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Abstract. We perform careful numerical simulations of slow Monte-Carlo annealings in the 
dense 3-body spin glass model and compare with the predictions from different theories: 
thresholds states, isocomplexity, following state. We conclude that while isocomplexity and 
following state both provide excellent agreement the numerical data, the influence of threshold 
states – that is still the most commonly considered theory – can be excluded from our data. 

 
 

Predicting the dynamical behavior from static calculations is the holy grail of theoreticians 
in statistical physics. After all, this is precisely what statistical mechanics is about from the 
very beginning: we prefer to consider the static average over all configurations rather than the 
complex dynamics of all atoms. A particularly important case, both in classical and quantum 
thermodynamics, is given by the dynamics after very slow variations in an external parameter 
so that the system remains at equilibrium. Such changes are said to be ”adiabatic”. When a 
macroscopic system is in a given phase and if one tunes a parameter, say the temperature, or the 
external field, very slowly then all observables, such as the energy or the magnetization in a 
magnet, will be given by the equilibrium equation of state. Given a system at equilibrium in 
a well-defined phase, it is always possible to consider the adiabatic evolution: In the low- 
temperature phases of a ferromagnet, for instance, the evolution of the magnetization is different 
in the two phases or Gibbs states corresponding to the positive or negative magnetization. 

To describe this theoretically, one can force the system to be in the Gibbs state of choice for 
instance, by adding an external infinitesimal field or fixing the boundary conditions and then study 
the adiabatic evolution for each of these phases. This simplicity breaks down in glassy systems: 
they have a complicated rugged, many-valleys energy landscape with an enormous number of 
different Gibbs states. The statics picture and the statistical features of the landscape are well 
known in the mean field case. However, with the exception of few models [1, 2, 3, 4], an 
analytical description of the dynamics, and of the way the Gibbs states are evolving upon adiabatic 
changes, has been missing. Note that by ”adiabatic” we mean here a slow dynamics that takes 
time slower than any power of the system size, but we want to avoid exponentially slow change, 
where of course we stay always at equilibrium but that has little relevance experimentally if one is 
not ready to wait a time longer than the age of the universe. 

This is by no means an academic exercice. In fact, it is a fundamental question one needs 
to ask in both physics and computer science. Consider the latter: simulated annealing [5] is 
one of the most important contribution from statistical physics to optimization and computer 
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science. Consider an annealing experiment where temperature T is changed slowly in time: what 
is the limiting energy of such an annealing? If one changes slowly the pressure and compresses 
a set of hard spheres, using a mixture to avoid crystallization, what is the density of the final 
packing (this is the jamming problem)? Clearly, it would be nice to answer such questions without 
having to solve the dynamics itself, which is a very difficult and almost intractable problem in 
general. In fact, since glassy systems are never in equilibrium, one may in fact argue that getting 
the answer of such questions is more important, and more relevant, than the static solution 
corresponding to infinite waiting times. 

With this motivation in mind, the present authors have discussed a formalism to describe the 
adiabatic evolution of these glassy Gibbs states as an external parameter is tuned, and applied 
it to mean field spin models in [6, 7]. The purpose of the present contribution is to discuss 
numerically the validity of this approach —and of related ones— for the well known and studied 
fully connected p-spin glass model [8]. 

 
1. Following state adiabatically 
Let us start by briefly reminding the principle of the state following approach. It was pioneered by 
Franz and Parisi when they derived the ”potential” [9, 10, 11]. It was then discussed thoroughly 
in [6, 7] and some suggested by [12] have been recently constructed in [13]. Here we shall 
consider only the simplest version. 

How can one follow adiabatically a given Gibbs state? Consider again the example of the 
ferromagnet with the two ”up” and ”down” equilibrium states. We can force the system to be in 
the Gibbs state of choice by fixing the all negative or the all positive boundary conditions. Even far 
away from the boundaries, the system will stay in the selected state for all T < Tc (above the 
Curie point any boundary condition will result in a trivial paramagnetic state). By solving the 
thermodynamics conditioned to the boundaries, we can thus obtain the adiabatic evolution of 
each of the two states. What boundary conditions should be applied in glassy systems where the 
structure of Gibbs states is very complicated? The answer is provided by the following gedanken 
experiment: consider an equilibrium configuration of the system at temperature Tp. Now freeze 
the whole system except a large hole in it. This hole is now a subsystem with a boundary condition 
typical for temperature Tp. If the system is in a well-defined state, then no matter the size of the 
hole, it will always remain correlated to the boundaries and stay in the same state. One may now 

change the temperature and study the adiabatic evolution of this state1. 
In mean-field systems, this construction allows for an analytic treatment in the spirit of the 

cavity and replica method. We refer the reader to [6, 7] description of the method and of the 
equation, and some comparison with Monte-Carlo simulations for sparse systems.   Here, we shall 
consider the fully-connected p-spin model, where the following state method was first put 
forward by Franz and Parisi in the spherical case [10], although we will consider the Ising version. 
Again, the computation were done in [6, 7]. 

For a temperature annealing in a one-step replica symmetry breaking model such as the p- 
spin, the idea is the following: At high T , a paramagnetic/liquid state exists and therefore a 
slow annealing should be able to follow the equilibrium computation. Below the dynamical glass 
temperature Td, this state shatters into exponentially many Gibbs states, all well separated by 
extensive energetic or entropic barriers, leading to a breaking of ergodicity and to the divergence 
of the equilibration time. The idea of the following state (and of the isocomplexity computation as 
well,see [16]) is thus to follow the state that appear at Td as the temperature is lowered; this 
should mark the limit of any non-exponentially slow annealing. 

1 The experienced reader will have recognized the usual construction for the nucleation argument adapted for 
glassy systems as in the ”mosaic picture” of [14, 15], but generalized with different temperature. This construction 
is also intimately related to the Franz-Parisi potential [9]. 
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2. The p-spin model: a standard benchmark, and a few tricks 
The fully-connected 3-spin glass model reads [8]: 

 
H = JijkSiSjSk , (1) 

ijk 

where the sum is over all possible triplets of spins, and where the Jijk are quenched random 
variables with distribution 
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This is the mean field spin glass model at the basis of the mean-field theory of glasses [17]. 
Our goal here is to perform careful Monte-Carlo simulations of annealings for this densely 

connected model which as far as we know, and perhaps surprisingly, was not done yet in the 
literature. One sees that simulating this model is quite computationally demanding since 
computing the energy takes N 3 operations. 

The  first  trick  we  will  use  is  to  not  use  this  model,  but  rather  a√diluted  version  of  it  where 
instead of using  all the N 3 possible  triplets of spin, we will use  N N of them.  In fact, this is 
like a simulation of the XOR-SAT model (which is nothing e√lse than the diluted p-spin, that is, 
the p-spin on random hyper-graphs) with a connectivity c = N . Both this model and the fully 
connected one have exactly the same static solution as N (up to rescaling). For the sizes 
we will consider, the difference with the fully connected model is negligible, but this reduced 
connectivity allows for efficient simulations. All the present data are made with N = 50000 (for 
annealing) or N = 20000 (for quenches). These size are sufficiently large such that the results 
do not change visibly when the size is changed by a multiplicative factor two, hence there is no 
need for finite size scaling analysis which simplified greatly our analysis. 

The second trick will be to start with initially equilibrated configuration. That may seem a hard 
task in such a glassy model, however, using the planting trick [18, 19, 20, 21, 22, 23, 24], this is 
something easy to achieve. In a nutshell, the idea of quiet planting is to first generate a 
configuration of spins that we want to be an equilibrium one, and then to create the disorder in 
the Hamiltonian such that this is precisely an equilibrium configuration. Of course, an instance 
of the problem created in such a way have no reason to be a “typical” one; however, as discussed 
in the references above, if the problem admit a “annealed solution” (that is, if the annealed solution 
is the correct one, as it is for the p-spin as long as T   TK), then instances created by the 
planting tricks are typical ones in the large N limit. We refer to the aforementioned publication 
for details. 

 
3. An historical perspective 
Let us remind the different type of predictions for behavior of slow annealing; they are 
summarized in Fig.1. 

For a long time, the dominating idea has been that one simply has to compute the so called 
”thresholds states”.  There high energy energy minima in the energy landscape. The idea of 
such computation is count how many minima they are at a given energy, and to compute for which 
energy they are most numerous. This, according to this idea, allows to locate at which energy there 
are minima that can, most likely, trap the dynamics. The corresponding energy is depicted as 
“thresholds states” in Fig. 1. This idea is popular, mostly because it works perfectly in the simple 
spherical p-spin model [1, 2, 3, 4], however, as discussed for instance in [25], the situations is 
much more complicated already in the mixed spherical p-spin glass model. 

It was soon realized [26, 16] that in fact most of these states are actually the result of a 
computation that is not self-consistent (unstable towards more steps of repica symmetry 
breaking), and that the threshold states of “stable” (or at least marginally stable) states is 

P (J) = . (2) 
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Figure 1. Results of different computations for the annealing in the 3-spin glass problem (see 
text). 

 

much lower. Computing correctly those turned out to be a complicate task that has been finally 
achieved by Rizzo in [27]. The result is shown in Fig. 1 as “marginal states”. To be precise, we refer 
as threshold states the (unstable) 1RSB ones, and to the marginal states the (marginal) full 
RSB ones [27]. 

However,  as discussed in e.g.  [10, 11, 26, 12, 16, 6, 7],  it may be a bit naive to assume that 
a Monte-Carlo annealing will just end up in the most numerous states, and that was the 
motivation for the idea for following states that started at Td. This is why iso-complexity was 
introduced: It is proposed to count the number of equilibrium states at Td, and then to consider 
the energies at T < Td for which the number of states is equal to the one at Td. Iso-complexity 
leads indeed to a lower bound on adiabatic annealings, because in order to end up at lower 
energies one would have to be exponentially lucky. Indeed, if one is trap in one of eNΣ1 similar 
states at an energy e1, and if the total number of states at e2 < e1 is eNΣ2 , with Σ2 < Σ1, it is 
exponentially unlikely that any of these correponds to the one at e1. 

In fact, the iso-complexity is only an approximation of the following state formalism (where we 
explicitly follow states), and explicit differences can be seen (see for instance [6, 7]) however, since 
the following state computation itself can be rather involved (see [13]) and in some cases (for low 
enough temperature) we could only do an approximated computation (see [6, 7, 25]). As shown 
in Fig. 1, however, the results of the two approach is extremely close in the 3-spin model (see also 
[6, 7] for the diluted case), at least in the case when one starts from T = Td (actually, there are 
more devitaion for the the states starting from T < Td, as seen in [6, 7]). The question is now 
how these rather different predictions compare with simulations. 

 
4. Annealings follow the following state computation 
The results of annealings starting from an equilibrated configuration at T1 > Td are shown in 
Fig.2 for different rates. They are clearly approaching the following state predictions as the rate 
decreases ∆T 0. We also show these annealing using only the smallest rate (and demonstrate that 
the starting temperature does not matter as long as it is larger than Td). It is striking how easily 
the Monte-Carlo dynamics is able to go beyond the thresholds state, marginal or not. 

These data clearly demonstrate that annealings are not at all sensitive to the thresholds states, 
and that the following states of isocomplexity consideration are the correct ones in this 
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Figure 2. Annealings starting from an equilibrated configuration at high temperature T1 > Td 
= 0.6825 in the 3-spin glass problem for N = 50000. Left: The energy of annealings from T1 = 
0.7 with different cooling rates is shown together with the equilibrium solution of the model 
(in blue) and the following state prediction (in red). Right: As in the left figure, but with 
different starting points. For comparison, we also shows the energy of the thresholds states 
(dashed orange line) and the marginal thresholds states (dashed black line). Annealings have 
no problems going below these energies that do not seem to affect its behavior. 

 

case. It is also striking how these two are similar (although definitely not equal). For models with 
a discontinuous first order transition, it thus seem that iso-complexity is a very acceptable 
approximation. It would be interesting to see how generic this is (see [6, 7] for discussion in the 
XORSAT model, [25] for the spherical model, and the review [28] for hard sphere.). 

This can also be clearly seen from annealing from temperature below Td (see Fig. 3) where the 
agreement is again perfect with the following state computations. Still, the approximative nature 
of the computation should be clear from deviation in the overlap (left figure) which display non 
physical behavior in the following state computation. The point is that this computation is done in 
a 1RSB formalism, in a region where a more complicated ansatz should be used (see also [25]). In 
fact, when the state is unstable, one should in principle performs a more involved computation and 
follows the pseudo-dynamics idea of [12, 13]. This is, however, more complicated, and we shall 
not attempt to discuss these points here. 

 
5. What about quenches? 
Finally, we also performed direct quenches from a high temperature to a small one. The situation 
here is more complicated as there is no theory equivalent to the following state computation yet 
(but see [13]). 

However, the simulation seems to indicate that the quenches converge to higher energies than 
the annealing. In fact, they are surprisingly close to the thresholds state (but, again surprisingly, 
higher from the marginal ones). Although it is difficult to draw firm conclusion from these data, 
the role of the marginal thresholds in the dynamics is not apparent. Also, it is not clear that the 
starting temperature is relevant, which also seem contradictory to the idea that quenches are 
different to annealing in the long runs. The most recent idea, proposed by Rizzo [27], proposed 
that (up to logarithmic corrections) quenches will tend to a new threshold energy. This is a 
promising idea that await a numerical confirmation. Surprisingly (given the long lasting interest 
in spin glasses) we are aware of very few simulations of this problem, and a deep, systematic 
investigation, would be welcome. 
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Figure 3. Annealings starting from an equilibrated configuration at low temperature T1  Td in 
the 3-spin glass problem for N = 50000. Left:  The energy of annealings from three different 
starting temperatures T1 = Td, 0.67, 0.66 with slow cooling rate is shown together with the 
equilibrium solution of the model (in blue) and the following state prediction (in red), 
demonstrating a perfect agreement.  Right:  overlap with the starting configuration at T1 = 
0.67, 0.66 as a function of the temperature. The approximated nature of the analytical solution (in 
full line) appears here as it predicts a non monotonous behavior that is not seen in the Monte-
Carlo simulation. Indeed, the following state computation is unstable towards more complicated 
symmetry breaking for T < 0.55 (T1 = 0.67) and for T < 0.49 (T1 = 0.66). 
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Figure 4. Quenches starting from equilibrated configuration at temperature T1 > Td to T2 < Td 
for N = 20000.  Left:  quenches  to  T2 = 0.6  and  T2 = 0.5,  Right:quenches  to  T2 = 0.4  and T2 

= 0.3.  Although an extrapolation is difficult, it seems —especially in the right figure— that 
the asymptotic energies are larger than the marginal threshold states prediction. However, 
perhaps surprisingly, they are close to the standard unstable threshold states, as also noticed in 
[16]. 

 

6. Conclusion and perspective 
The conclusion of this short proceeding are two folds: 1) we wanted to illustrate how good the 
prediction of the following state are (and how good the isocomplexity approximation can be in 
some case) and 2) nothing seems to happens at energies connected to thresholds or marginal 
threshold states.  We hope that this presentation of the data will convince the community that 

   the bridge between statics and dynamics is not going through thresholds states consideration,       
but rather through following states considerations. 

For quenches, instead, the situations is unclear and more work on the subject is welcome, in 
particular to test the proposition of [27]. 

We hope that this short presentation will help to clarify the situation and will help to motivate 
further works in this direction, perhaps following the idea of pseudo-dynamics [12, 13]. 
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