exchanges the two directions with opposite sig- 

nature 0 and 5, that is a rotation with an imaginary angle −iπ/2 in the plane 05, 
π π 

U = exp − 
2 

M05 = exp − 
4 

(P0 − K0), (2.19) 

kl 
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and its action translates into 

U −1KμU = L−
μ  , U −1PμU = L+

μ  , U −1DU = iE , (2.20) 

L+
0  − L0

− = U −1(P0 − K0)U = P0 − K0 , (2.21) 

which helps make contact between rotated and unrotated representations. The transformation 

implemented by U is similar to the so-called mirror transformation in two-dimensional field 

theories, including the AdS/CFT sigma model. From the space–time interpretation, it is obvious 

that this transformation should obey U 4 1 except on spinors, and that U 2 is a kind of PT 

transformation which changes the sign of both 0 and 5 coordinates, 

U −2DU 2 = −D , U −2EU 2 = −E . (2.22) 

This relation is purely algebraic and it holds at any loop level, as it can be seen putting 

t 
U = exp (P — K ) ,  D = U −1DU  , E = U −1EU  . 

Taking the derivative with respect to t and using E = 1 (P0 + K0) and D = i [P0, K0] and the 

commutation relations of the conformal algebra, we get ∂t Et iDt  and ∂t Dt iEt , which is 

solved by 

Dt = D cos t + iE sin t , Et = E cos t + iD sin t . (2.23) 

At tree level, the oscillator representation of the hermitian operator U is 

π 
U = exp − 

  
(a†b† + a b ) ,  U † = U . (2.24) 

 
By inspection, using the oscillator representation, we find that 

U 2L+
μ U −2 = −bσ̄μa , U 2Lμ

−U −2 = a†σμb† , or 

U 2L±
0 U −2 = −L0

∓ , U 2L±
mU −2 = L∓

m  , 

U 2P0U −2 = −K0 , U 2PmU −2 = Km . (2.25) 

These relations can be derived using the action of the operator U on the oscillators, in particular 

U 2aU −2 = b† , U 2a†U −2 = −b , U 2bU −2 = a† , U 2b†U −2 = −a . (2.26) 

From here we conclude also that the transformation U 2 sends the bosonic Fock vacuum |0)B into 

the dual vacuum |0̄)B , 

|0̄)B = U 2|0)B , a†, b†|0̄)B = 0 , (2.27) 

therefore mapping the lowest weight module V+ to the highest weight one V− and back, 

U 2 

V+ ←→ V− . (2.28) 

Given the relation (2.22), we may conclude that the positive energy states belong to V and the 

negative energy ones belong to V , where the term of energy refers to the eigenvalues of the 

operator E. We note from the relations (2.26) that 

U −4xU 4 = −x, x = a i,a†, bi, b† , (2.29) 

i=1,2 

0 t t 

4 
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= 

F 

F 

| 

i,s i,s 

±   = ± ⊗ ···  ⊗ ± 

 
E =  E , U = U ⊗ ···⊗ 
U , (2.36)1 L 

F i i i i F F 

F F i F i F F F i F i F 

F F i i 

F F 1 1 2 2 

 

which does not pose a problem for the generators which are quadratic in the bosons or in the 

fermions, but it changes the sign of the odd generators of the super-conformal group, which 

transform in the spinorial representations of both so(6) and so(4, 2). Therefore, we may supple- 

ment the operator U with a fermionic counterpart UF , such that U    (U UF )4 will change the 

sign of the fermions as well, 

π 
U = exp − 

  
(c†d† + c d ) ,  U † = U −1 . (2.30) 

 
In other words, the non-unitary rotation in space–time is supplemented by a unitary rotation in 

the R charge sector, which is the product of two su(2) rotations that will be called later su(2)L 
and su(2)R. The action of the transformation on the fermionic oscillators is 

U 2 ci U −2 = d†, U 2 c† U −2 = di , U 2 di U −2 = −c†, U 2 d† U −2 = −ci 

U 4 xU −4 = −x, x = ci, c† d i,d†  

U −2 ≡ σ = −σ2,L σ2,R (2.31) 

and it also transforms the fermionic vacuum into its conjugate, 

|0̄)F  = U 2 |0)F  ≡ U 2 |Z) = c†d†c†d†|0)F  ≡ |Z̄ ) . (2.32) 

Let us note that U 2 , being a rotation, maps V± to themselves, 
 

U 2 

V± ←→
F

 V± . (2.33) 
 

2.1. Oscillator representation and the correlation functions 

 
We have now the necessary ingredients to present the dictionary between the gauge invariant 

operators in the conformal field theory and the Fock space representation. The gauge invariant 

operators we will consider in the planar limit are the single traces on the gauge group, or “words” 

made up from the “letters” which are the fundamental fields of the theory – and which were 

interpreted as string bits in view of the gauge-string correspondence, 

O(x) ∼ Tr(XXZY Wi . . .)(x) . (2.34) 

When the gauge coupling constant is zero, these string bits are independent and each of them 

is in a state corresponding to the psu(2, 2 4) representation described above. Gauge invariant 

operators can then be represented by elements in the tensor product of the individual string bits. 

In the spin chain representation, string bits are the sites of the spin chain, and we will have to 

introduce a copy of oscillators on each site s, 

ψs =
  

ai,s −b† ci,s d†
 

   
, s = 1 , . . . ,L  (2.35) 

acting in the tensor product of individual sites V ⊗L V1, VL, . In the non-interacting 
gauge theory, the oscillator representation of the super-conformal group generators will be 

 

L 
AB AB 

s 

s=1 

i=1,2 
4 
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2 

O 

 

while the radiative correction will introduce interaction between the string bits, or sites. The 

space of conformal primary operators O(x) situated at x = 0 is selected by the condition 

KμO(0) = 0 . (2.37) 

On the other hand, we have for the Fock vacuum |0) = |0)1 ⊗ · · · ⊗ |0)L 

L−
μ |0) = 0 , hence    KμU |0) = 0 . (2.38) 

Similarly, following [43], we can relate the space of conformal primary operators with the space 

of Fock states |O) annihilated by the L−
μ  operator, 

L−
μ |O) = 0 , ⇒ KμU |O) = 0 . (2.39) 

Translating the operators to a different space–time point can be done with the help of the mo- 

mentum operator, 

O(x) = eiP xO(0)e−iP x , (2.40) 

with corresponding Fock space representative 

eiP xU |O) . (2.41) 

For the operators O with definite conformal dimension ∆ we have3 

DU |O)= iUE|O)= i∆U  |O) , (2.42) 

so that 

eiD ln ΛU |O)= Λ−∆ U |O) . (2.43) 

A similar identification holds between the bra states and the hermitian conjugates of the opera- 

tors, 

O†(x) ←→ (O|U †e−iP x = (O|U †e−iP x . (2.44) 

This mapping was used by the authors of [43] to write the two point function in terms of the Fock 

space representation, 

(O
†
(y)O1(x)) = (O2|U †eiP (x−y)U |O1) = (O2|U 2eiL

+(x−y)|O1) . (2.45) 

The authors of [43] also verified that if is any elementary field, for example Z, the tree-level 

representation of the operators in the Fock space gives the desired result of the Wick contraction 

(Z̄ (x)Z(y)) = (Z|U 2eiL
+(y−x)|Z) = 

  (Z|Z)   
= 

1
 
 

. (2.46) 

(x − y)2 (x − y)2 

To get the next to the last equality sign, one has to use Lμ
+ = −a†σ̄μb† and, as suggested in [43], 

to regularize U 2 as U 2 = limt→−π/2 Ut , with Ut given by 

Ut = exp t (a†b† + ba) = exp(a†b† tan t) exp(−(a†a + bb†) ln cos t) exp(ab tan t) . (2.47) 

 
3 This equation might seem paradoxical, since the dilatation operator is hermitian and it should have real eigenvalues. 

However, the state U |O) has infinite norm and therefore i∆ does not belong to the spectrum. 
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[ ] = ± = [ ] 

F 

( | 
(O| |O) 

|O) (O| |O) 

(1) 

2 3 

F F 

 

(We give the details in Appendix A.) In fact, the relation above should hold at higher loop as 

well, 

Ut = exp −t (L+
0  − L0

−) = exp(−L+
0  tan t ) exp(−2E ln cos t ) exp(L0

− 
tan t ) , (2.48) 

since the commutation relations   E, L±
0 L±

0   and 2E       L+
0 , L

−
0     are the same at any cou- 

pling. The last equality sign in (2.46) amounts to computing the overlap for the vacuum state, 

(Z|Z)= 1 , |Z)= |0) . (2.49) 

A similar representation can be used for the special case of the extremal three point function,4 
when the length of the first chain equal the sum of the lengths of the second and the third, 

L1 = L2 + L3, 

(O
†
(y)O

†
(z)O1(x))ext = (O2|⊗ (O3|U2U3 eiP1xe−iP3ze−iP2y U2|O1)ext , (2.50) 

where the index on the operators shows now the space on which they act. At tree level for the 

extremal correlator U1 = U2U3 and P1 = P2 + P3. We conclude from the above that the corre- 

lators in the Fock space representation involve a pairing between states in the V+ module in the 

ket states and the V− module in the bra states. 

2.2. The necessity of the spin vertex 

 

The Fock space representation is easily understood for the two point function and the extremal 

three point function, where at weak coupling the number of sites (string bits) is conserved from 

the bra to the ket states. The situation is more subtle for non-extremal correlation functions, 

where the chains are splitting and joining, and some pieces of the chains have to be flipped (see 

e.g. [21]) in order to contract them with pieces of a different chain. Let us now interpret the two 

point correlator in (2.45) in a slightly different manner, considering now that both operators act 

on the left Fock space. To do this, we need a mapping from a left state      , to a right state   ¯ , 

which will be done via a specially prepared state V12 which lives in the tensor product of two 

chains, 

(1)(O| = (V12| σ (1) |Ō )(2)  , σ ≡ U −2, (2.51) 

where we have added an index to the Fock spaces to emphasize that (O| and |Ō ) live in different 

modules (V+
⊗L)(1)  and (V+

⊗L)(2)  intertwined by (V12|. We will show in Section 3.2.1 that the 

state   ¯ is the flipped state with respect to       in the sense of [21], being different from      . In 
this language, the two point function is 

(O
†
(y)O1(x)) = (V12| U†2  eiL(

+
1)(x−y) 

|Ō 2)(2) ⊗ |O1)(1)
 

2 (1) 

= (V12| eiL+
(1)(x−y) |Ō 

2)
(2) ⊗ |O1)

(1) 

= (V12| ei[L
+
(1)x+L(

+
2)y] 

|Ō 2)(2) ⊗ |O1)(1)  , (2.52) 

where U2 = U 2U 2 and U†2 = U 2U −2. In the second line we have introduced the state 

(V12| ≡ (V12| U†2  , |V12) ∈ V−
⊗L ⊗ V+

⊗L  , (2.53) 

 
4 This example is only illustrative since we are not computing an extremal correlation function even at tree level, 

because of the mixing of single-trace and double-trace states [60]. 
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O O O O 

O O 

(12) (13) (32) 

(1) (1) (2) (1) (2) 

 

and used the property which we will prove later 

(V12| U†2 (L+ + L+ ) ≡ (V12|(L+ + L+ ) = 0 . (2.54) 

The state (V12|, or its conjugate |V12), should play the role of the vacuum state, in the sense that 

is has to carry the same quantum numbers as the vacuum. It is clear that |V12) cannot be the 

tensor product of the Fock space vacua of the two chains. At tree level, |V12) should provide the 

right Wick contractions between the elementary fields in O
† 

and O1. A similar relation holds for 
the extremal three point function, 

(O
†
(y)O

†
(z)O1(x))ext = ext(V123| U†2  ei[L(

+
1)

x+L
(
+
2)

y+L+
(3)

z]
|Ō 2) ⊗ |Ō 3) ⊗ |O1) 

2 3 (1) 

= ext(V123| ei[L(
+
1)x+L+

(2)y+L(
+
3)z]

|Ō 2) ⊗ |Ō 3) ⊗ |O1) , (2.55) 

where the extremal vertex |V123)ext is built from two pieces connecting each the operators O2 

and O3 with O1, 

|V123)ext = |V12)⊗ |V13) . (2.56) 

In this case, at tree level there are Wick contractions only between the operators 1 and 2 and 1 

and 3 and there are no contractions between the operators 2 and 3. At this point we are starting 

to see that in the vertex formulation the operators can be treated more democratically, 

(O2(y)O3(z)O1(x))ext = ext(V123| ei[L(
+
1)x+L+

(2)y+L+
(3)z]

|O2) ⊗ |O3) ⊗ |O1) . (2.57) 

This helps to define the slightly more complicated case of a non-extremal three point function, 

where the operators 2 and 3 are also connected by Wick contractions. At tree level, we can 

split any of the operators    i into pieces    ij which are contracted to pieces    ji of operator    j . 

At the level of the states we have5 

|O1)= |O13)⊗ |O12) , 

|O2)= |O21)⊗ |O23) , 

|O3)= |O32)⊗ |O31) . (2.58) 

The non-extremal three point function, at tree level, can be then written in the same way as 

non-extremal, but with another definition of the vertex 

(O2(y)O3(z)O1(x)) = (V123| ei[L(
+
1)x+L(

+
2)y+L(

+
3)z]

|O2) ⊗ |O3) ⊗ |O1) , (2.59) 

with the vertex |V123) built out as 

|V123)= |V12)⊗ |V13)⊗ |V32)= U2     |V12)⊗ U2     |V13)⊗ U2     |V32) , 
|V  )∈  V 

⊗Lij  
⊗ V 

⊗Lji  
. (2.60) 

ij − + 

The construction of the states |V12) and |V123), that we call the spin vertex (by abuse of language 

we will call |V12) the two-vertex) is the main purpose of this work. 

 
5 The writing below is does not imply that the state associated to the operator 3 is a product, just that it belongs to the 

tensor product of the Fock spaces denoted by 31 and 32. 
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|V   ) | 

|V ) 

(1) 

L 

| ) = | ) 

  

! ≡ ! ! ! ≡ ! ! 

b(1)†a(2)† − a(1)†b(2)† − d(1)†c(2)† − c(1)†d(2)† 
|0)( ) ⊗ |0)( )

 

a(1)a(2)† − b(1)b(2)† + d(1)d(2)† − c(1)c(2)† 
|0)(2) ⊗ |0)(1) , (3.1) 

|0)(2) ⊗ |0)(1) =
 

|0)
(2) 

⊗ ···  ⊗ |0)
(2)

  

⊗
 

|0)
(1) 

⊗ . . .  ⊗ |0)
(1)

   

. (3.2) 

a b c d 
N ! N  ! 

k k k k 

N̄ a, N̄ b, N̄ c, N̄ d √
Na! Nb! 

ak 
k bk

 k ck
 ¯ 

i,s i,s i,s i,s i,s i,s 

 

3. The spin vertex at tree level 

 
In this section we are defining the basic building blocks we need to build the vertex at tree 

level. The main object is the two-vertex 12 , which is an invariant of the su(2, 2 4) algebra and 

which can be therefore used as a “vacuum state” in the tensor product of multiple Fock spaces 

when we compute the correlation functions. 

 
3.1. Definition of the two-vertex 

 
We will concentrate first on the case of the two-vertex 12 and infer the properties required 

such that (2.45) and (2.52) are identical. A construction of the vertex using the oscillator repre- 

sentation was given in [43]. Here we give a slightly modified version of that construction6 

|V12)≡ U2 

2 

|V12) 
 

   
2 1 

(1) 

s=1 i=1,2 

        

 

 

i,s 

 

 

i,s i,s 

 

 

i,s i,s 

 

 

i,s i,s 

 

 

i,s 
 

 

¯ 

where the upper index on the oscillators indicates the Fock space where they act, and  0̄ U2 0  . 

In order to mimic the planar contractions we revert the order of the tensor product in the second 

chain, 

 

L 1 1 L 

The vertex (3.1) can be expanded as 

|V12)=  
Na ,Nb ,Nc ,Nd 

= 

Na ,N

 

b ,Nc ,Nd 

|Na, Nb, Nc, Nd )(2) ⊗ |N̄ a, N̄ b, N̄ c, N̄ d )(1)
 

|N̄ a, N̄ b, N̄ c, N̄ d )(2) ⊗ |Na , Nb, Nc, Nd )(1)  = (−1)F |V21) , (3.3) 

where F = Nc + Nd is the number of fermions and 

    1 . † † † Nbk † Nak 

|N ,N ,N ,N )= √ (d )Ndk (c )Nck (b ) (a ) |0) , 
  

 

| )= 
(−1)Na +Nc     . Na       Nb      Nc 

|0) (3.4) 

 
with Na       Na1   Na2     and Nb       Nb1   Nb2   . For the states containing fermions one should take 

care of signs, so the order on which the fermionic oscillators act is important. In the formulas 
above we take the convention that the oscillators act in opposite order on the two chains. One can 

 
6 The main difference between our definition of the vertex and the one in [43] is that our vertex is neutral for the 

R-charges while theirs is not. 

k=1,2 

k=1,2 
b a 

s=1 i=1,2 

L 

Nd 

= U exp 

= exp − i,s i,s 

k dk
 k , 
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− + − = 

  

| ) ⊗ | ̄ ) = 

| ) 

| 

| | 

| | 

(2) (2) 

i,s i,s i,s i,s i,s i,s i,s i,s 

s s 

 

easily project the vertex in (3.3) on the states obeying Na Nb Nc Nd 0. The second line 

in (3.3) can be proven using 

U(1)|V12)= U−1|V12) , U(1)|V12)= U−1|V12) , (3.5) 

which will can be shown using the properties (3.7) below. From the oscillator expansion (3.3) it 

can be readily seen that 

(V31|V12)=  
Na ,Nb ,Nc ,Nd 

|Na, Nb, Nc, Nd )(2) (3)(Na, Nb, Nc, Nd |= 123 , (3.6) 

with 123 identifying the spaces 3 and 2. 

In order for the vertex |V12) to reproduce the right two point functions of the operators in 

N  = 4 SYM, it has to contain, for each site s, the “lowest weight” state |Z)s ⊗ |Z̄ )s , as well 
as the other combinations,  a  s       a  s  with a      Z, X, Y, Z̄ , X̄ , Ȳ , plus the fermions, etc. It can 
be checked, see Appendix C, that these terms appear in the expansion of the exponential in 

(3.1), as well as other terms that do not obey the central charge restriction (2.10), but which will 

vanish when projected on the spin states which do obey the restriction. The expression (3.1) is 

reminiscent of a boundary state in conformal field theory.7 

Let us now determine how the two versions of the vertex, |V12) and |V12) transform the oscil- 

lators from one space into the others (i = 1, 2) 

(a(1)† + b(2))|V12)= (b(1)† − a(2))|V12)= (a(1) + b(2)†)|V12)= (b(1) − a(2)†)|V12)= 0 , 

(c(1) + d(2)†)|V12)= (d(1) + c(2)†)|V12)= (d(1)† − c(2))|V12)= (c(1)† − d(2))|V12)= 0 . 
i,s i,s i,s i,s i,s i,s i,s i,s 

(3.7) 

We have chosen the vertex (3.1)  V12  such as to transform operators (ai, bi, ci, di) into 
(b†, a†, d†, c†), very much as the action of the operator U2 in (2.26) does. Let us look at the 

i i i i 

effect of the vertex on the generators of the psu(2, 2|4) algebra. In general, the vertex transforms 
generators acting in one of the Fock spaces, G(1), into operators acting in the other space, G̃ (2), 

by 

G(1)|V12) ≡ −G̃ (2)|V12) , 

G(1)H (1)|V12) = (−1)|G||H |H̃ (2)G̃ (2)|V12) , (3.8) 

with G denoting the grading of the operator G, i.e. the number of fermions it contains modulo 2. 

The transformation above is an anti-morphism, because it changes the order of the operators. Let 

us consider the generators of the psu(2, 2 4) algebra (or rather u(2, 2 4), since we prefer not 

to factor out the central element and the super identity) EAB(1) which obey the commutation 

relations (2.4). According to (3.8), they are transformed by the vertex into another set of gen- 

erators, Ẽ AB(2), also obeying the commutation relations8 of psu(2, 2 4), and a priori different 

from EAB(2). We deduce that the vertex obeys the local symmetry condition 
 
EAB(1) + Ẽ AB(2)

  
|V12) = 0 , s = 1, . . . L . (3.9) 

The explicit form of Ẽ AB  can be determined using (3.7) and (3.8). We have, for example, for 

generators of the conformal subalgebra, 

 
7 The idea that the vertex should be similar to a boundary state was suggested to us by R. Janik. 
8 We have introduced the minus sign in the first line of (3.8) to get the right commutation relations for ẼAB(2) . 
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E → E + (− ) . 

− 

| 
| 

O 

O O 

s 

0,d 

s s 

0 s 

1 † 

 

L̃ +
μ  = −bσ̄μa = U 2L+

μ U −2 , L̃ −
μ  = b†σμa† = U 2L−

μ U −2 , 

Ẽ = − 
2 

(aa   + b†b) = U 
2EU −2 

= −E . (3.10) 

By inspection, we can see that 

Ẽ AB  = U2(EAB + (−1)|B|δAB)U−2 (3.11) 

for all the generators, even and odd, with |B| = 0, 1 for bosonic and fermionic indices respec- 

tively. We therefore conclude that the symmetry of the vertex |V12), at tree level, can be expressed 
 

 
EAB(1) + EAB(2) + (−1)|B|δAB 

  
|V12)= 0 , s = 1 , . . .L  . (3.12) 

The term ( 1)|B|δAB is proportional to the identity in the oscillator space and it can be incor- 

porated into a shift of the Cartan generators,   AA       AA 1 |A|, which does not affect the 
u(2, 2 4) commutation relations. Moreover, this shift preserves the central element A EAA; we 

therefore conclude that the vertex possess local psu(2, 2 4) symmetry. Equation (3.12) justifies a 
posteriori the relation (2.53) we have used in the definition of the correlation function. This local 

symmetry can be taken as a defining property of the vertex, and it will be deformed at higher 

loop. 

 
3.2. Properties of the vertex 

 
In this section we are exploiting the properties of the vertex which are useful for the com- 

putation of the correlation functions at the tree level. The first step is to characterize the states 

that are flipped with the help of the vertex. For this purpose, we work out first the action of the 

monodromy matrix on the vertex and then identify the flipped states. The second step, which can 

be performed in the so(6) sector, is to separate the space–time dependence from the structure 

constant and rederive the expression of the structure constants in terms of the spin chain over- 

laps. In particular, in the so(4) subsector we rederive the EGSV [21] factorization of the structure 

constants. 

3.2.1. Characterizing the flipped operator ¯ 
One of the basic property of the vertex is that it transforms an outgoing state into an incoming 

one (or vice versa), 

(1)(O| = (V12|σ (1)|Ō )(2)  , (3.13) 

the two states (O| and |Ō ) corresponding to two different but related operators O and Ō . In this 
section, we are going to show how to obtain the operator ¯ once     is given. In this way we are 

relating the two different way of computing the two point functions illustrated in Fig. 5. 

Due to the large degeneracy of trace states at tree level, one prefers to use a pre-diagonalization 

and use as basis of states the eigenstates of the one-loop dilatation operator, which is conveniently 

given by (nested) algebraic Bethe ansatz. Suppose that we have built the one-loop Lax matrix 

Ls (u) = u − i/2 − i(−1)|A|EABEBA , (3.14) 

where the generators in the auxiliary space EAB belong to the defining (4|4 dimensional) repre- 

sentation of psu(2, 2|4) and EAB are the generators in the actual physical representation, e.g. the 

as 
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Fig. 5. Two ways of computing the two point function and how to flip the operator |O2) to |Ō 
2). 

oscillators representation. Using the property (3.12) of the vertex it is straightforward to show 

that 

L(1)(u)|V12) = −L(2)(−u)|V12) . (3.15) 

Since the vertex carries the physical representation and its dual, one could interpret the above 

relation as the crossing relation. This point can be made more explicit by using the set of gener- 

ators Ē AB  defined in (2.12) which act naturally in the dual representation. The change of sign in 

the Lax matrix can be absorbed in the normalization, and we will tacitly assume in the following 

that we have done so. Let us now consider the monodromy matrices of the two chains 

T (1)(u) = L(1)(u) . . . L(1)(u) , T (2)(u) = L(2)(u)... L(2)(u) (3.16) 

and apply repeatedly the relation (3.15). We remind the convention (3.2) for the order of the sites 

of the second chain. The result is 

L(1)(u) . . . L(1)(u)|V12) = L(2)(−u) . . . L(2)(−u)|V12) . (3.17) 

The right hand side is not exactly the monodromy matrix for the second chain T (2)(u), because 

the Lax matrices are in reverse order. This mismatch can be cured by taking an operation which 

reverses the order of the operators, like the (super) transposition t0  in the auxiliary space. In some 

sectors of psu(2, 2 4) one can correlate the change of the signs of the supertraceless generators 

Eab with the transposition 

Eab = −σ Eab,t σ −1 , (3.18) 

where t denotes the (super) transposition in the quantum space. This is the case, for example, for 

the so(4)   su(2)L ⊗ su(2)R  sector, where σ  = σ −1 = −σ2,Lσ2,R = U 2 . As one can check on 
(3.14), in any of the su(2) sectors we have 

L(u) = Lt0,t (u) = −σ Lt0 (−u)σ −1 = −σ0Lt0 (−u)σ0
−1 , (3.19) 

where σ0 = iσ2,0. The last equality sign comes from the invariance of the Lax matrix 

[Ls(u), Eab + Eab] = 0. Substituting one of the last two equalities above into the r.h.s. of in 

(3.17) we obtain9 

T (1)(u)|V12)= σ T (2),t0 (u)σ −1|V12)= σ0T (2),t0 (u)σ0
−1|V12) , (3.20) 

or in matrix form 

 
9 We neglect again an overall normalization. 
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R 

( | 

|O) 
|O) 

−C(u) A(u) 

 

A(u) B(u)  (1) 
C(u)  D(u) |V12)=  

 

 

σ A(u)σ −1 σ C(u)σ −1   
(2)

 

σ B(u)σ −1 σ D(u)σ −1 
   

D(u) −B(u)
 (2)

 

|V12) 

We will exemplify now the consequence of these relation in a given su(2) sub-sector. The eigen- 
vectors of the dilatation operator can be constructed by the action of the B operators on the 

vacuum state |ZL) followed by an arbitrary so(6) rotation R in the quantum space, 

|O) = R B(u1) . . . B(uM )|ZL) . (3.22) 

The global rotation    changes the orientation of the su(2) sector inside so(6). Let us note that 

if we descend to so(4), there are two different orbits the su(2) sectors inside so(4), called in 

the literature su(2)R  and su(2)L  and obtained by rotating (Z, X) and (Z, X̄ ) respectively. The 

two orbits are related to each other by improper rotations. Since we are working with operators 

which do not have components outside the so(6) sector, we are going to use a version of the 

vertex v12 truncated to so(6). By equation (3.21) we obtain the rule which transfers the Bethe 

operators from one space to the other through the vertex,10 

(v12|[R B(u1)...B(uM )](1)  = (v12|[B(uM )...B(u1) R−1](2)
 

= (v12|[σ C(uM )...C(u1)σ R−1](2) . (3.23) 

This relation is fundamental in exploiting the vertex, and it prescribes in particular how to char- 

acterize the flipped states 

(2)(Ō | = (v12|O)(1)
 

= (v12| [B(uM ) . . . B(u1) R−1](2)  |ZL)(1)  = (2)(Z̄ L| [B(uM ) . . . B(u1) R−1](2)
 

= (v12| [σ C(uM ) . . . C(u1) σ R−1](2)  |ZL)(1)
 

= (2)(ZL| [C(uM ) . . . C(u1) σ R−1](2) (3.24) 

Using B(u)† = −C(u∗) and considering distributions of rapidities which are self-conjugate, 

{u} = {u∗} we conclude that, up to an overall sign, 

|Ō ) = RC(u1) . . . C(uM ) |Z̄ L) = R σ B(u1) . . . B(uM ) |ZL) . (3.25) 

Keeping in mind that ¯ lives in a spin chain with the order of the site reversed with respect to 

we conclude that this is essentially the flipping procedure of [21]. The alternative definitions 

of the Bethe vectors like in (3.25) can be used at will in order to express the overlaps in a con- 

venient form. For example the last equality in the above equation can be proven to be equivalent 

to the result by one of the authors and Y. Matsuo [61] that the scalar product of one on-shell and 

one off-shell Bethe state are Izergin determinants. 

 

3.2.2. Tree level correlation function in the so(6) sector and the overlaps 

As we have already seen in equation (2.46), the two point function at tree level in the so(6) 
sector can be reduced to the computation of an overlap, 

(O1(x)O2(y)) = (Ō 1|U 2eiL
+(y−x)|O2) = 

  (Ō 
1|O2)   

= 
(v12|O1) ⊗ |O2) 

, (3.26) 

(x − y)2∆1 (x − y)2∆1 

 
10 A similar relation was known to S. Komatsu [55]. 

= |V12) . (3.21) 



392 Y. Jiang et al. / Nuclear Physics B 897 (2015) 374–404 
 

 

( | (V | 

(13) 

= + − { } = { } 

(ij) 

| 

1 1 2 2 1 1 2 2 

 

where again v12 is the vertex 12 reduced to the so(6) sector. The same is valid for the three 

point function at tree level, 

(O2(x2)O3(x3)O1(x1)) 

= (V123| U2 

 

2 
(12) 

 

2 
(32) e

i[L+
(1)x1+L(

+
2)x2+L+

(3)x3]
|O2) ⊗ |O3) ⊗ |O1) 

(v123|O2)⊗ |O3)⊗ |O1) 
, (3.27)

 

|x12|∆12 |x13|∆13 |x23|∆23 

where ∆ij     ∆i     ∆j     ∆k with  i, j, k      1, 2, 3 . To obtain this relation we use that at tree 

order we can freely split the chain (i) into two pieces (ij ) and (ik) which connect with chains 

(j ) and (k) respectively, and 

L+
(i)  = L+

(ij ) + L+
(ik)  , (V123|[L(

+
ij ) + L(

+
j i)] = 0 , (3.28) 

then we use the normal form (2.47) of the operators U 2 to evaluate the averages over the 

bosonic oscillators. The separation of space–time dependence and the structure constant is pos- 

sible in the sectors that do not contain bosonic oscillators. In sectors which contain bosonic 

oscillators, like sl(2) and su(1 1), one can have typically several tensor structures for the space– 

time dependence [62,63]. So, in the so(6) sector we can reduce the structure constant to the 

overlap 

C123 = (v123|O2)⊗ |O3)⊗ |O1) , (3.29) 

where we suppose tha√t the states |Oi) are normalized, Ni = (Oi |Oi) = 1. If this is not the case, 
 

one has to divide out N1N2N3. 
We would like now to discuss more in detail the correlation functions of three operators in 

different su(2) sectors, since they have been studied in detail in the literature [38,39,42]. As 

we have already mentioned, there are two different orbits of the su(2) sectors under the global 

so(4) rotations, and we will call them after the su(2)R and su(2)L defined below. We take the 

convention 

|Z) = |0) , |Z̄ ) = c†d†c†d†|0) , |X) = c†d†|0) , |X̄ ) = −c†d†|0) , (3.30) 

and that the L sector is generated by c1, d1 and the R sector by c2, d2. Obviously, the generators 

in the two sectors commute, and the operators X, X̄ , Z, Z̄ 

bi-fundamental representation of su(2)R ⊗ su(2)L, 

can be seen as basis vectors in the 

|Z) = |↑)L ⊗ |↑)R ≡ |↑↑) , |Z̄ ) = |↓)L ⊗ |↓)R ≡ |↓↓) , 

|X) = |↑)L ⊗ |↓)R ≡ |↑↓) , |X̄ ) = −|↓)L ⊗ |↑)R ≡ −|↓↑) . (3.31) 

The authors of [52] call this representation the double spin, or double chain, representation, 

which can be traced back to [53]. Together, the two su(2) sectors generate an so(4) sector. The 

vertex reduced to this sector is 

|v12)so(4)  = |Z) ⊗ |Z̄ ) + |X) ⊗ |X̄ ) + |Z̄ ) ⊗ |Z) + |X̄ ) ⊗ |X) 

= |v12)
su(2)L  ⊗ |v12)

su(2)R  , 

|v12)su(2)L,R  = |↑)L,R ⊗ |↓)L,R − |↓)L,R ⊗ |↑)L,R . (3.32) 

U U 

= 
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O O O 

123 

R  = R  = R  = 

R  = R  = R  = 

 

We can have two different cases: 

i) The RRR case, when all the three operators are in the same sector, say R. In this case, the 

three operators can be chosen as 

|O1) = R1BR(u1) . . . BR(uM1 ) |ZL1 ) , 

|O2) = R2 σ BR(v1) . . . BR(vM2 ) |ZL2 ) , 

|O3) = R3 σ BR(w1) . . . BR(wM3 ) |ZL3 ) . (3.33) 

The convention is such that    1     2      3     1 reduces to the extremal case.11 Although the 

explicit computation of the structure constants goes beyond the scope of this paper, we can note 

that this case does not seem to be computable in the generic case without cutting the states into 

pieces as prescribed by [21]. 

ii) The RRL case, when two operators, say 1 and 2, are in the sector R and 3 is in the 

sector L. In this case we choose 

|O1) = R1BR(u1) . . . BR(uM1 ) |ZL1 ) , 

|O2) = R2 σ BR(v1) . . . BR(vM2 ) |ZL2 ) , 

|O3) = R3 BL(w1) . . . BL(wM3 ) |ZL3 ) . (3.34) 

Again, our choice is such that    1       2        3     1 is the case originally considered by EGSV 

[21]. In this case the left and right sector decouple 

CEGSV  = so(4)(v123| BL(w) |ZL3 ) ⊗ σ(2) BR(v) |ZL2 ) ⊗ BR(u) |ZL1 ) 

= so(4)(v123| σ(32) BL(w) |ZL3 ) ⊗ σ(21) BR(v) |ZL2 ) ⊗ BR(u) |ZL1 ) . (3.35) 

= SIMPLE × INVOLVED (3.36) 

The SIMPLE part is given by the contribution of the L sector, 

SIMPLE = su(2)L (v123| σ(32)L BL(w) | ↑L3 ) ⊗ σ(21)L | ↑L2 )⊗|  ↑L1 ) 

= (↓L3  | σ(32)L BL(w) | ↑L3 ) (3.37) 

while INVOLVED is given by the contribution of the R sector 

INVOLVED = su(2)R (v123| σ(32)R |↑L3 )⊗ σ(21)R BR(v) |↑L2 )⊗ BR(u) |↑L1 ) 

= su(2)R (v12| σ(21)R ( ↑L23 | BR(v) |↑L2 )⊗(  ↓L13 |BR(u) |↑L1 ) (3.38) 

Now one can use the properties of the Bethe states to show that 

( ↑L23 | BR(v) | ↑L2 )= BR(v) |↑L21 )=(  ↓L13 | BR(i/2)L13 BR(v) |↑L1 ) , (3.39) 

where the L13 operators B(i/2) are freezing L13 consecutive sites to their ↓ value [26]. This 

implies also that freezing selects a single component from the vertex (v13| 

su(2)R (v13| σ(13)R BR(i/2)L13 BR(v) |↑L1 ) 

=( ↓L13 |⊗(  ↓L13 | BR(i/2)L13 BR(v)|↑L1 ) (3.40) 

 
11 In the extremal case one has to take into account the effect of mixing with higher trace operators, which is not done 

here. We thank S. Komatsu for mentioning to us that there exist non-extremal RRR correlators. 
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| ; { }) − 

| 

N = 

(k!)2 
({u}; k|k;{v}) , (3.43) 

k=0 

 

we obtain finally 

INVOLVED = su(2)R (v12| (v13| σ(1)R BR(i/2)L13 BR(v) |↑L1 )⊗ BR(u) |↑L1 ) . (3.41) 

So we have transformed the involved part into an overlap involving a single spin chain of 

length L1. This is the result of EGSV [21] combined with O. Foda’s freezing trick [26]. The 

case when the global rotations R1, R2, R3 are arbitrary is considered in [52]. 

3.3. Scalar products and global su(2) rotations 

 
Although considering correlators with the global so(6) rotations goes beyond the scope of 

this work, it is relatively simple and instructive to consider the scalar product of two su(2) Bethe 

states |{u}) and |{v}) that are rotated with respect to each other with an su(2) rotation, 

Rsu(2)  = eaσ + 
eia3σ3 e−ā σ −  

. (3.42) 

By expanding the left and right factors in the rotation, eaσ 
+ 

= k 0 ak(σ +)k/k! and supposing 

that {u} and {v} contain the same number of mangons M , we get 

L −2M  
(−aā e−2ia3 )k 

 

 

with the state k   v    containing k magnons at infinity. The reason that the sum stops at L    2M , 
and not at L      M , as one could naively think, is that the state    v     is the highest weight state 

of a multiplet with spin L/2 M and as such one cannot act on it more than L 2M times 

with lowering operators. As shown in Appendix B, if at least one of the states u and v is on-

shell, the scalar products with k magnons sent to infinity is given by 

({u}; k|k;{v}) = (k!)2

  
L − 2M

   

({u}|{v}) . (3.44) 

After resumming the sum in (3.43) one obtains the simple expression 

({u}|Rsu(2)|{v}) = (eia3  − aā e−ia3 )L−2M ({u}|{v}) .  (3.45) 

It is interesting and reassuring to note that this relation holds when the scalar product u v 
can be put in a determinant expression. It would be interesting to check whether this relation hold 

for more general rotations, for example in su(3), where determinant expressions for states with 

some set of magnons at infinity also exist [64]. 

 
4. Monodromy condition on the spin vertex 

 
In this section we are going to show that the local symmetry condition (3.12) of the spin vertex 

can be reformulated as an extended symmetry. This is the same Yangian symmetry, satisfied by 

the tree-level amplitudes in 4 SYM [65]. 

The spin vertex is an invariant of the Yangian. We are going first to show this on the two- 

vertex, and then extend it to the three-vertex we need to compute the three point function. There 

are two types of monodromy matrices which are interesting for us. The first is the monodromy 

matrix where the auxiliary space is in the defining, 4 4 dimensional, representation. This mon- 

odromy matrix is useful to build the Yangian generators and the for the nested Bethe ansatz 

({u}|Rsu(2)|{v}) = eia3(L−2M)
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Fig. 6. The two chain monodromy matrix t(12)(u) and its action on the vertex |V12). 

procedure. The second type of monodromy matrix, useful for getting the local conserved quan- 

tities, contains the same physical representation in the auxiliary and quantum spaces. Here we 

construct the monodromy matrix with the auxiliary space in the defining representation. For the 

monodromy matrix with the auxiliary space in the physical representation, the construction of 

the so(6) sector is relatively straightforward, however the construction in the sl(2) sector is more 

subtle and we are not doing it here. 

Let us take the psu(2, 2|4) R matrix in the defining and physical representation 

R01(u) = u − iП01 , П01 = (−1)|A|EABEBA , (4.1) 

where EAB are 4|4 × 4|4 super matrices and the generators in the quantum space are in the os- 

cillator representation EBA = ψ̄ Aψ B . When EBA are also in the defining representation, П01 is 
a super-permutation. In the representation we are considering 

П2      = (−1)|A|+|C|EAB EBAECDEDC   = (−1)|A|+|B|+(|A|+|B|)(|B|+|D|)EADEBAEDB 

= (−1)|A|EADEDA(EBB − 1) + EBB = П01(EBB − 1) + EBB = −П01 . (4.2) 

Here we have used the (anti)commutation relations [ψ A, ψ̄ B ]± = δAB  and that in the physical 
representation c = EBB  = ψ̄ B ψ B  = 012  and in the auxiliary representation EBB  = 1. The R 

1 0 

matrix above satisfies the unitarity condition 

R01(u)R01(−i − u) = −u(i + u) . (4.3) 

For a representation with arbitrary central charge c, the unitarity condition would be 

R01(u)R01(i(c − 1) − u) = −u(i(1 − c) + u) − c . (4.4) 

We are now going to build the monodromy condition for the two-site vertex |V12), 

R01(u)R02(u)|V12)= −R01(u)R01(−i − u)|V12)= u(u + i)|V12) . (4.5) 

Here we have used that the R matrix is related to the Lax matrix defined in (3.14) by R(2)(u) = 

L(2)(u + i/2), and then use the crossing-like property (3.15) of the vertex 

R02(u)|V12)= −R01(−i − u)|V12). (4.6) 

The condition (4.5) can be lifted to the two-vertex with an arbitrary number of sites, as depicted 

in Fig. 6 

T12(u) = R(1)(u) . . . R(1)(u) R(2)(u) . . . R(2)(u) |V12) = (u(u + i))L|V12) , (4.7) 

 
12 The condition c 0 should be understood as a constraint imposed on the states, which projects on the irreducible 

representation we are interested in. This constraint can be implemented in the definition of the spin vertex, but then the 

vertex will lose its nice exponential form. 
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as well as for the three vertex, where the different pieces t (ij)(u) joining chain (i) to chain (j ) 
are glued as in Fig. 4, 

T123(u) = t (12)(u)t(13)(u)t(31)(u)t(32)(u)t(23)(u)t(21)(u) . (4.8) 

The subsectors. The psu(2, 2 4) R matrix can be readily reduced to different subsectors, just by 
restricting the sum in the definition of the central charge (2.10) to the corresponding subsector. 

As a result, the central charge can take non-zero value c = EBB . 

• In the su(1|1), su(2|3) and su(2) sector, where the fields belong to the fundamental repre- 

sentation, c = 1, so that the unitarity condition is slightly modified, 

2   = 1 , R01(u)R01(−u) = −(u2 + 1). (4.9) 

The monodromy condition will be 

R01(u)R02(u − i)|V12)= −R01(u)R01(−u)|V12)= (u2 + 1)|V12) . (4.10) 

• In the sl(2) sector, c = 0, so the unitarity and monodromy conditions are the same as for 

psu(2, 2|4). 

• In the so(6) sector we have c = 2, so that 

2   = П01 + 2 , R01(u)R01(i − u) = u(i − u) − 2 . (4.11) 

The monodromy condition is then 

R01(u)R02(u − 2i)|V12)= −R01(u)R01(i − u)|V12)= (u(u − i) + 2)|V12) . (4.12) 

5. Conclusion and outlook 

 
In this paper we proposed a new formulation for computing correlation functions in planar 

4 SYM theory. In this novel formalism, the central object is called the spin vertex, which is 

the weak-coupling counter-part of the string vertex in the string field theory. We constructed the 

spin vertex for all sectors of the theory at tree-level by a set of bosonic and fermionic oscillators. 

The spin vertex is a special entangled state living in Hilbert space of multi spin chains and has 

many nice properties. In the spin vertex formalism, the symmetry of correlation functions become 

manifest. In particular, we are able to construct monodromy matrices under the action of which 

the spin vertex is invariant. In another word, the spin vertex is invariant under the action of the 

infinite dimensional Yangian algebra, which is the hallmark of integrability. 

The spin vertex and its Yangian invariance is not only important conceptually, but is also 

very useful practically. Using the properties of spin vertex in an ingenious way, the authors 

of [54] were able to compute more general configurations of three-point functions both in the 

compact SU(2) as well as in the non-compact SL(2) [66] sectors in terms of determinants. In 

the semiclassical limit, the Yangian invariance of spin vertex is equivalent to the monodromy 

condition which plays an important role in the computation of three-points in the strong coupling 

limit [10–12]. This opens a new way of computing semi-classical three-point functions by similar 

techniques from strong coupling without using determinant formulas [52]. 

There are many open questions. First and foremost, the present work is inspired by the struc- 

ture of the light-cone string field theory for strings moving on the pp-wave background. A natural 

question is whether we can recover the light-cone string field theory in the BMN limit. The BMN 

П 

П 
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limit is a degenerate limit of AdS/CFT correspondence where all scattering phases are zero and 

hence integrability becomes trivial. However, it is interesting at both strong and weak coupling 

to see how this limit is achieved. This will be helpful to understand the BMN limit better and 

might shed some light on finite coupling regime. At the leading order, we can show that the spin 

vertex in the BMN limit reproduces exactly the structure of light-cone string field theory with the 

same Neumann coefficients. The derivation uses a polynomial representation of the spin vertex 

and the result will be presented elsewhere [67]. 

Another important question is understanding how to deform the spin vertex and the corre- 

sponding Yangian invariance at higher loop orders in perturbation theory. In the computation of 

structure constants at loop orders, quantum corrections manifest themselves as operator inser- 

tions at the splitting points [24,25,32,34,35]. At present, these operator insertions are computed 

by Feynman diagrams which are usually rather complicated. The generalization for larger sec- 

tors and to higher loops in this way will be impractical. However, since the theory is integrable, it 

should be possible to fix these insertions from integrability, as in the case of the spectral problem. 

The higher loop deformation of the spin vertex should contain the operator insertions at higher 

loops. This problem is more subtle due to renormalization. In contrast to the tree-level, it is a 

non-trivial task to extract the renormalization scheme independent structure constant from the 

three-point function. However, we think that some general principles can still be applied. We 

expect that at higher loop the expression of the three point function is still given by 

(O2(y)O3(z)O1(x)) = (V123| ei(L1
+x+L+

2 y+L3
+z)|O2) ⊗ |O3) ⊗ |O1) , (5.1) 

with all the quantities receiving radiative corrections. The space–time dependence of the correla- 
tor can be fixed by using Ward identities, that can be derived for example by inserting the energy 

operator E1 + E2 + E3. The constraints that the vertex has to satisfy at any loop order is 

(E1 + E2 + E3)|V123)= 0 . (5.2) 

A similar constraint can be derived from the monodromy relation (4.8). This suggests that the 

infinite Yangian symmetry could be translated into Ward identities which would determine the 

three-point correlation function. We hope to be able to report on this in the near future. 

Finally, we would like to point out the similarity between our construction of the spin vertex 

and the scattering amplitudes. Yangian invariants were recently exploited to build the scattering 

amplitudes [68–74]. Their key point is to regard the scattering amplitudes as Yangian invariants 

and try to construct it explicitly from Bethe ansatz. To certain extent, the spin vertex constructed 

in this paper is the simplest possible Yangian invariant one can construct. It is interesting to 

understand whether more general Yangian invariants will play some role in the construction of 

spin vertex, especially at higher loops. In both cases, the understanding of how to deform Yangian 

invariants at higher loops is crucial. This observation shows that Yangian invariant may be the 

key to understand both on-shell quantities like scattering amplitudes and off-shell quantities like 

correlation functions. It will be fascinating to develop a common framework and have a unified 

description of these two kinds of quantities. 
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Appendix A. The operator U 

 

In this appendix we collect some formulas about the action of the operator U U UF 
which represents a finite super-conformal transformation. The operator is a product of an 

su(2, 2)-rotation in imaginary angle 

U = e− π (P0−K0)  = e− π (L+−L−)  = e− π (a†b† +biai ) (A.1) 
4 4   0 0 

 

and a unitary su(4)-rotation 

4  i   i 

U    = e− π (R13−R31+R24−R42) = e− π (c†d†−dici) . (A.2) 

As it was suggested in [43], it is convenient to first to compute the action of a rotation in an 

arbitrary angle it 

U  = U † ≡ et(a
†
b

†
+biai). (A.3) 

The action of Ut on the oscillators ai, a†, bi, b† is 
i i 

ai(t) ≡ Ut aiU −1 = ai cos t − b† sin t, bi(t) ≡ Ut biU −1 = bi cos t − a† sin t,  

a†(t) ≡ Ut a†U −1 = a† cos t + bi sin t, b†(t) ≡ Ut b†U −1 = b† cos t + ai sin t. (A.4) 

From here one easily obtains the normal form of the operator Ut is [43] 

U ≡ et
 

a†b†+ba
  

= 
1 etan t a†b† 

(cos t)− a†a−b† b etan t ba, (A.5) 

or, in terms of the Lie-algebra generators, 

U e−t (L+
0 −L−

0 )  
1 

cos t 
‹−L+

0  tan t  cos(t)−2E eL0
− 

tan t . (A.6) 

Similarly one derives the normal form of the compact piece (2.30) by introducing the rotation 

at angle t , 

UF ≡ et
 

c†d†+cd
  

= cos2 t etan t c†d† 
(cos t)− c†ci −d†d etan t cd . (A.7) 

In the normal form of the full operator, the cos t factors nicely cancel, 

U ≡ et
 

a†b† +ab+c† d†+cd
 
 

= etan t (a†b† +c†d†)e− log cos t(a†a+b† b+c† c+d†detan t (ab+cd). (A.8) 

From (A.8) one obtains the regularized expression for the conjugate vacuum |0̄) = |0̄)B ⊗ |0̄)F , 

|0̄) ≡ U2|0) ≈ e(a
†b†+c†d†)/‹ |0) 

ea†b†/‹ 
      † †    † † 

≈ 
‹2 

c1 c2 d2 d1 |0) , ‹ → 0. (A.9) 
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N N 

k 

( ̄  )=  

→∞ 
⎣⎝

j =Mrr+1 

vj ⎠ 
u

 
→∞ 

⎝

j =Mr+1 

uj ⎠ ({u}N |{v}N )⎦ 

1 1 2 2 

2 1 1 2 

− 

v 

 

Appendix B. Sending roots to infinity 

 
The limit u is delicate and can produce different results. Here it is important that half of 

the roots are on shell and that we send to infinity k on-shell roots and k off-shell roots. We proceed 

as follows: first send sequentially k on-shell u -roots to infinity so that the Bethe equations are 
satisfied in the process. This is important, because otherwise the scalar product is not given by a 

determinant. Then we send k off-shell {v}-roots to infinity. 
Proceeding as in [30] (eq. (3.24)) and taking into account that f (vj ) ≈ eiG{u}+iG{v}−L/u ≈ 

ei(2N−L)/vj for the v-roots, and as f (uk) ≈ eiG{v}−iG{u} ≈ e0/uk because of the Bethe equations, 

one obtains the general formula, when Kr = N − Mr roots {u} (on shell) and Krr = N − Mrr 
roots {v} (off shell) are sent to infinity: 

⎡⎛  
. 

⎞ ⎛  
. 

⎞ ⎤ 

 

= (N − Mr)!(N − Mrr)! 

  
L − Mr − Mrr 

   

A{u} 
 

∪{v} 
 

, (B.1) 

N − Mrr Mr Mrr 

where A{u}Mr ∪{v}Mrr   is the determinant expression giving the scalar product [30]. Taking K r = 

Krr = k one obtains the correct combinatorial factor from equation (3.44) 

({u}; k|k;{v}) = (k!)2

  
L − 2M

   

({u}|{v}) . (B.2) 

Appendix C. The spin vertex as a flipping operator 

 
In section we will justify the expression for the spin vertex (3.1) and explain why the expres- 

sions (1.7), (1.8) give the correct expression for the two- and three-point functions. 

The propagators for the elementary fields have the following form: 

S(y)S(x) 
1

 

(x − y)2 
, S = X, Y, Z, 

(W̄ (y)W (x))= iδ μ 1 σ ∂ μ , a, b = 1 , . . . ,  4, i, j = 1, 2, 
jb ia ab  ij  x 

(x y)2 

1 

(Fρσ (y)Fμν(x))= (ηνσ ∂μ∂ρ + ημρ∂ν∂σ − ημσ ∂ν∂ρ − ηνρ∂μ∂σ ) 
(x − y)2 

. (C.1) 

We have to show that the spin vertex formalism reproduce these propagators correctly, by means 

of the equation13 

(O2(y)O1(x)) = (V12| ei(L1
+x+L+

2 y)|O2) ⊗ |O1) . (C.2) 

First we establish the rule how the vertex transform the fields form the space (2) to the space (1). 
Using the representation of the elementary fields in terms of the oscillators 

Z = |0), Z̄ = c†d†c†d†|0), 

Y = c†d†|0), Y¯ = c†d†|0), 

 
13 The ordering of the operators on the left hand side is chosen to ensure right sign for the fermionic propagator. 

lim 
N−K+1,...,vN 

lim 
N−K+1,...,uN 
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4 4 

F(1) 

( | | )=  

1 1 2 2 

i 2 i 1 2 1 

i 1 i 2 2 1 

i 1 2 1 i 2 

i 1 2 2 i 1 

i j 1 2 i j 1 2 

F F 

F F 

F i i i i ia ia ia ia 

ij ij ij ij 

j 1 i 1 2 2 

i 1 2 2 

F 

 

X = c†d†|0), X̄ = −c†d†|0), 

Wi1 = b†c†|0), W̄ i1 = −a†c†d†d†|0), 

Wi2 = −b†c†|0), W̄ i2 = −a†c†d†d†|0), 

Wi3 = b†c†c†d†|0), W̄ i3 = a†d†|0), 

Wi4 = b†c†c†d†|0), W̄ i4 = −a†d†|0), 

Fij = −b†b†c†c†|0), F̄ij  = a†a†d†d†|0), (C.3) 

we obtain by direct computation 

(2)(S|U 2 |V12) = |S̄)(1), (2)(S̄|U 2 |V12) = |S)(1), S = X, Y, Z 
(2)(Wia |U 2 |V12) = |W̄ ia )(1), (2)(W̄ ia |U 2 |V12) = |Wia )(1), 
(2)(Fij |U 2 |V12) = |F̄ij )(1), (2)(F̄ij |U 2 |V12) = |Fij )(1), (C.4) 

 

where 

F F 
 

 
.   

(b(1)† a(2)†−a(1)†b(2)†+c(1)c(2)†−d(1)d(2)†) 
 

 
and 

U 2 |V12 
i i 

)= ei=1,2 

i i i     i 
c(1)†d(1)†c(1)†d(1)†|0)(1)|0)(2), (C.5) 

Fμν  = (σ̄ μν‹)ij F̄ij  − (‹σ μν)ij Fij , i, j = 1, 2, μ, ν = 1, . . . , 4, 

σ μν = 
1  

σ μσ̄ ν  − σ ν σ̄ μ
 
, σ̄ μν  = 

1  
σ̄ μσ ν − σ̄ νσ μ

 
, ‹12 = 1. (C.6) 

This leads to the following expansion for the vertex 

U 2 |V12) = |S̄
(2)

)|S(1)) + |S(2))|S̄
(1)

) + |W̄ (2)
)|W(1)) + |W (2))|W̄ (1)

) 

+ |F̄ (2)
)|F (1)) + |F (2))|F̄ (1)

) + . . . , (C.7) 

where we assume summation over repeating indexes and three dots mean other possible states 

appearing in the vertex expansion, including those not satisfying the zero central charge condi- 

tion. 

Now we are ready to compute the propagators using the (C.2). We start with the scalars. 

(S̄(y)S(x)) = (V12|ei(L
+
(1)x+L+

(2)y)
|S̄)(2) ⊗ |S)(1) = (V12|ei(L

+
(1)x−L+

(1)y)
|S̄)(2) ⊗ |S)(1) = 

(V12|U 2 
2 
(1) e

i(L+
(1)x−L+

(1)y)
|S̄)(2) ⊗ |S)(1)  = (S|U 2ei(L+x−L+y)|S) =  

0 U 2ei(L+x−L+ y)  0  
1 

(x − y)2 
, (C.8) 

where in order to get the last line we used (2.46). For the fermions we’ll consider one of the 

possible propagators, the rest can be computed absolutely analogously: 

(W̄ j 4(y)Wi4(x)) = −(V12|ei(L+
(1)x+L(

+
2)y)a(2)†d(2)†|0)(2)b(1)†c(1)†c(1)†d(1)†|0)(1)

 

= (0|bi d2c2c1U 2ei(L+x−L+y)b
†
c

†
c

†
d

†
|0) 

= −(0|U 2e−iL
+ya†b†eiL

+x |0)= 
i 

∂ 
 

 
σ μ(0|U 2ei(L+x−L+y)|0) 

j  i 
i μ 1 

2 
μ  ij 

= 
2 

∂μσij (x − y)2 
, (C.9) 

i i 

U 

1 1 2 2 



Y. Jiang et al. / Nuclear Physics B 897 (2015) 374–404 401 
 

ij 

( ) 

=−  η η − η η + i‹  
,
2
      

μρ 
νσ μσ   νρ μνρσ 

1 

8 

i j 1 2 i j 1 2 

i j 1 2 i j 1 2 

8 
ij kl lj ki lj ki κ ω 

(x − y)2 

ij kl 

ij lk  ji  κ ω 
(x − y)2 

8 
) (σ 

2 
σ ) (σ σ ) ∂κ∂ω 

(x − y)2 

τθ  κ ω 
(x − y)2 

 

where we used the explicit expression in terms of the oscillators for the L+μ = −a†σ̄ 
μ

b†  and 

the property of the σ matrices 
i   ij  j 

σ μ(σ̄μ)kl = −2δil δjk . (C.10) 

Finally we compute the propagator for the strength field: 

Fρσ (y)F μν(x) 

= (V12|eiL+
(1)x eiL+

(2)y 
 

(σ̄ μν‹)ij a
(2)†a(2)†d(2)†d(2)† + (σ μν)ij b

(2)†b(2)†c(2)†c(2)†
 

|0)(2)
 

⊗ 
  

(σ¯ μν‹)ij a
(1)†a(1)†d(1)†d(1)† + (σ μν)ij b

(1)†b(1)†c(1)†c(1)†
   

|0)(1)
 

= −(σ̄ μν‹)ij (‹σ ρσ )kl(0|U 2e−iL
+y a†a†b†b†eiL

+
(1)x 

|0) + (μ ↔ ρ , ν ↔ σ )  
i  j  k   l 

= 
1 

(σ¯ μν‹)  (‹σ ρσ )  σκ σω∂ ∂ 
1 

+ (μ ↔ ρ, ν ↔ σ)  

4 
ij kl  ki  lj κ   ω 

(x − y)2 

= 
1 

(σ¯ μν‹)  (‹σ ρσ )   
  

σωσκ + σκ σω
 

∂  ∂
 1 

+ (μ ↔ ρ, ν ↔ σ ). (C.11) 
 

Further we use the following identity: 

σ μσ ν  + (μ ↔ ν) = −ημν ‹̄ik ‹̄j l + 4ηκω(σ κμ‹̄)ik(‹̄σ̄ ων)j l, (C.12) 

where ‹¯12 = −1. It gives 

1 
(σ¯ μν‹) (‹σ ρσ ) 

 
−ηκω‹̄  ‹̄  

 
+ 4η 

 
(σ τκ ‹¯) 

 
(‹̄σ̄ θω) 

 
∂ ∂

 1  

+ (μ ↔ ρ, ν ↔ σ)  

=
 

− 
ηκω  

Tr 
ρσ   Tr ¯ μν 

ητθ  

+ Tr 
ρσ     τκ   Tr ¯ μν ¯ θω   

    1  

+ (μ ↔ ρ, ν ↔ σ ). (C.13) 

Next, noticing that Tr(σ μν) = Tr(σ¯ μν) = 0 and also using the relations 

 

Tr(σ μνσρσ ) 
 

Tr(σ¯ μν σ¯ ρσ ) 

we get 

1    μρ   νσ μσ   νρ μνρσ 
 

 

=−  
2 

η η − η η − i‹ , (C.14) 

(Fρσ (y)F μν(x)) 

= 
ητθ  

 

ηρτ ησκ − ηρκητσ + i‹ρστκ  
  

ημθ ηνω − ημωηνθ − i‹μνθω 
 

∂ ∂
 1  

8 

+ (μ ↔ ρ, ν ↔ σ)  

κ   ω 
(x − y)2 

= 
1    

ησκημρ ηνω − ηρνησκημω − ηρκημσ ηνω + ηρκημωηνσ   + i‹ρσμκηνω 

— i‹ρσνκημω − i‹μνρωησκ + i‹μνσωηρκ + η     ‹ρστκ‹μνθω
   

∂ ∂
 1  

+ (μ ↔ ρ, ν ↔ σ ). (C.15) 

8 
kl τθ  lk ji  

(σ ) (σ 
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× 

N = 

2 
κ 

i j 

 

One can see that after taking into account symmetrization with respect to the permutation (μ ↔ 
ρ, ν ↔ σ) and also (κ ↔ ω), all the terms proportional to i cancel out. Decomposition of the 

Levi-Civita tensor contraction gives (we use convention ‹0123 = 1) 

ητθ ‹
ρστκ‹μνθω  = ησνηρωηκμ + ησωηρμηκν + ηρνησμηκω − ησωηρνηκμ 

— ησμηρωηκν − ηρμησνηκω. (C.16) 

The terms proportional to ηκω cancel out due to equation of motion ∂2 1 2 = 0. Taking all this 
 

remarks into account we get final result: 

(Fρσ (y)F μν(x)) 

(x−y) 

= 
1   

ησκημρ ηνω − ηρνησκημω − ηρκημσ ηνω + ηρκημωηνσ  
  

∂ ∂ 
  1  

. (C.17) 
 

The action of covariant derivatives in terms of oscillators is given by Dij = a†b†. Thus, in 

case, when an elementary field belongs to the non-compact sector, the corresponding propagator 

can be obtained by taking appropriate number of derivatives contracted with right component of 

the sigma matrices, e.g. 

(Z̄ (y)Dij Z(x)) = (V12|ei(L
+
(1)x+L(

+
2)y)

|Z̄ )(2) ⊗ |Dij Z)(1) 
i 

μ ( i(L+
(1)x+L+

(2)y)   ¯ 
 

 

i   μ 1 
μ 

  =−  
2 

σji∂x 
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