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Abstract. We enlarge the set of recipes and ingredients at disposal of any poor particle
physicist eager to cook up signatures from weak-scale Dark Matter models by computing two
secondary emissions due to DM particles annihilating or decaying in the galactic halo, namely
the radio signals from synchrotron emission and the gamma rays from bremsstrahlung. We
consider several magnetic field configurations and propagation scenarios for electrons and
positrons. We also provide an improved energy loss function for electrons and positrons
in the Galaxy, including synchrotron losses in the different configurations, bremsstrahlung
losses, ionization losses and Inverse Compton losses with an updated InterStellar Radiation
Field.
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1 Introduction

Dark Matter (DM) constitutes the largest matter component of the Universe, but its nature has
so far remained elusive. It is searched for in a number of ways, and most notably via its possible
electromagnetic emission in the Galaxy.

In particular, an interesting strategy consists in looking for the emissions produced
by the interactions of relativistic electrons and positrons, injected by DM annihilations (or
decays), with the galactic environment. These emissions go under the collective nhame of
‘secondary radiation’ and are essentially of three kinds: (i) radio waves due to the synchrotron
radiation of the e* on the galactic magnetic field; (ii) gamma rays due to the bremsstrahlung
processes on the galactic gas density; (iii) gamma rays due to the Inverse Compton scattering
(ICS) processes on the interstellar radiation field.

They have received different attention in the literature. Synchrotron emission has been
considered since a long time in regions close to the Galactic Center (GC), characterized by
a large intensity of the magnetic field [1-8]. Its relevance in wider regions of interest in the
Galaxy has also been highlighted [9-19]. Bremsstrahlung gamma rays have mostly been
neglected for what concerns DM studies. Recently, however, their importance has been rec-
ognized, especially in connection with searches for relatively light (10-40 GeV) DM signals from
the GC [20-25]. Finally, ICS gamma rays have been identified as an important compo-nent
of the DM gamma ray spectrum mainly in conjunction with the models of leptophilicDM
featuring a large annihilation cross section, proposed in the wake of the lepton excesses
measured by PAMELA, FERMI, HESS and most recently Ams-02 (see e.g. [26—31] and many
subsequent works).

All these signatures are potentially very relevant and promising. Their practical use,
however, depends on a number of different choices, e.g. related to the unknown magnetic
field configuration, to the unknown propagation parameters of electrons and positrons in the
Galaxy, to the unknown gas distribution, to the unknown profile of Dark Matter etc. Some
of these uncertainties are also shared with other possible signals from DM in other Indirect
Detection channels. In pursuing the goal of identifying Dark Matter or better constraining
it, it is therefore important to be able to perform multi-messenger analyses in a coherent



framework and therefore to develop a set of coherent, model independent tools. A step in
this direction is what we would like to make here.

More precisely, the purpose of this paper is to provide state-of-the-art tools allowing the
computation of synchrotron and bremsstrahlung radiation?® for any (weak-scale) DM model,
for a set of possible astrophysical configurations that bracket the current sensible ranges of
the uncertainties. This follows the spirit of previous papers ([32, 33]): the concrete goal is
to enable the ‘DM model builder’ to readily compute the synchrotron and bremsstrahlung
phenomenology of her model without having to fiddle with the underlying computations or
even with the intervening astrophysics, but just by choosing which configurations to adopt
(and being able to adopt the same choices consistently for other indirect detection channels).
On the way to achieve that, we have to upgrade some ingredients used to accurately compute
the population of DM-induced electrons and positrons, namely the energy loss function and
the e* halo functions (see below). In the spirit of [32, 33] we always employ semi-analytical
methods rather than fully numerical ones, in order to better control the relevant physics.

Armed with the tools just described, we will later play the same game ourselves [34] by
applying them to refine the constraints from synchrotron radiation derived in [10].

The rest of this paper is organized as follows. In section 2 we spell out the astrophysical
ingredients we need. We discuss in some detail the configurations of the magnetic field
(relevant for synchrotron emission) while we just recall the main points concerning the other
ingredients (DM distribution, CR propagation parameters, ISRF, galactic gas maps). In
section 3 we list several new results. First, in section 3.1 and 3.2 we present our improved
energy loss function and our improved e* generalized halo functions. Then, in section 3.3
and 3.4 we present the two main results and numerical outputs of this work: the generalized
halo functions for synchrotron radiation and for bremsstrahlung emission. In section 4 we
conclude.

2 Astrophysical configurations

In this section we spell out the astrophysical ingredients that we use to compute the propa-
gation of electrons and positrons and ultimately the synchrotron and bremsstrahlung signals.

While there certainly exist some interdependences between the parameters entering in
these astrophysical ingredients (for instance, the thickness of the CR diffusive halo — called
L in the notation below — is related to the vertical extent of the galactic magnetic field,
since a far reaching magnetic field determines a thick CR confinement box) it is beyond our
scope to impose such correlations by hand. Our aim is to provide the full range of possible
choices and it is up to the user to choose sensible combinations. In order to consider inter-
dependencies self-consistently one is better off choosing a fully numerical approach to the
propagation of cosmic rays, such as by using Galprop [35] or Dragon [36—38].

2.1 Galactic magnetic field

Our Galaxy has a complicated magnetic field structure, and dedicated efforts by several groups
have been performed in order to map it: for some recent overviews and sets of references see
for instance [40—-43]. We recall here the salient features of the inferred magnetic field and then
define the simplified functional form that we will adopt.

1We remind that the equivalent tool for ICS radiation is already provided in [32], and will be updated soon
in order to include the improvements of the present paper.



The total galactic magnetic field Biot is the sum of a large scale regular Breg and a

turbulent Bturb component. These, in turn, can be decomposed in different contributions,
including disk and halo fields. The regular magnetic field is caused by dynamo effects in
the galaxy and it can be studied with Faraday rotation measurements of nearby pulsars and
high latitude radio sources, or with measurements of the polarized synchrotron intensity. On
the other hand, the turbulent magnetic fields are tangled by turbulent gas flows and can be
traced looking for their unpolarized synchrotron emission. Recent models of the galacticmagnetic
fields have been proposed e.g. in [42, 44-47].

Rather than the detailed magnetic field geography, the overall intensity is more impor-
tant for our purposes. While we keep in mind that the complicated cartography sketched
above can have an impact on the determination of the energy losses of electrons and on
the synchrotron emission from DM, we choose to model the disk field strength by a double
exponential in z and in r, as proposed e.g. by [49] and [50] for the radial part. Namely, we use

r—r@_j;[

B. =Brexp - (2.1)

R 7

where rg = 8.33 kpc is the location of the Sun. We then adopt several configurations for the
values for the parameters B, rp and zp, as shown in the table in figure 1:

o Model 1 (MF1 for “Magnetic Field 1” hereafter) is the configuration used in [32] and
very similar to the one used in the original GALPROP code (it differs by the normaliza-
tion factor Bo, which has changed a few times in the GALPROP literature [49, 51, 52]).

o Model 2 (“MF2”) is loosely based on the findings of [44] (and previous [50]). Following
one of the models in [44] we take a value of 2.1 uG for the intensity of the disk regular

field at solar location (we report it to our value for rg); we then add an intensity of 3
UG to account for the random component. The resulting field is steeper in r and in z
than MF1 and reaches slightly higher values at the GC.

o Model 3 (“MF3”) is modeled following [53]. It is substantially higher at the location of
the Earth and has larger scale heights both in r and in z, i.e. it extends much farther
out in both directions.

2.2 Other astrophysical ingredients

In this section we recall the other astrophysical ingredients involved in the computations.
We illustrate most of them in figure 1. As a general rule, we want to use state-of-the-art but
standard ingredients, in order to allow easy comparison with other work.

> The DM density profile in the Galaxy. We adopt the 6 standard profiles as defined
in [32] (to which we refer for references and some discussion). They always assume
spherical symmetry and their functional forms as functions of the galactocentric coor-



Dark Matter halo profiles
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Figure 1. Collection of the astrophysical ingredients we use. Top row: DM profiles (figure taken
from [32]) and propagation parameters for electrons and positrons in the Galaxy. Second row: magnetic
field configurations. Third row: illustration of the ISRF in two sample locations. Bottom row:
illustration of the galactic gas densities (figure from [20]).
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The profiles are plotted in the top left panel of figure 1 and their parameters reported
in the corresponding table. We remind here that they are normalized by requiring that
the density at the location of the Sun rg = 8.33 kpc be 0.3GeV/cm? and the total
mass of the Milky Way be 4.7 x10* M. Satisfying these two criteria allows to fix the
rs and ps parameters. Other normalizations (e.g. of the density at the Sun) are used
in the literature and they would modify the profiles.

» Electron and positron propagation parameters. These have to be plugged in the
diffusion-loss equation that we will discuss in detail in section 3.2. We adopt the standard
choices MIN, MED, MAX as reported in the table in figure 1. Here 6 and Kq are the
exponent of the energy dependence of the diffusion coefficient and its normalization
while L is the thickness of the diffusive halo. While an updated assessment of the validity
of these ranges of parameters would be welcome, especially in the light of the wealth of
recent data,® this would be beyond our current scope. We continue using the standard
values reported here also for consistency reasons.

» InterStellar Radiation Field (ISRF). Electrons and positrons propagating in the
galactic halo lose energy by Inverse Compton scattering on the ambient light. A detailed
description of this radiation field is therefore important in order to reliably compute the
energy losses. We adopt the latest radiation maps extracted from GALPROP [62, 63].%
These replace the ones formerly used in the literature, and in particular in [32]. In
figure 1 we draw the two maps in two sample locations (at the Earth and near the
galactic center) and compare them. One clearly sees the three different components
(StarLight SL, InfraRed IR and the CMB blackbody spectrum). The current map is much
more detailed and normalization differences of the order of a factor 2 are visible,but the
overall behavior is confirmed. We will see that these small differences have an

(equally small) impact on the observables entering e* propagation.

2\We distinguish the notation between the galactocentr{g coordinate r and the cylindrical coordinates (r, z)
that we will use in most of the following. Obviously r=r2+ z2.

3For instance, a string of recent papers, based precisely on synchrotron radio emission [54—57] but also on
positrons [58, 59] and somewhat also on gamma rays [60] and antiprotons [61], finds that the thin halo
predicted by MIN is seriously disfavored.

4The files are available on GALPROP’s website galprop.stanford.edu/resources.php?option=data. As dis-
cussed in [62], the newest files are based on calculations using the FrankiE code (Fast Radiation transport
Numerical Kode for Interstellar Emission), described in [63].


http://galprop.stanford.edu/resources.php?option=data

* Gas maps. Electrons and positrons also lose energy by processes occurring on the in-
terstellar atomic and molecular gas (Coulomb interactions, ionization, bremsstrahlung).
We use the gas maps described in [64] and already used in [20]. We refer to the latter for
some discussion. They are illustrated in figure 1. The relevant species are atomic (HI) and
molecular (H;) neutral hydrogen, ionized hydrogen (HIl), neutral atomic helium (He) and
ionized helium (which is however irrelevant for all practical purposes). As discussed in
particular in [20], these maps represent a reliable description of the coarsegrained
distribution of gas in the Galaxy, but miss important features at small scales. In
particular, they do not take into account the regions characterized by a much higher gas
density (up to 2 or 3 orders of magnitude with respect to the coarse grained maps) which
are known to exist close to the galactic center (typically at r 4 200 pc scales). For the
purpose of the general tools that we are developing in this work, we do not correct by
hand the coarse-grid maps by adding the high density regions (contrary to what was
done in [20]) but we will allow the user to change the overall normalizationof the gas
density in the energy loss function that we will describe below.

3 Results

3.1 An improved energy loss function for e* in the Galaxy

Using the ingredients described above, we compute an improved function describing the
energy losses of electrons and positrons during their propagation in the Galaxy. It includes
energy losses by Coulomb interactions with the interstellar gas, by ionization of the same gas,
by bremsstrahlung on the same gas, by ICS (using the updated ISRF presented in section 2.2)
and by synchrotron emission, with the choice of the three magnetic field models discussed in
section 2.1. Schematically:

dE

tht(E; r, Z) = - Ht = bcoul+ioniz + Borem + bics + bsyn (31)

where E is the energy of the electron or positron and r and z are cylindrical galactic coordi-
nates. Such a function is provided on the website [65] in the format btot[E,r,z,gasnorm,MF],
where gasnorm allows to change the overall normalization of the gas densities and MF is a flag
selecting the magnetic field model. We now recall the different components of this function®
and illustrate its main features in figure 2 and 3. Details can be found in standard references
such as [66, 67] as well as in [31, 32].

e Energy losses by Coulomb interaction and ionization on neutral matter are
described by
9 >3 E 2 m
b (E, r, z) = ,com nZ log— +7log A—e (3.2)

a 3 ! i

where c is the speed of light, or = 8rtr?/3, with re = dem/me, is the Thompson cross
section, n; is the number density of gas species i with atomic number Z; and AE; is
its average excitation energy (it equals 15 eV for hydrogen and 41.5eV for helium).

On ionized matter, one has

) 3
b°E, r,z) = _4c oomn E > log Me (3.3)
T e e Me Epla

SNotice that we will always limit ourselves to the case of relativistic electrons.

-6 -



where n. is the electron density and Epa = 47 ne r3mo/a corresponds to the char-
acteristic energy of the plasma.

The total energy losses for Coulomb interactions and ionization processes, bcoul+ioniz =
bt + p°n, will therefore be given by the sum of eq. (3.2) and eq. (3.3) with, respec-
tively, the densities of ionized and neutral gas species. In both cases, energy losses are
essentially independent of E, since the constant terms in the brackets are numerically
dominant.

Energy losses by bremsstrahlung are described by

- | E

borem(E, 1, 2) =c ~ nilr,z)  dE,E ,
; . |t dEI

do;
(3.4)

where E, corresponds to the energy of the gamma ray emitted in each bremsstrahlung
process. The differential cross-section reads

doy(E, E,) _ 3demo ¢ E o ; £ [
Oi\E, Cy — emPT 1+ =y (pli_ 1 =¥ nf: , (35)
dE, 8nE, E 3 E

1 -
where ¢! are scattering functions dependent on the properties of the scattering system.

For a completely ionized gas plasma with charge Z one has
GNNE E) = @N(E E ) =4(22+2) log =& ETE 1 )
' m. F 5
and thus the energy losses in this regime (‘weak shielding’) read
bon  — ?_caa o n Z(Z+1) log 2 E_1 E. (3.7)

1
m -

On the other hand, for atomic neutral matter the scattering functions have a more

complicated dependence, which is usually parameterized in terms of the quantity A =
1% e

. For the relativistic regime we are interested in, since E , 1 MeV always,
AotemE(E— Ey)

one basically cares for the limit A — 0 for which these functions are constant and take
the following numerical values:

@A =0)= ! =45.79,
@A =0)= ! =44.46,

(A = 0) = @i =134.60, (3.8)

@"e(A = 0) = e =131.40,
2 2,ss

H -
“(1,2)(A =0) (1,2),55°

-7 -



The subscript s in this notation refers to the fact that this regime is usually called
‘strong-shielding’ because the atomic nucleus is screened by the bound electrons and

the impinging e* have to force the shield. In this limit the energy losses read

3 4 1 .
bt = ca. oun. T¢h —1¢ E. (3.9)

< 2



The total energy losses for bremsstrahlung will therefore be given by the sum of eq. (3.7)
and eq. (3.9) with, respectively, the densities of ionized and neutral gas species. In both
cases, at leading order, energy losses are linearly dependent on E. A further logarithmic
dependence arises for scattering in ionized medium, while a small additional energy
dependence is also found in neutral medium if one accounts for the effect of finite A.

e Energy losses by Inverse Compton Scattering are described, in exact form, by

bICS=

f oo f 1 (4 2 2
Yy - re)q -1 2 1 (req)
3co dee An =

' 0 1/n (1+Treq)3 2qing +q+ N T Te

(3.10)

where nlg, r, z) is the number density (per unit volume and unit energy) of photons of
the ISRF, with energy €, y = E/me is the relativistic factor of the electrons and
positrons and I = 4ey/me.

In the Thomson limit (valid for low electron energies), they reduce to the particularly
compact expression

_ 4c 1% J ® —
bics = 3m2 E de € n(e, r, 2) [Thomson limit], (3.11)

e 0
which makes the energy density in the photon bath uisge = Jdeen(e, r, z) apparent.

The ICS energy losses are proportional to E* (as evident in the Thomson expression, but
also in eg. (3.10) noting that 4y%qg is the dominant piece at the numerator) forsmall
E. For large E, the dependence softens.

* Energy losses by synchrotron emission are described by

4C GT Ej BZ

d (3.12)
3 m? 8

bsyn =

where B is the strength of the magnetic field. This formula is in close analogy to the
one for ICS losses: the integral term in (3.11) and the B2 term in (3.12) correspond to
the energy density in the photon bath and in the magnetic field respectively. In
particular, synchrotron energy losses are also proportional to E2.

In figure 3, left panel, we plot the different energy losses discussed above, at the location of
the Earth. The different dependences on the e* energy are clearly shown. Hence, the dominant
process in the different energy ranges are, in order, ionization (including Coulomb),
bremsstrahlung, ICS and synchrotron.

In figure 2 we plot the total energy loss function in several locations in the galactic plane
(left panel) and at several galactic altitudes at the location of the Earth (right panel). We
compare it with the previous version of the same function not including the improvements
listed at the beginning of this section (dashed colored lines). The main modification isapparent
at low energies and it is due to the inclusion of bremsstrahlung, ionization and Coulomb losses.
Being related to the presence of gas, it disappears at the locations outside of the galactic disk.

The modifications due to the use of the new ISRF is minimal and mostly concentrated
at low energies, so it is hidden by the dominant bremsstrahlung, ionization and Coulomb

—9-
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Figure 2. Energy loss function for electrons and positrons in the Milky Way. Left panel: in the
galactic disk (z = 0), at several locations along the radial coordinate r. Right panel: above (or below) the
location of the Earth along the coordinate z. Here the magnetic field model MF1 has been fixed for
definiteness. The circled dot identifies the constant value sometimes adopted. The dotted colored lines
are the same function before the improvements listed in section 3.1. This figure replaces the analogous
one (figure 5) of [32].

losses in most cases except well outside of the plane where the absence of gas makes it indeed
visible (see the slight difference between the solid and dashed purple lines corresponding to
z =15 kpc in the right panel).

While in figure 3 left and in figure 2 we have chosen the MF1 for definiteness, in figure
3 right we explore the impact of changing the magnetic field model. Not surprisingly, in (r, 2)
= (3, 0) kpc the synchrotron energy losses are larger than at (r, z) = (8.33, 1) kpc,and the
ordering reflects the intensity of the magnetic field in the corresponding model (see figure 1).

In the next subsection we employ this improved energy loss function to compute the halo
functions for electrons and positrons in the Galaxy.

3.2 Revised halo functions for e* in the Galaxy

We recall that the number density f(E, r, z) of electrons or positrons at the position (r, 2)
per unit energy E is obtained solving the standard diffusion-loss differential equation

E_° 9

—Ko ., v’f—dE b(E,r,z)f =Q(Er,2), (3.13)

GeV

- 10 -
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Figure 3. Left panel: the different processes contributing to the energy loss function, at the location
of the Earth. Right panel: the dependence of the energy loss coefficient function on the choice of
magnetic field model, in two locations.

where the first term (which accounts for diffusion) is expressed in terms of the propagation
parameters discussed in section 2.2. The source term Q reads

1l _po 2= A ef
"2 Mo A : (3.14)
(annihilation)
Q= (ov)r
f dE
(decay)
. £ f
Mpbm
" aE
E

The function dN,.=/dE is the electrons or positron spectrum from DM annihilations in a
given final state channel f.

The solution for f, or rather for the energy spectrum of electrons or positrons d®,.=/dE,
can be cast [32] in terms of a convolution of the injection spectrum dN,=/dE with the generalized

halo functions I(E, Es, r, z), which are essentially the Green’s functions from a source energy
E; to the energy E:

- 11 -
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_C

Ern) =T flErZ) = [ o (3.15)

S — _ 45 (Es) - I(E, Es, r, z) (annihilation)
l L ? A . (ES) ° /(EI ESI r/

J
anbErz) . p = r Mov g,

nn .
1

The halo functions /, which replace those in [32], are available on the website [65],

in the format ElectronHaloFunctGalaxyAnn[halo,propag,MF][logiox,logi0Es,r,z] (and

analogously ElectronHaloFunctGalaxyDec for decay) where x = E/Es.

-12 -



These functions, particularized at the location of the Earth, are plotted in figure 4 for
reference. Comparing with the equivalent functions presented in [32], the main difference
consists in the evident rise towards small values of the electron energy fraction x,° which
is the direct consequence of the additional, low-energy losses. For small injection energies
(warmer colors), the rise occurs ‘early’ while moving towards small x, consistently with the fact
that the new losses are already relevant. For large injection energies (cold colors) the rise
occurs at small x when E 10GeV (the regime at which the new losses set in). For
MIN the rise does not happen for large injection energy, as e* are not efficiently confined on
the characteristic scale of the energy losses. At a location closer to the Galactic Center (not
plotted), where energy losses are more relevant, the rise is present.

In figure 5 we show the electron spectra, for a few cases. These are in direct correspon-
dence with the left panels of figure 13 of [32]. The differences amount to a factor of a few, up
to almost one order of magnitude, especially at low energies (where indeed the new losses are
effective). In the right panels of figure 5 we show the spectra computed in a location closer to
the Galactic Center. It is curious to note that, in this case, the fluxes do not follow the intuitive
normalization ordering MIN - MED — MAYX; in fact, MAX yields the most sup- pressed flux. This
is just a consequence of the relative importance of the various propagation parameters which
is different in the Earth’s local neighborhood with respect to that location. Indeed, MIN, MED
and MAX are determined as the sets that minimize/maximize the fluxesat Earth.

3.3 Synchrotron halo functions

In this subsection we want to obtain the generalized halo functions for synchrotron emission
which constitute one of the two main technical outputs of this paper. We first review the basics
of synchrotron emission and then come to the definition of the functions we need.

The synchrotron power (in erg s~ ! Hz ™ !) emitted in a certain frequency v by an isotropic
distribution of relativistic electrons with energy E in a uniform magnetic field is

\/7 e’Bsina
Pyn(v, E, @) = 3 . 5, F( (3.16)
with m-c
1 . 3 e 5
x=v/NV, V.= _v sing, v=__ By.
2 ¢ 2mmec

Here B is the strength of the magnetic field, a the angle between the line of sight and the
magnetic field direction and y = E/m. the Lorentz factor of the electron or positron. The
synchrotron kernel F(x) is |

F(x)=x ) K3 (x)dx

X

where K, is the modified Bessel function of the second kind of order n. In presence of a
randomly oriented magnetic field, which is the case of our interest, the synchrotron power has
to be averaged over the pitch angle a:

[ n

, 1
PsynlV, - da sin(a) Psyn(v, E,
r

6The functions are defined down to the value of x corresponding to £ = 1MeV, to avoid the regime of
highly non-relativistic electrons.

- 13 -



Halo function

Halo function

Halo function

Halo function

Halo function

Halo function

— A NFW
. —
8 #1100

TeV
AR
1
0
108 107 106 105 10+

0
10% 107

0
108 107

0
10% 107

103 102
Electron energy fraction x=E,/E

10 105 10 103 102
Electron energy fraction x=E/E

106 105 10 103 10-2
Electron energy fraction x=E/E

106 105 10 103 102
Electron energy fraction x=E/E

1
0
10® 107 10 10 104 10°% 102
Electron energy fraction x=E,/E
5
— A Man
4 -
3 pi0o
TeV -7
218 =
1
0
10% 107 10 10 10 103 102

Electron energy fraction x=E./E

10t

10+t

101

10t

101

10t

1

1

1

1

1

1

Halo function

Halo function

Halo function

Halo function

Halo function

Halo function

0
108

0
108

0
108

0
108

1077

1077

107

107

NEW

106 105 10 103 102
Electron energy fraction x=E,/E

10 10 10 1023 102
Electron energy fraction x=E./E

106 105 10 103 102
Electron energy fraction x=E,/E,

10 10 10 103 102
Electron energy fraction x=E./E

10-° 102

2
0
108 107 10¢ 105 104
Electron energy fraction x=E,/E,
20
An Man

0
108

107

106 10 10 103 102
Electron energy fraction x=E,/E,

- 14 -

10t

10!

10t

10t

10t

10t

1

1

1

1

1

1

Halo function

Halo function

Halo function

Halo function

Halo function

Halo function

0
108

0
108

108

107

1077

107

10 105 104 103 10-2
Electron energy fraction x=E,/E,

10 105 10 103 102
Electron energy fraction x=E./E

106 105 104 103 102
Electron energy fraction x=E,/E,

0
108

1077

10 105 10 10 102
Electron energy fraction x=E./E

10t

10+t

10t

10t

0
10 107 106 105 10+ 10-3 102 101 1

Electron energy fraction x=E,/E,

10®

1077

105 10 10 1072

106
Electron energy fraction x=E,/E,

10t

1



Figure 4. Generalized halo functions for electrons or positrons, for several different values
of the injection energy Es (color coded). This figure replaces the analogous one (figure 6) of [32].
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Figure 5. Fluxes of electrons or positrons, after propagation, for the case of annihilations
(top row) and decay (bottom row), shown at two different locations.

For relativistic electrons (y = 2) this corresponds to [39]:
_e*B » 5 5
Psyn(v, E) = 2 3oy Kassy)Kassly) — Y Kasz(y)® — Kisly) (3.18)

with y = v/v.. Integrating this quantity over v yields the total power emitted by an electron
of energy E in all frequencies, i.e. eq. (3.12).
Next, the synchrotron emissivity has to be computed convolving the synchrotron power

in eq. (3.18) with the number density of electrons per unit energy f (E, r, z) (in cm ™3 GeV 1)
discussed in section 3.2

J Mbowm(/2)
Jsyn(v, r,2) =2 dE Psyn(v, E)f(E, r, 2) (3.19)

me
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where the minimal and maximal energies of the emitting electrons are determined by the
electron mass and the mass of the DM particle. The /2’ notation applies to the decay case.
The overall factor 2 takes into account that, besides the electrons, an equal population of
positrons radiates.

Finally, the observable in which we are interested is the intensity I of the synchrotron
emission (inergem 2s 1 Hz !sr ) from a certain direction of observation. This is obtainedby
integrating the emissivity of eq. (3.19) along the line-of-sight. Schematically:

J .
ds lsxn( v,r Z)

I(v,b )=
l.o.s. 4r

(3.20)

where it is intended that a point in (r, z) is identified by the the parameter s along the line
of observation individuated by the galactic latitude b and longitude [: r(s, I, b), z(s, I, b).”

Recollecting eq. (3.20) and eq. (3.15), the synchrotron intensity I at a given frequency
v and for given galactic coordinates (b, /) can be cast as:

'l R oM A Z(o %(Es) Isyn(Es, v, /;

rg na o
Tl | 2 J‘ y Zi r
At Mbowm/2 A
D _,eFDDM me dEs f rf dE (ES) ISVn(ESI v, I/ b) (decay)
(3.21)
with the generalized synchrotron halo function Iyn(v, Es, I, b) defined as
1. (F ! ds plrz) nszs Pon(v, E)
tos. f® o Med . | NEE,r

where n =1, 2 for the decay or annihilation cases respectively and again implicitly r(s, /, b), z(s,
1, b). The units of /sy, are erg/Hz.

The synchrotron halo functions /sy, are available on the website [65], in the format
ISynAnnl[halo,propag,MF][logioEs,logiov,/,b] (and analogously ISynDecl for decay).
They are also plotted, for reference, in figure 6 for the annihilation case and in figure 7 for the
decay case.

The last step needed in order to make contact with actual radio surveys consists in
expressing the synchrotron signal in terms of brightness temperature T (v) (in K) which is
defined as:

c>I(v)
Tv) = 2V2 ke

(3.23)

with kg the Boltzmann constant. In figure 8 we plot such quantity for a few different choices
of profiles and propagation parameters. Although a comparison with previous results (e.g.
in [10] and [15]) is not possible in full details, we have checked that, removing our additional
refinements, we recover those previous results in most cases.®

Before moving on, we would like to point out that our tools can be adapted for usage
in a more general way. Notably, if a user is interested in the synchrotron signatures from

"We remind the explicit relations r(s, /, b) = ssinb, z(s, I, b) = ~ r& + s2 — 2 rg cos b cos .

8We cannot however fully reproduce the dependence on the choice of profile in [15]: we find that the
synchrotron signal is independent on the choice of profile at large latitudes (as we expect from the self- similarity
of such profiles at large radii) while their plots show a sizable residual difference.
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Figure 6. Generalized synchrotron halo functions, for the DM annihilation case. The upper9
panels correspond to an NFW profile, the lower 9 to Burkert; the columns correspond to a fixed
propagation model, the rows to a fixed magnetic field model.
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Figure 7. Generalized synchrotron halo functions, for the DM decay case.
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Figure 8. Synchrotron signal (temperature) at 45 MHz, plotted against the galactic latitude, for
several choices of DM profile and propagation scheme.

a custom galactic magnetic field configuration, she can employ our electron and positron
galactic density and fold it with the desired MF. This is formally not self-consistent (one would
be computing the synchrotron energy losses with one MF configuration but the synchrotron
emission with a different one), but it can be acceptable for practical purposes in the conditions
in which the dominant energy losses are due to other processes like ICS and bremsstrahlung
(corresponding to high energies or to regions where the magnetic field is not too large, see the
discussion in section 3.1). Technically, one needs to compute the quantity f (E, r, z) as
presented in eq. (3.15) using the electron and positron halo functions provided in section 3.2.
The quantity f can then just be plugged in eq. (3.19) and then eq. (3.20) to compute the
synchrotron emission I. The custom configuration of the MF enters in determining the
corresponding synchrotron power with eq. (3.18).

3.4 Bremsstrahlung halo functions

In this subsection, in turn, we want to obtain the generalized halo functions for bremsstrahlung
emission, the other main technical output of this paper. The computation follows quite closely
the one for synchrotron in the previous subsection, using also the formalism for
bremsstrahlung spelled out in section 3.1. We summarize here the main ingredients for
completeness.

In close analogy with eq. (3.21), the bremsstrahlung differential flux (in
GeV 'cm %57 Isr7Y) reads:

oA m > f
1 Q DM
M dE (ovy e
dDpremy _1lr DM me f dE (Es) lbrem(Es, Ey, I, b) (annihilation)
dE,dQ  E24m I'vowe = gnr
dE
Mme f .
Mpbm dE MF ¢ (Es) lbrem(Es, Ey, 1, b) (decay)
y ps s (3.24)
U
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where now (in analogy with eq. (3.22)) the generalized halo function for bremsstrahlung lorem
(Es, Ey, I, b), which has units of GeV, is defined as

J

ﬁ Lz r].j‘ = Bbrem_(_vl E, r(s, 9))
a I(E,

Ieoo (F. F._ I T, (E,
lLos. F® P N

The bremsstrahlung power consists in

= AE,, E
Po. (ELEX) =cE  n(2dExE)

A} i 1

(3.26)

A

where n; are the number densities of the gas species and the bremsstrahlung cross section
was given in eq. (3.5).

The bremsstrahlung halo functions /yem are again available on the website [65], in the
format IBremAnnl[halo,propag,MF][logioEs,logi0E,,/,b] (and analogously IBremDecl
for decay). They are plotted in figure 9 and 10 (annihilation and decay cases), for reference.

In figure 11 we plot the resulting bremsstrahlung line-of-sight y-ray fluxes, for a few cases.
The agreement with previous calculations (notably [20]) has been verified. We also cross
checked with fully numerical computations done using GammasSky [54, 68]. While the spectral
shape is in very good agreement, we find a difference in overall normalization of the fluxes
along lines of sight passing close to the Galactic Center. This is due to the fact that GammaSky,
like GalProp, corrects the bremsstrahlung emissivities by adjusting the normal- ization of the
gas densities in each galactocentric ring, in particular close to the Galactic Center (see [69], and
[20] for a short discussion). We decide to instead use consistently the same maps for energy
losses and bremsstrahlung emission.

4 Conclusions

In the quest for the discovery of Dark Matter, it is important to exploit all possible strategies.
In Indirect searches, in addition, it is important to be able to exploit the multi-messenger
and multi-wavelength nature of the possible signals. We have here focussed on the secondary
radiations from electrons and positrons and presented several upgraded and new results. The
upgradings concern: i) an improved energy loss function (section 3.1) which fully includes low
energy losses (Coulomb, ionization and bremsstrahlung) and ii) the revised halo functions for
electrons and positrons (section 3.2). The new results consist in: iii) the synchrotron halo
functions (section 3.3); iv) the bremsstrahlung halo functions (section 3.4). All the results
are provided in numerical form on the Pppc4DMID website [65].

These state-of-the-art tools allow to compute the secondary radiation signal (syn-
chrotron, bremsstrahlung and Inverse Compton) from any arbitrary DM weak-scale model and
will be precious and hopefully instrumental in the current era of precision DM indirect
searches.
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Figure 9. Generalized bremsstrahlung halo functions, for the DM annihilation case. Anal- ogously
to figure 6, the upper 9 panels correspond to an NFW profile, the lower 9 to Burkert; the columns
correspond to a fixed propagation model, the rows to a fixed magnetic field model.
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Figure 10. Generalized bremsstrahlung halo functions, for the DM decay case.
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