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91191 Gif-sur-Yvette, France 
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Abstract. We explore the phenomenological consequences of general late-time modifica- 
tions of gravity in the quasi-static approximation, in the case where cold dark matter is non-
minimally coupled to the gravitational sector. Assuming spectroscopic and photometric 
surveys with configuration parameters similar to those of the Euclid mission, we derive con- 
straints on our effective description from three observables: the galaxy power spectrum in 
redshift space, tomographic weak-lensing shear power spectrum and the correlation spectrum 
between the integrated Sachs-Wolfe effect and the galaxy distribution. In particular, with 
ΛCDM as fiducial model and a specific choice for the time dependence of our effective func- 
tions, we perform a Fisher matrix analysis and find that the unmarginalized 68% CL errors on 
the parameters describing the modifications of gravity are of order σ ∼ 10−2–10−3. We also 
consider two other fiducial models. A nonminimal coupling of CDM enhances the effects of 
modified gravity and reduces the above statistical errors accordingly. In all cases, we find that 
the parameters are highly degenerate, which prevents the inversion of the Fisher matrices. 
Some of these degeneracies can be broken by combining all three observational probes. 
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1 Introduction 

 

The recent measurements of the cosmic microwave background (CMB) anisotropies, per- 

formed by the WMAP and Planck satellites, have significantly improved our knowledge on 

the content of the universe and on the initial conditions of cosmological perturbations. A 
similar progress is expected from the next generation of galaxy surveys concerning the prop- 
erties of dark energy or, possibly, modifications of general relativity on cosmological scales. 
Indeed, even if the CMB is useful to constrain dark energy through the integrated Sachs- 
Wolfe (ISW) effect and gravitational lensing, these effects are ultimately related to the impact 
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of dark energy on the late-time evolution of structures. Probing directly these large scale 
structures is thus thought to be the most promising source of information on the origin of 
the current acceleration. 

Since no compelling model of dark energy has emerged from theoretical investigations, 
it is appropriate to resort to a description that encodes a wide range of physical effects with 
a limited number of theoretically motivated parameters, in order to compare deviations from 
the standard ΛCDM scenario with cosmological observations on linear scales. For single-field 
dark energy models in the presence of universally coupled matter fields, this research program 
has been initiated by the effective theory of dark energy recently proposed in refs. [1–3], 
inspired by the so-called effective field theory of inflation [4, 5] and of minimally coupled dark 
energy [6]. Another model-independent framework that has been developed with the same 
motivations is the Parameterized Post-Friedmann approach [7, 8]. In the effective theory 
of dark energy, the quadratic action describing linear perturbations of single-field models 
belonging to Horndeski theories is characterized by four free functions of time [3, 9–11], 
while a fifth function must be introduced to describe theories beyond Horndeski [12, 13]. 
The power and efficiency of this formalism has just started to be exploited.    For instance, 
it has been applied to explore and forecast the phenomenology of dark energy and modified 
gravity in [14–17] (see also [18, 19] for some nonlinear aspects). 

Recently, in ref. [20], we extended this unifying treatment to allow for distinct confor- 
mal and disformal couplings of matter species to the gravitational sector.1 We focused on 
Horndeski-like models, i.e. those whose quadratic action has the same structure as Horndeski 
theories,2 although the full action can be different. This is a rather natural extension given 
that a modification of the gravitational  sector can often be interpreted  as a direct coupling 
of matter to a fifth force exchanged by the scalar, in the frame where the scalar and the 
gravitational fluctuations are demixed — the so-called Einstein frame.   Together with the 
four functions describing the gravitational quadratic action, each matter species is now char- 
acterized by two new functions  parametrizing their  conformal and disformal  couplings to 
the gravitational metric. However, as reviewed in section 2, the structure of the full action 
remains invariant under conformal and disformal transformations of the gravitational metric 
itself. Taking into account this freedom, which allows for instance to choose a frame where 
one of the species is minimally coupled, one eventually finds that the whole system depends 
on a total of 2(NS + 1) independent functions of time, where NS is the number of matter 
species. In this context, the conditions for stability (i.e. the absence of ghostlike and gradient 
instabilities) can be generalized to any frame (see section 2). 

In this article we go one step further and explore the constraining power of future large 
scale structure surveys on the deviations from the standard ΛCDM scenario, expressed in 
terms of the parameters of the effective theory of dark energy proposed in [20]. Specifically, 
we will consider a simple scenario where the gravitational sector is described by Horndeski- 
like models while, in the matter sector, cold dark matter (CDM) is nonminimally coupled to 
gravity.  This extends to a much broader spectrum of gravitational theories previous studies 
of coupled dark energy, with conformal [25, 26] (see also [27] and references therein) and 
disformal (see e.g. [28–37]) couplings. 

 

1A treatment of single-field dark energy coupled to CDM in the context of the Parameterized Post- 
Friedmann framework can be found in [21]. 

2Note that although Horndeski theories are generically unstable under quantum corrections [22],  an exam- 
ple of a radiatively stable subclass of Horndeski theories where all the operators of action (2.3) can be relevant 
has been proposed in [23], based on weakly broken galileon invariance, and applied to inflation in [24]. 
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The equations of motion for the linear perturbations in the presence of modified gravity 
and nonmininally coupled CDM, derived in [20], are reviewed in section 3, where we assume 
the quasi-static approximation. As shown  in  [38],  this  approximation  should  be  reliable 
for surveys such as Euclid as long as the sound speed exceeds 10% of the speed of light, 

i.e.  cs  4 0.1. In  particular,  we  will  consider  the  extreme  quasi-static  limit,  i.e.  the  limit 

k → ∞, of the dynamics. In such a regime the linear growth of matter (both for baryons and 
CDM) remains scale-independent as in ΛCDM. Modifications of gravity and the nonminimal 
coupling to CDM are encoded in the time dependence of the gravitational couplings in the 
“Poisson” equations for the metric potentials, which are different for baryons and CDM. As 
explained in section 3, this time dependence modifies the growth rate of structures and the 
lensing potential, which in turn affect, respectively, the redshift-space distortions and the 
weak-lensing cosmic shear. 

In section 4 we introduce the details of our parametrization, in particular concerning the 
time dependence of the parameters characterizing the modifications of gravity. We consider 
three fiducial models: a minimal ΛCDM model, a braiding model and a model with an active 
nonminimal coupling of CDM. In section 5 we perform a Fisher matrix analysis based on 
future photometric and spectroscopic data with configuration parameters close to those of 
the Euclid mission [27, 39] as an example. We focus on the two-point statistics and consider 
the galaxy power spectrum in redshift space for the spectroscopic data, the projected weak- 
lensing shear power spectrum for the photometric data as well as the correlation between the 
ISW effect in the CMB temperature and the photometric galaxy distribution. The derived 
constraints are discussed in section 6, together with the involved degeneracies. It should 
be mentioned that other approaches have been developed to study in a general and model- 
independent way the impact of modified gravity on cosmological observables, together with 
the involved degeneracies, e.g. on the growth rate of fluctuations [40] (see also [41, 42]) or on 
the weak lensing [43]. 

In section 7 we summarize our results and draw conclusions. Details on the parametriza- 
tion and the choice of background cosmological parameters are given in the appendix A, while 
in appendix B, we discuss the frame dependence of the evolution equations of matter. 

 

2 Model and main equations 

In this section, we introduce our general formalism and then focus on the specific model 
at the core of the present work. The first subsection, which is mainly a review of our 
recent paper [20] and previous works, can be skipped by the reader mostly interested in our 
phenomenological model and forecasts for the parameter constraints. The model that we are 
specifically studying in the rest of this paper is described in the second subsection. 

2.1 Effective description of the gravitational and matter sectors 

We start by summarizing the effective approach of dark energy introduced and developed in 
refs. [1, 3, 20] (see e.g. [11, 44] for reviews). The gravitational sector is assumed to consist of 
a four-dimensional metric gµν and of a scalar field φ. In order to treat simultaneously a wide 
range of models, it is very convenient to “hide” the scalar field in the metric, by choosing the 
constant-time hypersurfaces to coincide with the uniform scalar field hypersurfaces. In this 
gauge, referred to as unitary gauge, the metric can be written in the ADM form [45], 

ds2 = −N 2dt2 + hij  dxi + Nidt dxj + N jdt  , (2.1) 

where N is the lapse function, N i the shift vector and hij the three-dimensional spatial metric. 
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T 

ij 
2N 

ij i j j i 

In unitary gauge, a generic gravitational action can be written in terms of geometric 
quantities that are invariant under spatial diffeomorphisms, namely in terms of the lapse N , 
the 3d Ricci tensor Rij of the constant time hypersurfaces, as well as their extrinsic curvature 
Kij, with components 

K =  
  1    

ḣ − D N   − D  N 
  

, (2.2) 
 

where a dot stands for a time derivative with respect to t, and Di denotes the covariant 
derivative associated with the spatial metric hij (spatial indices are lowered or raised via the 
metric hij). 

The generalized Friedmann equations are then obtained by varying the specialization 
of  the  action  to  a  homogeneous  FLRW  (Friedmann-Lemâıtre-Robertson-Walker)  spacetime, 

endowed with the metric ds2 = −dt2 + a2(t)d→x2 .  The dynamics of the linear perturbations is 
governed by the quadratic action, obtained by a perturbative expansion of the original action. 

In this paper, we will consider a very large class of models, which includes all Horndeski 
theories, for which the quadratic action can be written in the form [3, 9–11]3 

(2) 

∫ 
3 3 M 2

 

i j 2 
 

 

 √ 
3
  

Sg = d xdt a 
2 

δKjδKi   − δK + RδN + (1 + αT) δ2 
  

 

 

hR/a 
(2.3) 

 

where M , αT, αB and αK are four time-dependent functions and δ2 denotes the second order 

term in a perturbative expansion.  H  ≡ ȧ/a is the Hubble parameter.  We have not included 
irrelevant terms that vanish when adding the matter action and imposing the background 
equations of motion. Note that (2.3) does not include the models beyond Horndeski [12] 
for which the coefficient of the term R δN differs from 1, the difference defining a new 
parameter αH [11]. 

General relativity corresponds to the particular case where αT = αB = αK = 0 and 
M = MPl. In general, the above quadratic action contains not only two tensor modes, as 
in general relativity, but a scalar mode as well. The coefficient in front of the tensor kinetic 
term is M 2 and, by analogy with general relativity, M can be identified with an effective 
Planck mass. If M depends on time, it is convenient to introduce the related parameter 

 
1 d ln M 2 

αM ≡ 
H

 . (2.4) 
dt 

The parameter αT appears in the gradient term of the tensor modes and is thus directly 
related to the tensor propagation speed, namely 

 

      c2 ≡ 1 + αT . (2.5) 
 

3Together with the operator αHδNR, this is the most general quadratic action for linear perturbations 

about a homogeneous and isotropic spacetime that does not induce higher derivatives in the equation of motion  
of the linearly propagating scalar degree of freedom. In consistent effective theories, higher time derivatives 
are not forbidden but are suppressed by positive powers of the ratio between the energy and the cutoff scale 
(see e.g. [46, 47]). Thus, at energies much smaller than the cutoff their effect can be neglected without loss of 
generality. Higher spatial derivatives are not necessarily suppressed and may dominate the dispersion relation,  
such as in the Ghost Condensate theory [48]. In this case, higher spatial gradients become relevant, and can 
easily be included in our formalism, but begin operating at very short distances [6, 49], typically shorter than 
the cosmological ones. 

, 
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T 

The stability of the tensor modes is ensured by requiring M 2 > 0 (absence of ghosts) and 

αT > −1 (absence of gradient instabilities).4 

Keeping in mind that the lapse perturbation is analogous, in the ADM language, to the 
time derivative of the scalar perturbation, one observes that the parameter αK is related to 
the coefficient of the kinetic scalar term. It is thus present for simple quintessence models. 
Finally, the coefficient αB characterizes the mixing between the scalar and tensor kinetic 
terms, sometimes called “braiding”. In contrast with the tensor modes, the full dynamics 
of the scalar mode depends on the matter action as well, and the discussion on the scalar 
stability conditions thus needs to be postponed until after the introduction of the matter 
action below. 

The remarkably simple form of the quadratic action (2.3) holds only in the unitary 
gauge. However, it is straightforward to derive the quadratic action in an arbitrary gauge, 
by simply performing a time reparametrization of the form 

 

t → φ = t + π(t, x) , (2.6) 

where the unitary time becomes a four-dimensional scalar field. The scalar degree of freedom 

of the gravitational sector thus reappears explicitly in the form of the scalar perturbation π. 

A matter species can be either minimally or nonminimally coupled to the gravitational 

metric gµν. In the latter case, it is often assumed that matter is minimally coupled to some 
effective metric g̃µν , which depends on gµν  and on the scalar field φ.  We will adopt this type 
of nonminimal coupling in the following and consider a matter action of the form 

 
Sm = Sm[ψm, g̃µν ] , (2.7) 

 

with 

g̃µν  = C(φ)gµν + D(φ)∂µφ∂νφ . (2.8) 

 

The initial gravitational metric gµν being somewhat arbitrary in general, one has the 
freedom to choose the metric g̃µν  as the new gravitational metric.  Remarkably, the quadratic 
action (2.3) remains of the same form [20, 52],5 with new parameters defined as 

 

M̃ 2 M 2 
= 

C
√

1 + α 

 

(2.9) 

 
 

4As shown in [20, 50] and reviewed below, the propagation speed for gravitons can be set to unity by 
a convenient disformal transformation (only ratios between sound speeds are invariant and thus meaningful 
physical quantities).   It is thus not a priori pathological to have c2 > 1 in a generic frame and we will 
not impose any upper bound on cT as a condition for the viability of the theory. A propagation speed for 
gravitons smaller than that of the other particles is instead very tightly constrained at high energy by cosmic  
rays observations [51]. We have not taken this bound into account in our analysis, since it concerns the speed 
of gravitational waves at wavelengths much shorter than the cosmological ones. 

5In the presence of the operator proportional to αH [3, 11] describing linear perturbations in the theories 

beyond Horndeski proposed in [12, 13], the structure of the Lagrangian remains invariant under the trans- 
formation (2.8) even if the disformal function D depends on (∂φ)2 as well [12] (see also [53] for a recent 
study). 
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B 

I 3H2M 2 

s 

s α H2 T 
H 2 

I I 

and6  
αK + 12αB[αD + (1 + αD)αC] − 6[αD + (1 + αD)αC]2 + 3ΩmαD 

 
 α̃K = 

(1 + αC )2(1 + αD )2 , 

α̃B 

 
α̃ 

=
 1 + αB  

1 ,
 

(1 + αC)(1 + αD) 

=  
αM − 2αC  

− 
  α̇D   

,
 

 
(2.10) 

M 1 + αC 2H(1 + αD)(1 + αC) 
 
 

where 

α̃T = (1 + αT)(1 + αD) − 1 , 

C˙ D 

αC ≡ 
2HC 

, αD ≡ 
C − D 

. (2.11) 

Given a single species of matter, one can thus always work in the frame where this species 
is minimally coupled. If there are several matter species, this is possible only in the case of 
universal coupling, i.e. if all species are coupled to gravity via the same effective metric. By 
contrast, for species with different couplings, one cannot find a frame where all of them are 
minimally coupled.  It remains however possible to choose a frame where one of the species 
is minimally coupled, even if the others are not.7 

The sum of the gravitational and matter actions at quadratic order yields the dynamics 
of the scalar mode, as mentioned earlier. As shown in [20], the kinetic term of the scalar 
mode is proportional to the combination 

α ≡ αK + 6α2 + 3 
Σ 

αD,I ΩI , (2.12) 

 
where 

I 

 

Ω  ≡
 ρI , (2.13) 

while its propagation speed is given by 

c2 = − 
2 

  

(1+α )

  
Ḣ   

− α 

 
+α +α 

 
(1+α )

 

+ 
α̇B 

+ 
3 Σ h

1+(1+α 
 

 

)w 
i
Ω  

  

. (2.14) 

 

The stability conditions for the scalar mode, 

α ≥ 0 , c2 ≥ 0 , (2.15) 

involve all the modified gravity parameters, as well as the matter disformal couplings. 
 

2.2 Baryon-CDM model 

In our model, the coupling of CDM to the gravitational sector is different from that of the 
other species (baryons, photons and neutrinos).  In the following,  for simplicity,  we choose 
to work in the frame where the other species are minimally coupled and assume that the 

6Here  we  correct  a  typo  in  the  expression  for  α̃K   in  eq.  (2.45)  of  the  arXiv  version  of  ref.  [20]. 
7The situation simplifies during inflation, when the couplings to matter can be ignored. In this case, 

without  loss  of  generality  one  can  always  go  to  a  frame  where  α̃M   = α̃T   = 0,  corresponding  to  the  standard 
time-independent Planck mass and unity speed of propagation for gravitons. In this frame one then recovers  
the standard inflationary predictions [50]. 
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µν 

µ 

µ 

 

−

 

 

−

 

c 
2Cc 2Cc (c) ν (c) Cc 

c 
1 + αD,c 

D,c 
Hρc 2H(1 + αD,c) 

original metric gµν corresponds to this frame (if  not,  one just needs  to apply the above 
metric transformation).   We then assume that the coupling of CDM to gravity and dark 
energy is characterized by an effective metric of the form 

ǧ(c) ≡ Cc(φ)gµν + Dc(φ)∂µφ∂νφ , (2.16) 

from which one can define, in analogy with (2.11), the conformal and disformal parameters 

Ċc      Dc  
αC,c ≡ 

2HC , αD,c ≡ 
C

 
— Dc 

. (2.17) 

We ignore the photon and neutrino cosmological fluids, as we are interested in late-time 
cosmology where their effects are negligible. 

The equations of motion for the matter species follow from the conservation, or non- 
conservation, of their respective energy-momentum tensor. Since baryons are minimally 
coupled, their energy-momentum tensor is conserved as usual, i.e. 

∇µT(b)  ν  = 0 . (2.18) 

By contrast, the CDM energy-momentum tensor is not conserved, but instead satisfies the 
equation 

 
with 

∇µT(c)  ν + Qc∂νφ = 0 (2.19) 

Cc
J 

Q  ≡ − T 
Dc

J 
µν 

— T ∂ φ∂ φ + ∇ 

 

Tµν∂ φ 
Dc  

     

, (2.20) 
 

where a prime denotes a derivative with respect to φ. Like the usual conservation equation, 
this equation can be derived by simply using the invariance of the matter action under 
arbitrary diffeomorphisms. 

The background evolution equations for the baryon and CDM fluids follow directly 
from (2.18) and (2.19). On a FLRW background, the definition of Qc, eq. (2.20), reduces to 

Q̄   =  
   Hρc     

 

α
 

+ α 

 

3 + 
  ρ̇c    

  

+ 
  α̇D,c  

  

. (2.21) 
 

Substituting the above expression into eq. (2.19), one finds that the homogeneous fluid equa- 
tions can be written in the form 

ρ˙b + 3Hρb = 0 , (2.22) 

ρ˙c + 3H(1 − γc)ρc = 0 , (2.23) 

where the coupling parameter γc is given by8 
1 α̇D,c 

γc = 
3 

αC,c + 
6H(1 + α 

 
D,c 

. (2.24) 
) 

Expressed in terms of the energy density fractions defined in (2.13), the evolution equa- 
tions for the baryon and CDM energy densities, (2.22) and (2.23), become 

Ω̇ b = H    3 + 2 
Ḣ

 
H2 

 
+ αM 

 

Ωb

  
, (2.25) 

Ω̇ c = H    3 + 2 
Ḣ

 
H2 — 3γc 

 
+ αM 

 

Ωc

  
. (2.26) 

 
 

8Taking  into  account  eq.  (2.23)  one  finds  that  Q̄c  = 3Hρcγc. 
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2 2 ≡ 
− − 1 

3M 2 
m DE 

2M 2 
DE b 

1  

The presence of the coefficient αM is due to the fact that the mass M , which appears in the 
definition (2.13), can be time-dependent. 

The evolution of the Hubble parameter is usually determined by the Friedmann equa- 
tions. In the present work where dark energy remains unspecified at the background level, one 
can alternatively assume some specific evolution H = H(t) and infer from it the dark energy 
background components. This means that the Friedmann equations, written in the form 

H2  = 
  1   

(ρ   + ρ ) , 
    

Ḣ  = − [ρ 

 
+ (1 + w 

 
)ρ ] , ρ ≡ ρ + ρ 

 
,  (2.27) 

 

are treated as definitions of the energy density for dark energy, ρDE, and of its equation of 
state parameter, wDE, namely 

 
 
 

where 

 
ρDE 

 
≡ 3M  H   − ρm 

 
, wDE 

2  Ḣ   
3 H2 

, (2.28) 
1 − Ωm 

Ωm ≡ Ωb + Ωc . (2.29) 

Given some prescription for the time-dependent functions H = H(t), αM(t) and γc(t), 
the evolution of Ωb and Ωc can be determined in terms of their present values Ωb,0 and Ωc,0. 
This will be done explicitly in section 4.1. 

 
3 Linear  perturbations 

In this section, we present the equations governing the linear perturbations. For convenience, 
we work in the Newtonian gauge, where the scalarly perturbed FLRW metric reads 

ds2 = −(1 + 2Φ)dt2 + a2(t)(1 − 2Ψ)d→x2 . (3.1) 

For each species, the continuity and Euler equations can be derived from, respectively, the 
time component and the space components of eqs. (2.18)–(2.19). As obtained in [20], they 
read in Fourier space 

˙ k2 
˙ 

δb − 
a2 vb = 3Ψ , (3.2) 

v˙b = −Φ , (3.3) 
˙ k2 

· ˙ 
δc − 

a2 vc = 3(Ψ + γcHπ)  + 2(1 + αD,c)(αC,c − 3γc)H(Φ − π̇ ) − αD,c(Φ − π̈) , (3.4) 

v˙c + 3Hγcvc = −Φ − 3Hγcπ . (3.5) 

These equations must be supplemented by the generalized Einstein equations and by 
the scalar fluctuation equation. We will not write them explicitly here but they can be 
found in [20]. 

 

3.1 Quasi-static approximation 

The evolution of perturbations well inside the horizon is most conveniently studied within 
the quasi-static approximation. This is justified for spatial scales that are smaller than the 
sound horizon of dark energy, or equivalently for wavenumbers k aH/cs (see [38] for a 
detailed discussion and [54] for a recent analytical extension of this approximation). In this 
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s 

s 

s 

ξ b ξ γ c c 

δb + 2Hδb = 
2 

H Ωm (1 + αT + βξ )ωbδb + [1 + αT + βξ(βξ + βγ)] ωcδc 

δc + (2 + 3γc)Hδc = 
2 

H ωcδc 

(3.16) 

regime, one can neglect time derivatives with respect to space derivatives and the continuity 
and Euler equations (3.2)–(3.5) for the baryon and CDM fluids simplify into 

 

˙ k2 

δb − 
a2 vb = 0 , (3.6) 

v˙b = −Φ , (3.7) 

˙ k2 

δc − 
a2 vc = 0 , (3.8) 

v˙c + 3Hγcvc = −Φ − 3Hγcπ . (3.9) 

The equations for the gravitational potentials Φ and Ψ and for the scalar fluctuation 
π also simplify and become constraint equations. The gravitational potentials satisfy two 
Poisson-like equations, given by [20] 

 

k2 3 2 

− 
  

1 + α + β2
  

ω δ 
 

+ [1 + α 
 

+ β (β + β )] ω δ 
} 

, (3.10) 

k2 3 2 

− 
a2 Ψ = 

2 
H  Ωm {(1 + βBβξ) ωbδb + [1 + βB(βξ + βγ)] ωcδc} , (3.11) 

 

where we have introduced the parameters ωI  ≡ ΩI/Ωm, 

√
2

 

βB ≡ 
c α1/2 

αB , 

√
2 

√
2

 (3.12) 

βξ ≡ 
c α1/2 

ξ ≡ 
c α1/2 

[αB(1 + αT) + αT − αM] , 

 
as well as9 

s s 
 

3
√

2 

βγ ≡ 
c α1/2 

γc . (3.13) 

The scalar fluctuation also satisfies a Poisson-like equation, which reads 
 

k2 

— 
a2 π = 3HΩm 

βξωbδb + (βξ + βγ)ωcδc 
√

2c α1/2 
. (3.14) 

 

Combining eqs.  (3.6)–(3.9) with eqs.  (3.10)–(3.11) and (3.14) leads to a  system of  two 
second-order equations for the density contrasts, 

¨ ˙ 3 2 2 
} 

¨ ˙ 3 2 
2 } 

 

 

Introducing the bias bc (bb) between CDM (baryons) and the total matter density contrast 

δm ≡ ωbδb + ωcδc, as 
δc = bc δm (δb = bb δm) , (3.17) 

 

9The parameter βγ   generalizes the parameter β defined f√or  coupled quintessence in section 5.3.4 of [15].  In 
this case, the relation between the two parameters is βγ = − 

on this issue. 
2β. We thank Valeria Pettorino for a discussion 
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a2 Φ = 
2 

H Ωm T b T ξ 

, (3.15) 

Ωm [1 + αT + βξ(βξ + βγ)] ωbδb + 1 + αT + (βξ + βγ) . 
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the influence of modified gravity and nonminimal coupling onto the growth of perturbations 
enters through the combinations 

Υb ≡ αT + βξ(βξ + βγωcbc) , Υc ≡ αT + (βξ + βγ)(βξ + βγωcbc) , (3.18) 

which vanish for standard gravity (the friction term γc on the left hand side of eq. (3.16) 
is essentially a background effect and does not affect directly the energy density perturba- 
tions δρb,c). 

Modifications of gravity exchanged by π are parametrized by βξ and the nonminimal 
coupling of dark matter is parametrized by βγ [20]. This separation of effects is not physical 
and depends on the choice of frame. Indeed, under a generic change of frame (2.8), one finds, 
using (2.9)–(2.10) as well as the relations 

 

α̃D,I = 
αD,I − αD 

,
 

1 + αD 

 

α̃C,I 
= 

αC,I − αC 
, (3.19) 

1 + αC 

that these two parameters transform as 

β̃ξ  = (βξ + βγ∗)(1 + αD)1/2 , 

β̃γ  = (βγ − βγ∗)(1 + αD)1/2 , 

 
 
 

(3.20) 

where  
βγ∗ = 

3
√

2 
 

 

csα1/2 

 
γ∗ = 

√
2

 
 

 

csα1/2 

 

αC + 

 
  α̇D 

2H(1 + αD) 

 
 

. (3.21) 

See also appendix B for a discussion on the frame dependence of eqs. (3.15) and (3.16) and 
of the combinations Υb,c. 

The modification of gravity associated with the parameter αT does not depend on the 
exchange of π, see eq. (3.14) and refs. [20, 55] (see also [56] for a recent discussion on local 
constraints of this effect), and does not mix with the other two effects under change of frame. 

We note that if αT ≥ 0 (which corresponds to a speed of graviton fluctuations cT ≥ 1) 
in the absence of nonminimal coupling, i.e. βγ = 0, the combinations (3.18) are always 
positive, which tends to enhance the growth of structure. More generally, for a positive αT 
the combinations Υb and Υc can be negative only if βξ has the opposite sign of βγ. 

Since equations (3.15)–(3.16) are independent of the wavenumber k, one can factorize 
the time dependence from the k dependence of the initial conditions and write the solutions 
in the form 

δc(t, →k) = Gc(t) δc,0(→k) , δb(t, →k) = Gb(t) δb,0(→k) , (3.22) 

where δc,0 and δb,0 represent the initial density contrasts for CDM and baryons respectively, 
defined at some earlier time in the matter dominated era.  The two functions of time Gc(t) 
and Gb(t) are the growth factors for CDM and baryons, respectively, assumed to be equal at 
the initial time, Gc(0) = Gb(0) = 1. 

The continuity equation (3.8) then implies that the velocity potential vc for CDM is 
given by 

 

→ a2   
˙ 

 
 

→ a2H → 
 

 

vc(t, k) = 
k2 Gc(t) δc,0(k) =    

k2    fc(t) δc(t, k) , (3.23) 

where, in the second equality, we have introduced the CDM growth rate 

d ln Gc 
fc ≡  

d ln a  
. (3.24) 
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Similarly, using the continuity equation (3.6), one finds that the velocity potential vb for 
baryons is given by 

 

a2H → 
 

 

d ln Gb 
 

 

vb =   
k2   f (t) δb(t, k) , fb ≡ 

3.2 Link with observations 

. (3.25) 
d ln a 

We now examine how the quantities introduced above can be probed by cosmological obser- 
vations. 

A powerful cosmological probe for dark energy is weak lensing, which depends on the 
so-called scalar Weyl potential, i.e. the sum of the two gravitational potentials Φ and Ψ. 
Combining the Poisson-like equations (3.10) and (3.11), one gets the expression 

3a2H2 
Φ + Ψ = −  

2k2    Ωm [2 + αT + (βξ + βB) (βξ + βγωcbc)] δm . (3.26) 

In analogy with the combinations (3.18), it is convenient to define 

Υlens ≡ αT + (βξ + βB) (βξ + βγωcbc)  , (3.27) 

which vanishes when gravity is standard. 
Another way to probe dark energy is via the observation of galaxy clustering. In par- 

ticular, redshift-space distortions are sensitive to the growth rate of fluctuations, which is 
affected by deviations from standard gravity. Here we extend previous studies and include 
also the effect of a nonminimal coupling of CDM. 

When observing galaxies, one must take into account the fact that what is directly mea- 
sured is the redshift, and not the distance of the galaxy. In the parallel plane approximation, 
the correspondence between the so-called redshift space and real space is described by the 
change of coordinates (see e.g. [57]) 

→s = →x + ẑ
vg,z  

, (3.28) 
aH 

where →s and →x denote the spatial coordinates in redshift and real space respectively and vg,z 
is the line-of-sight component of the galaxy’s peculiar velocity. At linear order, the invariance 
of the number of galaxies yields the expression for the number density in redshift space in 
terms of the number density in real space: 

1 
δg,s = δg − 

aH 
∇zvg,z . (3.29) 

On large scales, the galaxy peculiar velocity →vg  can be related to the CDM and baryon 
fluid  velocities,  respectively  →vb  and  →vc,  by  effectively  treating  galaxies  as  test  particles  (see 

e.g. [58]) of baryon and CDM mass fractions xb ≡ Mb/Mg and xc ≡ Mc/Mg (Mg ≡ Mb +Mc), 
respectively.  By considering that the large-scale galaxy momentum coincides with the sum 
of the baryon and CDM fluids momenta in the linear regime, the galaxy peculiar velocity is 
given as 

→vg = xc→vc + xb→vb , (3.30) 

where  →vc  =  ∇→ vc  and  →vb  =  ∇→ vb  are  the  linear  velocities  satisfying  the  Euler  equations  (3.7) 
and (3.9). Indeed, in the absence of screening the mass of the CDM component in the galaxy 
is not conserved and obeys 

Ṁ c  = 3HγcMc , (3.31) 
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g 

0 

in agreement with the background evolution (since Mc scales as ρca3). Then, the combination 
of the Euler equations yields 

d d d (M  →v  ) = (M  →v  ) + (M →v 
 

   

) = F→  , (3.32) 

 
where 

dt 
g  g 

dt 
c   c dt b  b g 

F→g  = −Mg∇→ Φ + 3HγcMc∇→ π (3.33) 

is the neat force exerted on each galaxy. The last term is due to the fifth force on the CDM 
component. 

Using the expression (3.23) and (3.25) for the velocity potentials, one thus finds 

a2H 
vg =   

k2   (xcfc δc + xbfb δb) . (3.34) 

Substituting the above expression into (3.29), and proceeding as in the standard calculation, 
one finally obtains, in Fourier space, 

 
δ = δ 

 
+ µ2 (x f δ kz + x f  δ ) , µ ≡ , (3.35) 

g,s g 

or 

c  c   c 
 
 
 

µ2 

b b   b k 

δg,s = δg + 
g 

(xcfc bc + xbfb bb)δg , (3.36) 

after introducing the galaxy bias bg, defined by 

δg = bg δm . (3.37) 

The galaxy power spectrum in redshift space is thus given by 

Pg,s (→k) =  
 

b2 + µ2f 
 

eff 

 2
P

 
(k) , (3.38) 

where we have introduced the effective growth rate of the galaxy distribution as 

feff ≡ xcfc bc + xbfb bb . (3.39) 

In the absence of nonminimal coupling of CDM (i.e. for universally coupled baryons and 

CDM) the species have the same velocities, i.e. fb bb = fc bc = f ≡ d ln δm/d ln a. 
In the following we will assume the same baryon-to-CDM ratio for each galaxy and we 

will set this to be the background value, i.e. xc = ωc and xb = ωb. However, one could also 
consider different populations of galaxies with different baryon-to-CDM ratios and study the 
effects of equivalence principle violations on large scales between these different populations 
(see e.g. [59]). 

 

4 Parametrization 

4.1 Time dependence 

As already mentioned, at the background level the dark energy can be defined by simply 
giving a specific time evolution for the Hubble parameter. For simplicity, we assume that the 
expansion history corresponds to that of wCDM, so that H is given by 

H2(a) = H2 
h

Ωm,0a−3 + (1 − Ωm,0)a−3(1+w)
i 

, (4.1) 
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≡ 

s 

s 

≡ 

where Ωm,0 is the fraction of matter energy density today, w is a constant parameter and the 
scale factor a is normalized to unity today. This choice of parametrization for the background 
is motivated by the fact that observations suggest that the recent cosmology is very close to 
ΛCDM, which corresponds to w = −1, and deviations from ΛCDM in the expansion history 
are usually parametrized in terms of w  /=  −1.   In the absence of modifications of gravity 
and nonminimal couplings, i.e. for αM  = γc  = 0, w  coincides with the equation of state of 
dark energy, i.e. wDE in eq. (2.28). Another advantage of this parametrization is that the 
background expansion remains close to the observed one, even when αM or γc are switched 
on and matter does not scale as a

−3 (see eqs. (2.25) and (2.26)). In this way we can assume 
that the background cosmological parameters are those fitted by a simple ΛCDM model. See 
discussion at the beginning of section 5 and in appendix A.1. 

In the framework of our effective description, gravitational modifications are encoded 
in the functions αB, αM and αT, and the non-minimal coupling of CDM is parametrized by 
γc.10 The time dependence of these parameters is undetermined in general. In order to obtain 
some quantitative estimates about how much future observations will be able to constrain 
these parameters, we will focus in the following on a specific functional form for their time 
dependence. 

For simplicity, we will assume that the functions αB, αM and αT share the same time 
dependence Γ(t), 

 

αB(t) = αB,0 Γ(t) , 

αM(t) = αM,0 Γ(t) , 

αT(t) = αT,0 Γ(t) , 

 
(4.2) 

 

where Γ is normalized to unity today, i.e. Γ(t0) = 1, and αB,0, αM,0 and αT,0 denote the 
current values of these parameters, which we wish to constrain. To be more specific, we will 
consider the following time evolution,11 

Γ(t) 
1 − Ωm(t) 

, (4.4) 

1 − Ωm,0 

where Ωm is the total nonrelativistic matter fraction introduced in (2.29) and Ωm,0 its present 
value. Thus, Γ vanishes when the unperturbed energy density of dark energy is negligible, 
such as at high redshift, and one recovers general relativity. The above parametrization is 
analogous to the one proposed in [10, 14], up to a normalization factor. 

We parametrize the time dependence of γc by assuming that the parameter βγ, defined 
in eq. (3.13), is time-independent, so that 

βγ 
γc(t) = 

3
√

2 
cs(t)α 

 
1/2 

 
(t) , (4.5) 

 
 

10In the quasi-static approximation, the parameter αK does not appear in any equation (note that the 
combination c2α does not depend on αK), while αC,c and αD,c only enter through the combination γc (the 
combination c2α does not depend on αD,c, since wc = 0), so that their individual values remain unconstrained 
in the analysis. 

11Another possible choice would be 

Γ(a) 
  1 

, (4.3) 
Ωm,0a3w + (1 − Ωm,0) 

which has the advantage to be directly related to the scale factor a. We have checked that this choice leads 
to constraints similar to those obtained with the choice (4.4). 
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T 

s 

s 
2 

≥ 

s 

b 
2 

b c c 

γ γ c γ γ γ c γ 

2 γ c c,in 

γ γ   c 

and the time dependence on the right-hand side can be computed from eq. (2.14). This 
choice of parametrisation allows to include coupled quintessence [60] as a special case, or 
more generally other cases where the nonminimal coupling of CDM remains active also when 

φ̇/(HM )  becomes  negligibly  small,  since  one  can  have  csα1/2  = 0  while  βγ 0. Moreover, 
cs(t)α1/2 vanishes  in  matter  domination,  see  appendix  A.2  for  details. Therefore,  when 

Ωm  → 1, then Γ → 0 and γc  → 0, which corresponds to the standard matter dominated 
phase for the background evolution.  However, while modifications of gravity switch off in 

this limit (i.e. αB, αM, αT → 0), the nonminimal coupling parametrized by βγ remains active 
(see eq. (4.8) and discussion in the next subsection). 

Let us briefly discuss the  theoretical  constraints  coming  from  the  stability  condi- 
tions [1, 3, 20].  As discussed in section 2, the absence of ghost-like and gradient instabilities 
in the tensor fluctuations respectively requires M 2 > 0 —which will be always assumed here 

and in the following — and c2 > 0. Requiring that the second condition is satisfied at all 
times, eq. (2.5) implies 

αT,0 > −1 . (4.6) 

For scalar fluctuations, these two conditions become α ≥ 0 and c2 ≥ 0, where the expressions 
for α and c   are respectively given in eqs. (2.12) and (2.14).  In the following we assume that 
α   0 is satisfied by an appropriate choice of the parameters αK, αB and αD,c and we will 
exclude parameters for which the combination c2α (see eq. (A.5)) becomes negative before 
z = 0 (see again appendix A.2 for details). 

 
4.2 Initial conditions for the perturbations 

We set the initial conditions during matter domination, i.e. when Ωm ' 1, and thus Γ ' 0.  In 
this limit αM ' 0 and γc ' 0, so that, according to eqs. (2.22)–(2.23), both CDM and baryons 
behave as conserved species at the background level. Moreover, αT ' 0 and eqs. (3.12)–(3.13) 

respectively imply that βB ' 0 and βξ ' 0.  Therefore, deep in matter domination eqs. (3.15) 
and (3.16) simplify to 

 

δ̈   + 2Hδ  ̇
3 2 

' H [ω δ 

 

+ ω δ ] , (4.7) 

δ̈  + 2Hδ̇ ' 
3 

H2 
 
ω δ + 

 
1 + β2

  
ω δ  

   
, (4.8) 

c 

 
where ωb,c are constant. 

c 2 b b γ c  c 

This linear system can easily be solved by diagonalizing it. One can find solutions 
written as 

δb = bb,in δm , δc = bc,in δm, (4.9) 

with constant and scale-independent bias parameters given by 

1+β2ωc − 
q

4β2ω2  + (1 − β2ωc)2 −1+β2ωc + 
q

4β2ω2  + (1 − β2ωc)2 
bb,in = 

2β2ωcωb 
, bc,in = 

2β2ω2 
.
 

(4.10) 
The respective growth functions Gc and Gb are identical, solutions of the equation 

 

G̈ + 2HĠ  − 
3 

H2 
 

1 + β2ω2b 
  

G = 0 . (4.11) 
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c γ γ γ γ 

b c γ 
5 c γ 

0 c c b γ 
5 c γ 

0 

As usual, we will consider only the growing mode solution of this equation, G+. In conclusion, 
we find that baryons and CDM possess spectra that are initially proportional and then grow 
similarly. 

Although we use the full expressions from (4.10) and (4.11) in our numerical analysis, 
it is instructive to consider approximate expressions for small values of βγ. For small βγ 
eq. (4.10) yields 

 

bb,in = 1 − ω2β2 + O(β4) , bc,in = 1 + ωcωbβ2 + O(β4) , (4.12) 

while the growing solution of eq. (4.11) is of the form 

1+ 3 ω2β2 4 

G+(a) = a 5   c   γ  + O(βγ ) . (4.13) 
 

Thus, for small βγ the initial conditions in matter domination are simply given by 
 

δ  (a, k) ' (1 − ω2β2) a1+ 
3 ω2β2  

δ  (→k) , δ  (a, k) ' (1 + ω  ω  β2) a1+ 
3 ω2β2  

δ  (→k) . (4.14) 

4.3 Fiducial models 

For our analysis, we take as fiducial evolution of the Hubble parameter the function 

Ĥ(a) = H0

q
Ωm,0a−3  + 1 − Ωm,0 , (Fiducial) (4.15) 

which corresponds to the ΛCDM evolution, i.e. w = −1 in eq. (4.1) and a quantity evaluated 
on the fiducial model is denoted by a hat. The fiducial value for two of the parameters that 
appear in our analysis is taken to be zero, 

 

α̂M,0 = α̂T,0 = 0 , (Fiducial) (4.16) 
 

but we consider several options for the parameters βγ and αB,0. In addition to the simplest 
case where these parameters are zero, it is also instructive to consider fiducial models where 
either of these parameters is nonzero. 

We will distinguish three fiducial models, characterized respectively by the parameters 
 

I) ΛCDM: α̂B,0 = β̂γ  = 0, 
 

II) Braiding: β̂γ  = 0, α̂B,0 = −0.01, 
 

III) Interacting: α̂B,0 = 0, β̂γ  = −0.03, 
 

while the other parameters take the common values prescribed in (4.15) and (4.16). Case (I) 
gives the usual ΛCDM for the perturbations. In this case the generalized Einstein equations 
and the modified continuity and Euler equations reduce to the standard ones. Case (II) 
corresponds to a mixing between the dark energy and gravity kinetic terms at the level of 
the perturbations.   Finally,  in case (III) we allow for a non vanishing interaction between 
dark energy and CDM, which is active for perturbations but does not affect the background 
because csα1/2 = 0, and thus γc = 0. Let us stress that the background evolution is exactly 
the same for all three fiducial models. 
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5 Fisher matrix forecasts 

Our constraints will be based on a Fisher matrix analysis applied to the galaxy and weak 
lensing power spectra [61, 62] and to the correlation between the ISW effect in the CMB and 
the galaxy distribution [63]. In general, the Fisher matrix is defined as 

  
∂2 ln L(θ) 

 
 

 

  

where L is the likelihood function, θ is a set of parameters. The expectation values are 
over realizations. In the fiducial models I and III γc vanishes when varying along βγ (since 
csα1/2 = 0) and thus, since βξ = 0 (see eqs. (3.15) and (3.16)), βγ only appears quadratically 
in the perturbation equations. We have checked that observables depend only mildly on γc 
for the fiducial II. Thus, we choose β2 rather than βγ as the independent variable in the 
analysis. In summary, we have the parameters 

θ ≡ {w , αB,0 , αM,0 , αT,0 , β2} . (5.2) 

Our goal here is to estimate the precision on the above parameters that will be reached 
by forthcoming spectroscopic and photometric redshift surveys with Euclid-like character- 
istics [39] (see e.g. [60, 64, 65] for analogous studies). In particular, we are interested in 
identifying the degeneracies affecting these parameters and their origin. To simplify this 
analysis we will fix the other background cosmological parameters to their Planck estimated 
values: for w = −1 these are given by [66] h = 0.6731, h2Ωb,0 = 0.0222 and h2Ωc,0 = 0.1197, 
while for w /= −1 we choose the values of Ωb,0 and Ωc,0 such as to maintain the same angular 
diameter distance as in the w = −1 case [66]. See details in the appendix A.1. 

5.1 Galaxy clustering 

The galaxy power spectrum in redshift space is given by eq. (3.38). Including the corrections 
due to the Alcock-Paczynski effect, the observed power spectrum reads [67] 

 

Pobs (z; k, µ) = N (z) 
 
bg(z) + f 

 
 

eff (z)µ2
 2 

P 
 

(z, k) , (5.3) 
 

where the normalization factor N (z) is given by 

H(z)D̂2 (z)    1     
∫ z    dz̃    

 

N (z) ≡ 
Ĥ(z)D2 (z)  

, DA(z) ≡ 
1 + z

 
, (5.4) 

0   H(z̃) and DA is the angular diameter distance. Moreover, we assume the bias between galaxies 
and the total matter distribution, bg = δg/δm, to be scale independent. Its fiducial value has 

little effects on the constraints;  in the following we will assume it to be b̂g  =     1 + z  [68].  It 
can be taken as a nuisance parameter but we will fix it to its fiducial value, as a consequence 
of the discussion at the beginning of section 6. Finally, feff is given in eq. (3.39) and Pm(z, k) 
is the total matter power spectrum, given by 

 

Pm(z, k) = T 2 (z)P0(k) , (5.5) 
 

where 

Tm(z) ≡ ωb(z) bb,in Gb(z) + ωc(z) bc,in Gc(z) (5.6) 

θ̂ ∂θa∂θb 
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0 

∫ 

Φ+Ψ 

Fab    (z) = dk 
∂θb , (5.7) 

ij 4 H(z) χ3(z) l l 

i i 
χ(z̃) 

is the matter transfer function, P0(k) is the initial power spectrum of matter fluctuations, 
δm,0, during matter domination and bb,in, bc,in are defined in eq. (4.10). As the effects of dark 
energy and modified gravity intervene at late times, the initial spectrum is independent of 
the parameters θ.12 We have neglected corrections due to the shot noise in the number of 
galaxies and the radial smearing due to the redshift uncertainty of the spectroscopic galaxy 
samples and Doppler shift due to the virialized motion of galaxies (see e.g. [27, 69]), which 
become relevant on small scales. 

We assume a spectroscopic redshift survey of 15 000 squared degrees, sliced in eight 
equally-populated redshift bins (we take the galaxy distribution as given by [70] with a lim- 

iting flux placed at 4 × 10
−16 erg s

−1 cm
−2) between z = 0.5 and z = 2.1. The corresponding 

Fisher matrix is given by [62] 
 

LSS 
Σ  V 

∫ kmax 
 

   

2 
∫ 1 

∂ ln Pobs(z; k, µ) ∂ ln Pobs(z; k, µ) 
 

 

where V , kmin and kmax are, respectively, the comoving volume and the minimum and max- 
imum wavenumbers of the bin.  In this formula we have neglected the intrinsic statistical 
error associated with the white shot noise from the Poisson sampling of the density field [71]. 
However, to be conservative, we choose the maximum wavenumber kmax such that the galaxy 
power spectrum dominates over the shot noise and we are well within the linear regime. More 
specifically, for each redshift bin we take kmax as the minimum between π/(2R), where R 
is chosen such that the r.m.s. linear density fluctuation of the matter field in a sphere with 
radius R is 0.5, and the value of k  such that n̄iPg(k) = 1, where n̄i  is the number density of 
galaxies inside the bin. We have checked that these values of kmax are always smaller than 
H/(σg(1 + z)), with σg  = 400 km s−1, i.e. the scale where the peculiar velocity of galaxies due 

to their virialized motion becomes important.  For the minimum wavenumber, we assume 
kmin = 10−3h Mpc−1. 

Since we work in the quasi-static limit and P0(k) is unaffected by the parameters θ, the 
effects of modifications of gravity and nonminimal couplings are scale-independent.  Thus, 
the integration over k in eq. (5.7) simply gives an overall normalisation to the Fisher matrix. 

5.2 Weak lensing 

For weak lensing, we consider lensing tomography [72]. The angular cross-correlation spectra 
of the lensing cosmic shear for a set of galaxy redshift distributions ni(z) is given by 

CWL(l) = 
l 
∫ ∞   dz

 
 

Wi(z)Wj(z) 
k3(z)P

 
 

[z, k (z)] , (5.8) 

where χ(z) ≡ 
∫ z dz/H(z) is the comoving distance and the lensing efficiency in each bin is 

given by 

W (z) ≡ χ(z) 

∫ ∞ 
dz̃ n (z̃) 

χ(z̃) − χ(z)  
, (5.9) 

 

with each galaxy  distribution  normalized  to  unity, 0
∞ dz ni(z)  =  1. Moreover,  PΦ+Ψ(k)  is the 

power spectrum of Φ +Ψ. Using eq. (3.26), it is related to the matter power spectrum by 

PΦ+Ψ(k) = T 2 (z, k)P0(k) , (5.10) 
 

 

12Since modifications of gravity affecting the background evolution take place only at late time, we are  
insensitive to the the shift in the matter-radiation equality and to the change in scale of the power spectrum 
turnaround described in [60]. 
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    ∂C
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∫ 

dz 
∂z 

ij χ2(z) 
i j g l 

0 

where  
TΦ+Ψ(z, k) ≡ − 

 
3a2H2 

2k2    Ωm [2 + αT + (βξ + βB) (βξ + βγωcbc)] Tm(z) (5.11) 

is the transfer function for Ψ+Φ. Finally, we define kl(z) ≡ l/χ(z) as the wavenumber which 
projects into the angular scale l. 

We assume a photometric survey of 15 000 squared degrees in the redshift range 0 < 
z < 2.5, with a redshift uncertainty σz(z) = 0.05(1 + z), and a galaxy distribution [73] 

n(z) ∝ z2 exp 

"

− 

  
z  

 1.5
#

 

 

 
, (5.12) 

 

where z0 = zm/1.412 and zm is the median redshift, assumed to be zm = 0.9 [27, 74]. 
Then, we divide the survey into 8 equally populated redshift bins. For each bin i, we define 
the distribution ni(z) by convolving n(z) with a Gaussian whose dispersion is equal to the 
photometric redshift uncertainty σz(zi), zi being the center of the ith bin (see also [60, 65]). 

Neglecting the shot noise error due to the intrinsic ellipticity of galaxies, the Fisher 
matrix for the cross-correlation spectra in eq. (5.8) is given by [75, 76] 

 
F WL = fsky 

lmax 

 

l=lmin 

2l + 1 
Tr 

2 

WL 
ij 

∂θa 

 
CWL(l) 

 
WL 

−1 km 

∂θb 

 
CWL(l) 

 −1
)

 
 
, (5.13) 

where we choose lmin = 10 and lmax = 300. Assuming Euclid-like characteristics [39] for the 
galaxy density and intrinsic ellipticity noise, we have checked that the chosen lmax corresponds 
to scales where the shot noise is negligible and perturbations are only mildly beyond the linear 
regime at small redshift.13 

5.3 ISW-galaxy  correlation 

As a third probe, we consider the cross-correlation between the ISW effect of the CMB 
photons and the galaxy distribution in the photometric survey, which is a valuable probe of 
dark energy and of its clustering properties in the late-time universe (see e.g. [77, 78]). We 
treat the galaxy survey as for the weak lensing analysis of the previous section, i.e. we divide 
it into 8 bins and, for each bin, we consider the same galaxy distribution. Following [79], the 
projected galaxy overdensity in the bin i is given by 

gi(n̂) = 
∞ 

dz ni(z)bg(z)δm[z, n̂χ(z)] , (5.14) 
0 

while the ISW effect is given by 

∆T ISW 
 

 

∫ ∞ 
∂   

 

 

With these definitions, the angular power spectra of the projected galaxy overdensity and of 
the ISW effect are respectively given by 

Cgal(l) = 

∫ ∞ 
dz  

H(z) 
n (z)n (z)b2(z) P 

 

 

[z, k (z)] , (5.16) 

CISW(l) = 

∫ ∞ 
dz H(z) 

    
∂TΦ+Ψ 2 

(z, k) P0(k) 
 

. (5.17) 
0 χ2(z) ∂z k=kÆ(z) 

 
 

13Notice that the value of lmax chosen here is smaller than what is usually assumed in comparable analyses 
(see e.g. [27] and references therein). 
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Analogously, the angular cross-correlation spectrum  between  the  ISW  effect  and  galax- 
ies reads 

CISW-gal(l) = − 

∫ ∞ 
dz  

H(z) 
n (z)b (z)T 

 

(z)

  
 ∂TΦ+Ψ 

(z, k)P  (k)

 

 
 

. (5.18) 

 

The Fisher matrix for the ISW-galaxy correlation is given by (see e.g. [80, 81]) 
 

F ISW-gal = f 
 
 

sky 

lmax 

 

l=lmin 

∂CISW-gal(l) 
(2l + 1) Covjk 

∂θa 

ISW-gal 

(l) 
−1 k , (5.19) 

∂θb 

 

where we use lmin = 10 and lmax = 300 and the covariance matrix is given by 

Covjk(l) = CISW-gal(l)CISW-gal(l) + CCMB(l)Cgal(l) , (5.20) 
j k jk 

 

where CCMB(l) is the full CMB angular power spectrum. We have omitted from this expres- 
sion the CMB noise, which is negligible for CMB experiments such as WMAP and Planck, 
and the galaxy shot noise. We have checked that the latter is small up to the chosen lmax. 

 
6 Results 

In this section we present the results of the Fisher matrix analysis and the associated degen- 
eracies between parameters. We start by discussing the effects of nonstandard gravity on the 
evolution of homogeneous quantities. As shown below, they are important to understand the 
effects on perturbations. 

 

6.1 Background 

Before presenting the results of the Fisher matrix analysis, we discuss how the background 
evolution is modified when one goes slightly away from any of the fiducial models by modifying 
one of the parameters. The results are summarized in figure 1, where we have plotted the 
evolution of the difference between Ωb,c and their respective fiducial value. 

As is clear from (2.25), the parameter Ωb is only affected by a change of the background 
history embodied by H(z) or by a variation of the effective Planck mass M . It is thus only 
sensitive to a change of the parameters w or αM. In the former case, the evolution of ρb, and 
thus Ωb, is modified because H is changed. In the latter case, the evolution of ρb does not 
change but that of Ωb does. These changes are independent of the other parameters and one 
does not need to distinguish between the three fiducial models. 

For Ωc, the situation is exactly the same as Ωb when w or αM are changed, provided 
there is no coupling between dark energy and CDM, i.e. γc = 0. This is apparent in the boxes 
corresponding to the fiducial models I and II, for which βγ = 0. By contrast, if we start from 

the fiducial model III, where βγ /= 0, and modify either w or αM, then the deviation of Ωc 
with respect to its fiducial value is amplified due to the coupling γc generated by a nonzero 

csα1/2 combined with a nonzero βγ. For the same reason, i.e. γc /= 0, we observe a deviation 
of Ωc when αT,0 or αB,0 are switched on, in contrast with the other fiducial models. This 
also explains why one sees a deviation from the fiducial model II when βγ is switched on. 

The modifications of the background quantities discussed above affect the observables 
both indirectly, through their effect on the evolution of perturbations, and directly, because 
the observables explicitly depend on H and Ωm (see for instance eq. (5.11)). Therefore, a 
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Figure 1.  Relative change of the baryon and CDM density fractions, with respect to their fiducial 
values, as a function of the redshift z, depending on the values of the parameters w, αB,0, αM,0, αT,0 
and βγ . 

 

qualitative analysis of the effect of the parameters θ on the observables is rather complex 
and must take into account both the background evolution and the quantities Υb,c and Υlens. 
This is why we resort to a Fisher matrix analysis, which allows us to quantify the combined 
effects on the observables. 

 

6.2 Forecasts 

Let us now discuss the results of the Fisher matrix analysis. The unmarginalized errors on 
the parameters are summarized in table 1 while the two-dimensional contours are presented 
in figures 3, 4 and 5. Red dotted, green dashed and yellow solid lines respectively correspond 
to galaxy clustering, weak lensing and ISW-galaxy observables. The combination of the three 
observables, given by summing the three Fisher matrices, is plotted in thick solid black line. 
The shaded blue regions in the plots correspond to instability regions, where c2α < 0.14 

For each observable, the Fisher matrix including all the parameters is ill-conditioned 
and cannot be inverted. This means that the observables do not have the constraining power 
to resolve the degeneracies (see e.g. [82]). Thus, when plotting the two-dimensional contours 
we do not marginalise over the other parameters but we fix them to their fiducial values. 

As shown in table 1, the forecasted constraints from the three probes for the same fiducial 
model are comparable, within an order of magnitude. This reflects the comparable effects on 
the observables, shown in figure 2, given our choice of kmax  and lmax  for the spectroscopic 
and photometric surveys, respectively, which translates into a comparable number of modes 
for the three probes. More precisely, the effects of gravity modifications and nonminimal 
couplings is slightly larger on the lensing potential and ISW effect but this is compensated 
by a larger number of modes in the spectroscopic survey. 

14Here we conservatively exclude the instability region from the allowed parameter space. A more refined 
treatment would require multiplying the likelihood function by a theoretical prior that excludes the forbidden 
region, which is impossible to achieve with a Fisher matrix analysis (our priors cannot be represented with 
an invertible matrix). 
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3 

max 

modes 

γ 

γ 

γ 

 

Fid. Obs. 103 × σ(1 + w) 103 × σ(αB,0) 103 × σ(αM,0) 103 × σ(αT,0) 104 × σ(β2) 
γ 

I GC 7.0 18.6 24.5 – 1.4 

WL 1.6 4.3 42.1 – 5.7 

ISW-g 15.5 4.4 20.2 – 31.3 

Comb 1.6 3.0 14.6 – 1.35 

II GC 7.2 18.6 33.8 24.4 2.7 

WL 1.4 4.4 67.4 98.9 6.4 

ISW-g 5.0 4.2 24.5 43.2 56.0 

Comb 1.3 3.0 19.0 20.8 2.5 

III GC 0.22 0.40 0.22 0.22 1.4 

WL 0.17 2.12 0.18 0.18 5.7 

ISW-g 0.88 2.78 0.88 0.87 31.3 

Comb 0.13 0.39 0.14 0.14 1.4 
 

Table 1. 68% confidence level (CL) errors on each individual parameter, assuming that the others 
take their fiducial values, for each fiducial model and observable: galaxy clustering (GC), weak lensing 
(WL), ISW-galaxy correlation (ISW-g) and the combination of the three (Comb).16 The parameter 
αT,0 is unconstrained in fiducial model I, see explanation in section 6.2.1. 

 
 

Specifically, for this survey the number of modes is roughly given by Nmodes ∼ Nbins×V × 
(4π/3)(kmax/2π) , where Nbins = 8 is the number of bins and V is the (average) comoving 

volume  of  the  bins.    Assuming  kmax  =  0.1 hMpc−1,  this  yields  Nmodes  ∼ 106.    For  the 

photometric survey we have Nmodes ∼ Nbins × fsky × l2 ∼ 3 × 105.   As a rule of thumb, 
the relative effects of αB,0, αM,0 and αT,0 on the three observables are typically of the order 

of O(0.1) at redshift z ∼ 1, see figure 2. Thus, one expects to be able to constrain these 

parameters at the level of O(0.1)−1 × N −1/2 , i.e. few percents (which is improved by one order 
of magnitude for fiducial III, where the effects on the observables are larger), if all the other 
parameters are fixed. The ISW-galaxy correlation is limited by cosmic variance but due to 
the larger sensitivity of ∂zTΦ+Ψ to the modifications of gravity, it sometimes provides 
constraints comparable to those from the other probes.17  The effect of β2 is typically of 

the order of a few at redshift z ∼ 1 and this parameter can be constrained at a level of 
a few × 10−4 for galaxy clustering and weak lensing. Given the smaller effect on the ISW 
and the smaller number of modes for the photometric survey, the ISW-galaxy correlation 
provides the weakest constraints on this parameter. We also notice that the degeneracy of 
this parameter with the others is rather small. 

 
6.2.1 Fiducial I: ΛCDM 

Let us study the constraining power of the observables around a ΛCDM model. The errors 
are reported in table 1 and the 68% CL contours are shown in figure 3. In table 2 we 
report, for each Fisher matrix, the eigenvector associated to the maximal eigenvalue (called 

 

16Our constraints on β2 are in qualitative agreement with those obtained for coupled quintessence in [60], 
taking into account that the parameter β2 defined in this reference is related to ours by β2 = 2β2. 

17We thank Alessandro Manzotti and Scott Dodelson for pointing out a numerical underestimation of the 
noise in the ISW-galaxy correlation in an earlier version of this paper, corrected here. 
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Figure 2.  Modifications of the evolution of perturbations from their fiducial values, as a function 
of redshift, for the different parameters w, αB,0, αM,0, αT,0 and βγ . From top to bottom, relative 
variation of the effective growth factor feff , eq. (3.39), the matter transfer function Tm, eq. (5.6), the 
Weyl potential transfer function TΦ+Ψ, eq. (5.11) and its derivative with respect to redshift, ∂zTΦ+Ψ, 
for the three different fiducial models (respectively I, II and III, from left to right). As ∂zTΦ+Ψ 
vanishes in matter domination, we have normalized it to its value at z = 0 instead of its value as a 
function of the redshift. 

 
here maximal eigenvector), which provides the direction maximally constrained in parameter 
space, i.e. the one that minimizes the degeneracy between parameters. 

At first view, the parameter αT,0 seems to contribute to the growth of perturbations 
through the combinations Υb and Υc, defined in (3.18), and to the lensing potential through 
the combination Υlens, given in (3.27). However, it turns out that these combinations in fact 
do not depend on αT for this choice of fiducial model. 

More precisely, when w = −1 and βγ = 0, one finds that 

2 2ξ2 
2

 
 

 

α˙B 
 

 

Υb,c = αT + βξ  = αT + 
c2α

, csα = −2(1 + αB)ξ + 3ΩmαB − 3 
H  

. (6.1) 

When one goes away from the fiducial model by switching on the parameter αT, while all 

the  other  parameters  keep  their  fiducial  value,  one  gets  β2  =  −αT  so  that  the  dependence 
on αT vanishes in Υb,c.  It is immediate to check that αT disappears in Υlens for the same 
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Obs. Fiducial I Fiducial II Fiducial III 

GC (0.012, −0.007, 0.005, 0, 1) (0.022, −0.013, 0.007, 0.01, 1) (−0.626, 0.348, −0.629, 0.64, 1) 

WL (−0.345, −0.115, −0.007, 0,1) (−0.463, −0.136, −0.001, 0.004,1) (1,−0.074, 0.910, −0.914, −0.293) 

ISW-g (0.053, 0.7, 0.154, 0, 1) (0.856, 1, 0.117, 0.063, −0.609) (−0.997, −0.138, −0.989, 1, −0.068) 

Comb. (−0.008, −0.012, 0.005, 0, 1) (−0.055, −0.034, 0.006, 0.009, 1) (1, −0.285, 0.953, −0.964, −0.867) 
 

Table 2. First eigenvector of the Fisher matrices, for the basis w, αB,0, αM,0, αT,0, β2 , with the max- 
imum eigenvalue, corresponding to the combinations of parameters that are maximally constrained 
by experiments. The coefficients are normalized by the maximum component and rounded to three 
significant digits. 
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Figure 3. Two-dimensional 68% CL contours for the fiducial model I (ΛCDM model), obtained 
by fixing all the other parameters to their fiducial values. The parameter αT,0 is absent, as it is 
unconstrained on this fiducial model. Shaded blue regions correspond to theoretically forbidden 
parameter space where c2α < 0. Note that the axis range is different for different parameter planes. 
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reason. Thus, the parameter αT,0 cannot be constrained by a Fisher matrix analysis for this 
choice of fiducial and will be dropped from the analysis in this subsection. Correspondingly, 
the component in the αT,0 direction of the maximal eigenvectors vanishes, see table 2. 

Let us now examine the situation when αB is switched on while all the other parameters 
take their fiducial value. The Υ combinations are then given by 

2α2 4α2 
Υb,c =

 B , Υlens =
 B , (6.2) 

 
with 

c2α c2α 

c2α = −(2 + 3Ωm)αB − 2α2 . (6.3) 
s B 

For small values of αB, we thus find 

2 4 
Υb,c ' − 

2 + 3Ω αB , Υlens ' − 
2 + 3Ω

 αB . (6.4) 

Thus, one expects the impact of αB to increase as Ωm diminishes, which is in agreement with 
the results plotted in figure 2. 

When one changes αM from its fiducial value (the other parameters keeping their fiducial 
value), one finds 

Υb,c = Υlens = αM . (6.5) 

As seen in figure 2, the effect of αM and αB  on the growth of structures (i.e. on feff  and 
Tm) is roughly the same in magnitude but opposite in sign, which is in agreement with the 
relations found in (6.4) and (6.5). This qualitatively explains the degeneracy observed in the 
αB,0–αM,0 panel of figure 3 for galaxy clustering and the corresponding components of the 
maximal eigenvectors in table 2.  By contrast, the degeneracy between αB and αM observed 
for weak lensing does not seem to agree with the values of Υlens in (6.4) and (6.5). The reason 

for this discrepancy is that the background is also modified when αM /= 0, as discussed earlier, 
whereas the background for αB 0 is the same as the fiducial one. Since the transfer function 
TΦ+Ψ depends not only on the coefficient Υlens but also on the background, the degeneracy 
is more complex. In fact, the background modification also affects the matter growth but 
more modestly than for weak lensing. 

To conclude, let us note that a large region of the observationally constrained parameter 
space is forbidden by the stability requirements, i.e. c2α > 0. 

 

6.2.2 Fiducial II: Braiding 

For this fiducial model, we have the value α̂B,0 = −0.01, where the negative sign is to satisfy 
the stability conditions. This corresponds to dark energy models where the kinetic term of π 
comes from a mixing with gravity [4, 6], which are sometimes called braiding models [83, 84]. 
The unmarginalized errors are reported in table 1 and the 68% CL contours are shown in 
figure 4. Note that the allowed parameter space is much larger than in the previous fiducial 

because for αB,0 /= 0 the null energy condition can be violated without instabilities [4]. 
In this case, Υb,c and Υlens depend on αT: their partial derivatives with respect to αT 

on the fiducial model are given by 

∂Υb,c 

∂αT 

  9Ω2 
= , 

(3Ωm + 2 + 2αB)2 

∂Υlens 
 

∂αT 
= 

3Ωm(3Ωm − 2 − 2αB) 

(3Ωm + 2 + 2αB)2 

 
, (6.6) 

which confirms that this parameter must be included in the analysis. 
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Figure 4. Two-dimensional  68%  CL contours  for  the  fiducial  model  II (braiding  model  with 
αB,0 = 0.01), obtained by fixing all the other parameters to their fiducial values. Shaded blue 
regions correspond to c2α < 0. The axis range is different for different parameter planes. 

For this fiducial, the plane αB,0–αT,0 in figure 4 has the same background evolution as 
ΛCDM. Therefore, all the effects are controlled by Υb,c and Υlens, so that the degeneracies 
can in principle be understood analytically from their expressions in terms of αB,0 and αT,0. 
For instance, for small αB,0 and αT,0 one finds 

Υb,c 
3αB,0 (Ωm − 1) (2αB,0 + (2 − 3Ωm) αT,0) 

(1 Ω
 

αB,0 (6Ωm + 4) + 4αT,0 m 
) (0.54α T,0 — 0.6∆α B,0 ) ,   (6.7) 

where in the last equality we have expanded at linear order for small 1 − Ωm and used 

αB,0 = −0.01 + ∆αB,0. This explains the degeneracy between ∆αB,0 and αT,0 observed in 

the growth. By the same procedure we find Υlens ' (1 − Ωm) (0.18αT,0 − 1.2∆αB,0), which 
explains why ∆αB,0 is more constrained than αT,0 by lensing observations. 
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Similarly to fiducial I, the effect of changing αB,0 and αM,0 on the growth of structures 
is roughly the same in magnitude and opposite in sign. This effect can be qualitatively 
understood by expanding Υb,c for small ∆αB,0 and αM,0, analogously to what was done in 
section 6.2.1. This degeneracy cannot be seen for the lensing, because the modifications of 
the background also play a role. 

 

6.2.3 Fiducial III: Interacting 

In  this  model  we  have  a  nonzero  fiducial  value  for  the  parameter  βγ  (β̂γ   =  −0.03),  which 
implies an active coupling between CDM and dark energy. The unmarginalized errors are 
reported in table 1 and the 68% CL contours are shown in figure 5. Notice that the constraints 
for this fiducial model are generally stronger than those for models I and II (see below). As 
one can verify in figure 2, this is due to the enhancement of the effects on the observables, 
caused by the nonminimal coupling. 

In this case, αT,0 must be included in the analysis, because Υb,c and Υlens depend on αT,0 
through the term βξβγ. Indeed, let us examine the case when αT,0 and αM,0 are switched on 

while w = −1 and αB,0 = 0.  Using csα1/2 =   2(αM − αT) = − 2βξ (we assume αM > αT 
to satisfy the stability condition) one finds 

Υb = αM − 
√

αM − αT βγωcbc , Υc = αM − 
√

αM − αT βγ(1 + ωcbc) + β2 (6.8) 

and 

Υlens = αM − 
√

αM − αT βγbcωc . (6.9) 
However, the degeneracies observed in figure 5, for example in the plane αM,0–αT,0, cannot be 
understood directly from the above expressions because, as we saw in figure 1, the background 
is modified, not only when αM (or w) is changed but also when αT is changed. 

Another notable degeneracy appearing in figure 5 is between w and the parameters 

−αT,0  or αM,0.  This can be partially understood from the fact that w  appears in the combi- 
nation 

c2α ' 3(1 + w)(1 − Ωm) − 2(αM − αT) = 3(1 − Ωm) (1 + w − αM,0 + αT,0) ,        (6.10) 

where we have used η ' −w(1 − Ωm) in eq. (A.4) for the first equality and Ωm,0  ' 1/3 in the 
last one. However, background effects play an important role as well. 

The term βξβγ in eqs. (3.18) and (3.27) translates here as − αM − αT βγ, see eq. (6.8). 
This term encodes the new effects that arise when both modifications of gravity and nonmin- 
imal couplings are considered, as emphasized in [20]. These effects explain the qualitative 
difference, in the size and shape, between the contours of fiducial III (figure 5) and those of 
the other two fiducial models. Not only are the constraints tighter by an order of magni- 
tude in this case, but also the maximal eigenvectors of the Fisher matrices point in different 
directions, see table 2. 

 
7 Summary and conclusions 

In this paper, we have investigated the consequences of both modifying gravity and allowing 
a coupling between CDM and dark energy. If the propagation speed of dark energy is not too 
small, one can rely on the quasi-static approximation because the small scale fluctuations of 
dark energy have the time to relax to the quasi-static regime [38]. In this case, the parameters 
describing deviations from ΛCDM, which are usually four for Horndeski-like theories [3, 9, 10], 
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Figure  5.   Two-dimensional 68% CL contours  for the  fiducial model III (interacting  model with 

β̂γ  =     0.03), obtained by fixing all the other parameters to their fiducial values.  Shaded blue regions 
correspond to c2α < 0. The axis range is different for different parameter planes. 

 
 

reduce to three: αB, αM and αT [20]. Moreover, the coupling of a fluid of CDM particles 
conformally and disformally coupled to dark energy, can be described by a single parameter 
γc, see eq. (2.24). 

The dynamics of matter perturbations also simplifies. In particular, as discussed in 
section 3, it is described by a system of two coupled equations, eqs. (3.15) and (3.16), respec- 
tively for baryons and CDM. In these equations, the four parameters above enter in three 
combinations (see eq. (3.18)): αT, βξ (a combination of αB, αM and αT) and βγ, the latter 
describing the nonminimal coupling of CDM perturbations. As explained in more details in 
section 3, these distinctions are frame-dependent, as one can verify using the relations (2.10) 
(see also [20] for more details). 
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The growth of fluctuations is usually described in terms of the growth rate, which 
modulates the galaxy power spectrum in redshift space and can thus be measured with 
redshift space distortions. We have computed the effective growth rate for galaxies made of 
baryons and nonminimally coupled CDM, in the presence of modifications of gravity. This 
is the first general treatment of this kind, to our knowledge. 

Deviations from the ΛCDM model can also affect the propagation of light through their 
effect on the scalar Weyl potential, i.e. the sum of the two metric potentials in Newtonian 
gauge. A fourth parameter, βB (proportional to αB), together with the three parameters 
above, is necessary to fully describe this effect, which can be measured in the weak lensing 
and ISW effect (see eq. (3.27)). 

As discussed in section 4, the evolution of perturbations depends on the time dependence 
of the Hubble rate and of the parameters described above. In the present work we have 
taken the Hubble rate to be the same as in wCDM. Moreover, the parameters αB, αM and 

αT grow as 1 − Ωm, so that modifications of gravity disappear in matter domination, while 
the nonminimal coupling remains active at all times, i.e. βγ = constant. We have studied the 
constraining power of a future redshift survey with Euclid specifications on the parameters 
w, αB,0, αM,0 and αT,0. 

More specifically, in section 5 we computed the Fisher matrix of the galaxy power 
spectrum, the weak lensing power spectrum as well as the correlation spectrum between 
the ISW effect and the galaxy distribution. We have considered five parameters, namely w 
(describing the background evolution), the current values of αB, αM and αT, and the constant 
nonminimal coupling parameter β2, and assumed three fiducial models: (I) ΛCDM, (II) a 

braiding model with αB,0 = −0.01 and (III) an interacting model with βγ = −0.03. 
The unmarginalized 68% CL errors on these parameters are reported in table 1 in 

section 6.  For the current values of αB, αM and αT, the errors are of the order of 10
−2–10

−3 for 
fiducial models I and II and an order of magnitude better for the fiducial model III. The error 
on β2 is of the order of 10

−4 for all fiducial models. Given the large number of free parameters 
and the degeneracies among them, the Fisher matrices cannot be inverted to compute the 
marginalized contours. Therefore, we have shown the two-dimensional 68% CL contours in 
figures 3, 4 and 5 — together with the excluded parameter space from stability conditions — 
by setting all the other free parameters to their fiducial values. Moreover, we have provided 
a discussion on the origin of the degeneracies and the constrained directions 
in parameter space in table 2. As shown by the contour plots, all the three observational 
probes are complementary in breaking degeneracies in parameter space. 

This analysis can be generalized in several directions. First, the background cosmo- 
logical parameters should be included in the analysis as nuisance parameters. In this case, 
it is important to take as well into account other cosmological data such as the CMB, the 
baryon acoustic oscillations and the supernovae Type Ia. Another direction is exploring al- 
ternative parametrizations of the background evolution and/or of the time dependence of the 
parameters αB, αM, αT  and βγ.  For instance, assuming that the α’s vanish at early times, 
as we did, considerably limits the effect of dark energy on certain observables such as the 
CMB or the matter power spectrum. On the other hand, one could assume other equally 
motivated time dependencies (even different for different parameters), which are expected to 
lead to larger effects in the observables. The final goal is to extend this analysis beyond the 
quasi-static approximation to include larger scales and other species, such as neutrinos and 
photons. Such a program has been initiated with the development of the publicly available 
Boltzmann codes EFTCAMB [85] (see [86] for a recent application to Horava gravity) and 
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m,0 

COOP [87]. In this case, at least one more parameter, αK, must be considered in the analysis. 
On the other hand, one may expect that some of the degeneracies found in this paper can 
be resolved by the scale dependence appearing once the full dark energy dynamics is taken 
into account. We leave this for future work. 
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A Details on the parametrization 
 

In this appendix we provide some details about the determination of the background pa- 
rameters in our numerical calculations and about the value of the effective functions in our 
parametrization. 

 
A.1 Background quantities 

Assuming that gravity is standard at recombination, dark energy can only affect the best 
fit value of the cosmological parameters inferred through the measurement of the comoving 
distance to last scattering with the CMB spectrum. Thus, we assume that the comoving 
distance to last scattering is fixed and given by its best fit measurement [66] and we compute 
the values of the background cosmological parameters inferred from this observation. Let us 

discuss how these are determined. When w = −1, these are chosen as the base ΛCDM best 
fit values of the Planck TT+lowP parameters [66].  When w −1, we determine the initial 
conditions for the background matter components by requiring the comoving distance18 

 

 

χ(zin; Ωm,0, w) = 
zin 

 
0 

 

dzH 
−1(z; Ωm,0, w) (A.1) 

 

to be the same as the one of the ΛCDM model. More precisely, for each value of w, we 
associate the parameter Ωm,0(w) defined by the relation 

 

χ(zin; Ωm,0(w), w) = χ(zin; ΩPlanck, w = −1) (A.2) 

where we have on the right hand side the standard ΛCDM value, evaluated by using the value 
ΩPlanck = ΩPlanck +ΩPlanck = 0.02222h−2 +0.1197h−2, with h = 0.6731, which corresponds to 

m,0 b,0 c,0 

the estimate deduced from the measurements by the Planck satellite [66]. We take zin = 100, 
deep in the matter dominated era, when the effects of dark energy are negligible. 

 

18The comoving distance is related to the luminosity distance DL and the angular-diameter distance DA 

by the relations DL(z) = (1 + z)χ(z) and DA(z) = χ(z)/(1 + z). 
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− 2α  − 2α  1 + α 

 + 2α (1 + α ) .T  B 
  M B 

2 

√ 

η ≡ 
3

 3 + 2 
H2 = −w 

Ω
 , (A.3) 

)a−3w 

γ 

A.2 The combination csα1/2 

Here we provide details on the calculation of csα1/2. For convenience we define the parameter 

1 
  

Ḣ   
! 

 
 

(1 − Ωm,0)a−3w 
 

 

  
 

which enters naturally in eqs. (2.25) and (2.26). For αM = γc = 0, the fraction that appears 
on the right hand side reduces to the energy density fraction of dark energy, 1    Ωm, but this 
is not the case in general. From eq. (2.14), the combination c2α reads 

 
c2α = (1 + αB )(3 − 3η − 2ξ) − 3Ωm 

α̇B 
— 2 

H 
, (A.4) 

where η  and ξ  are defined above, respectively in eqs. (A.3) and (3.12).  By using eqs. (4.2) 
and  (4.4)  and  the  background  evolution  equations  (2.25)  and  (2.26)  to  evaluate  α̇ B  in  this 
expression, this can be written as 

c2α = 3(1 − Ω — η) + α 

 

1 − 3η

   

1 + 2 
   Ωm        

   

− 2(α — 3γ ω )
   Ωm     

 
 

s m B 
1 − Ωm 

M c    c 
1 − Ωm (A.5) 

2 2 
B 

 

Finally, one can replace γc by its expression (4.5) given in terms of csα1/2. 

The equation (A.5) is thus a quadratic equation for X ≡ csα1/2, of the form 

X2 − BX − C = 0, (A.6) 

where 
 
 

and 

B = 
√

2 
ωc Ωm  β  α 

1 − Ωm 

 

(A.7) 

C = 3(1 − Ω — η) +

 

1 − 3η 
1+Ωm 

− 2
   Ωm     

α   

  

α   − 2α   − 2α  (1 + α 
   

 
)2 + 2α 

 
(1 + α ) . 

1−Ωm 1−Ωm M B 

(A.8) 
Let us extract from this quadratic equation the relevant solution. 

Let us start with the case αB,0 = 0, which implies 

B = 0, C = 3(1 − Ωm − η) − 2(αT − αM) (αB,0 = 0) (A.9) 

in (A.6), and the solution is therefore 

csα1/2 = ± 3(1 − Ωm − η) + 2(αM − αT) , (αB,0 = 0) . (A.10) 

Both signs of this solution can be chosen and lead to the same phenomenology as long as the 
sign of βγ is chosen to obtain the same γc. In the matter dominated era, corresponding to 

Ωm → 1 and η → 0, the stability condition thus imposes 

αM,0 ≥ αT,0 (αB,0 = 0) . (A.11) 

Let us now consider the case αB,0 0. In the past limit Ωm → 1, one finds that 

B = 
√

2βγ ω  
 ΩmαB  

c 
1 − Ωm 

→ 
√

2βγ 
    αB,0  

c 
1 − Ωm,0 

 

(A.12) 

B T B M 

m,0 m,0 
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behaves  like  a  constant,  while  C  → 0.    Con√sequently,  the  two  solutions  of  the  quadratic 

equation in this limit are X = 0 and X = 2βγωcαB,0/(1 − Ωm,0).   In  order to  recover  a 
standard matter dominated regime with γ → 0 in the past limit Ωm → 1, one needs to pick 
up the X = 0 solution in the past.  This determines the choice of the sign among the two 
solutions √ 

2
 

X = 
B ± B  + 4C 

, (A.13) 
2 

which yield X = (B ± |B|)/2 in the limit Ωm → 1. One thus concludes that, depending on 
the sign of αB,0 βγ, the solution is 

 
csα 

 
1/2 = 

B 
√

B2 + 4C 

2 
, (βγ αB,0 > 0) (A.14) 

csα1/2 = ±
√

C ,  (βγ αB,0 = 0) (A.15) 

B + 
√

B2 + 4C 
csα

1/2 = 
2 

. (βγ αB,0 < 0) (A.16) 

As above, both signs on the right hand side of eq. (A.15) can be chosen. The stability 
condition c2α > 0 is obtained by requiring that the above solutions are real. 

 
B  Matter evolution equations in a generic frame 

For completeness, we provide here the evolution equations for matter in a generic frame.  In 
a generic frame gµν where both baryons and CDM are nonminimally coupled, eqs. (3.15) 
and (3.16) read 

¨ ˙ 3 2 

δb + (2 + 3γb)Hδb = 
2 

H 
Ωm(1 + Υb)δm , (B.1) 

¨ ˙ 3 2 

 
with 

δc + (2 + 3γc)Hδc = 
2 

H 
Ωm(1 + Υc)δm , (B.2) 

 

Υb = αT + β2 + (β2  + 2βγ βξ)ωbbb + [βγ βγ + βξ(βγ  + βγ )] ωcbc , (B.3) 
ξ γb b b c b c 

Υc = αT + β2 + [βγ βγ  + βξ(βγ  + βγ )] ωbbb + (β2  + 2βγ βξ)ωcbc . (B.4) 
ξ b c b c γc c 

 

For the case discussed in the main text of minimally coupled baryons, i.e. βγb = 0,  one 
recovers the expressions in eq. (3.18). 

Under  a  frame  transformation  (2.8),  ωI  =  ΩI/Ωm  does  not  change.   Moreover,  in  the 
quasi-static limit the density contrasts δI  does not change either (the explicit transformations 
are  discussed  in  [20]).    In  particular,  this  implies  that  b̃I   =  bI .    Therefore,  by  using  the 
transformations of the α’s given in eq. (2.10), γI given in eq. (3.19) and those of the β’s given 
in eq. (3.20), one finds the expressions for Υb,c  in the frame g̃µν , 

Υ̃b  = (1 + Υb)(1 + αD) − 1 , 

Υ̃c = (1 + Υc)(1 + αD 
(B.5) 

) − 1 . 

Using the expressions above and that the factors 1 + αD is cancelled by the change of time 

between the two frames, dt˜ = C/(1 + αD)dt, one can check that the form of eqs. (B.1) 
and (B.2) is frame-independent. 
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