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Spectral algorithms are classic approaches to clustering and community detection in networks.
However, for sparse networks the standard versions of these algorithms are suboptimal, in some cases
completely failing to detect communities even when other algorithms such as belief propagation can
do so. Here we introduce a new class of spectral algorithms based on a non-backtracking walk
on the directed edges of the graph. The spectrum of this operator is much better-behaved than
that of the adjacency matrix or other commonly used matrices, maintaining a strong separation
between the bulk eigenvalues and the eigenvalues relevant to community structure even in the sparse
case. We show that our algorithm is optimal for graphs generated by the stochastic block model,
detecting communities all the way down to the theoretical limit. We also show the spectrum of the
non-backtracking operator for some real-world networks, illustrating its advantages over traditional
spectral clustering.

Detecting communities or modules is a central task in the study of social, biological, and technological networks.
Two of the most popular approaches are statistical inference, where we fix a generative model such as the stochastic
block model to the network [1, 2]; and spectral methods, where we classify vertices according to the eigenvectors of a
matrix associated with the network such as its adjacency matrix or Laplacian [3].

Both statistical inference and spectral methods have been shown to work well in networks that are sufficiently
dense, or when the graph is regular [4–8]. However, for sparse networks with widely varying degrees, the community
detection problem is harder. Indeed, it was recently shown [9–11] that there is a phase transition below which
communities present in the underlying block model are impossible for any algorithm to detect. While standard spectral
algorithms succeed down to this transition when the network is sufficiently dense, with an average degree growing as
a function of network size [8], in the case where the average degree is constant these methods fail significantly above
the transition [12]. Thus there is a large regime in which statistical inference succeeds in detecting communities, but
where current spectral algorithms fail.

It was conjectured in [11] that this gap is artificial and that there exists a spectral algorithm that succeeds all
the way to the detectability transition even in the sparse case. Here, we propose an algorithm based on a linear
operator considerably different from the adjacency matrix or its variants: namely, a matrix that represents a walk on
the directed edges of the network, with backtracking prohibited. We give strong evidence that this algorithm indeed
closes the gap.

The fact that this operator has better spectral properties than, for instance, the standard random walk operator has
been used in the past in the context of random matrices and random graphs [13–15]. In the theory of zeta functions
of graphs, it is known as the edge adjacency operator, or the Hashimoto matrix [16]. It has been used to show fast
mixing for the non-backtracking random walk [17], and arises in connection to belief propagation [18, 19], in particular
to rigorously analyze the behavior of belief propagation for clustering problems on regular graphs [5]. It has also been
used as a feature vector to classify graphs [20]. However, using this operator as a foundation for spectral clustering
and community detection appears to be novel.

We show that the resulting spectral algorithms are optimal for networks generated by the stochastic block model,
finding communities all the way down to the detectability transition. That is, at any point above this transition, there
is a gap between the eigenvalues related to the community structure and the bulk distribution of eigenvalues coming
from the random graph structure, allowing us to find a labeling correlated with the true communities. In addition
to our analytic results on stochastic block models, we also illustrate the advantages of the non-backtracking operator
over existing approaches for some real networks.
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FIG. 1: The spectrum of the adjacency matrix of a sparse network generated by the block model (excluding the zero eigenvalues).
Here n = 4000, cin = 5, and cout = 1, and we average over 20 realizations. Even though the eigenvalue λc = 3.5 given by (2)
satisfies the threshold condition (1) and lies outside the semicircle of radius 2

√
c = 3.46, deviations from the semicircle law cause

it to get lost in the bulk, and the eigenvector of the second largest eigenvalue is uncorrelated with the community structure.
As a result, spectral algorithms based on A are unable to identify the communities in this case.

I. SPECTRAL CLUSTERING AND SPARSE NETWORKS

In order to study the effectiveness of spectral algorithms in a specific ensemble of graphs, suppose that a graph G
is generated by the stochastic block model [1]. There are q groups of vertices, and each vertex v has a group label
gv ∈ {1, . . . , q}. Edges are generated independently according to a q × q matrix p of probabilities, with Pr[Au,v =
1] = pgu,gv . In the sparse case, we have pab = cab/n, where the affinity matrix cab stays constant in the limit n→∞.

For simplicity we first discuss the commonly-studied case where c has two distinct entries, cab = cin if a = b and cout
if a 6= b. We take q = 2 with two groups of equal size, and assume that the network is assortative, i.e., cin > cout. We
summarize the general case of more groups, arbitrary degree distributions, and so on in subsequent sections below.

The group labels are hidden from us, and our goal is to infer them from the graph. Let c = (cin + cout)/2 denote
the average degree. The detectability threshold [9–11] states that in the limit n→∞, unless

cin − cout > 2
√
c , (1)

the randomness in the graph washes out the block structure to the extent that no algorithm can label the vertices
better than chance. Moreover, [11] proved that below this threshold, it is impossible to identify the parameters cin
and cout, while above the threshold the parameters cin and cout are easily identifiable.

The adjacency matrix is defined as the n × n matrix Au,v = 1 if (u, v) ∈ E and 0 otherwise. A typical spectral
algorithm assigns each vertex a k-dimensional vector according to its entries in the first k eigenvectors of A for some k,
and clusters these vectors according to a heuristic such as the k-means algorithm (often after normalizing or weighting
them in some way). In the case q = 2, we can simply label the vertices according to the sign of the second eigenvector.

As shown in [8], spectral algorithms succeed all the way down to the threshold (1) if the graph is sufficiently dense.
In that case A’s spectrum has a discrete part and a continuous part in the limit n→∞. Its first eigenvector essentially
sorts vertices according to their degree, while the second eigenvector is correlated with the communities. The second
eigenvalue is given by

λc =
cin − cout

2
+
cin + cout
cin − cout

. (2)

The question is when this eigenvalue gets lost in the continuous bulk of eigenvalues coming from the randomness in
the graph. This part of the spectrum, like that of a sufficiently dense Erdős-Rényi random graph, is asymptotically
distributed according to Wigner’s semicircle law [21]

P (λ) =
1

2πc

√
4c− λ2 .
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FIG. 2: The spectrum of the non-backtracking matrix B for a network generated by the block model with same parameters
as in Fig. 1. The leading eigenvalue is at c = 3, the second eigenvalue is close to µc = (cin − cout)/2 = 2, and the bulk of
the spectrum is confined to the disk of radius

√
c =
√
3. Since µc is outside the bulk, a spectral algorithm that labels vertices

according to the sign of B’s second eigenvector (summed over the incoming edges at each vertex) labels the majority of vertices
correctly.

Thus the bulk of the spectrum lies in the interval [−2
√
c, 2
√
c]. If λc > c, which is equivalent to (1), the spectral

algorithm can find the corresponding eigenvector, and it is correlated with the true community structure.
However, in the sparse case where c is constant while n is large, this picture breaks down due to a number

of reasons. Most importantly, the leading eigenvalues of A are dictated by the vertices of highest degree, and the
corresponding eigenvectors are localized around these vertices [22]. As n grows, these eigenvalues exceed λc, swamping
the community-correlated eigenvector, if any, with the bulk of uninformative eigenvectors. As a result, spectral
algorithms based on A fail a significant distance from the threshold given by (1). Moreover, this gap grows as
n increases: for instance, the largest eigenvalue grows as the square root of the largest degree, which is roughly
proportional to log n/ log log n for Erdős-Rényi graphs. To illustrate this problem, the spectrum of A for a large graph
generated by the block model is depicted in Fig. 1.

Other popular operators for spectral clustering include the Laplacian L = D−A where Duv = duδu,v is the diagonal
matrix of vertex degrees, the random walk matrix Quv = Auv/du, and the modularity matrixMuv = Auv−dudv/(2m).
However, all these experience qualitatively the same difficulties as with A in the sparse case. Another simple heuristic
is to simply remove the high-degree vertices (e.g. [6]), but this throws away a significant amount of information; in
the sparse case it can even destroy the giant component, causing the graph to fall apart into disconnected pieces [23].

II. THE NON-BACKTRACKING OPERATOR

The main contribution of this paper is to show how to redeem the performance of spectral algorithms in sparse
networks by using a different linear operator. The non-backtracking matrix B is a 2m × 2m matrix, defined on the
directed edges of the graph. Specifically,

B(u→v),(w→x) =

{
1 if v = w and u 6= x

0 otherwise .

Using B rather than A addresses the problem described above. The spectrum of B is not sensitive to high-degree
vertices, since a walk starting at v cannot turn around and return to it immediately. Other convenient properties of B
are that any tree dangling off the graph, or disconnected from it, simply contributes zero eigenvalues to the spectrum,
since a non-backtracking walk is forced to a leaf of the tree where it has nowhere to go. Similarly one can show that
unicyclic components yield eigenvalues that are either 0, 1 or −1.

As a result, B has the following spectral properties in the limit n→∞ in the ensemble of graphs generated by the
block model. The leading eigenvalue is the average degree c = (cin + cout)/2. At any point above the detectability
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threshold (1), the second eigenvalue is associated with the block structure and reads

µc =
cin − cout

2
. (3)

Moreover, the bulk of B’s spectrum is confined to the disk in the complex plane of radius
√
c, as shown in Fig. 2.

As a result, the second eigenvalue is well separated from the top of the bulk, i.e., from the third largest eigenvalue in
absolute value, as shown in Fig. 3.

The eigenvector corresponding to µc is strongly correlated with the community structure. Since B is defined on
directed edges, at each vertex we sum this eigenvector over all its incoming edges. If we label vertices according to
the sign of this sum, then the majority of vertices are labeled correctly (up to a change of sign, which switches the
two communities). Thus a spectral algorithm based on B succeeds when µc >

√
c, i.e. when (1) holds—but unlike

standard spectral algorithms, this criterion now holds even in the sparse case. We present arguments for these claims
in the next section.

III. RECONSTRUCTION AND A COMMUNITY-CORRELATED EIGENVECTOR

In this section we sketch justifications of the claims in the previous section regarding B’s spectral properties, showing
that its second eigenvector is correlated with the communities whenever (1) holds. Let us start by recalling how to
generalize equation (2) for the adjacency matrix A of sparse graphs. We follow [11], who derived a similar result in
the case of random regular graphs.

With µ = µc defined as in (3), for a given integer r, consider the vector

f (r)v = µ−r
∑

u:d(u,v)=r

σu , (4)

where σu = ±1 denotes u’s community. By the theory of the reconstruction problem on trees [24, 25], if (1) holds
then the correlation 〈f (r), σ〉/n is bounded away from zero in the limit n→∞.

We will show that if r is large but small compared to the diameter of the graph, then f (r) is closely related to the
second eigenvector of B. Thus if we label vertices according to the sign of this second eigenvector (summed over all
incoming edges at each vertex) we obtain the true communities with significant accuracy.

First we show that f (r) approximately obeys an eigenvalue equation that generalizes (2). As long as the radius-r
neighborhood of v is a tree, we have

(Af (r))v = µ−r

 ∑
u:d(u,v)=r+1

σu + (dv − 1)
∑

u:d(u,v)=r−1

σu

 ,
so

(Af (r))v = µf (r+1)
v + (dv − 1)µ−1f (r−1)v . (5)

Summing over v’s neighborhood gives the expectation

E

[ ∑
u∈N(v)

σu

]
= µσv ,

and summing the fluctuations over the (in expectation) cr vertices at distance r gives∣∣∣f (r)v − f (r±1)v

∣∣∣ = O(cr/2µ−r) .

If µ = µc and (1) holds so that µc >
√
c, these fluctuations tend to zero for large r. In that case, we can identify f (r)

with f (r±1), and (5) becomes

Af = µf + (D − 1)µ−1f . (6)

In particular, in the dense case we can recover (2) by approximating D with c1, or equivalently pretending that the
graph is c-regular. Then f is an eigenvector of A with eigenvalue λc = µ+ (c− 1)µ−1.
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We define an analogous approximate eigenvector of B,

g(r)u→v = µ−r
∑

(w,x):d(u→v,w→x)=r

σx ,

where now d refers to the number of steps in the graph of directed edges. We have in expectation

Bg(r) = µg(r+1) ,

and as before |g(r) − g(r+1)| tends to zero as r increases. Identifying them gives an approximate eigenvector g with
eigenvalue µ,

Bg = µg . (7)

Furthermore, summing over all incoming edges gives∑
u∈N(v)

gu→v = fv ,

giving signs correlated with the true community memberships σv.
We note that the relation between the eigenvalue equation (7) for B and the quadratic eigenvalue equation (6) is

exact and well known in the theory of zeta functions of graphs [16, 26, 27]. More generally, all eigenvalues µ of B
that are not ±1 are the roots of the equation

det
[
µ21− µA+ (D − 1)

]
= 0 . (8)

This equation hence describes 2n of B’s eigenvalues. These are the eigenvalues of a 2n× 2n matrix,

B′ =

(
0 D − 1
−1 A

)
. (9)

The left eigenvectors of B′ are of the form (f,−µf) where f obeys (6). Thus we can find f by dealing with a 2n× 2n
matrix rather than a 2m× 2m one, which considerably reduces the computational complexity of our algorithm.

Next, we argue that the bulk of B’s spectrum is confined to the disk of radius
√
c. First note that for any matrix

B,
2m∑
i=1

|µi|2r ≤ trBr(Br)T .

On the other hand, for any fixed r, since G is locally treelike in the limit n→∞, each diagonal entry (u→ v, u→ v)
of Br(Br)T is equal to the number of vertices exactly r steps from v, other than those connected via u. In expectation
this is cr, so by linearity of expectation E trBr(Br)T = 2mcr. In that case, the spectral measure has the property
that

E(|µ|2r) ≤ cr .

Since this holds for any fixed r, we conclude that almost all of B’s eigenvalues obey |µ| ≤
√
c. Proving rigorously that

all the eigenvalues in the bulk are asymptotically confined to this disk requires a more precise argument and is left
for future work.

As a side remark we note that (8) yields B’s spectrum for d-regular graphs [27]. There are n pairs of eigenvalues
µ± such that

µ± =
λ±

√
λ2 − 4(d− 1)

2
, (10)

where λ are the (real) eigenvalues of A. These are related by µ+µ− = d − 1, so all the non-real eigenvalues of B
are conjugate pairs on the circle of radius

√
d− 1. The other eigenvalues are ±1. For random regular graphs, the

asymptotic spectral density of B follows straightforwardly from the well known result of [13] for the spectral density
of the adjacency matrix.

Finally, the singular values of B are easy to derive for any simple graph, i.e., one without self-loops or multiple
edges. Namely, BBT is block-diagonal: for each vertex v, it has a rank-one block of size dv that connects v’s outgoing
edges to each other. As a consequence, B has n singular values dv − 1, and its other 2m − n singular values are 1.
However, since B is not symmetric, its eigenvalues and its singular values are different—while its singular values are
controlled by the vertex degrees, its eigenvalues are not. This is precisely why its spectral properties are better than
those of A and related operators.
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FIG. 3: The first, second and third largest eigenvalues µ1, µ2 and |µ3| respectively of B as functions of cin − cout. The third
eigenvalue is complex, so we plot its modulus. Values are averaged over 20 networks of size n = 105 and average degree c = 3.
The green line in the figure represents µc = (cin − cout)/2, and the horizontal lines are c and

√
c respectively. The second

eigenvalue µ2 is well-separated from the bulk throughout the detectable regime.

IV. MORE THAN TWO GROUPS AND GENERAL DEGREE DISTRIBUTIONS

The arguments given above regarding B’s spectral properties generalize straightforwardly to other graph ensembles.
First, consider block models with q groups, where for 1 ≤ a ≤ q group a has fractional size na. The average degree
of group a is ca =

∑
b cabnb. The hardest case is where ca = c is the same for all a, so that we cannot simply label

vertices according to their degree.
The leading eigenvector again has eigenvalue c, and the bulk of B’s spectrum is again confined to the disk of radius√
c. Now B has q− 1 linearly independent eigenvectors with real eigenvalues, and the corresponding eigenvectors are

correlated with the true group assignment. If these real eigenvalues lie outside the bulk, we can identify the groups
by assigning a vector in Rq−1 to each vertex, and applying a clustering technique such as k-means. These eigenvalues
are of the form µ = cν where ν is a nonzero eigenvalue of the q × q matrix

Tab = na

(cab
c
− 1
)
. (11)

In particular, if na = 1/q for all a, and cab = cin for a = b and cout for a 6= b, we have µc = (cin − cout)/q. The
detectability threshold is again µc >

√
c, or

|cin − cout| > q
√
c . (12)

More generally, if the community-correlated eigenvectors have distinct eigenvalues, we can have multiple transitions
where some of them can be detected by a spectral algorithm while others cannot.

There is an important difference between the general case and q = 2. While for q = 2 it is literally impossible for
any algorithm to distinguish the communities below this transition, for larger q the situation is more complicated. In
general (for q ≥ 5 in the assortative case, and q ≥ 3 in the disassortative one) the threshold (12) marks a transition
from an “easily detectable” regime to a “hard detectable” one. In the hard detectable regime, it is theoretically
possible to find the communities, but it is conjectured that any algorithm that does so takes exponential time [9, 10].
In particular, we have found experimentally that none of B’s eigenvectors are correlated with the groups in the hard
regime. Nonetheless, our arguments suggest that spectral algorithms based on B are optimal in the sense that they
succeed all the way down to this easy/hard transition.

Since a major drawback of the stochastic block model is that its degree distribution is Poisson, we can also consider
random graphs with specified degree distributions. Again, the hardest case is where the groups have the same degree
distribution. Let ak denote the fraction of vertices of degree k. The average branching ratio of a branching process
that explores the neighborhood of a vertex, i.e., the average number of new edges leaving a vertex v that we arrive at
when following a random edge, is

c̃ =

∑
k k(k − 1)ak∑

k kak
= 〈k2〉/〈k〉 − 1 .
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We assume here that the degree distribution has bounded second moment so that this process is not dominated by
a few high-degree vertices. The leading eigenvalue of B is c̃, and the bulk of its spectrum is confined to the disk of
radius

√
c̃, even in the sparse case where c̃ does not grow with the size of the graph. If q = 2 and the average numbers

of new edges linking v to its own group and the other group are c̃in/2 and c̃out/2 respectively, then the approximate
eigenvector described in the previous section has eigenvalue µ = (c̃in − c̃out)/2. The detectability threshold (1) then
becomes µ >

√
c̃, or c̃in − c̃out > 2

√
c̃. The threshold (12) for q groups generalizes similarly.

V. DERIVING B BY LINEARIZING BELIEF PROPAGATION

The matrix B also appears naturally as a linearization of the update equations for belief propagation (BP). This
linearization was used previously to investigate phase transitions in the performance of the BP algorithm [5, 9, 10, 28].

We recall that BP is an algorithm that iteratively updates messages ηv→w where (v, w) are directed edges. These
messages represent the marginal probability that a vertex v belongs to a given community, assuming that the vertex
w is absent from the network. Each such message is updated according to the messages ηu→v that v receives from
its other neighbors u 6= w. The update rule depends on the parameters cin and cout of the block model, as well as
the expected size of each community. For the simplest case of two equally sized groups, the BP update [9, 10] can be
written as

η+v→w

η−v→w
:= e−h

∏
u∈N(v)−w

(
η+u→wcin + η−u→wcout

)∏
u∈N(v)−w

(
η+u→wcout + η−u→wcin

) . (13)

Here + and − denote the two communities. The term eh, where h = (cin − cout)(nBP
+ − nBP

− ) and nBP
± is the current

estimate of the fraction of vertices in the two groups, represents messages from the non-neighbors of v. In the
assortative case, it prevents BP from converging to a fixed point where every vertex is in the same community.

The update (13) has a trivial fixed point ηv→w = 1/2, where every vertex is equally likely to be in either community.
Writing η±u→v = 1/2± δu→v and linearizing around this fixed point gives the following update rule for δ,

δv→w :=
cin − cout
cin + cout

∑
u∈N(v)−w

δu→v ,

or equivalently

δ :=
cin − cout
cin + cout

Bδ . (14)

More generally, in a block model with q communities, an affinity matrix cab, and an expected fraction na of vertices
in each community a, linearizing around the trivial point and defining ηau→v = na + δau→v gives a tensor product
operator

δ := (T ⊗B)δ , (15)

where T is the q × q matrix defined in (11).
We can also describe the linearization of BP in terms of the 2n × 2n matrix B′ defined in (9). Specifically, if we

define δin and δout as the qn-dimensional vectors where δinv =
∑

u∈N(v) δ
a
u→v and δoutv =

∑
u∈N(v) δ

a
v→u are the sum

of δ over v’s incoming and outgoing edges respectively, then(
δout

δin

)
= (T ⊗B′)

(
δout

δin

)
. (16)

Thus we can analyze BP to first order around the trivial fixed point by keeping track of just 2qn variables rather than
2qm of them.

This shows that the spectral properties of the non-backtracking matrix are closely related to belief propagation.
Specifically, the trivial fixed point is unstable, leading to a fixed point that is correlated with the community structure,
exactly when T ⊗ B has an eigenvalue greater than 1. However, by avoiding the fixed point where all the vertices
belong to the same group, we suppress B’s leading eigenvalue; thus the criterion for instability is νµ2 > 1 where ν is
T ’s leading eigenvalue and µ2 is B’s second eigenvalue. This is equivalent to (12) in the case where the groups are of
equal size.

In general, the BP algorithm provides a slightly better agreement with the actual group assignment, since it
approximates the Bayes-optimal inference of the block model. On the other hand, the BP update rule depends on
the parameters of the block model, and if these parameters are unknown they need to be learned, which presents
additional difficulties [12]. In contrast, our spectral algorithm does not depend on the parameters of the block model,
giving an advantage over BP in addition to its computational efficiency.
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VI. EXPERIMENTAL RESULTS AND DISCUSSION
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FIG. 4: The accuracy of spectral algorithms based on different linear operators, and of belief propagation, for two groups of
equal size. On the left, we vary cin − cout while fixing the average degree c = 3; the detectability transition given by (1) occurs
at cin − cout = 2

√
3 ≈ 3.46. On the right, we set cout/cin = 0.3 and vary c; the detectability transition is at c ≈ 3.45. Each

point is averaged over 20 instances with n = 105. Our spectral algorithm based on the non-backtracking matrix B achieves an
accuracy close to that of BP, and both remain large all the way down to the transition. Standard spectral algorithms based on
the adjacency matrix, modularity matrix, the Laplacian, and the random walk matrix fail well above the transition, doing no
better than chance.
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FIG. 5: Clustering in the case of three groups of equal size. On the left, a scatter plot of the second and third eigenvectors (X
and Y axis respectively) of the non-backtracking matrix B, with colors indicating the true group assignment. On the right, the
analogous plot for the adjacency matrix A. Here n = 3 × 104, c = 3, and cout/cin = 0.1. Applying k-means gives an overlap
0.712 using B, but 0.0063 using A.

In Fig. 4, we compare the spectral algorithm based on the non-backtracking matrix B with those based on various
classical operators: the adjacency matrix A, the modularity matrix M , the Laplacian L, and the random walk matrix
Q. We see that there is a regime where standard spectral algorithms do no better than chance, while the one based
on B achieves a strong correlation with the true group assignment all the way down to the detectability threshold.
We also show the performance of belief propagation, which is believed to be asymptotically optimal [9, 10].

We measure the performance as the overlap, defined as(
1

n

∑
u

δgu,g̃u −
1

q

)/(
1− 1

q

)
. (17)

Here gu is the true group label of vertex u, and g̃u is the label found by the algorithm. We break symmetry by
maximizing over all q! permutations of the groups. The overlap is normalized so that it is 1 for the true labeling, and
0 for a uniformly random labeling.
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FIG. 6: Spectrum of the non-backtracking matrix in the complex plane for some commonly used benchmarks for community
detection in real networks taken from [29–34]. The radius of the circle is the square root of the largest eigenvalue, which is
a heuristic estimate of the bulk of the spectrum. The overlap is computed using the signs of the second eigenvector for the
networks with two communities, and using k-means for those with three and more communities. The non-backtracking operator
detects communities in all these networks, with an overlap comparable to the performance of other spectral methods. As in the
case of synthetic networks generated by the stochastic block model, the number of real eigenvalues outside the bulk appears to
be a good indicator of the number q of communities.

In Fig. 5 we illustrate clustering in the case q = 3. As described above, in the detectable regime we expect to see
q − 1 eigenvectors with real eigenvalues that are correlated with the true group assignment. Indeed B’s second and
third eigenvector are strongly correlated with the true clustering, and applying k-means in R2 gives a large overlap.
In contrast, the second and third eigenvectors of the adjacency matrix are essentially uncorrelated with the true
clustering, and similarly for the other traditional operators.

Finally we turn towards real networks to illustrate the advantages of spectral clustering based on the non-
backtracking matrix in practical applications. In Fig. 6 we show B’s spectrum for several networks commonly used
as benchmarks for community detection. In each case we plot a circle whose radius is the square root of the largest
eigenvalue. Even though these networks were not generated by the stochastic block model, these spectra look quali-
tatively similar to the picture discussed above (Fig. 2). This leads to several very convenient properties. For each of
these networks we observed that only the eigenvectors with real eigenvalues are correlated to the group assignment
given by the ground truth. Moreover, the real eigenvalues that lie outside of the circle are clearly identifiable. This
is very unlike the situation for the operators used in standard spectral clustering algorithms, where one must decide
which eigenvalues are in the bulk and which are outside.

In particular, the number of real eigenvalues outside of circle seems to be a natural indicator for the true number
q of clusters present in the network, just as for networks generated by the stochastic block model. This suggests that
in the network of political books there might in fact be 4 groups rather than 3, in the blog network there might be
more than two groups, and in the NCAA football network there might be 10 groups rather than 12. However, we also
note that large real eigenvalues may correspond in some networks to small cliques in the graph; it is a philosophical
question whether or not to count these as communities.

Note also that clustering based on the non-backtracking matrix works not only for assortative networks, but also for
disassortative ones, such as word adjacency networks [31], where the important real eigenvalue is negative—without
being told which is the case.

A Matlab implementation with demos that can be used to reproduce our numerical results can be found at [35].

VII. CONCLUSION

While recent advances have made statistical inference of network models for community detection far more scalable
than in the past (e.g. [9, 36–38]) spectral algorithms are highly competitive because of the computational efficiency
of sparse linear algebra. However, for sparse networks there is a large regime in which statistical inference methods
such as belief propagation can detect communities, while standard spectral algorithms cannot.
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We closed this gap by using the non-backtracking matrix B as a new starting point for spectral algorithms. We
showed that for sparse networks generated by the stochastic block model, B’s spectral properties are much better
than those of the adjacency matrix and its relatives. In fact, it is asymptotically optimal in the sense that it allows
us to detect communities all the way down to the detectability transition. We also computed B’s spectrum for some
common benchmarks for community detection in real-world networks, showing that the real eigenvalues are a good
guide to the number of communities and the correct labeling of the vertices.

Our approach can be straightforwardly generalized to spectral clustering for other types of sparse data, such as
real-valued similarities between objects. The definition of B extends to

B(u→v),(w→x) =

{
s(u, v) if v = w and u 6= x

0 otherwise ,

where s(u, v) is the similarity index between u and v. As in the case of graphs, we cluster the vertices by computing
the top eigenvectors of B, projecting the rows of B to the space spanned by these eigenvectors, and using a low-
dimensional clustering algorithm such as k-means to cluster the projected rows [3]. However, we believe that, as for
sparse graphs, there will be important regimes in which using B will succeed where standard clustering algorithms
fail. Given the wide use of spectral clustering throughout the sciences, we expect that the non-backtracking matrix
and its generalizations will have a significant impact on data analysis.
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