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Abstract—Approximate message passing is an iterative algo- 
rithm for compressed sensing and related applications. A solid 
theory about the performance and convergence of the algorithm 

exists for measurement matrices having iid entries of zero mean. 
However, several authors have observed that for more general 

of non-zero mean. This problem was noticed by several 

authors, e.g. [3], [11], and fixed in the implementations by 

removing the mean of the matrix. Indeed, the average of 

element of the measurement vector y reads 

matrices the algorithm often encounters convergence problems. 
In this paper we identify the reason of the non-convergence for 
measurement matrices with iid entries and non-zero mean in 

 1  
y = 

M 
yµ = 

Σ 1  Σ 
 

 
Fµi

!

 
 
si . (2) 

the context of Bayes optimal inference. Finally we demonstrate 
µ i µ 

numerically that when the iterative update is changed from 
parallel to sequential the convergence is restored. 

I. INTRODUCTION 

Approximate message passing (AMP) [1], [2], [3] is an al- 

gorithm derived from belief propagation that has been recently 

used with success in a number of sparse estimation problems, 

see e.g. [4], [5]. Highly non-trivial theoretical results were 

obtained about its performances [6], [7], [8]. Based on these 

developments and the promising nature of their results we can 

anticipate that AMP based algorithms will become the state- 

of-the-art algorithms for many problems of practical interest. 

As with any iterative algorithm the main question about 

AMP, besides its performance, is its convergence. This ques- 

tion is largely open except for the case of compressed sensing, 

i.e. estimation of a sparse signal s from noisy linear projections 

 
 

We denote F i = µ Fµi/M the average value of F for 

column i. One can then work with the modified system 

yµ y = i(Fµi  Fi)si where the mean of the new sensing 

matrix Fµi F i is zero. A similar (but different) trick is used 

in the implementation of [3]. This ”remove mean” strategy 

is, however, not fully satisfactory because it is not understood 

why it is needed in the first place, nor under what conditions 

it restores the convergence. Moreover in some more general 

settings it is not applicable at all. 

The goal of this paper is to analyze the origin of the non- 

convergence for non-zero mean matrices and discuss general 

strategies to prevent it. Such an understanding is a step towards 

the design of robustly convergent and hence more efficient 

AMP-based algorithms. We will hence consider matrices with 

entries generated as follows 

y = F s + ξ (1) 
γ 1 

with matrices F having iid entries of zero mean, and ξ a white 

Gaussian noise of variance ∆. This last case has been treated 

in the rigorous proofs in the very large signal size limit of [6], 

[9]. However, for many other sparse estimation problems, or 

for slightly more general matrices F , the basic version of AMP 

fails to converge (and worst, can diverge violently). Attempts 

to fix these convergence issues were so far limited to rather 

basic and empirical strategies such as damping the iterations 

in various ways, or transforming the matrix by subtracting 

its mean. Such strategies are rarely discussed in the literature 

and often appear only in the associated implementations 

available online. Moreover, they are far from always ensuring 

the convergence and some of these strategies (e.g. the mean 

removal) are not usable in some more challenging signal 

processing settings where approximate message passing can 

be applied (e.g. the dictionary learning problem [10]). The 

main motivation of this work is to understand the origin of 

some of these convergence problems. 

The structurally simplest case where AMP fails to converge 

appears to be when the measurement matrix F has iid entries 

Fµi = 
N 

+ √
N 

N (0, 1) . (3) 

The mean and variance need to scale as 1/N in order to 

have a O(1) output given a O(1) input. For γ = 0 this is 

the case that has been considered in the literature. 

Clearly these random non-zero mean matrices do not include a 

great variety of matrices of interest where convergence issues 

were observed. What is motivating our study of this case 

is the fact that the convergence problems can be predicted by 

the state evolution equations. We anticipate that the source of 

convergence problems is similar in nature for more general 

settings, validation of this is left for future work. 

To be specific and simple we will consider that the signal 

s was generated to have ρN non-zero entries that are iid 

normally distributed with zero mean and unit variance 

P (s) = (1 − ρ)δ(s) + ρN (0, 1) . (4) 

We will consider the Bayesian version of the AMP algorithm 

that uses this prior information about the signal. A first 

observation is that AMP does not depend on γ in an explicit 

way: this can be checked explicitly by repeating the detailed 
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i i i 

derivations of AMP present in the literature for γ > 0 (follow 

e.g. the derivation in [11]). 

in [11]. In general, when γ = 0 we observed by analyzing 

the state evolution equations that even when at initial times 

On the other hand the asymptotic analysis of the perfor- Et=0 V t=0 the equality Et = V t is restored after a sufficient 

mance of the algorithm — the state evolution [1], [6]— 

depends on γ explicitly and hence we have to rederive it. 

The analysis of the state evolution for γ > 0 will lead to an 

understanding of the origin of the convergence problems. 

II. THE AMP ALGORITHM 

We consider the AMP algorithm in the form that was 

derived in [2], [3], [11]. The main steps are a) going from 

belief propagation (BP) to a relaxed BP (r-BP) where only the 

two first moments of all messages are kept and b) using N 
sites marginals instead of N × M messages and adding the 

number of iterations. 

III. STATE EVOLUTION WITH NON-ZERO MEAN MATRICES 

The state evolution of the AMP algorithm can be derived 

for measurement matrices with non-zero mean γ > 0. Here we 

follow closely the derivation and notation from [11] for zero 

mean matrices. Among the different variables, the statistical 

distribution of Ri plays a crucial role in the determination of 

the state evolution. It can be written as 

Rt = s  + 
1 

rt , (13) 
α 

compensating Onsager terms [12]. Finally, AMP reads: 

V t+1 = 
Σ 

F 2 vt , (5) 
 

 
 

 

where α = M/N is the aspect ratio of the matrix and 

rt = 
Σ 

F  ξ   + 
Σ 

F   
Σ 

F   (s  − a ) (14) 
 

  
 

ωt+1 = 
Σ 

F at − 
(yµ − ωµ) Σ 

F 2 vt , (6) t 
 

 
µ µi   i 

i 
"
Σ 2 

∆ + V t 

#−1 
 

µi  i 
i 

is a Gaussian random variable, and aj    µ   is an auxiliary 
variable related closely to at that appears in the derivation of 

µ   ∆ + Vµ 
Σ 

 

  

(yµ−ωt+1) 
 

 

 

i 
of the problem. In the leading order we get 

 

i i Σ 
 
 

2  
µi 

µ ∆+V t+1 

 
 

var(rt)    =   α(Et + ∆ + γ2(Dt)2) , (16) 

at+1 = f1 
 
(Σt+1)2, Rt+1

  
, (9) where we have defined a new order parameter 

vt+1 = f2
 

(Σt+1)2, Rt+1
 

. (10) t 1 Σ 
t 

 
 

 
connected cumulants w.r.t. the probability measure 

(x−R)2 

1 e 2Σ2 

Q(x) = 
Z(Σ2, R) 

P (x) √
2πΣ2  

, (11) 

where Z(Σ2, R) is the normalization constant. 

The variables ai and vi are the AMP estimators for the mean 

and variance of the component i of the signal. The quality of 

The parameter Dt is not needed for zero mean matrices γ = 0. 

For γ  > 0, however, the state evolution is written in terms 

of three parameters Et, V t and Dt. The remaining steps in 

the derivation are basically identical to those for zero mean 

matrices and following [11] we obtain 

V t+1 = 

∫  

ds P (s) 

∫ 

Dz× (18) 

the reconstruction can be evaluated by computing the mean 

 

 
∆ + V t 

 
 

t t 2   t

 
 

 

N 

Et = N 

 

N 

(si − at)2 , V t = 

 
vt . (12) Et+1 = 

∫
 ds P (s) 

∫ 

Dz× (19) 

i=1 i=1 
 

∆ + V t 
 

 

  2 
 

 where si is the original signal component. When γ = 0, the 
performance of the AMP algorithm was analyzed rigorously s − f1 , s + z   (Et, Dt) + γ2Dt , 

α in the limit of large system size via the state evolution (Et+1, V t+1) = G(Et, V t), where G  is a function specified 
Dt+1 = 

∫  

ds P (s) 

∫ 

Dz× (20) 
in [6], [2], [3], [11]. An important property of the Bayes 

 

 
∆ + V t 

 
 

t t 2 t

   
 

 

from the assumed prior distribution) is that the two paramaters where Dz is a Gaussian measure and 
 

are equal  in the large size limit, Et = V t,  and the state 

   
statistical physics Et = V t is called the Nishimori condition 

and is discussed in the context of compressed sensing in detail 

When the mean of the measurement matrix is zero, γ = 0, 

these equations clearly reduce to those derived in [3], [11]. 

. (21) 
α 

A(E , D ) = 
real number, which is amenable to rigorous analysis [6]. In 

. 
optimal inference (i.e. when the signal was indeed generated 

A 

squared error (MSE) and the average variance 

j 
N 

where  fk(Σ2, R),  here  and  in  what  follows,  are  the  k-th 

i 

µ µ 
Rt+1 = at + 

t+1 

i 

j /=i µ µ t 
i 

i 

µ 

     F  

(Σt+1)2 = 
, (7) the AMP algorithm. Assumptions used to derive AMP can be 

used to compute the mean and variance of rt over realizations 
Fµi 

rt =  αγ 2 D t , (15) 

D = (sj − aj ) . (17) 

f2 , 

s − f1 D 

evolution hence reduces to an iterative equation of a single 

N 

r 
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Also for γ > 0 we can identify the Nishimori condition, 

which reads Et = V t (for the same reasons as for the previous 

case) and Dt = 0 (since under Bayes optimal inference the 

mean of the estimator must be equal to the true mean of the 

signal). It is a question of simple algebraic verification to see 

that starting with Et = V t and Dt = 0 eqs. (18-20) lead to 

Et+1 = V t+1 and Dt+1 = 0. Hence if we restrict ourselves 

to the space on which the Nishimori conditions hold (called 

the Nishimori line) there is no difference between the γ = 0 
and γ > 0 case. 
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IV. INSTABILITY OF THE NISHIMORI LINE 

In this Section we analyze the dynamical stability of the 

Nishimori line (NL) under iterations of eqs. (18-20). We 

consider the space (K, D) orthogonal to the NL, where K = 

V     E. We know that in this space (K∗ = 0, D∗ = 0) is a fixed point. We can generically  write Kt+1 =  f   (V t, Kt, Dt), 

Fig. 1. The term λD = ∂DfD(V t) associated to the stability of the 
Nishimori line in the D-direction as a function of the MSE for ρ = 0.1, 
∆ = 10−10  and α = 0.3. Three different regimes can be identified, one in 

which λD is always less than 1, the second in which  λD  is larger than 1 
in a region, and the third in which λD is larger than one along the whole 
Nishimori line down to the fixed point. The critical values (as defined in the 
text) for this case are γ(1) ' 2.197, γ(2) ' 3.162. 

K 

Dt+1 =  fD(V t, Kt, Dt).  To  analyze  the  stability  we  lin- 
earize around the fixed point considering the perturbations 
δKt = Kt −K∗ and δDt = Dt −D∗. The linearized formula 

c c 

 

• For  γ  < γc the eigenvalue λD is always less than 1 
in modulus. 

  

reads 

 

 
with 

δKt+1 

δDt+1 = M · 
δKt 
δDt 

 
(22) 

• For γc <   γ   < γc the eigenvalue becomes greater 
than 1 in modulus in a certain portion of the Nishimori 

line. In this region the evolution tends to make D larger, 

while at the same time V and E decrease. 

• For  |γ|  >  γc the  eigenvalue  λD  is  larger  than  1  in 
∂KfK(V t, K∗, D∗)    ∂DfK(V t, K∗, D∗) 

M = 
∂KfD(V t, K∗, D∗) ∂DfD(V t, K∗, D∗) 

.   (23) 
modulus in the whole range down to the fixed point. This 

tells us that any fluctuation of D will be progressively 

It follows from a straightforward algebraic verification that 

both the off-diagonal terms (the cross derivatives) are zero for 

the distribution P (s) from eq. (4). The matrix (23) is hence 

diagonal. For a more generic prior distribution the situation is 

slightly more involved, but qualitatively analogous to the one 

of (4). The diagonal terms read 

αγ2 
∂DfD(V  ) = − 

∆ + V t ds P (s) Dz f2 A , s + zA 

αγ2V t+1 

= − 
∆ + V t   

, (24) 

enhanced. 

We further realize that the expression used to calculate λD 
depends on the value V only through the variable A (26) and 

not in an explicit way on the parameters α and ∆. This means 

that the threshold value γ(1) is from its definition independent 

of α and ∆. The threshold value γ(2) is also independent of 

α for ∆ = 0 and only weakly dependent on both α and ∆ for 

small values of ∆. In Fig. 2 we hence plot the two threshold 

values for ∆ = 0 (in which case they are both independent of 

the undersampling α) as a function of the sparsity ρ. 

V. COMPARING STATE EVOLUTION TO AMP 

∂KfK (V t) = 
1 1  

ds P (s) z   f 
2 ∆ + V t 

4
 

 
A2, s + zA

 
 We now discuss how does the instability of the Nishimori 

+2(f2
 

A2, s + zA
 
)2 (25) line translate into the behavior of the state evolution (SE) 

initialized usually as Et=0 = V t=0 = ρ (corresponding to 
 

 +2
 
f1

 
A2, s + zA

  
− s

  
f3

 
A2, s + zA

 } 
, t=0 i 

= 0 and vt=0 = ρ) and Dt=0 = 0. The SE was 

where, as before, the functions fk(Σ2, R) are the k-th con- 

nected cumulants with respect to the measure (Σ2, R) (11), 

and where we denoted    
r

∆ + V t 
 

derived to correspond to the behavior of the AMP algorithm 
for sufficiently large system sizes N . We observe that 

• For  γ <  γc the SE converges to the fixed point 

with monotonically decreasing E = V . There are really 

 t (1) (2) 

The term ∂KfK(V ) is independent of γ and its modulus is • For γc < |γ| < γc the SE converges to the fixed point 

always smaller than one. Hence the Nishimori line is stable in 

the direction K = V E. 

On the other hand the term λD = ∂DfD(V t) has a non- 
trivial behavior that we illustrate in Fig. 1 for ρ = 0.1, α = 

0.3, ∆ = 10−10 and, respectively, γ = 1.9, γ = 2.5, γ = 2.9 
and γ = 3.6. In the figure we identify three different regimes: 

with monotonically decreasing E = V . In the region of 

V in which λD is larger than one, we observe that 

the numerical fluctuations of D are slightly increased 

(especially if we are close to γ(2)), without changing 

qualitatively the behavior of V , and when λD becomes 

again smaller than 1 the fluctuations are reabsorbed. 

infinitesimal fluctuations in D that are due to numerical 

precision but they are harmless. 

a 

(2) (1) 
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available implementation of AMP. In the view of the preceding 

analysis a dynamical instability is mitigated by such damping 

and the eigenvalue λD becomes effectively smaller. Indeed 

AMP with damping converges well even for matrices with 

means slightly larger than those corresponding to γ(2) in 
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Fig. 2. 

b) Expectation maximization learning: In this paper so 

far we assumed the prior knowledge of the probability dis- 

tribution of signal elements as well as of the measurement 

noise ∆ and the sparsity ρ. A classical strategy of expectation 

maximization was suggested, tested and implemented in [7], 

[13] in order to learn these parameters when they are not 

Fig. 2. [Main frame] The threshold values for the mean of the measurement 

matrix above which the state evolution on the Nishimori line (i.e. E = V 
and D = 0) is not stable. Above γ(1) only part of the line is unstable, above 

γ(2) the full line is unstable. For zero measurement noise these values do not 

depend on the undersampling rate α. For weak measurement noise only the 

line γ(2) depends weakly on both ∆ and α. [Inset] The convergence rate R 
of the AMP algorithm as a function of the mean of the measurement matrix 

γ  with ρ = 0.1, ∆ = 10−10  and α = 0.3 for different values of the signal 

size N . We can see that the transition is close to the first critical value γ(1) 
(marked by the vertical line on the left) and it is smoother for low N and 

sharper for larger N . For very large N we also expect the transition to move 

towards the vertical line on the right (γ = γ(2)), but this effect is not visible 

at the N we are able to reach. . 

• For γ > γc the fluctuations of D are increased along 

the whole line E = V . At some point these fluctuations 

reach so large values that the difference K = E V 
grows and we observe a divergence of both E and V . 

Therefore, while with infinite numerical precision the SE 

should stay on the Nishimori line and converge whatever the 

value of γ is, from the practical point of view the fluctuations 

due to numerical precision are sufficient to cause divergence in 

the third regime. Of course√in the AMP algorithm the typical 

known apriori. A careful investigation of the AMP algorithm 

with EM learning leads to a conclusion that with the learning 

the AMP has better convergence properties than without. 

This can come as a surprise at first, but in the view of our 

above investigation it can now be easily explained. The EM 

update in a sense imposes (in an iterative way) the Nishimori 

condition, see the derivation of EM in [7], hence it should 

be expected that it also stabilizes the Nishimori line and 

consequently improves the convergence of AMP. 

VII.   THE SEQUENTIAL REDEMPTION 

AMP being so sensitive to the mean of the matrix elements 

is surprising because the standard BP, when applied to discrete 

random problems, does not experience such problems. In 

this last section we argue that the convergence problems in 

the case of CS with non-zero mean measurement matrices 

are actually specific to the “parallel updates” (involving only 

matrix multiplications) performed in the AMP algorithm that 

we presented in Sec. II. Let us recall the so-called relaxed-BP 

(r-BP) algorithm [14] (for present notations see [11]) where 

messages are sent on the factor graph: 
fluctuations are of order 1/ N hence relatively large and that 

(2) F 2 

is the reason why for  γ  > γc    AMP never converges. In 

fact these finite size fluctuations are so strong that even in the 

second regime γ(1) < |γ| < γ(2) AMP might have problems. 

Aµ→i = ∆ + 
Σ

 
µi 

j /=i F 2 vj→µ 

, (27) 

Therefore we observe a smooth transition in the success rate R =(#successes/#failures) between γ(1) and γ(2) for finite 
 

 

Bµ→i = ∆ + 
Σ

j i 

 

 

2 , 
µj j→µ 

c c   Σ 
B 

! 
sharper. In the inset of Fig. 2 we show the success rate of ai→µ =   f1 

Σ
γ  µ Aγ→i 

, 
γ /=µ 

, 
Aγ→i 

the AMP algorithm averaged over 1000 random instances of 

 

  
  1 

Σ 
B 

! 

instances for N = 16000. We see that, even if asymptotically, 
vi→µ =   f2 

Σ
γ /=µ Aγ→i 

, 
γ /=µ 

, 
Aγ→i 

the reference value for the success/failure transition would be 

 

  
  1 

Σ 
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!
 

 

  
  

γc 
(1) i 1 Σ 
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VI.   REDUCING THE INSTABILITY 
 

 

v =   f
 1 

, 

Σ
γ Bγ→i 

! 

. (32) 

 
There are at least two strategies that appear in the implemen- 

i 2 
γ Aγ→i 

Σ
γ Aγ→i 

tations of the AMP algorithm that improve its convergence. Let 

us discuss them now in the context of the above analysis. 

a) Damping: A popular and generic strategy to improve 

convergence of iterative algorithms is “damping”, i.e. in every 

new iteration we update the variables only partially. Such 

damping (with different schemes) appears in basically every 

We intentionally wrote this algorithm without the time indices, 

because the update can be performed in two ways. First, in 

the parallel update all variables are updated at time t given 

the state at time t 1. The state evolution derived above for 

AMP also applies to the r-BP updated in parallel. Actually 

for matrices for which fast multiplication algorithms are not 

γ γ 
, (31) 

=  f a (2), for all practical system sizes, the right threshold to look 

the measurement matrix for N = 1000, 4000 and over 500 

1 N . When N   is increased this smooth transition becomes 

1 
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value. In the last section we show that the convergence issue 

for matrices of non-zero mean are strongly mitigated when 

random sequential update is used in the message passing 

instead of the parallel one that is standard to AMP. 

This analysis represents a step towards understanding of the 

nature of convergence issues in message passing algorithms 

that are ubiquitous in problems ranging from physics to infor- 

mation theory. More complete understanding of these issues is 

needed before message passing algorithms can become part of 

standard toolbox to solve a wide range of problems of practical 
0 
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Fig. 3. A comparison of the effect of a non-zero mean γ on the relaxed belief 

propagation algorithm (27-32) with different update scheme using α = 0.3, 

ρ  = 0.1,  ∆ = 10−10  and  N  = 104 .  Left:  Parallel  update  corresponding 

to (and equivalent to) AMP. For γ > 2.3, even the damped AMP diverges. 
Right: Random sequential update. In that case, r-BP converges very fast even 
for large values of the mean γ. 

 

available there is no crucial advantage of AMP over r-BP, in 

the limit of large N they are equivalent. 

The second update is the random sequential one where one 

picks a single index i and updates all messages corresponding 

to it. For r-BP, this leads to the same computational complex- 

ity, however, it is important to realize that AMP is actually 

written assuming the r-BP with the parallel update. In Fig. 3 

we compare the behavior of parallel and random sequential r-

BP: as we see, the sequential update does not seem to be 

affected by the non-zero mean. 

This observation of the parallel update being more prob- 

lematic than the sequential one is actually not surprising a 

posteriori. In fact, such a lack of convergence is well known 

to occur in parallel iterations in many problems that would be 

classified in statistical physics as antiferromagnets. Antiferro- 

magnetic instabilities, just like the one we have studied here, 

occur for instance the in the hard-core model [15] or coloring 

[16] problems on random graphs. The insight and evidence 

collected in studies of those problems also justifies our claim 

that the use of the sequential update fixes the convergence 

problems in a wide range of cases. Nevertheless, it is not a 

universal solution since it by no means guarantees convergence 

for all matrices. Also, the disadvantage of the sequential r-BP 

update is that it loses the nice property of only involving matrix 

multiplication that is crucial for scalability for operators such 

as the fast Fourier transform, for which there exist efficient 

multiplication methods. 

VIII.   CONCLUSIONS 

We have analyzed the convergence problems of AMP in 

the specific case of compressed sensing with measurement 

matrices having iid entries of non-zero mean. Despite the fact 

that the AMP iterations are not modified w.r.t. the case of 

zero mean, the state evolution does contain an additional order 

parameter. The main result of the paper, contained in Sec. IV, 

is that the presence of this third parameter causes instabilities 

of the so-called Nishimori line and, therefore in the algorithm 

itself, if the mean of the matrix elements exceeds some critical 
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