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Abstract

The present paper focuses on solute segregation occurring in directional solidification processes with sharp solid/
liquid interface, like silicon crystal growth. A major difficulty for the simulation of such processes is their inherently
multi-scale nature: the impurity segregation problem is controlled at the solute boundary layer scale (micrometers)
while the thermal problem is ruled at the crucible scale (meters). The thickness of the solute boundary layer
is controlled by the convection regime and requires a specific refinement of the mesh of numerical models. In
order to improve numerical simulations, wall functions describing solute boundary layers for convecto-diffusive
regimes are derived from a scaling analysis. The aim of these wall functions is to obtain segregation profiles from
purely thermo-hydrodynamic simulations, which do not require solute boundary layer refinement at the solid/liquid
interface. Regarding industrial applications, various stirring techniques can be used to enhance segregation, leading
to fully turbulent flows in the melt. In this context, the scaling analysis is further improved by taking into account
the turbulent solute transport. The solute boundary layers predicted by the analytical model are compared to
those obtained by transient segregation simulations in a canonical 2D lid driven cavity configuration for validation
purposes. Convective regimes ranging from laminar to fully turbulent are considered. Growth rate and molecular
diffusivity influences are also investigated. Then, a procedure to predict concentration fields in the solid phase
from a hydrodynamic simulation of the solidification process is proposed. This procedure is based on the analytical
wall functions and on solute mass conservation. It only uses wall shear-stress profiles at the solidification front as
input data. The 2D analytical concentration fields are directly compared to the results of the complete simulation
of segregation in the lid driven cavity configuration. Finally, an additional output from the analytical model is
also presented. We put in light the correlation between different species convecto-diffusive behaviour; we use it
to propose an estimation method for the segregation parameters of various chemical species knowing segregation
parameters of one specific species.

Keywords: directional solidification, segregation, boundary layer, turbulent transport, scaling analysis

1. Introduction

The present work is related to solidification from the melt processes with sharp solid/liquid interface, like silicon
crystal growth. In such processes solute segregation represents an important issue regarding material quality. For
instance, in the field of photovoltaic silicon production, the control of dopant concentrations and the removal of
metallic impurities are important parameters regarding solar cells efficiency [1–3]. The numerical simulation of
heat, momentum and solute transport in the melt is a powerful tool for process optimizations [4–6]. Nevertheless,
the variety of involved length scales is a drawback for the study of industrial configurations. First of all, a precise
description of the furnace thermal conditions is mandatory for a realistic description of the crystallization process,
including growth rate variations and interface curvature. Heat transfers between the main components of the
furnace must be computed, resulting in characteristic dimensions in the range of meters for industrial scale furnaces
[7–9]. On the other hand, the description of the solute boundary layer at the solidification front requires a very thin
discretization. For silicon crystal growth under natural convection, the solute boundary layer thickness is in the
order of 1 mm (assuming a molecular diffusivity D ∼ 10−8 m2/s and an interface velocity VI ∼ 10 µm/s). The use of
stirring systems to enhance segregation leads to even thinner solute boundary layers with possibly fully turbulent
flows [10–14]. Therefore, there is a real interest in the development of coupled methods, with heat and momentum
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transport simulations on one side and solute transport scaling analysis on the other side. This simplification of the
problem remains reasonable as far as dilute alloys are concerned, solute concentrations remaining sufficiently low
to have negligible influence on heat and momentum transport.

In their fundamental work on solute segregation, Burton et al. [15] have established that a key parameter of the
segregation problem is the thickness of the solute boundary layer at the solid/liquid interface, which is controlled by
molecular diffusion and convective transport in the melt. A definition of the solute boundary layer thickness δ has
been proposed by Wilson [16]. This definition proved to be an efficient way to determine the effective segregation
coefficient keff from a convecto-diffusive parameter ∆. Recently, Garandet et al. [17] introduced an analytical
model of the solute boundary layer. This model is derived from a scaling analysis of the solute transport equation
and predicts the convecto-diffusive parameter from the wall shear-stress at the solid/liquid interface. In their study,
a steady-state 2D lid driven cavity configuration is used as a reference case for segregation under various convective
regimes. Then, Kaddeche et al. [18] tested this model on an horizontal Bridgman configuration and compared
it with experimental and numerical results. Both studies highlight the ability of the model to predict the mean
segregation regime from an averaged value of the wall shear-stress obtained from a hydrodynamic simulation of the
melt convection flow. This model was also tested in a transient regime with a 2D lid driven cavity flow (Chatelain
et al. [19]). This study shows that the analytical model provides a good estimate of the lateral segregations using
local values of wall shear-stress at the solid/liquid interface. The model can also describe transient variations of the
segregation regime for low frequency perturbations of the convection regime and solidification rate, in the limits of
the quasi-steady assumption used for the scaling analysis of the solute boundary layer.

The aim of this paper is to demonstrate that an analytical formulation of the solute boundary layer, derived
from a scaling analysis, can provide a meaningful description of segregations occurring in directional solidification
processes. This approach leads to the definition of solute wall functions describing solute boundary layers for
convecto-diffusive regimes, up to fully turbulent flows. Section 2 is dedicated to the formulation and validation of
such solute wall functions. The original model proposed by Garandet et al. [17] is revised, in order to account for
turbulent transport inside the solute boundary layer. Solute boundary layers obtained from these wall functions are
compared to numerical results of segregation in the transient lid driven cavity configuration, which proved to be a
meaningful parametric reference case [19]. In section 3, the developed analytical model is used to retrieve segregation
profiles from hydrodynamic simulations. An iterative procedure based on solute mass conservation is proposed to
access solute repartition in the solid. This procedure is applied to the 2D lid driven cavity configuration and the
analytical concentration fields are directly compared to those obtained numerically. Finally, section 4 presents
an application of the model for the study of different species segregation. A correlation between the segregation
parameters of the different species is derived from the solute boundary layer model.

2. Turbulent transport in solute boundary layers

2.1. Solute boundary layer analytical model

We consider a quasi 1D directional solidification process. A weakly concentrated liquid metallic blend or semi-
conductor is progressively solidified. The plane solidification front progresses in the z direction. Let us recall that
a jump in impurity (or solute) concentration at the solid/liquid interface is imposed between concentrations on the
liquid side, CIL, and the solid side, CIS , since the impurity solubility is different in these two phases. Very often a
smaller solubility is observed in the solid than in the liquid, leading to a thermodynamic segregation coefficient,
k0 = CIS/C

I
L, smaller than one. The consequence is that, while the solidification progresses, solute is rejected from

the solid phase towards the liquid phase, which leads to the formation of a solute boundary layer in the liquid in
the vicinity of the front. Burton et al. [15] explain that solute incorporation in the solid depends on the solute
boundary layer at the solidification front. Wilson [16] proposed the following definition of the solute boundary layer
thickness:

δ =
CIL − C∞L
−(∂CL/∂z)I

, (1)

where CIL and C∞L stand for solute mass fraction in the liquid at the solid/liquid interface and outside the solute
boundary layer, respectively. Assuming negligible diffusion in the solid, solute conservation at the interface is given
by:

−D ∂CL
∂z

∣∣∣∣
I

= VI(1− k0)CIL, (2)
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with D the solute molecular diffusivity in the liquid (m2/s), VI the interface velocity (m/s) and k0 the thermody-
namic segregation coefficient. The effective segregation coefficient is then defined by:

keff =
k0C

I
L

C∞L
=

k0

1− (1− k0)∆
, (3)

where the convecto-diffusive parameter ∆ represents the normalized solute boundary layer thickness:

∆ =
δVI
D

=
CIL − C∞L
CIL(1− k0)

, (4)

since the solute boundary layer thickness for a purely diffusive regime is given by the ratio D/VI .
The analytical model proposed by Garandet et al. [17] describes the solute boundary layer in convecto-diffusive

regimes. It is derived from a scaling analysis of the solute transport equation in the liquid phase. At first, the
analysis was presented for the lid-driven cavity configuration, but it can easily be transposed to other configurations.
We shall consider here the general case of a boundary layer flow developing over a plane solidification front. This
configuration is presented in figure 1. A boundary-layer flow develops over the solid/liquid interface, from an
impingement point (on the right side) to a separation point (on the left side). The characteristic length over which
the boundary layer flow takes place is denoted lc, and the vertical velocity gradient at the interface leads to a
wall shear-stress τ = µ(∂u/∂z)z=0, with u the velocity component parallel to the interface (m/s) and µ the liquid
dynamic viscosity (Pa.s).

Figure 1: Boundary layer flow configuration (impingement and separation points, characteristic length lc, interface velocity VI , schematic
flow pattern and interface shear-stress τ).

As explained in former studies [17, 20], the scaling analysis of the solute transport equation leads to a simplified
equation for δ:

D

δ
= VI − w(δ), (5)

where w(δ) stands for the convection velocity normal to the interface, at the edge of the solute boundary layer. As
proposed by Garandet et al. [17], this term can be estimated from the wall shear-stress at the solid/liquid interface
τ , assuming a linear velocity profile inside the solute boundary layer for the tangential component u. Equation (5)
can then be rewritten in the dimensionless form:

1−∆−B∆3 = 0. (6)

With this formulation, the convecto-diffusive parameter ∆ is computed from a unique dimensionless parameter
denoted B and defined by:

B =
τD2

V 3
I µlc

. (7)

In the following, the analytical solution of equation (6) proposed by Garandet et al. [17] is referred to as ∆th.
Figure 2 presents the evolution of ∆th as a function of B. The transition between diffusive (∆th = 1) and convective
regimes (∆th ≈ B−1/3) occurs for B ≈ 1. To perform this analysis, Garandet et al. [17] assume negligible turbulence
effects within the solute boundary layer. For all convective regimes, the solute boundary layer is supposed to remain
thinner than the viscous sublayer of the velocity boundary layer (which leads to the assumption of a linear velocity
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profile in the solute boundary layer). This assumption is, however, questionable when fully developed turbulent
flows are involved. Numerical simulations in quasi-steady [17] and transient [19] configurations highlight the limits
of this assumption and show that ∆th significantly overestimates the convecto-diffusive parameter ∆ for moderate
to high values of B. Moreover, the value of B above which discrepancies occur is seen to depend on the considered
impurity and on the growth conditions, through the value of D and VI .

The thickness of the viscous sublayer δvsl is classically normalized by means of the inner length scale ν/uτ ,
where ν = µ/ρ stands for the kinematic viscosity (m2/s) and uτ =

√
τ/ρ represents the friction velocity (m/s), ρ

being the liquid density (kg/m3). The dimensionless thickness of the viscous sublayer δ+
vsl, is then expressed by the

following relation:

δ+
vsl = δvsl

uτ
ν
. (8)

In the literature [21], δ+
vsl is considered to be of the order of 5 (in wall units). In order to compare δvsl to the

thickness of the solute boundary layer, it is useful to normalize by D/VI . Introducing D/VI and B in equation (8),
we can express the normalized viscous sublayer thickness ∆vsl by the following relation:

∆vsl = δvsl(VI/D) = δ+
vsl(BReVI )

−1/2, (9)

where the parameter ReVI = (VI lc)/ν is a Reynolds number based on the interface velocity. Using equation (9),
viscous sublayer and solute boundary layer thicknesses can be compared in a dimensionless form. The evolu-
tion of ∆vsl with B is also given in figure 2. Here liquid silicon properties are used with ρ = 2550 kg/m3 and
µ = 7.5× 10−4 Pa.s. The interface velocity is set at VI = 10 µm/s, the characteristic length lc is set at 0.2 m and
the dimensionless viscous sublayer thickness is δ+

vsl = 5. For moderate convective regimes, ∆th remains smaller
than ∆vsl. But when B increases, ∆th tends to B−1/3 whereas ∆vsl is proportional to B−1/2. A critical regime is
necessarily found with a viscous sublayer getting as thin as the solute boundary layer. This critical regime is not
universal but depends on configuration parameters. Beyond this limit, turbulent transport should not be neglected
within the solute boundary layer.

Figure 2: Evolution of ∆th and ∆vsl = δvsl(VI/D) with B. To define ∆vsl liquid silicon properties are used (ρ = 2550 kg/m3 and
µ = 7.5× 10−4 Pa.s), the interface velocity is set at VI = 10 µm/s, the characteristic length lc is set at 0.2 m and δ+vsl is set at 5.

At this point, we should highlight that a recent study from Altenberend et al. [22] was also dedicated to the
influence of turbulent boundary layers on solute segregation during silicon solidification. This theoretical, numerical
and experimental study focuses on a 1D parallel flow (Couette configuration). It confirms that, when high growth
rates are achieved, a high stirring velocity and turbulent transport in the solute boundary layer is required for an
efficient segregation. A theoretical model based on turbulent boundary layers properties is proposed and leads to
the definition of a threshold value of the stirring velocity to ensure an efficient segregation.

In order to study high convective regimes, generated by stirring systems for instance, the original scaling analysis
proposed by Garandet et al. [17] should be revised to account for turbulent transport in the solute boundary layer.
To describe turbulent transport we rely on a standard turbulence model [21] based on the Reynolds decomposition
and the definition of an eddy viscosity νt (m2/s). A turbulent diffusivity Dt can be defined through a turbulent
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Schmidt number Sct = νt/Dt. In this study, the turbulent Schmidt number is assumed to be constant. Reference
studies [23, 24] provide a reasonable value of Sct = 0.7. It is worth mentioning, however, that the definition of Sct
is still an open question. Some studies suggest that it should be a function of several parameters, including the
distance from the wall [25, 26]. In the frame of our work, the solute transport equation in the liquid is:

∂CL
∂t

+ (~u.∇)CL = ∇. [(D +Dt)∇CL] . (10)

CL and ~u stand for the solute mass fraction in the liquid and the mean velocity field (m/s), respectively. Here the
word “mean” refers to the RANS approach, turbulent fluctuations influence being accounted for by Dt. Considering
a one dimensional steady-state configuration, in a frame moving with the interface and with z pointing from the
solid to the liquid, equation (10) becomes:

D
∂2CL
∂z2

+
∂

∂z

(
Dt
∂CL
∂z

)
+ (VI − w)

∂CL
∂z

= 0, (11)

where w stands for the mean convection velocity normal to the interface. Thereafter, we should follow the scaling
procedure proposed by Garandet et al. [20]. But further information about the turbulent diffusion term Dt(∂CL/∂z)
is first required. On one hand, the turbulent diffusivity Dt is null at the interface and increases with z. On the
other hand, the vertical concentration gradient ∂CL/∂z is negative in the solute boundary layer. The product
Dt(∂CL/∂z) then decreases from 0 to reach a negative value at z = δ. In a scaling analysis framework, the
derivative ∂[Dt(∂CL/∂z)]/∂z can then be considered as negative inside the solute boundary layer. This negative
sign is consistent since turbulent diffusion is introduced to describe turbulent convective transport of the solute
away from the interface.

To perform the scaling of equation (11) we consider that the solute concentration variation in the solute boundary
layer is given by ∆c = CIL − C∞L . Using Wilson’s definition of the solute boundary layer thickness δ, in an order of
magnitude approach equation (11) becomes:

D
∆c

δ2
−Dt(δ)

∆c

δ2
− (VI − w(δ))

∆c

δ
= 0, (12)

or, after simplification by ∆c/δ:
D

δ
− Dt(δ)

δ
= VI − w(δ). (13)

This equation is similar to the equation proposed by Garandet et al. [20] (equation (5)), with an additional term for
turbulent diffusion. The estimation of δ through equation (13) requires a definition of the velocity and turbulent
diffusivity profiles in the solute boundary layer. We first consider a general expression of the mean tangential
velocity component:

u(z) = f(z). (14)

As proposed by Garandet et al. [17], mass continuity equation for an incompressible flow can be used to connect
tangential and normal convection velocity components:

∂u

∂x
+
∂w

∂z
= 0. (15)

We suppose that u varies along the interface on a characteristic length lc, over which the boundary layer flow occurs.
We also consider that w varies in the vertical direction on a characteristic length given by the distance z along the
normal to the interface. From an order of magnitude point of view, equation (15) leads to:

w

z
∼ − u

lc
. (16)

The mean convection velocity normal to the interface can thus be expressed by:

w(z) ≈ − z
lc
f(z). (17)

The solute boundary layer thickness can be linked to diffusion and turbulent convective transport by the following
general equation:

D

δ
− νt(δ)

Sctδ
= VI +

δ

lc
f(δ). (18)
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The resolution of equation (18) relies on a meaningful choice for velocity and turbulent viscosity profiles in the
solute boundary layer in order to define f(z) and νt/Sct at z = δ. Numerical results [17, 19] show that for fully
turbulent regimes the solute boundary layer becomes thicker than the viscous sublayer but does not extend much
in the buffer layer which lies between z+ = 10 to 50 (with z+ = zuτ/ν). In this case, Rannie’s formula [21] gives a
good description of the mean velocity profile until z+ ≈ 27.5:

u+(z) = A tanh

(
z+

A

)
, (19)

where u+ = u/uτ and A = 14.53 is an empirical constant. Other famous velocity profiles, such as Von Karman
formula [21], could be used depending on the flow configuration. Here we choose Rannie’s formula because it
provides a simple, unique and differentiable expression of the velocity when z+ is in the interval [0; 27.5]. The eddy
viscosity can, for instance, be expressed by a mixing length model:

νt(z) = l2
∣∣∣∣∂u∂z

∣∣∣∣ , (20)

where the mixing length l can be defined by Van Driest formula [27], which remains valid inside the viscous sublayer:

l = κz
(

1− e−z
+/c
)
, (21)

where κ = 0.4 is the Von Karman constant and c = 26 is another empirical constant. As for the normal velocity
component, the order of magnitude of ∂u/∂z is given by:

∂u

∂z
∼ u

z
∼ f(z)

z
. (22)

Here again, other turbulence models could be used as well. The benefit of the mixing length model is to remain
simple enough to allow an analytical approach. Introducing Rannie’s velocity profile and the mixing length model
in equation (18), we obtain the following equation for the solute boundary layer thickness:

D

δ
− κ2

Sct

(
1− e−δuτ/(νc)

)2

Auτ tanh

(
δuτ
Aν

)
= VI +

δ

lc
Auτ tanh

(
δuτ
Aν

)
. (23)

Numerical resolution of equation (23) provides an estimate of δ for any convective regime, as long as the assumption
of a boundary layer flow at the solid/liquid interface remains valid.

In order to extract the influence of the different parameters, equation (23) can be simplified by linearisation
of convection and turbulent diffusion terms. For convective regimes, δ is expected to remain small, allowing the
following approximations:

Auτ tanh

(
δuτ
Aν

)
≈ u2

τ

ν
δ, (24)

and (
1− e−δuτ/(νc)

)2

Auτ tanh

(
δuτ
Aν

)
≈ u2

τ

ν

(uτ
νc

)2

δ3. (25)

After substitution in equation (23) and introducing ∆ and B, we obtain:

1−∆−B∆3 −
(κ
c

)2 Sc

Sct
Re2

VIB
2∆4 = 0. (26)

Once again, this equation is equivalent to the equation proposed by Garandet et al. [17] (equation (6)) with an
additional term for turbulent transport. Here we focus on strong convective regimes. The first order term ∆
can be neglected since the interface velocity VI is small compared to the convection velocity w (see equation (13)).
Considering high values of B and defining a new parameter ψ = (κ/c)

√
Sc/SctReVI , the asymptotic regime is given

by:
∆ = (ψB)−1/2. (27)

Introducing expression (27) in equation (6), it is possible to define a critical value Bc beyond which turbulent
transport needs to be taken into account:

Bc =
1

ψ

(
1 +

1

ψ

)2

. (28)
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This critical value Bc depends on interface velocity and solute molecular diffusivity. The evolution of Bc as a
function of ψ is given in figure 3. Two asymptotic regimes can be identified: Bc ≈ ψ−1 for ψ >> 1 and Bc ≈ ψ−3

for ψ << 1. Bc also defines the validity range of equation (6). For moderate convective regimes (B < Bc), the
model proposed by Garandet et al. [17] (solution of equation (6)) provides a good estimate of ∆. For stronger
convective regimes with fully turbulent flows (B > Bc), ∆ can be obtained from equation (23) or estimated through
the asymptotic regime (27).

Figure 3: Critical value Bc as a function of ψ.

2.2. Validation against numerical results

In this section the analytical model is confronted with numerical results of solute segregation in a silicon di-
rectional solidification process. A 2D lid driven cavity configuration is used as a reference test case (figure 4).
A detailed presentation of the problem is provided in a previous publication [19]. Main information about the
numerical procedure is briefly reminded here.

Momentum and solute transport equations are solved in a 2D domain. The configuration is described in figure 4.
The cavity width is L = 0.2 m and the liquid height at initialization is H(t0) = 0.18 m. A lid driven cavity flow
is used to impose convection in the liquid. The convection regime is defined by a single dimensionless parameter,
namely the Reynolds number ReL = VLL/ν. The lid velocity VL is imposed at the top surface of the cavity and no-
slip conditions are used on the lateral walls and the solid/liquid interface. The realizable k−ε turbulence model [28]
is used for turbulent configurations (ReL ≥ 104) and the turbulent Schmidt number is fixed at 0.7. Transient simu-
lations are performed in order to compute solute incorporation in the solid. The solidification front is assumed to be
plane and moves at an imposed velocity VI . Mass and solute fluxes through the solid/liquid interface are accounted
for by local source terms, as defined in previous works [17, 29, 30]. Solute incorporation in the solid is defined by
the thermodynamic segregation coefficient k0, which is set at 0.3 in this study. Regarding spatial discretization, the
mesh is refined at the interface to ensure a precise description of the solute boundary layer. Far from the interface
the mesh is uniform with 2 mm× 2 mm cells and the first cell adjacent to the interface is 5 µm high, except for
ReL = 107 configurations where it is reduced to 1 µm. A mesh independence test was performed and described in
the previous publication [19]. This test confirmed that the spatial discretization is sufficient for the resolution of
the fluid flow and solute transport. The problem is solved with the commercial code ANSYS FLUENT(TM) [28].
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Figure 4: 2D lid driven cavity configuration (geometry, interface velocity VI , lid velocity VL and schematic flow pattern).

A parametric study is performed with ReL varying from 102 to 107, D varying from 10−9 m2/s to 10−7 m2/s and
VI varying from 2.8 µm/s to 70 µm/s. The same range of parameters was used by Garandet et al. [17] in order to
investigate the segregation of various species during photovoltaic silicon crystallization or purification by directional
solidification. Liquid silicon properties are used for fluid density ρ and dynamic viscosity µ. The initial solute mass
fraction in the liquid is set at C0 = 20 ppmw (part per million weight) and the simulations are performed until
solid fraction fS reaches 89%. Typical solute mass fraction fields in the solidified ingots obtained for the different
convective regimes are presented in section 3.

Three velocity fields obtained at different steps of the solidification process (corresponding to different solid
fractions) for the turbulent regime ReL = 105 are reported in figure 5. The flow comprises a main vortex filling the
major part of the cavity and secondary vortices in the corners. Characteristic points are identified at the growth
front where the shear-stress is null. Trajectories of these points during the solidification are drawn as black dots. As
the liquid height is reduced, the secondary vortices are more and more confined in the corners and the characteristic
points are shifted to the lateral walls. The precedent publication [19] already pointed out the correlation between
segregation patterns and characteristic points locations at the solid/liquid interface. Figure 6 presents several
profiles of the convecto-diffusive parameter recorded at various solidification times, for ReL = 105 and ReL = 107

(in these cases D = 10−8 m2/s and VI = 10 µm/s). Characteristic points locations are also drawn as black dots. We
can see that ∆ peaks are localized near some of the characteristic points or close to the lateral walls, which confirms
the correlation between the flow topology and the mass transfer at the solidification front.

(a) fS = 0 (b) fS = 0.56 (c) fS = 0.78

Figure 5: Velocity field for the turbulent regime ReL = 105 at different steps of the solidification process. Black dots represent trajectories
of characteristic points with zero shear-stress at the solid/liquid interface.
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(a) ReL = 105 (b) ReL = 107

Figure 6: Convecto-diffusive parameter profiles at different solidification times for ReL = 105 (a) and ReL = 107 (b) (D = 10−8 m2/s
and VI = 10 µm/s). Black dots represent locations of characteristic points with zero shear-stress at the solid/liquid interface.

Span averaged values of B (from equation (7)) and ∆ (from equation (4)) along the solidification front are
recorded every time the interface moves 1 cm upwards, and noted 〈B〉 and 〈∆〉. To compute the parameter B, we
assume that the characteristic length lc is directly given by the cavity width L. As explained by Garandet et al.
[17], this amounts to consider that a unique recirculation is filling the whole cavity and neglects secondary vortices.
This assumption is acceptable here since we are studying laterally averaged values. We will see, however, in the
next section, that specific characteristic lengths can be defined for the different vortices, in order to enhance lateral
segregations description. Results are presented in figure 7 and referred to as “transient” data. In figure 7(a) the
molecular diffusivity is set at D = 10−8 m2/s and different interface velocities are investigated. In figure 7(b) the
interface velocity is set at VI = 10 µm/s and different diffusivities are considered. The different dot groups refer to
the different Reynolds numbers used for each value of D and VI . These results are compared to the analytical model
proposed by Garandet et al. [17], referred to as ∆th. Numerical results obtained in a quasi-steady configuration
[17] are also presented and referred to as “quasi-steady” data.

For all tested values of D and VI , the same general trend is observed: numerical results (transient and quasi-
steady) diverge from ∆th for high convective regimes, or more precisely for high values of the product ψB. The
divergence occurs around the critical value Bc predicted by relation (28). This critical value is reported in figure 7(a)
for VI = 2.8 and 70 µm/s cases (with D = 10−8 m2/s) and is equal to 207 and 0.3, respectively.

For each investigated values of D and VI , equation (23) is solved numerically and referred to as “analytical” data
in figure 7. A good agreement is observed with numerical results for any convective regime. The asymptotic regime
provided by equation (27) is also presented in figure 7(a) for VI = 2.8 and 70 µm/s, and referred to as “asymptote”
data. It provides a good estimate of ∆ for high convective regimes (B > Bc). It appears that a simple way to define
the solute boundary layer for any convective regime is to combine the analytical model proposed by Garandet et al.
[17] (solution of equation (6)) for diffusive and moderate convective regimes, with the asymptotic regime given by
equation (27) for fully developed turbulent regimes. The transition between these solutions is defined by the critical
value Bc (28).

The last dots groups of each series of transient numerical results (i.e. the groups obtained for the highest values
of B) refer to ReL = 107 configurations. For this hydrodynamic regime, a large variation of 〈∆〉 is observed during
the first half of the solidification, whereas 〈B〉 remains almost unchanged. This dispersion is explained by the
progressive confinement of the secondary recirculations at the lateral walls. The concentration peaks associated
with characteristic points have, indeed, smaller amplitudes as solidification proceeds (see figure 6(b)) and therefore
less and less effect on the span averaged value 〈∆〉. To exclude this effect from results analysis, local values of
B and ∆ at the center of the interface (x = 0.1 m) are recorded after an interface displacement of 1 cm. In this
case, the chosen point is sufficiently far from the characteristic points, and concentration peaks have no influence
on the measured values. These values are reported in figure 7 as black crosses. The agreement with the developed
analytical model appears to be excellent when 2D effects are ignored.

These results confirm that the introduction of a turbulent diffusion term in the scaling analysis allows the
estimation of the segregation even for fully turbulent flows. This analytical model provides an opportunity to
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compute concentration fields in solidified ingots without performing a numerical resolution of the solute boundary
layer. This is the topic of the next section.

(a) D = 10−8 m2/s

(b) VI = 10 µm/s

Figure 7: 〈∆〉 as a function of 〈B〉 for different solidification conditions (mean values obtained along the interface). Influence of VI (a)
and D (b) on numerical and analytical results. Quasi-steady data refer to Garandet et al. [17] numerical results, transient data refer
to our simulations, analytical data refer to the solution of equation (23), asymptote data refer to the asymptotic regime provided by
equation (27) and ∆th refers to the analytical model proposed by Garandet et al. [17]. Black crosses (×) represent transient numerical
results obtained for ReL = 107 at the center of the interface and for a solidified height of 1 cm. Critical values Bc obtained from
equation (28) for VI = 2.8 and 70 µm/s (D = 10−8 m2/s) are indicated by vertical dashed lines.

3. Segregation patterns from hydrodynamic simulations

In this section, a procedure to compute concentration fields in solidified ingots, from convection simulation data
in the liquid phase and the developed analytical model, is proposed. The method is applied to the 2D lid driven
cavity configuration. Wall shear-stress profiles at the solidification front are obtained during the hydrodynamic
simulation of the solidification process. They are used as input data for the analytical segregation computation,
performed under Matlab(TM). The description of lateral segregations is improved by the fluid flow structure analysis.
The analytical results are compared to the numerical concentration fields obtained by complete simulations including
solute transport and segregation.

3.1. Computation procedure
A flow chart of the proposed computation procedure is presented in figure 8. This procedure consists of three

main steps. First, a directional solidification simulation is performed. The aim of this simulation is to compute the
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convection flow in the liquid phase. Solute transport is not considered at this stage. Shear-stress profiles at the
interface (τ(x)) are recorded at each time-step of the transient simulation.

In a second step, the solute boundary layer analytical model is used to determine segregation parameters along
the solidification front. Profiles of parameter B are computed from the local values of τ using equation (7). ∆
profiles are then deduced from the analytical model (see section 2) and effective segregation coefficient profiles
(keff (x)) are obtained from equation (3). For a good description of lateral segregations, specific points should be
considered at this stage, like the definition of the characteristic length lc and the validity of the analytical model
at separation and impingement points. These issues are discussed in the next section (3.2).

Finally, the third step is dedicated to the computation of the solute repartition in the solid phase from an
iterative procedure performed under Matlab(TM). keff is defined as the ratio between the solute concentration
in the solid phase at the interface CIS and the liquid phase concentration far from the interface C∞L . Thus, the
estimation of C∞L , through an iterative computation based on solute mass conservation in the liquid and solid
phases, will allow to get CIS(x) and then to obtain the concentration field in the solid.

To compute the concentration field in the solid, the initial transient related to the formation of the solute
boundary layer has to be considered. A simplified solution of this initial transient was proposed by Garandet et al.
[31] for convecto-diffusive regimes. This solution is derived from a scaling analysis in a 1D configuration and leads
to the following definition for the characteristic length of the initial transient zT (m):

zT =
D∆2

VI [1− (1− k0)∆]
. (29)

The concentration in the solid is then given by the following relation:

CS(x, zS) = C∞L (t)keff (x, t)

[
1− (1− k0)∆(x, t) exp

(
− zS
zT (x, t)

)]
, (30)

where zS = tVI represents the solidified length (m). Compared to the original expression proposed by Garandet
et al. [31], the initial concentration C0 is replaced by C∞L (t) in equation (30) to account for solute accumulation
in the liquid. The original publication was dedicated to the initial transient, when the liquid concentration can
reasonably be approximated by the initial concentration C0. The modified equation (30) is valid for the complete
solidification process, but needs an estimation of C∞L , which will be obtained in two steps.

First, assuming an homogeneous concentration C0 in the liquid at the beginning of the solidification, the mean
solute concentration in the liquid CLmean is easily obtained at each time-step by solute mass conservation. Then, the
expression of the concentration profile in the liquid phase CL(z), proposed by Garandet [32] for a convecto-diffusive
regime, will be used for each abscissa x:

CL(x, z) = C∞L

[
1 +

∆(x)(1− k0)

1−∆(x)(1− k0)
exp

(
− z

δ(x)

)]
. (31)

This equation is derived in a steady-state regime and neglects the initial transient of the solute boundary layer
formation. Another expression was proposed later to account for the initial transient [31]. But this expression is
too much complex for an analytical integration and the precision improvement would remain limited, especially for
high convective regimes where the initial transient is very short. The concentration profile (31) can be integrated
on the liquid height H and the cavity width L. This integral can be evaluated as H LCLmean and the bulk
concentration C∞L can be obtained from CLmean, H, δ and ∆ by:

C∞L =
CLmean〈

1 + δ(x)
H

[
∆(x)(1−k0)

1−∆(x)(1−k0)

(
1− exp

(
− H
δ(x)

))]〉 . (32)

The notation 〈·〉 refers to a span average on the cavity width. The assumption of an homogeneous liquid phase
outside the solute boundary layer seems reasonable when turbulent convection is involved. Considering the numerical
results presented in a previous publication [19], this hypothesis becomes more than questionable for laminar flows,
and the definition of a bulk concentration is not so plain.
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Figure 8: Flow chart of the procedure for segregation computation using the solute boundary layer analytical model.

3.2. Lateral segregations description

The aim of the procedure is to give a realistic picture of axial and lateral segregation patterns in the solid.
Therefore, local variations of the solute boundary layer thickness along the solidification front must be estimated.
For this purpose, local values of ∆ are computed from local values of wall shear-stress along the interface. However,
the scaling analysis presented in section 2 requires the definition of a characteristic length lc for the lateral variations
of the convection velocity along the solid/liquid interface. As explained in section 2.2, Garandet et al. [17] define
this length as the cavity width L. But the study of the lid driven flow topology shows that multiple recirculations
occur in the cavity and have a significant influence on lateral segregations [19]. The positions and sizes of these
vortices are controlled by the lid velocity magnitude and the aspect ratio of the cavity H(t)/L. An evolution of the
flow topology can be observed during the solidification process (see figure 5). To account for this phenomenon, a
detection procedure of the characteristic points at the solid/liquid interface is used. The characteristic points are
defined as the locations where the wall shear-stress is null (such points are shown in figure 5). The recirculations
lengths are then obtained by the distance between two characteristic points, or between a characteristic point
and the adjacent lateral wall for corner recirculations. These lengths are determined at each time-step of the
solidification and provide a meaningful description of the flow structure in the cavity (figure 9 presents a schematic
flow comprising three recirculations with different characteristic lengths). The parameter B is then defined locally
at each point of the solidification front as:

B(x, t) =
τ(x, t)D2

V 3
I µlc(x, t)

, (33)

where lc(x, t) is the characteristic length of the recirculation that sweeps this point of the front.
Besides, the analytical model of the solute boundary layer is based on the assumption of a boundary layer flow

parallel to the solid/liquid interface (see equation (19)). This assumption is reasonable on the major part of the
interface, but is incorrect in the vicinity of the characteristic points, fluid flow being there fully two-dimensional.
This limitation has already been pointed out in previous publications [3, 19]. To discuss this issue, two cases must
be distinguished: separation and impingement points. As an example, figure 10 presents a typical profile of the
convecto-diffusive parameter ∆ along the interface. This profile comes from a segregation simulation in the 2D
lid driven cavity configuration, for a Reynolds number of ReL = 104. In this case, two separation points and two
impingement points are found at the interface.

At the separation points the flow is leaving the interface (w > 0 with our choice of referential). The numerical
results highlight concentration peaks at these locations associated with peaks in the solute boundary layer thickness
(see figure 10). Solute accumulation at the separation points comes from lateral convective fluxes from the adjacent
vortices. The ∆ peak magnitude depends on the global convective regime in the cavity. The analytical model also
predicts such a peak since ∆ tends to 1 when τ tends to zero. But the magnitude of this analytical peak has no
physical link with the convection intensity. Therefore, analytical segregation profiles at separation points remain
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solely qualitative.
At impingement points the flow is directed toward the interface (w < 0) and the numerical simulations predict

a local minimum of the solute concentration associated with a minimum of the solute boundary layer thickness.
This seems physically sound since the flow is bringing low concentrated liquid from the bulk at the interface. The
wall shear-stress is, however, null at these points, so that the analytical model predicts a maximum for the solute
boundary layer thickness (∆ tending to 1). To overcome this limitation of the analytical model, a spline interpolation
procedure is used to remove ∆ peaks associated to impingement points. Figure 10 presents the analytical profile
of the convecto-diffusive parameter, which is computed thanks to the solute boundary layer model presented in
section 2. Two local maxima related to impingement points can be identified on this profile. The dotted curve
represents the profile obtained with the spline interpolation procedure.

Figure 9: 2D lid driven cavity configuration and schematic flow pattern with three recirculations; definition of recirculation lengths lc1,
lc2 and lc3.

Figure 10: Numerical and analytical convecto-diffusive parameter profiles along the solidification front, ∆(x), for ReL = 104 and a solid
fraction fS = 0.44; illustration of the spline interpolation procedure at impingement points.

3.3. Analytical concentration fields

The segregation computation procedure is applied to the transient lid driven cavity configuration. Numerical
simulations of segregation in silicon are performed for Reynolds numbers ranging from ReL = 102 to ReL = 107.
The solidification rate is fixed at VI = 10 µm/s, the molecular diffusivity is D = 10−8 m2/s, the segregation coeffi-
cient is k0 = 0.3 and the initial concentration is set at C0 = 20 ppmw. Liquid silicon properties are used for fluid
density and dynamic viscosity. The simulations are performed until solid fraction reaches 89%. The profiles of wall
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shear-stress at the solid/liquid interface are recorded at each time-step of the simulation. These profiles are used
as input data for the computation of the solute repartition in the solid from the analytical model. The resulting
concentration fields are compared to the numerical results, which have already been presented in a previous publi-
cation [19]. Regarding analytical segregation computation, the local values of B are compared to the critical value
Bc and the local convecto-diffusive parameter ∆ is computed from the solution of equation (6) when B < Bc or
from equation (27) when B > Bc. The iterative procedure described in paragraph 3.1 is then applied to progress
from one time step to the next one.

Figures 11 and 12 compare numerical and analytical concentration fields in the solidified ingot, obtained
for ReL = 107 and 106. For these turbulent regimes, lateral segregations are weak, with almost horizontal iso-
concentration lines. Figures 11(c) and 12(c) present the relative deviation between the numerical and analytical
concentrations. Mean and maximum relative deviations are respectively 0.5% and 52% for ReL = 107 and 1% and
110% for ReL = 106. Figure 12(c) shows that the maximum errors are located at the main recirculation separation
point, as explained in paragraph 3.2.

Figures 13 and 14 present the results obtained for the turbulent regimes ReL = 105 and 104. The lower convec-
tion intensity leads to more significant lateral segregations. The analytical model provides a very good estimate of
local curvatures of iso-concentration lines. The qualitative influence of the main recirculation separation point is
also well retrieved. For ReL = 105, the mean relative deviation on the concentration field is 3.7% and the maximum
local relative deviation is 140%. For ReL = 104, mean and maximum relative deviations are 6.3% and 72%, respec-
tively. The highest errors are located at the separation points and also near the lateral walls. Indeed, when an
impingement point is close to a lateral wall, the spline interpolation procedure is difficult to perform and becomes
less accurate.

Figures 15 and 16 present concentration fields in the solid for laminar regimes ReL = 103 and 102. The agree-
ment between analytical and numerical results is not as good as for turbulent regimes. For ReL = 103, the lateral
segregations are under estimated. The previous publication [19] explained that the concentration in the liquid
phase is very inhomogeneous for this configuration. At the separation point of the main recirculation, the numerical
simulation predicts a convecto-diffusive parameter greater than 1. The analytical model is based on the assumption
of an homogeneous liquid phase outside the solute boundary layer. It can not lead to a convecto-diffusive parameter
larger than 1, which explains the under estimation of the lateral segregations. This particular regime is, indeed,
very close to the convecto-diffusive transition and it is not surprising that the extension of our 1D model to a 2D
configuration leads to relatively poor results in this case. For ReL = 102, the lateral segregations are also under
estimated by the analytical model. These lateral segregations are, however, less pronounced than for ReL = 103

and the overall segregation regime is very close to pure diffusion. Mean and maximum relative deviations are
respectively 10% and 71% for ReL = 103 and 1.6% and 16% for ReL = 102.

(a) Numerical result (b) Analytical result (c) Relative deviation (%)

Figure 11: Numerical and analytical concentration fields in the ingot solidified under the turbulent convection regime ReL = 107. In
this figure and in those following (figures 11 to 16), concentrations are given as mass fractions and relative deviation colormaps are
limited to 25% to enhance the contrast.
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(a) Numerical result (b) Analytical result (c) Relative deviation (%)

Figure 12: Numerical and analytical concentration fields in the ingot solidified under the turbulent convection regime ReL = 106.

(a) Numerical result (b) Analytical result (c) Relative deviation (%)

Figure 13: Numerical and analytical concentration fields in the ingot solidified under the turbulent convection regime ReL = 105.

(a) Numerical result (b) Analytical result (c) Relative deviation (%)

Figure 14: Numerical and analytical concentration fields in the ingot solidified under the turbulent convection regime ReL = 104.
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(a) Numerical result (b) Analytical result (c) Relative deviation (%)

Figure 15: Numerical and analytical concentration fields in the ingot solidified under the laminar convection regime ReL = 103.

(a) Numerical result (b) Analytical result (c) Relative deviation (%)

Figure 16: Numerical and analytical concentration fields in the ingot solidified under the laminar convection regime ReL = 102 (a
different color scale is used to enhance the contrast).

Figure 17 presents normalized longitudinal segregation profiles. The notation 〈CS〉 refers to the averaged con-
centration in the horizontal direction, x. Turbulent flows (ReL = 104 to 107) lead to convective segregation regimes
with an effective segregation coefficient getting closer to k0 as ReL increases. For these convective regimes, the
analytical model provides a very good estimate of the longitudinal segregation. The initial transients observed
for turbulent regimes are well described by the approximated solution given by equation (30). Laminar flows
(ReL = 102 and 103) lead to an almost purely diffusive regime with a constant averaged concentration after the
initial transient. For ReL = 102, the agreement with numerical results is also very good. The concentration is only
slightly overestimated at the end of the initial transient, for solid fractions laying between 0.05 and 0.1. This error
can be reduced by using the exact solution proposed by Garandet et al. [31] for the initial transient in a convecto-
diffusive regime. For ReL = 103, the agreement between the analytical and the numerical results is not so good.
The analytical concentration is underestimated for solid fractions between 0.05 and 0.6. This issue is related to the
poor description of the solute transport at the separation zone of the main recirculation. A further consequence is
that, due to solute mass conservation, the concentration is overestimated at the end of the solidification.

16



Figure 17: Longitudinal segregation profiles 〈CS〉/C0: comparison between analytical and numerical results at different Reynolds
numbers.

Figure 18 presents the mean relative deviation between analytical and numerical concentration fields as a function
of the Reynolds number. For turbulent regimes, the error of the analytical model is reduced when the convection
intensity increases. This is mainly due to the reduction of the lateral segregations and the limitation of separation
points influence on mass transfer. For laminar regimes, we observe an opposite trend with a mean error increasing
with the Reynolds number. In this case, the increase of convection intensity leads to complex solute transport in
the liquid and strong lateral segregations. Coupling the presently proposed model with a numerical solution of the
solute transport in the fluid bulk would improve the model, but is out of scope of the present paper. The low error
level for ReL = 102 confirms the weakness of the lateral segregations, in an almost purely diffusive regime.

The different curves plotted in figure 18 represent the results obtained with successive enhancements in the
model. For curve 1, the first model proposed by Garandet et al. [17] is used and no attempt is made to enhance
lateral segregation description. For curve 2, the characteristic lengths of the different vortices are computed. This
modification has a significant influence on the accuracy of the model with a reduced error for all convecto-diffusive
regimes. For curve 3, the spline interpolation procedure at impingement points is introduced. This procedure is
relevant for local concentration corrections, but has little effect on mean errors, except for ReL = 104. This is why
we have considered that improving this relatively rough approach by a local approach was not worth for the moment.
For curve 4, turbulent transport is accounted for in the solute boundary layer model. This leads to a reduced error
for the turbulent regimes ReL = 106 and 107. Curve 4 corresponds to the concentration fields presented in this
study (figures 11 to 16). Finally, for curve 5, the convecto-diffusive parameter ∆ is limited at separation points to
account for the global convective regime. On a first attempt, an empirical criterion based on the numerical results
is used. ∆ is thus limited to twice its mean value along the interface. This criterion is found to have very little
influence on the mean error. Therefore, it is not further investigated in this study.

In order to attest the efficiency of the solute wall functions, new hydrodynamic simulations are achieved without
interface refinement. The new mesh is uniform in the complete domain with 2 mm×2 mm cells. The height of the first
cell adjacent to the interface is 400 times larger than for the refined cases (2000 times for ReL = 107 configurations).
For high Reynolds number configurations, the viscous sublayer is thinner than the mesh size and a classical log law is
used to define the velocity profile at the solid/liquid interface. This is not the case for the simulations with interface
refinement since the viscous sublayer is systematically resolved. In fact, the choice of the proper velocity profile
to apply is handled by the Enhanced Wall Treatment option proposed by ANSYS FLUENT(TM) [28]. For these
new simulations, only the fluid flow is solved numerically and the analytical segregation computation is performed
from the resulting wall shear-stress profiles. Analytical concentration fields are compared to numerical results
of the complete segregation simulations with interface refinement. Curve 6 reports the mean relative deviations
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between these analytical and numerical concentrations (figure 18). We can see that mean errors keep the same
order of magnitude when the analytical method is applied to shear-stress profiles obtained with or without interface
refinement. Compare to curve 4 (same analytical model), errors are increased for ReL = 104, 105 and 106. This is
due to a slight shift of the separation and impingement points at the interface with the new computational grid.
This result highlights the benefit of the analytical model: it provides a meaningful estimate of segregations without
numerical resolution of the solute boundary layer, allowing larger mesh size at solid/liquid interface and leading
to memory and computational time savings. The accuracy of the method will mainly depend on the ability of the
numerical model to describe the hydrodynamic boundary layers at the solidification front.

Figure 18: Mean relative deviation (%) between analytical and numerical 2D concentration fields. Curve 1: results obtained with
Garandet et al. [17] analytical model. Curve 2: definition of several characteristic lengths for the different vortices. Curve 3: spline
interpolation of ∆ at the impingement points. Curve 4: turbulent transport in the solute boundary layer. Curve 5: limitation of ∆ at
the separation points. Curve 6: hydrodynamic simulations without interface refinement.

4. Correlation for different species

4.1. Objective and method

This section presents an interesting feature of the analytical model for the study of the segregation associated with
various species. In the previous section, we relied on wall shear-stress profiles extracted from numerical simulations
to predict segregation profiles thanks to the scaling analysis of the solute boundary layer. But the solute wall
functions presented in section 2 also provide a direct correlation between the effective segregation coefficients of
different species. This type of correlation is of great interest for photovoltaic silicon purification and crystallization
by directional solidification, since various species will interfere with solar cells electrical properties. One can think of
dopants, like boron or phosphorus, voluntarily incorporated in the melt or contaminant impurities such as carbon,
aluminum, iron, copper, etc. Each species has a specific molecular diffusivity D and thermodynamic segregation
coefficient k0. Therefore, each species has specific segregation parameters, namely keff and ∆. Considering a
given directional solidification process, we have seen in section 2 that the segregation parameters are controlled by
the convection conditions in the melt. Our aim is to show that segregation parameters of various species can be
estimated from segregation parameters of one specific species. For experimental studies, this type of correlation can
reduce the number of chemical analyses required to characterize segregations. Then, the qualification procedures for
the purification and crystallization processes by directional solidification could be simplified. For numerical studies,
the segregation problem could be reduced to one solute transport equation of a reference species. This can lead
to significant time saving for parametric studies based on advanced solidification simulations methods involving a
precise description of the solid/liquid interface.

As mentioned above, we shall assume that the effective segregation coefficient keff 1 of a reference species 1 has
been determined for a given solidification process. The related convecto-diffusive parameter ∆1 is simply deduced
from equation (3). Our objective is to provide an estimate of ∆2 and keff 2 for another species denoted 2. The first
step is to determine the parameter B1, which governs the segregation of species 1. In a first attempt, this parameter
can be deduced from equation (6). However, this equation is only valid if B1 is smaller than the critical value Bc 1.
Otherwise, B1 should be deduced from the asymptotic regime given by equation (27). For a given solidification
process of a dilute alloy, τ , VI , µ and lc are constant parameters for the segregation of species 1 and 2. Thus, the
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parameter B2 related to the segregation regime of species 2 is given by the following relation:

B2 = B1

(
D2

D1

)2

, (34)

where D1 and D2 respectively stand for the molecular diffusivities of impurities 1 and 2. Once again, B2 has to be
compared to the critical value Bc 2. Then, the convecto-diffusive parameter ∆2 can be obtained from the analytical
solution of equation (6) proposed by Garandet et al. [17] if B2 remains smaller than Bc 2, or from equation (27) if
B2 is greater than Bc 2. Finally, keff 2 is given by equation (3).

4.2. Application

Segregation simulations of phosphorus, aluminum and iron are performed in the transient lid driven cavity
configuration in order to apply the correlation proposed in the previous paragraph. Thermodynamic segregation
coefficients and molecular diffusivities used for P, Al and Fe are given in table 1. For this study the interface velocity
is kept at VI = 10 µm/s and the initial concentration is set at C0 = 65 ppmw. A turbulent hydrodynamic regime is
used with a Reynolds number ReL = 1.36×105.

Table 1: Thermodynamic segregation coefficients k0 and molecular diffusivities D for P, Al and Fe [33–36].

k0 D (m2/s)

P 3.32×10−1 2.3×10−8

Al 2.00×10−3 6.8×10−8

Fe 8.00×10−6 8.0×10−8

Figure 19 presents the longitudinal segregation profiles for the three considered species. Effective segregation
coefficients are extracted from these profiles by interpolation with a modified Scheil equation:

CS(fS)

C0
= keff (1− fS)keff−1, (35)

fS being the solid fraction. Interpolated coefficients keff fit are given in table 2. The analytical model is then
used to determine the effective segregation coefficients for aluminum and iron from the interpolated keff fit for
phosphorus. These estimated effective segregation coefficients are also given in table 2 and referred to as keff th.
For aluminum and iron the analytical model provides a very good estimate of the effective segregation coefficients
with about 1% of relative deviation from the numerical results.

Figure 19: Longitudinal segregation profiles 〈CS〉/C0 for phosphorus, aluminum and iron.
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Table 2: Interpolated (keff fit) and estimated (keff th) effective segregation coefficients.

keff fit keff th
relative

deviation (%)

P 3.5782×10−1 - -

Al 2.1221×10−3 2.1004× 10−3 1.0%

Fe 8.4479×10−6 8.3543× 10−6 1.1%

This approach can also be used to study lateral segregations. Here, the correlation is applied to local values of ∆
along the solid/liquid interface to predict ∆ profiles for aluminum and iron from numerical results for phosphorus.
Figure 20 presents convecto-diffusive parameter profiles at the solid/liquid interface for aluminum and iron. These
profiles are arbitrarily taken at a solid fraction fS = 0.44. The profiles for the two species present similar shapes
since they are influenced by the same convective regime. For both species, the numerical segregation results
are compared to the predictions obtained from the analytical correlation applied to the phosphorus results. The
correlation provides an estimate of ∆ profiles for aluminum and iron with a relative deviation below 20% from the
numerical results.

(a) aluminum (b) iron

Figure 20: Numerical and analytically predicted convecto-diffusive parameter profiles for aluminum and iron, for a solid fraction
fS = 0.44.

5. Conclusion

The present study is dedicated to the formulation of wall functions to describe solute boundary layers occurring
in directional solidification processes. These wall functions are obtained from a scaling analysis procedure proposed
by Garandet et al. [17]. In the present work, specific attention is paid to the description of the turbulent transport
for high convective regimes. This point appears relevant since various stirring techniques can be used to enhance
solute segregation, leading to turbulent flows in the melt. The influence of the turbulent fluctuations on solute
transport is introduced in the scaling analysis using an analytical model. The solute wall functions are compared
to the segregation numerical results for a canonical 2D lid driven cavity configuration. This simple and well studied
configuration is used as a reference test case to benefit from previous works on the subject. The results are, however,
expected to hold for a variety of growth configurations and convective driving forces. Good agreement is found
between the analytical and numerical results, especially for an order of magnitude approach.

The developed solute wall functions are then used to compute segregation fields from hydrodynamic simulations.
Our aim is to demonstrate that the analytical model can provide meaningful information on axial and lateral
segregations. An iterative procedure is proposed to compute solute incorporation in the solid from wall shear-
stress profiles at the solid/liquid interface. This procedure is applied to the 2D lid driven cavity configuration
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and analytical and numerical concentration fields are compared. Mean and local errors on analytical concentration
fields appear more than reasonable for turbulent flow configurations, even when hydrodynamic simulations are
performed without specific interface refinement. These results confirm the interest of the developed method to
estimate segregations without a complete numerical resolution of the solute boundary layer. Limitations of the
model regarding laminar flows, separation points and impingement points are also discussed.

In our opinion, the analytical model could be applied to industrial configurations where 3D transient segregation
simulations require too heavy computational means to allow parametric studies. First information on the solute
repartition in the solid could be obtained from a solidification simulation without solute transport and with a
relatively coarse mesh at the interface. Nevertheless, the transposition of the procedure to a 3D case with a curved
solid/liquid interface is not immediate. A first issue is the analysis of the 3D fluid flow near the interface to extract
vortices characteristic lengths. Suitable hydrodynamic wall functions should also be carefully defined regarding the
nature of the fluid flow. This point is of primary importance for an accurate estimation of the wall shear-stress at
the interface. Besides, in order to enhance the analytical results, specific correlations for the characteristic points
could be developed on the basis of former works on radial segregation [37, 38].

Finally, a correlation is proposed to transpose the segregation parameters of a given chemical species to other
species. This correlation is directly derived from the analytical model of the solute boundary layer. It can be
applied to numerical or experimental results in order to simplify parametric studies. Regarding the application to
experimental data, the accuracy of the method is limited by the precision of the known molecular diffusivities. The
measurement of these coefficients remains difficult and uncertainties can be significant [35].
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