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Abstract 
The objective of the present paper is to study the ability of an order of magnitude analysis [1] to give 
a realistic picture of segregation patterns in vertical Bridgman configurations, on the basis of 
hydrodynamic simulations. The scaling analysis leads to an analytical formulation of the solute 
boundary layer, involving the wall-shear stress at the solid/liquid interface. In order to test this 
analytical model, transient simulations of solute segregation in a 2D lid driven cavity configuration 
have been performed. The developed analytical model, which involves a quasi-steady approximation, 
is in good agreement with the numerical time-dependent results. The key results of this work are the 
correlation of segregation patterns in the solid with flow patterns in the liquid and the ability of the 
analytical model to describe lateral segregations and to capture unsteadiness in the limit of slow 
variations associated with Bridgman configurations. 
 
1. Introduction 
General background 
Regarding the production of silicon for photovoltaic applications, the control of solute or impurities 
concentrations remains an important issue for solar cells efficiency. In a context of costs reduction 
and environmental protection, the development of alternative silicon purification processes based on 
metallurgical operations is a promising research area [2]. Metallic impurities, which usually have a 
very low partition coefficient 𝑘0 [3], can be removed by segregation during a directional solidification 
process. However, the efficiency of the process would depend on the convective transport in the 
melt. Several stirring techniques, such as traveling or rotating magnetic fields [4]–[6], acoustic 
streaming [7]–[9] or mechanical stirring [10], can then be thought of to achieve a well-mixed melt 
and thus have an effective partition coefficient 𝑘𝑒𝑓𝑓 close to 𝑘0. 

Solute segregation during solidification processes has been widely investigated in the past decades, 
since the introduction of the convecto-diffusive parameter by Burton et al. [11] and the definition of 
the solute boundary layer thickness by Wilson [12]. In this area, numerical simulations can provide 
useful information for both physical understanding and industrial processes optimization. 
Nevertheless, the complete resolution of the directional solidification problem, coupling furnace 
thermal conditions, melt flow hydrodynamic and solute transport, remains a difficult task. As a 
consequence, any parametric optimization would require very heavy numerical means over very long 
computational time. This issue is linked to the variety of length scales involved, ranging from the 
meter for industrial crucibles (for instance, 800 kg G6 scale silicon ingots dimensions are 
100x100x34 cm), to micrometers for the solute boundary layer thickness. 
State of the art 
Previous studies have demonstrated that scaling analyses can be useful for the understanding of 
solute segregation phenomena. These approaches are not meant to give accurate quantitative 
results, but they can describe the relative influence of the process parameters without performing 
the full computation of the solute transport. Then it is possible to achieve efficient simulations for 
full parametric studies. Recent publications investigate the ability of a scaling analysis model for the 
solute boundary layer proposed by Garandet et al. [1]. This model uses the wall-shear stress 𝜏 at the 
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solid/liquid interface as an indicator of the convection intensity for the solute transport in the vicinity 
of the growth front. Then it should be noted that this analytical model is dedicated to sharp 
solid/liquid interface solidification configurations, and is not relevant when a mushy zone or a 
dendritic growth is involved. The original publication [1] was dedicated to the validation of the model 
for a 2D lid driven cavity configuration in a steady-state regime. It was shown that using the average 
interface shear stress, the analytical model could give a good estimation of the solute boundary layer 
thickness, confirming the ability of the scaling analysis to capture the physics of the segregation 
phenomena.  
More recently, Kaddeche et al. [13] compared this model with numerical and experimental results of 
solute segregation in the horizontal Bridgman configuration. Their aim was to test the model in a 
configuration with a reliable data base of numerical and experimental results. The flow was induced 
by natural convection, controlled by thermal buoyancy effects. The analytical model was found to be 
in good agreement with both numerical and experimental data. 
Present study 
In this frame of work, some questions remain concerning the applicability of the model for transient 
convection and/or solidification rate conditions, given that the scaling procedure involves a quasi-
steady approximation. Our purpose is to complete the precedent studies for the validation of this 
segregation model. Therefore, we extend the lid driven cavity model presented in [1] to a transient 
configuration. We also investigate the ability of the analytical model to describe lateral segregations 
resulting from non-uniform convection conditions along the solid/liquid interface. The present work 
focuses on the example of silicon, keeping in mind that the results could be extended to other 
semiconductors or metals. Section 2 is dedicated to the description of the lid driven cavity 
configuration and related equations. Section 3 presents the numerical results obtained by transient 
simulations of solute segregation. A comparison with the analytical model is performed in section 4. 
Finally, we discuss in section 5 the case of unsteady solidification velocity.  
 
2. Problem description 
General principle 
The present study focuses on the numerical simulation of solute segregation in a 2D lid driven cavity 
configuration. This configuration is a well-known canonical forced convection flow, in which the 
stirring intensity is characterized by a single dimensionless parameter, namely the Reynolds number 
([22]–[24]). As a consequence, it is very appropriate for parametric studies. A similar study has 
already been presented by Garandet et al. [1] for a quasi-steady regime. Here we extend this 
numerical model in a transient regime in order to compute the solute concentration incorporated in 
the solid phase and study the influence of unsteady convection regimes. Figure 1 illustrates the 
problem configuration and defines the lid velocity 𝑉𝐿 and the solidification rate 𝑉𝐼. To be consistent 
with the previous study we considered a cavity of width L = 0.2 m. At the initialization the liquid 
height was H(t0) = 0.18 m. 
 

 
 

Figure 1 - Problem definition (geometry, interface velocity, lid velocity and schematic flow pattern). 
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Segregation concepts 
Regarding purification by directional solidification, the key parameter to estimate the efficiency of 
the process is the thickness of the solute boundary layer 𝛿 at the solid/liquid silicon interface. A 
definition of this solute boundary layer thickness was given by Wilson [12]:  

 𝛿 =
𝐶𝐿

𝐼 − 𝐶𝐿
∞

− (𝜕𝐶𝐿 𝜕𝑧⁄ )𝐼
 , (1) 

where 𝐶𝐿
𝐼 refers to the solute concentration in the liquid phase at the solid/liquid interface, 

𝐶𝐿
∞represents the bulk concentration far from the interface and 𝑧 is the normal to the interface. If 

we consider the case of a purely diffusive regime, 𝛿 is given by the ratio between the molecular 
diffusivity 𝐷 and the solidification rate 𝑉𝐼. Then we can introduce the classical convecto-diffusive 
parameter ∆ as a dimensionless boundary layer thickness [14]: 

 ∆=
𝛿𝑉𝐼

𝐷
 . (2) 

This parameter was found to be a convenient way to estimate the efficiency of the convective 
transport in comparison to the diffusion. Indeed, a strong convection will result in a thin boundary 
layer, with ∆ tending to 0. At the opposite, if ∆ tends to 1, the solute transport is controlled by 
diffusion and the convection intensity is too low to reduce 𝛿. If we consider the solute conservation 
at the interface, assuming negligible diffusion at solid state: 

 −𝐷 
𝜕𝐶𝐿

𝜕𝑧
|
𝐼
= 𝑉𝐼(1 − 𝑘0)𝐶𝐿

𝐼 , (3) 

we can express ∆ by the following relation: 

 ∆=
𝐶𝐿

𝐼 − 𝐶𝐿
∞

(1 − 𝑘0)𝐶𝐿
𝐼 . (4) 

An interesting feature of Wilson’s definition of the solute boundary layer thickness [12] is that it 
allows to determine unambiguously the effective partition coefficient 𝑘𝑒𝑓𝑓 using ∆:  

 𝑘𝑒𝑓𝑓 =
𝐶𝑆

𝐼

𝐶𝐿
∞ =

𝑘0

1 − (1 − 𝑘0)∆
 . (5) 

One of the main issues for the numerical simulation of solute segregation is the accurate description 
of the solute boundary layer. This point becomes challenging for the simulation of silicon purification 
by a directional solidification process, given that the objective is to ensure that ∆ is small enough so 
that 𝑘𝑒𝑓𝑓 remains close to 𝑘0 in order to get an efficient segregation. The necessity to resolve such a 

fine solute boundary layer requires a very fine mesh at the solid/liquid interface, which is not always 
compatible with simulations of solidification processes in industrial purification furnaces, for instance 
at the G5 or G6 scale. To address this problem, an analytical formulation of 𝛿 derived from a scaling 
analysis has been proposed by Garandet et al. [1] in a steady state configuration. This formulation 
uses the wall-shear stress 𝜏 at the solid/liquid interface to measure the convection intensity and 
evaluate 𝛿. In this context, our numerical model is used as a test case for the validation of this 
analytical model in transient configurations.  
General equations 
To compute this problem we use the commercial code ANSYS FLUENT [15]. To define the lid driven 
cavity flow we resolve mass and momentum conservation equations, given by the following relations 
for an incompressible flow: 

 ∇. 𝑢⃗ = 0 , (6) 

 
𝜕𝑢⃗ 

𝜕𝑡
+ (𝑢⃗ . ∇)𝑢⃗ = −

1

𝜌
∇𝑃 +

1

𝜌
∇. [(𝜇 + 𝜇𝑡)∇𝑢⃗ ] , (7) 
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where 𝑢⃗ , 𝑃, 𝜌 and 𝜇 respectively stand for the fluid velocity, the pressure, the density and the 
dynamic viscosity. 𝜇𝑡 denotes the turbulent dynamic viscosity in a Reynolds Averaged Navier-Stokes 
framework. The solute conservation in the liquid phase is given by: 

 
𝜕𝐶𝐿

𝜕𝑡
+ (𝑢⃗ . ∇)𝐶𝐿 = ∇. [(𝐷 + 𝐷𝑡)∇𝐶𝐿] , (8) 

where 𝐶𝐿 represents the solute mass fraction in the liquid and 𝐷𝑡 stands for the turbulent diffusion 
coefficient which accounts for the influence of turbulence on the solute transport [15]. The interface 

concentration in the solid 𝐶𝑆
𝐼 is computed thanks to the partition coefficient 𝑘0 by the relation: 

 𝐶𝑆
𝐼 = 𝑘0𝐶𝐿

𝐼 . (9) 

In order to study the influence of the convection on the segregation we define different convective 
regimes ranging from purely diffusive to fully turbulent. To characterize these different regimes we 
use the Reynolds number based on the cavity width, 𝑅𝑒𝐿 = (𝑉𝐿𝐿) 𝜈⁄ , varying from 0 to 106 in the 
present study. For turbulent regimes (𝑅𝑒𝐿 ≥ 104) we use the two equations turbulence model 𝑘 − 𝜀 
realizable proposed by FLUENT, associated with the “Enhanced Wall Treatment” for hydrodynamic 
boundary layers computation. The “Enhanced Wall Treatment” uses a two-layer approach in order to 
adapt the turbulence model in the near-wall region, depending on the value of a wall-distance-based 
turbulent Reynolds number [15]. Then, if the first cell adjacent to the wall is thinner than the 
hydrodynamic viscous sublayer, the near wall flow is computed with a laminar model. Otherwise, a 
classic logarithmic wall function is used to define the velocity profile in the first cell. A blending 
function is used to ensure a smooth transition between the two formulations. 
Main assumptions and boundary conditions 
Regarding boundary conditions, we impose the lid velocity at the top of the cavity and no slip 
conditions on the lateral walls. As a consequence the velocity is 𝑉𝐿𝑥  at the top lid and zero on the 
lateral walls. To simulate the directional solidification process we impose a solidification velocity 𝑉𝐼𝑧  
at the solid/liquid interface. We model this interface as a plane wall with no slip condition. The 
decrease in the amount of liquid while the interface moves upwards is accounted for by setting a 
mass sink at the interface. As explained in former works ([1], [16], [17]), the definition of this mass 
sink leads to the definition of equivalent source terms for the other variables of the problem. For the 
solute concentration, the source term is multiplied by the partition coefficient 𝑘0, leading to the 
formation of the solute boundary layer in the liquid. In the present work, the diffusion of the 
impurities in the solid is neglected and the densities of the liquid and the solid phases are assumed to 
be equal. 
Mesh requirements and convergence criteria 
A structured mesh with a cell size of 2x2 mm away from the interface was used. The mesh is refined 
in the liquid part at the solid/liquid interface to account for the solute boundary layer. The first cell 
adjacent to the interface is 5 𝜇𝑚 high which is ten times smaller than the typical solute boundary 
layer thickness obtained for the highest convective regime, namely 𝑅𝑒𝐿 = 106. Then the 
computation grid contains 13400 cells. The dynamic mesh options proposed by FLUENT are used to 
define the motion of the solid/liquid interface and adapt the mesh consequently at each time-step 
with a layering procedure. The time-step amplitude is defined to get a constant interface 

displacement at each time-step. In the case of a constant solidification rate of 10−5 𝑚/𝑠, the time-
step amplitude is set at 100 s in order to get an interface displacement of 1 mm. 
The influence of spatial and temporal discretization is checked with a test computation. For this test 
a new mesh is defined with a cell size of 0.5x0.5 mm away from the interface, resulting in a 168000 
cells grid since the interface refinement is conserved. The time-step amplitude is set at 50 s in order 
to impose an interface displacement of 0.5 mm at each time-step. A segregation simulation is 
performed with this numerical configuration for the turbulent case 𝑅𝑒𝐿 = 104. The two numerical 
configurations lead to identical results for fluid velocity, interface shear stress and solute 
concentration. For instance, the comparison of the solute concentration profiles in the solid leads to 
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a mean relative deviation of 2.7% between the two configurations and the mean relative deviation 
for velocity profiles in the liquid is about 3.4%. Then we consider that spatial and temporal 
discretization is sufficient for the computation of the flow, the solute transport and local gradients at 
the interface. Regarding convergence criteria, residuals decrease and solute conservation in solid and 
liquid phases are checked at each time-step. 
 
3. Numerical results 
As mentioned previously, the influence of the convective regime is investigated by imposing different 
lid velocities. At first, for validation and comparison purposes, we consider the ideal case of the 
purely diffusive regime, imposing 𝑉𝐿 = 0 at the lid. Then two laminar flows are simulated for 

𝑅𝑒𝐿 = 102 and 103. Finally three turbulent flows are treated for 𝑅𝑒𝐿 = 104, 105 and 106. For this 
hydrodynamic study we consider a partition coefficient 𝑘0 = 0.3 and a diffusion coefficient 

𝐷 =  10−8 𝑚2. 𝑠−1 for the solute, in order to be consistent with the previous work [1]. The initial 
concentration in the liquid is set at 𝐶0 = 20 𝑝𝑝𝑚𝑤 (part per million weight). As it is often the case 
for solar grade silicon, the solute concentration is sufficiently low to consider constant hydrodynamic 
properties for the silicon melt, with a density 𝜌 = 2550 𝑘𝑔.𝑚−3 and a dynamic viscosity 

𝜇 =  7.5 10−4 𝑃𝑎. 𝑠. The solidification velocity is fixed at 𝑉𝐼 = 10−5𝑚. 𝑠−1, which is the order of 
magnitude for silicon purification processes. The computations are performed until the solid fraction 
reaches 89%. 
For 𝑅𝑒𝐿 ranging from 102 to 106, the flow features a main recirculation and secondary vortices 
located in the corners, as illustrated on Figure 2.A. These vortices induce characteristic points, 
defined by the location where the wall-shear stress is zero on the solid/liquid interface (Figure 2.B). 
Here we must distinguish the points where the flow is impinging the interface, resulting in a strong 
convective transport, and the points where the flow is leaving the interface, referred to as separation 
points in the following. At separation points the convective transport is reduced, which leads to 
solute accumulation and a locally thicker solute boundary layer. The extent of the vortices is mainly 
controlled by the magnitude of the lid velocity. However, the continuous reduction of the liquid 
height 𝐻 also influences the flow topology. As a result, the positions of the impingement and 
separation points evolve during the solidification process.  

  

 
(A) velocity field     (B) secondary vortices 

Figure 2 - Velocity field for 𝑹𝒆𝑳 = 𝟏𝟎𝟒 (A) and illustration of the separation point associated with the 
lower left corner secondary vortex and the impingement point at the lower right corner (B). 

 
Figure 3 presents color-maps of the solute concentration in the solid obtained from the transient 
simulations. We can see for the diffusive regime (Figure 3.A, 𝑅𝑒𝐿 = 0) that the concentration is 𝑥-
independent and increases with 𝑧 in the first tenth of the ingot height. In the rest of the ingot the 
concentration remains equal to the nominal concentration 𝐶0, as expected from the analytical 

solution of the purely diffusive regime [18]. For 𝑅𝑒𝐿 ranging from 102 to 105 (Figure 3.B, C, D and E) 
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we can observe important concentration variations in the horizontal direction. These lateral 
segregations are directly related to a non-uniform convection at the solid/liquid interface (i.e. 
secondary vortices and separation points). For 𝑅𝑒𝐿 = 106 (Figure 3.F) we can see that the 
concentration is almost uniform in the horizontal direction, which means that the convection is 
strong enough on the whole cavity width to ensure a constant boundary layer thickness. 
 

 
(A) 𝑅𝑒𝐿 = 0    (B) 𝑅𝑒𝐿 = 102   (C) 𝑅𝑒𝐿 = 103 

 
(C) 𝑅𝑒𝐿 = 104   (D) 𝑅𝑒𝐿 = 105   (E) 𝑅𝑒𝐿 = 106 

Figure 3 - Color-maps of solute mass fraction in the solid phase obtained from the transient 
simulations at Reynolds numbers of: 0 (A), 102 (B), 103 (C), 104 (D), 105 (E) and 106 (F). Different color 

scales are used in order to enhance contrast. 
 
The abscissas of impingement and separation points have been extracted at several time-steps from 
the transient simulations. The paths followed by these locations during the solidification of the ingot 
are symbolized in Figure 4 over selected color-maps from Figure 3. As we can see on Figure 4.A 

(laminar flow, 𝑅𝑒𝐿 = 103) and on Figure 4.B and C (turbulent flows, 𝑅𝑒𝐿 = 104 and 105), for a given 
height in the ingot, the maximum concentration in the solid is located at the separation point of the 
main recirculation of the flow. This clearly highlights the direct correlation between the flow 
structure and the concentration field obtained in the solid. 
 

 
(A) 𝑅𝑒𝐿 = 103   (B) 𝑅𝑒𝐿 = 104   (C) 𝑅𝑒𝐿 = 105 

Figure 4 - Correlation between separation and impingement points at the solid/liquid interface 
(white symbols) and lateral solute segregations in the solid, for Reynolds numbers of 

103 (A), 104 (B) and 105 (C). 
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Longitudinal segregation profiles are presented in Figure 5. The notation 〈𝐶𝑆〉 refers to span averaged 
concentrations in the horizontal direction. The analytical reference solutions for the diffusive regime 
and Scheil’s law [18] are plotted in solid lines. The numerical results for laminar flows tend to the 
diffusive regime solution, showing a uniform span averaged concentration equal to 𝐶0, after an initial 
transient necessary for the formation of the solute boundary layer. For turbulent flows, the results 
tend to Scheil’s relation, with an effective partition coefficient 𝑘𝑒𝑓𝑓 getting closer to 𝑘0 as the 

convection increases. 
 

 
Figure 5 - Normalized span averaged concentration profiles in the solid obtained by transient 

simulations for the different regimes and analytical solutions for pure diffusion and Scheil regimes. 
 
4. Analytical approach 
Scaling analysis 
In this section we present a comparison of our numerical results and the scaling analysis presented in 
[1]. We shall recall the main steps of this analysis; the reader can refer to previous publications [1] 
and [14] for a complete description. First it has been shown that the steady state scaling of equation 
(8) leads to the following equation for 𝛿: 

 
𝐷

𝛿
= 𝑉𝐼 − 𝑤(𝛿) , (10) 

where 𝐷 stands for the molecular diffusivity, as defined earlier, and 𝑤(𝛿) is the vertical component 
of the convection velocity, taken at the coordinate 𝑧 = 𝛿. In order to solve this equation, one should 
define this convection velocity. Assuming at first order a linear profile for the tangential velocity 𝑢 at 
the vicinity of the solid/liquid interface and introducing the wall-shear stress 𝜏 at the interface, we 
can write: 

 𝑢(𝑧)~
𝜏

𝜇
𝑧 , (11) 

where 𝜇 represents the molecular dynamic viscosity. Then, as detailed in [1], using continuity and 
taking the cavity width 𝐿 as the length scale for the variations of 𝑢 along the interface, one gets the 
following expression for 𝑤: 

 𝑤(𝑧)~ −
𝜏

𝜇𝐿
𝑧2 . (12) 

Combining equations (10) and (12), we get a third order equation for 𝛿: 

 
𝐷

𝛿
= 𝑉𝐼 +

𝜏

µ𝐿
𝛿2 . (13) 
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This equation can be solved analytically, resulting in the expression of the convecto-diffusive 

parameter ∆𝑡ℎ as a function of a unique dimensionless parameter 𝐵 = (𝜏𝐷2) (𝑉𝐼
3µ𝐿)⁄ : 

 ∆𝑡ℎ= (2𝐵)−1/3 {(1 + √1 +
4

27𝐵
)

1/3

+ (1 − √1 +
4

27𝐵
)

1/3

} . (14) 

As explained in [1], this formulation presents two asymptotic regimes. When 𝐵 tends to zero, ∆𝑡ℎ 
tends to 1, corresponding to a diffusive regime. When 𝐵 becomes much larger than 1, representing 

convective regimes, ∆𝑡ℎ tends to 𝐵−1 3⁄ . 
 
Comparison with numerical results 
Figure 6 presents local values of wall-shear stress and convecto-diffusive parameter along the 

solid/liquid interface in laminar (𝑅𝑒𝐿 = 103) and turbulent (𝑅𝑒𝐿 = 105) regimes. These values are 
arbitrarily taken at a solid fraction of 44%; we have checked that results obtained for different solid 
fractions present similar features, so that this picture can be considered as representative of typical 
results all along the solidification process. The numerical convecto-diffusive parameter ∆𝑛𝑢𝑚 is 
computed from solute concentrations by relation (4) and the analytical convecto-diffusive parameter 
∆𝑡ℎ is directly computed by relation (14), using the numerical results for 𝜏. For both laminar and 
turbulent regimes we can see a clear negative correlation between 𝜏 and ∆𝑛𝑢𝑚, with a maximum 
solute boundary layer thickness localized near the separation point of the main recirculation 
(where 𝜏(𝑥𝑠) = 0). 
Regarding the values of ∆𝑡ℎ provided by the scaling analysis, we find good qualitative agreement with 
the numerical solution for the turbulent regime (Figure 6.D). In fact, it is interesting to observe that 
the scaling analysis, which uses a one-dimensional hypothesis (equation (10)), can provide useful 
insights regarding local variations for the solute boundary layer. This result confirms that the wall-
shear stress at the solid/liquid interface is a very good indicator of the convective transport, not only 
for averaged values as it was shown by precedent studies ([1], [13]) but also for local variations of the 
convective transport. This support the fact that the analytical model could be an efficient way to 
estimate the variations of the interface composition ∆ along the solid/liquid front when the 
convection is not uniform and leads to lateral segregations. However, attention should be paid for 
flow separation points where the analytical model strongly overestimates the solute boundary layer 
thickness. This issue is directly related to the assumption of a parallel flow in the viscous sublayer to 
define a linear velocity profile in the solute boundary layer (equation (11)). For separation and 
impingement points, it is clear that this approach loses its validity. For the laminar case (Figure 6.C), 
let us recall that on average the solute transport is mainly diffusive with an average ∆ close to 1, see 
Figure 5. In this configuration lateral segregation is very important, as seen on Figure 3.C, and the 
scaling procedure is not adapted to account for such concentration gradients in the horizontal 
direction, even though it is able to reproduce qualitatively some features of the ∆ variations. For 
example, we can see that the analytical model is unable to predict a convecto-diffusive parameter 
locally larger than 1, as observed in the numerical simulations, since ∆𝑡ℎ can not exceed 1 when 𝐵 
tends to zero. However, the relative difference between the numerical and the analytical solutions 
remains under 20% which is reasonable for a scaling analysis. 
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(A) Wall-shear stress, 𝑅𝑒𝐿 = 103   (B) Wall-shear stress, 𝑅𝑒𝐿 = 105 

   
(C) Convecto-diffusive parameter, 𝑅𝑒𝐿 = 103 (D) Convecto-diffusive parameter, 𝑅𝑒𝐿 = 105 

Figure 6 - Wall-shear stress and convecto-diffusive parameter at the solid/liquid interface, 
comparison between numerical (∆𝒏𝒖𝒎) and analytical (∆𝒕𝒉) results. 

 
As explained in section 3, the dynamics of the solidification process can lead to an unsteady 
convective flow. In our case, flow variations are caused by the reduction of the liquid height. To 
characterize these variations and their influence on segregation we can compute span averaged 
values 〈𝜏〉, 〈∆〉 and 〈∆𝑡ℎ〉 along the solid/liquid interface and study their evolution during the 
solidification. We can see on Figure 7.A and B the variation of 〈𝜏〉 for laminar and turbulent regimes 
during the solidification process. This evolution induces a variation of the solute boundary layer 
thickness (Figure 7.C). The agreement between numerical and analytical values of 〈∆〉 for both 
laminar and turbulent regimes is quite good. Then, it appears that a meaningful estimate of ∆ can be 
found using instantaneous values of the interface shear stress. In fact, we can see that the flow 

variations occur at a time scale comparable to the solidification time of the ingot, i.e. 16 103 𝑠. 
Therefore, these variations can be considered as slow compared to the diffusion time at the scale of 
the solute boundary layer [19]. This diffusion time is given by the ratio 𝛿2/𝐷 and is about 94 s for the 

laminar case 𝑅𝑒𝐿 = 103 and 7 s for the turbulent case 𝑅𝑒𝐿 = 105. This argument confirms the 
validity of the quasi-steady hypothesis used in the scaling analysis. As we can see on Figure 7.C, the 
computation of 〈∆𝑡ℎ〉 with the instantaneous value of 〈𝜏〉 leads to a similar variation as observed 
for 〈∆𝑛𝑢𝑚〉 in the turbulent regime (𝑅𝑒𝐿 = 105). Then the analytical model seems valid to describe 
the influence of slow variations in the convection regime when the solute transport remains mainly 
convective.  
For the laminar regime (Figure 7.C, 𝑅𝑒𝐿 = 103), we can see that the variation of 〈∆𝑛𝑢𝑚〉 is also 
consistent with the evolution of 〈𝜏〉 and 〈∆𝑡ℎ〉, except for a solid fraction between 70% and 80%. At 
this location, the local increase of 〈∆𝑛𝑢𝑚〉 corresponds to a modification of the flow topology, when 
the secondary vortex is confined and collapses. The solute transport being mainly diffusive, the 
solute repartition in the liquid is not homogeneous and the secondary vortex is more concentrated 
than the main recirculation. Then, as the secondary vortex gets more and more confined, the 
concentrated liquid is mainly transported to the interface resulting in an increase of the solute 
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boundary layer thickness. This phenomenon can be described as a transient lateral segregation. An 
animation of the solute transport in the liquid for this configuration can be found in the online 
version of the paper [20]. 

   
(A) Wall-shear stress, 𝑅𝑒𝐿 = 103  (B) Wall-shear stress, 𝑅𝑒𝐿 = 105 

 
(C) Convecto-diffusive parameter 

Figure 7 - Span averaged wall-shear stress and convecto-diffusive parameter at the solid/liquid 
interface as a function of the solid fraction, for Reynolds numbers of 103 and 105. 

 
At this point it appears interesting to compare our numerical results with the previous results in 
quasi-steady regime [1]. To do so, we report on Figure 8 the values of 〈∆〉 for the different regimes 
(𝑅𝑒𝐿 = 102 to 106), obtained for different solid/liquid interface positions varying from 1 cm to 16 cm 
and referred to as ∆𝑑𝑦𝑛. These data are acquired at each centimeter and the equivalent solid 

fractions lie between 5.6% and 89%. Values for 〈𝐵〉 were computed from the span averaged values of 
wall-shear stress at the solid/liquid interface. We also plot the results obtained by the quasi-steady 

model in [1], referred to as ∆𝑠𝑡𝑎𝑡, for the same configuration (𝑉𝐼 = 10−5𝑚. 𝑠−1 and 𝐷 =
10−8𝑚2. 𝑠−1). As we can see, both steady and unsteady simulations follow the same law for the 
solute boundary layer thickness. This tends to confirm the validity of the quasi-steady approximation 
for this configuration. The analytical solution, given by relation (14), is plotted in dashed line. The 
precedent study [1] already pointed out the good agreement with numerical results for diffusive 
regimes up to the convecto-diffusive transition. The divergence for fully convective regime was 
attributed to the assumptions used for the expression of 𝑤(𝑧) by equation (12). It should be noted 
that this presentation of the results, based on averaged values, is well adapted for a global 
estimation of the segregation process efficiency but does not reflect the presence of local variations 
linked to lateral segregations and unsteady convective transport. 
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Figure 8 - 〈∆〉 as a function of 〈𝑩〉. Comparison between transient simulations, quasi-steady 

simulations [1] and analytical model (14). 
 
5. Unsteady solidification velocity 
Objective and configuration 
Up to now, we have been studying unsteady convection conditions but for a constant solidification 
rate. However, during directional solidification processes, the solidification velocity can present some 
fluctuations. Given that the solidification rate is mainly controlled by the thermal conditions in the 
furnace, the inertia of the process is expected to limit the fluctuations to low frequencies, as opposed 
e.g. to Czochralski growth where the frequency of the pulling speed variations can be quite high. In 
the following, ‘high’ and ‘low’ frequencies should be understood with reference to the time scale of 
diffusion processes taking place at the boundary layer thickness scale. In this section we intend to 
discuss the validity of the scaling analysis of section 4 when the solidification rate exhibits slow 
variations.  
The analysis of periodical oscillations of the solid/liquid interface velocity in solidification processes 
has already been performed analytically [19] and numerically [21], [25]. These studies highlighted the 
existence of a low frequency regime where the quasi-steady approximation is valid. This regime 
occurs when the variations of the interface velocity are slow enough for the solute boundary layer to 
adapt instantaneously. The frequency regime can be characterized by the dimensionless 

parameter 𝐹𝑞 = (𝜔𝛿̅2)/𝐷, 𝜔 being the pulsation of the oscillations and 𝛿̅ the solute boundary layer 
thickness in the case of a constant interface velocity [19]. The transition between the low and high 
frequency regimes is at 𝐹𝑞 = 1, and the low frequency limit is obtained when 𝐹𝑞 tends to zero. 
When 𝐹𝑞 increases the concentrations fluctuations are expected to lag behind the velocity 
fluctuations, with a phase shift dependent on the value of 𝐹𝑞. 
Given that the scaling procedure is based on a quasi-steady approximation, the analytical model is 
expected to hold in the low frequency regime only. In order to check the validity of the model in this 
particular regime, we implement a periodical fluctuation of the solidification velocity 𝑉𝐼(𝑡) in our 
numerical model, defined by the following relation: 

 𝑉𝐼(𝑡) = 𝑉𝐼̅(1 + 𝛼 sin(𝜔𝑡)) , (15) 

𝑉𝐼̅ being the average velocity and 𝛼 the amplitude of the oscillations. For this test we use the 
configuration of the convective regime 𝑅𝑒𝐿 = 106. Then, using the results presented on Figure 8, we 

can estimate the average solute boundary layer thickness 𝛿̅ ≈ 52 µ𝑚 for a constant solidification 
rate. We define a period 𝑇 = 2000 𝑠 for the velocity fluctuations, resulting in 𝐹𝑞 ≈ 8.5 ∗ 10−4. If we 
consider the analytical results presented by Garandet [19], such a low frequency regime should lead 
to an almost null phase shift between growth rate and concentration fluctuations. The average 
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velocity is kept at 𝑉𝐼̅ = 10−5 𝑚. 𝑠−1 and we define the oscillations amplitude 𝛼 = 0.5, a significant 
value. 
Results and discussion 
Figure 10 presents the fluctuations of the normalized span averaged concentration 〈𝐶𝑛〉 in the solid, 
defined by the following equation: 

 〈𝐶𝑛〉 =
〈𝐶𝑠〉 − 〈𝐶𝑠

̅̅̅〉

〈𝐶𝑠
̅̅̅〉

 , (16) 

〈𝐶𝑠
̅̅̅〉 being the average concentration of the solid at the solid/liquid interface obtained for a constant 

solidification velocity. We can see that concentration fluctuations are in phase with velocity 
fluctuations, confirming the low frequency regime (Figure 9 and Figure 10). It is also interesting to 
observe that even though the 〈𝐶𝑛〉 oscillations have similar amplitude, a significant variation is 
apparent. To explain this point we have to recall that the amplitude depends on the convecto-
diffusive parameter 〈∆̅〉 in the case of constant solidification rate [19]. In our configuration, because 
of unsteady convective transport, 〈∆̅〉 is varying during the process (Figure 7). This is the reason for 
the non-constant amplitude of 〈𝐶𝑛〉 oscillations. Now, if we consider the analytical formulation of the 
low frequency regime we can get an estimation of the longitudinal segregation oscillations [19]. The 
amplitude of the oscillations, referred as |〈𝐶𝑛〉|, is given by the relation: 

 |〈𝐶𝑛〉| = 2𝛼
(1 − 𝑘0)〈∆̅〉(1 − 〈∆̅〉)

1 − (1 − 𝑘0)〈∆̅〉
 . (17) 

Taking the time averaged value of 〈∆̅〉~0.052, we get |〈𝐶𝑛〉|~0.036 which is consistent with the 
amplitude observed in the numerical simulation (Figure 10). Finally, Figure 11 compares the 
fluctuations of the span averaged convecto-diffusive parameters 〈∆𝑛𝑢𝑚〉, given by the numerical 
simulation, and 〈∆𝑡ℎ〉 calculated with the span averaged wall-shear stress 〈𝜏〉 and the instantaneous 
velocity 𝑉𝐼(𝑡). For comparison purpose, these parameters are normalized by their respective values 
〈∆𝑛𝑢𝑚
̅̅ ̅̅ ̅̅ ̅〉 and 〈∆𝑡ℎ

̅̅ ̅̅ 〉 obtained with a constant solidification rate. We can see that the oscillatory signals 
have almost constant amplitude, which is also in agreement with the analytical formulation of the 
low frequency regime for the present configuration [19]. Besides, the two oscillatory signals for 
〈∆𝑛𝑢𝑚〉 and 〈∆𝑡ℎ〉 have the same amplitude and present a very slight phase shift. This result confirms 
that the analytical model can accurately predict the oscillations of the solute boundary layer 
thickness for low frequency perturbations encountered in Bridgman processes. 

 

 
Figure 9 - Normalized solidification rate. 

 
Figure 10 - Normalized solute concentration 〈𝑪𝒏〉 

in the solid. 
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Figure 11 - Normalized convecto-diffusive parameter 〈∆〉;  

numerical and analytical results. 
 
6. Conclusion 
Transient simulations of solute segregation in a 2D lid driven cavity have been performed. The results 
compare well with the quasi-steady simulations presented in [1]. The model is used as a test case for 
an analytical formulation of the solute boundary layer based on a scaling analysis and involving the 
wall-shear stress at the solid/liquid interface. The transient simulations enable us to investigate the 
ability of the analytical model to give a correct estimation of the convecto-diffusive parameter ∆ in 
the case of unsteady convection and solidification rate conditions. The comparison with numerical 
results shows that the analytical model can provide a good estimation of ∆ and his variations for slow 
variations of the convective regime and low frequency fluctuations of the solidification rate. The 
model is tested in a low frequency regime, in the quasi-steady assumption framework, which is not 
highly restrictive as far as Bridgman growth is concerned. Another interesting feature of the 
analytical model is its ability to estimate local variations of ∆ along the solid/liquid interface when 
the convection is not uniform. However, special attention should be paid regarding separation points 
and strong transient lateral segregation. 
The main benefit of this analytical approach is to suppress the need for very fine mesh in the solute 
boundary layer. This feature seems especially interesting for solidification computations by implicit 
methods (like the enthalpy-porosity formulation proposed in ANSYS FLUENT) where the position of 
the interface is not explicitly known, making local refinement of the mesh quite difficult to perform. 
In our opinion, this model could be used for simulations of silicon purification and crystallization in 
industrial scale furnaces. With this effective approach, one could extract very useful information on 
boundary layer thickness and solute repartition in the solid from the resolution of the hydrodynamic 
and thermal problem. The reduction of the computation time would enable us to perform parametric 
studies for process optimization. The absolute accuracy of the results would remain limited by the 
scaling procedure but the relative influence of the process parameters could be obtained. Localized 
segregation variations related to non-uniform convection could be detected as well. 
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