
HAL Id: cea-01199808
https://cea.hal.science/cea-01199808v1

Submitted on 16 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Intelligent Vehicle Perception: Toward the Integration
on Embedded Many-core

Tiana Rakotovao, Diego Puschini, Julien Mottin, Lukas Rummelhard,
Amaury Nègre, Christian Laugier

To cite this version:
Tiana Rakotovao, Diego Puschini, Julien Mottin, Lukas Rummelhard, Amaury Nègre, et al.. Intelli-
gent Vehicle Perception: Toward the Integration on Embedded Many-core. 6th Workshop on Parallel
Programming and Run-Time Management Techniques for Many-core Architectures (PARMA), Jan
2015, Amsterdam, Netherlands. �10.1145/2701310.2701313�. �cea-01199808�

https://cea.hal.science/cea-01199808v1
https://hal.archives-ouvertes.fr

Intelligent vehicle perception: toward the integration on
embedded many-core

Tiana Rakotovao1,2, Diego Puschini1, Julien Mottin1,
Lukas Rummelhard2, Amaury Negre3, Christian Laugier2

1CEA-LETI MINATEC Campus
17 rue des Martyrs

38000 Grenoble
surname.name@cea.fr

2INRIA Grenoble Rhône-Alpes
655 Av. de l’Europe

38334 Saint Ismier cedex
surname.name@inria.fr

3CNRS, LIG Laboratory
110 Av. de la chimie

38041 Grenoble cedex 9
surname.name@imag.fr

ABSTRACT
Intelligent vehicles (IVs) need a perception system to model
the surrounding environment. The Hybrid Sampling Bayesian
Occupancy Filter (HSBOF) is a perception algorithm mon-
itoring a grid-based model of the environment called ”oc-
cupancy grid”. It is a highly data-parallel algorithm and
requires a high computational performance to be executed
in reasonable time. It is currently implemented in CUDA
on a NVIDIA GPU. However, the GPU is power consuming
and its purchase cost is too high for the embedded mar-
ket. In this paper, we prove that, the couple embedded
many-core/OpenCL is a feasible hardware/software archi-
tecture for replacing the GPU/CUDA. Our OpenCL imple-
mentation and experimental results on a testing hardware
showed that a many-core can produce an occupancy grid
every 168ms while consuming 40 times less power than the
GPU. The results are promising for a future integration into
IVs.

Categories and Subject Descriptors
C.3 [SPECIAL-PURPOSE AND APPLICATION-
BASED SYSTEMS]: Real-time and embedded systems

Keywords
Many-core,OpenCL,perception system

1. INTRODUCTION
The research on Intelligent Vehicles (IVs) has gained an

increasing focus during the last decades. Currently, IVs are
equipped with Advance Driver Assistance Systems (ADAS)
for performing security features (obstacle detection, collision
avoidance, mobile object tracking, autonomous cruise con-
trol, automatic braking, etc.). Motivated by the improve-
ment of car safety, road safety, lives saving and for a better
driving, the development of ADAS institutes a main step to-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

ward fully-autonomous car. For realizing the features cited
above, various technologies of sensors (stereo-vision, radar,
Light Detection and Ranging (LIDAR), etc) are embedded
on IVs for observing the surrounding environment. Regard-
ing the sensor readings, the ADAS dispose a block called
perception system, for building a computational model of the
surrounding that the vehicle can interpret. For this purpose,
the Hybrid Sampling Bayesian Occupancy Filter (HSBOF)
[7] is a perception algorithm that builds a grid-based model
of the environment. As shown in figure 1, the HSBOF maps
the surroundings into a fixed size 2-dimension (2D) spatial
grid divided into regular spatial cells. For each cell, the
HSBOF computes the occupancy probability, that is, the
probability that the cell is occupied, and estimates the ve-
locity of the content of the cell. The nature of the obstacle
occupying the cell does not matter. The occupancy proba-
bility is then updated according to new sensor readings. The
output grid is called occupancy grid.

(a)

(b)

Figure 1: Principle of HSBOF. (a) the surrounding
environment is mapped into a 2D grid. (b) Occu-
pancy Grid and Velocity estimation

The grid-representation of the internal data implies that
HSBOF is a highly data-parallel problem where the same
set of operations is applied to each cell. A rectangular grid
with given width and height, and squared cells, is used. The
cell sides define the resolution of the grid. Thus, in one

hand, a lower resolution implies a more accurate estimation
of the spatial position of the obstacles. In the other hand,
when the resolution decreases, the number of cells increases,
and the number of computation follows on. Consequently,
to be embedded on IVs, HSBOF should run on a hardware
that provides enough computation performance to get an
accurate result.

Choosing the right hardware architecture for integrating
HSBOF into IVs remains a challenge. First, the hardware
has to provide enough computational performance. Second,
its purchase cost has to be low for being adopted for the mass
production in the automotive industrie. Third, the limited
energy resource on vehicle imposes that the hardware has to
consume an electrical power as low as possible. Currently,
the HSBOF is implemented on a Graphics Processing Unit
(GPU) from NVIDIA [7], using the Compute Unified De-
vice Architecture (CUDA) as a programming model. While
providing a high computational performance, the GPUs con-
sume a lot of energy. High-end GPUs consume easily a hun-
dreds of watts, which represents a significant charge for the
electrical batteries on IVs. Moreover, the GPUs are too ex-
pensive for the embedded market. They were not designed
for an embedded use. On the software point of view, CUDA
belongs to NVIDIA and is implemented only on their GPUs.
Thus, the question arises: which hardware/software architec-
ture can be used for replacing the GPU/CUDA architecture?

Concerning the hardware architecture, the first existing
solution is the multi-core Central Processing Unit (CPUs)
which were already used for executing perception systems
in [4, 8]. Embedded multi-core CPUs, mainly designed by
ARM, outperform on generic tasks. But with their dual,
quad or octa-core, they are optimized for multi-threading,
thus for task-parallel problems, not for data-parallel algo-
rithms. Further more, embedded CPUs do not provide enough
computational performance for executing highly data-parallel
algorithms such as the HSBOF.

The second solution is the embedded Multi-Processor Sys-
tem on Chip (MPSoCs) which are initially designed for em-
bedded uses and have more computational cores than CPUs
but less than those of GPUs. The advent of MPSoCs relates
the convergence of the hardware toward a more heteroge-
neous architecture composed of a host and one or more hard-
ware accelerators. The host is generally made of a multi-core
CPU. Existing MPSoCs are generally equipped with one of
the following hardware accelerator: 1) an embedded GPU
as in the processor Tegra K1 from NVIDIA, 2) one or more
Digital Signal Processors (DSPs) as the in the Keystone
II designed by Texas Instrument, 3) a many-core acceler-
ator as in the Parallela board or the MPPA many-core from
Kalray. The architecture of these accelerators are very dif-
ferent. They all might be an alternative to the GPU but in
the present work, we focus first on many-core architecture.
On a software point of view, we need a parallel programming
model which is, first, adapted to the data-parallel nature of
HSBOF. Second, the programming model must allow the
developer to take advantage of the parallelism in the many-
core architecture and the heterogeneity of the MPSoC. The
OpenCL standard [1], a priori meets the two criterion. It
was specifically designed for programming task-parallel and
data-parallel algorithms on heterogeneous systems.

In this paper, we present a case-study on the feasibility of
the utilization of the couple many-core/OpenCL as a hard-
ware/software architecture for replacing the GPU/CUDA.

Through our OpenCL implementation and experiments, we
prove that the many-core disposes enough computational
performance for producing an occupancy grid in a reason-
able time while consuming a lesser energy compared to GPU.
On our testing hardware, the computation time of one iter-
ation of HSBOF can reach 168ms, that is, about the double
of the computation time on GPU. However, the many-core
accelerator consumes only 1W , which is 40 times less than
the GPU.

The current paper is organized as follow. Section 2 ex-
plains the principle of the perception algorithm HSBOF.
Section 3 presents the hardware/software platform. The
OpenCL implementation is detailed in section 4. Experi-
mental results are presented and discussed in section 5. Fi-
nally, Section 6 concludes the paper.

2. THE PERCEPTION ALGORITHM
As shown in figure 1, the Hybrid Sampling Bayesian Oc-

cupancy Filter (HSBOF) [7] models the environment as a
2D grid. The algorithm produces an occupancy grid. It
estimates also the velocity of the occupant of each cell and
computes another grid called static grid. In contrast to the
occupancy grid, the static grid contains the probability that
each cell is occupied by a static obstacle (a non-moving ob-
stacle). HSBOF is a mix of a classic Bayesian grid-filtering
and a particle-based approach. According to the state of
each cell at time tn−1, that is, its occupancy probability,
static probability and estimated velocity, the algorithm pre-
dicts the state at time tn, and updates this prediction with
new sensor observations. By assuming that cell states are in-
dependent, the HSBOF can be seen as a data-parallel prob-
lem because the same set of operations are independently
applied on each cell.

Concerning the velocity estimation, an obstacle can have
theoretically an infinite possibility of velocity. Because, the
algorithm cannot consider all of these possibilities, it focuses
only on some samples of velocity. A set of particles rep-
resents the samples. Actually, a particle is interpreted as a
fictive point having a spatial coordinates, a velocity and a
weight. The particle weight represents the probability that
the speed of the content of the cell in which the particle is
located, is actually the speed of the particle. We assume
that unoccupied cells and cells occupied by static obstacles
have a null velocity. Thus, HSBOF propagates the particles
so that they follow the motion of the content of cells occu-
pied by dynamic obstacles. For the sake of simplicity, these
cells are called ”dynamic cells”.

H
S
B
O
F

OG

SG

PS

Prior Grids
Propagation

Particles
Propagation

Measurement
Update

Particles
Re-sampling &
Normalization

Multi-sensor
Fusion

OG

SG

PS

OBS

time

OG: Occupancy Grid
SG: Static Grid
OBS: Observation Grid
PS: Particle Set

Distance Sensors
(LIDAR, stereo-vision)

IMU Sensors
(vehicle motion)

tn-1 tn

Figure 2: Overview of the HSOF algorithm

Figure 2 presents an overview of the main steps of HS-
BOF. The static grid, the occupancy grid, a set of particles

at time tn−1 and an observation gird build from sensor mea-
surements constitute the inputs. The outputs are composed
by the same elements but at time tn. The static grid and
the occupancy grid at time tn−1 are called prior grids. The
algorithm follows a particle filter approach with three steps:
1) particles and prior propagation, 2) measurement update,
and 3) particles re-sampling and normalization.

2.1 Particles and prior propagation
The motion of the ego-vehicle is tracked by Inertial Mea-

surement Unit (IMU) sensors such as odometer, accelerome-
ter and gyroscopes. The 2D grid on figure 1(a) is fixed in the
front of the vehicle. When the ego-vehicle moves, the grid
is also displaced. The priors have then to be propagated in
the new spatial placement of the 2D grid. The priors prop-
agation is shown on figure 3(a). The prior grid at time tn is
computed by applying a linear interpolation on the cells in
the occupancy and static grids tn−1. Concerning the parti-
cles, they are propagated in the space according to a motion
model. Their position are updated depending on their speed
and the duration ∆t = (tn − tn−1) (see figure 3(b)).

Vehicle Motion

Occ/Static grid
at time
tn-1 tn

Prior grid at
time

World
x

y

(a)

Particles set
at time
tn-1 tn

Particles set
at time

Vehicle Motion
World

x

y

(b)

Figure 3: (a) Prior grids propagation. (b) Particles
propagation.

2.2 Measurement update
As explained on figure 2, the measurement update is for

updating the occupancy probability, and the static prob-
ability of each cell regarding the sensor observation. The
weight of every particles in a given cell is also updated ac-
cording to the static and occupancy probability of that cell.
It applies a bayesian program which mathematical formula-
tion is detailed in [7]. We notice that an additional process
called multi-sensor fusion processes the sensor readings
and produces an observation grid. In simple words, the ob-
servation grid is closely related to the probability that each
cell is occupied, regarding to the sensor readings [2].

2.3 Particle re-sampling and normalization
A re-sampling process is necessary for avoiding particles

degeneracy, that is, for cell having particles, all but one par-
ticle will have negligible weight. A new set of particles is
sampled from the previous set regarding their weights [7].
This step changes the local number of particles per cell by
affecting more particles to dynamic cells. Particles with high
weights are duplicated while particles with low weights are
removed. After re-sampling, particle weights are normalized
so that their sum per cell equals to 1.

3. HW/SW PLATFORM
As HSBOF computes and updates probabilities for each

cell of the 2D grid, an instinctive way to store the probabili-
ties is using arrays of floating points. For an implementation
on a parallel platform, the arrays can be seen as shared re-
sources among the processing cores. OpenCL [1] is an appro-
priate standard for a parallel-shared memory programming
model. OpenCL can be mapped on many-core SoCs. It was
initially designed for parallel heterogeneous systems.

3.1 OpenCL platform model on many-core
The OpenCL platform model is devided into two parts :

one host as a central processing unit (CPU) and one or many
compute devices which are hardware accelerator. A compute
device is composed by one or many Compute Units. The lat-
ter is further divided into one or more processing elements
(PE). Figure 4 shows an example of how the OpenCL plat-
form is mapped on a many-core SoCs. The compute device
is the actual many-core platform while the host is mapped
to more general CPUs such as an ARM processors and runs
traditional operating system (linux, android, etc.).

L2

H
O
S
T

Many-core

Processing
Element

Compute
Device

Compute
Unit

Figure 4: OpenCL platform model on many-core
SoC.

3.2 OpenCL memory and execution model
In the OpenCL execution model, the parallelized tasks ex-

ecuted on compute devices are called kernels. An instance of
a kernel is called work-item. Work-items are grouped within
a work-group. A set of work-groups forms an NDRange.
Consequently, kernels are executed accross an NDRange. A
work-group is affected to a compute unit. Then, processing
elements execute the work-items.

Figure 5: OpenCL Memory model [1]

The figure 5 shows the OpenCL hierarchical Memory Model

in a compute device. Each PE has its own private and fast
memory. Local memories are shared memory for compute
units. Work-items in a work-group can share data through
local memories. Global and constant memory are accessible
by all work-items. They are slower and might be cached
depending on the capabilities of the device. For improv-
ing the memory bandwidth, OpenCL exposes the control of
DMA blocks to the developer if they are available on the
hardware.

4. IMPLEMENTATION
For implementing the HSBOF on an embedded many-

core SoC using OpenCL, four points are interesting to be
detailed: 1) how to schedule the different steps of the al-
gorithm, 2) how to utilize the memory model in order to
improve the performance, 3) how to map them on on the
OpenCL platform, 4) what NDRange size is suitable for the
algorithm.

4.1 Tasks and Scheduling
The HSBOF and the multi-sensor fusion form our per-

ception system. The overall can be divided into five main
tasks : 1) Particles Propagation , 2) Priors Propagation,
3) Measurement Update, 4) Particles Re-sampling and Nor-
malization and 5) Multi-sensor Fusion. After that, the re-
sampling and the particles normalization are separated into
two subtasks. Furthermore, the particles propagation con-
tains also two subtasks : Propagate Particles and Reorder
Particles. The first actually propagates the particles as de-
scribed above. The second subtask is explained in section
4.3.

Two scheduling policies can be explored. First, a sequen-
tial scheduling policy executes all tasks sequentially, one af-
ter the other. An executed task can then utilize all the
computing resource and memory available on the hardware.
It allows us to tune tasks separately and improve their indi-
vidual performance. Second, by exploiting the input/output
dependency on figure 6, a parallel scheduling policy can be
implemented for reducing the overall execution time.

Figure 6: Perception system task level parallelism
and buffers read/write

4.2 Memory mapping
As shown on figure 6, the occupancy prior at time tn−1

and the occupancy grid at tn are stored in two buffers OG1/2.
The buffers SG1/2 are for storing the static prior and the
newly computed static grid. The particles are placed into
the buffer PL1/2. All these buffers are shared resources for

work-items. They should be stored in global or local mem-
ory. However, due to the limited size of local memories, the
global memory is preferred. The data locality is prepon-
derant in OpenCL. For a fast access, data processed by PEs
should be placed in private or local memories.

For improving the memory bandwidth, OpenCL provides
special Application Programming Interfaces (APIs) for han-
dling DMA. It is used for transferring a block of data be-
tween the local and global memory. Moreover, it allows us
to use a double buffering technique for improving the mem-
ory bandwidth. While working on a first rectangular portion
of an input/output grid placed in the local memory, a sec-
ond portion is DMA-transfered from global into a reserved
region of the local memory. It will be processed when the
first portion is treated. The double-buffering technique with
DMA transfer allows to overlap the computations and the
memory access.

4.3 Platform mapping
Two main computation resources can be used on the OpenCL

platform: the host and the compute device. All tasks and
subtasks of HSBOF can be parallelized except the subtask
Reorder Particles. The smallest or ”native” data granularity
is a cell for grid-related tasks, and a particle for particle-
related tasks. For the sake of performance, the computa-
tion should be aggregated by matching the number of
work-items to the number of PEs. Thus, the granularity of
a work-item becomes coarser in the sense that it has now to
process several ”native” data instead of only one.

Concerning the subtask Reorder Particles, for a given cell,
the weight of every particles in that cell is updated in the
Measurement Update step. The subtask Reorder Particles
arranges the particle buffer PL2 so that the particles in the
same cell are stored in contiguous memory. In this way, the
particles can be DMA-transfered and processed on the local
memories. The subtask Reorder Particles uses a sequential
sort algorithm. It can be then implemented on the OpenCL
host which is more optimized for sequential operations.

5. EXPERIMENTAL RESULTS
The HSBOF has two global parameters : the grid reso-

lution and the number of particles. For a given width and
length of the 2D grid, the value of the resolution determines
the number of cells. We realized experiments and measured
performance by changing the values of the algorithm param-
eters.

5.1 Experimental Setup
For a testing purpose, we implemented the HSBOF on an

off-the-shelf embedded low-power MPSoC [6], composed of
a host and a many-core compute device. A dual core ARM
Cortex A9 running at 800MHz serves as a host. The com-
pute device comprises four compute units. A compute unit
features a block made of 16 processing elements (PEs) and
a 256 KBytes shared L1 and a DMA block. The L1 mem-
ory serves as the private and local memories for the PEs.
For the sake of performance, the number of work-items in a
work-group is limited to 16. The compute device disposes a
fast global memory L2 of 1MBytes. It can also share data
with the host through a 1GByte of DRAM. But the later
is slower compared to the L2. Data on real scenarios from
eight LIDARs and IMUs are stored in files and are used as
input for the multi-sensor fusion. These data were collected

through the experiments realized in [7].

5.2 Performance measurement and validation
For quantifying the performance, two criterion are ana-

lyzed: the computation time and the power consumption.
The overall computation time consists of the average dura-
tion of the execution of one iteration of the algorithm. We
also measure the computation time of individual tasks. The
power consumption concerns only the compute device (the
many-core). It is deduced from voltage and current mea-
surements on oscilloscope.

Validation: An implementation of HSBOF on an GPU
from NVIDIA already exists [7] and will serve as reference.
Between the occupancy grids produced by the GPU and
the many-core, the average relative error of the occupancy
probabilities is 2%. It can be explained by the difference
in the design of the two hardware and the random nature
of the particle filter. This low difference confirms that the
many-core implementation behaves as expected.

5.3 Overall Computation Time
For a 30m×50m grid, we tested two resolutions : 0.1m and

0.2m, which respectively correspond to two cell numbers :
150000 and 375000. The table 1 shows the overall computa-
tion time regarding the particle number and the cell number.
The size of the global memory on the compute device limits
the maximum of particle number to 19000. By changing the
algorithm parameters, the overall computation time on the
many-core varies between 487ms and 168ms which is in the
state of the art [5].

Part. Num. Res.(m) Cell Num. Comp. Time.(ms)
19000 0.1 150000 487
19000 0.2 37500 325
10000 0.1 150000 387
10000 0.2 37500 168

Table 1: Overall Computation Time

5.4 Individual Tasks Performance
This paragraph presents an analysis of the effect of the

HSBOF parameters and OpenCL parameters on the indi-
vidual performance of each task.

Number of particles: For a 30m × 50m grid, the fig-
ure 7 plots the tasks computation time when changing the
number of particles. The Prior Propagation does not de-
pend on particles, its computation time remains constant.
We notice the same behavior for the Measurement Update.
In opposite, the duration of the Re-sampling and Particles
Propagation increases linearly with the number of particles.
This behavior is normal because these tasks process only
particles.

Number of cells: While the grid width and length re-
main constant (30m × 50m), the number of cell changes
depending on the resolution of the grid. On figure 8, the
number of particles equals to 19000. When increasing the
resolution, the computation time of the Priors Propagation,
the Measurement Update and the Multi-sensor Fusion are
subject to exponential decay. Indeed, they apply the same
set of operations for each cell, which make their duration
very sensitive to the cell number. Table ?? and figure 8
shows that passing from a resolution of 0.1m to 0.2m re-
duces the overall computation time by more than 150ms.
Besides, we notice that the Particle Propagation performs

10 11 12 13 14 15 16 17 18 19
0

20

40

60

80

100

120

140

160

Prior grids propagation

Particle propagation

Measurement update

Particle re-sampling

Particle normalization

Kilo-Particle

C
om

pu
ta

tio
n

tim
e

(m
s)

Figure 7: Computation time vs number of particles

slower when the resolution increases. Actually, the paral-
lel subtask Propagate Particles processes only particles and
does not depend on cell number. However, the sequential
subtask Reorder Particles becomes slower due to a collat-
eral effect of the Re-sampling process.

10 15 20 25 30 35 40 50 55 60 65 70 75
0

20

40

60

80

100

120

140

160

Prior grids propagation

Particle propagation

Measurement update

Particle re-sampling

Particle normalization

Multi-sensor fusion

Length of the sides of the cells (cm)

C
om

pu
ta

tio
n

tim
e(

m
s)

Figure 8: Computation time vs grid resolution

Scalability: Scaling an application on OpenCL implies
changing the number of the running work-items. We chose
the Measurement update to prove the effect of scalability
since it process a high number of input/outputs and has a
higher computation time. The figure 9 shows that the Mea-
surement update scales in a sub-linear fashion. A speedup
gain is observed with a number of work-item between 1 and
14. Beyond this number, using more work-items does not
bring any improvement. This result can be exploited to min-
imize the energy consumption. For instance, in our testing
hardware, the many-core disposes a hardware component
that can be software programmed to reduce the clock fre-
quency of the unused compute units. A fine grained energy
management can be then implemented.

1 2 4 6 8 10 12 14 16 20
1

1,5

2

2,5

Meas. Up. Speedup

Number of work-items

S
pe

ed
up

Linear Speedup

Wasted Power

Figure 9: Measurement update speedup

DMA transfer size: The probability distribution pro-
cessed by the algorithm are stored in buffers of floating point.

For a 30m× 50m grid with a resolution of 0.1m and 19000
particles, the buffers consumes about 6MBytes of memory.
In our implementation on the testing hardware, a particle
buffer is placed in the L2 global memory, the other buffers
are stored in the DRAM which is slower. The memory band-
width can be improved by using a the double buffering tech-
nique with a DMA transfer as explained above. We notice
in our tests that the more data are coalesced into a DMA
block, the less the computation time is. On our testing hard-
ware, a speedup of ×7 can be achieved by choosing the right
size of the DMA block transfer.

5.5 Discussions
An implementation of HSBOF in CUDA already exists

[7]. We run it on a GPU Quadro FX 1700 from NVIDIA for
a comparison to our many-core/OpenCL implementation.
The results are shown on figure 10. By increasing the reso-
lution from 0.1m to 0.2m, the overall computation time on
the many-core is significantly reduced. By also decreasing
the number of particles to 10000, the many-core performs at
168ms while 90ms for the GPU. In the three configurations,
it is clear that the GPU beats the many-core concerning the
computation time (see figure 10(b)).

However, as shown on figure 10(a) ,the GPU consumes
typically 40W , while the many-core power consumption is
less than 1W (actually between 883mW and 967mW). The
many-core consumes then 40 times less power than the
GPU.

GPU Many-Core
0

5

10

15

20

25

30

35

40

45

Po
w

e
r

C
o
n

su
m

ti
o
n

(W
)

1

(a)

0

100

200

300

400

500

C
o
m

p
u

ta
ti

o
n

 t
im

e
(m

s)

Many
Core

G
P
U G

P
U

G
P
U

Particles 19000
Cells Sides 0.1m

Particles 19000
Cells Sides 0.2m

Particles 10000
Cells Sides 0.2m

Many
Core

Many
Core

(b)

Figure 10: Many-core vs GPU. (a) Power Consump-
tion. (b) Computation Time

Is the result promising for a future integration into
IVs? The choice of the value of the particle number and
the grid resolution depends on the observed environment.
Resolutions between 0.1m and 0.2m were tested in [7][3].
Furthermore, the particle number depends also on the num-
ber of cells, thus, on the resolution. While currently, we do
not dispose yet a formal method for estimating the correct
number of particles, we assume that fewer cells implies fewer
particles. Thus, the algorithm parameters can be adapted to
the street scenario. For instance, in cities, the obstacles are
numerous and their nature are diversified. It can vary from a
vehicle to an animal. Consequently, a lower resolution with
a high number of particles is then needed. However, on high-
way, obstacles are mainly vehicles running at high speed. A
higher resolution with few particles are then acceptable.

We deduce then that the performances (computation time
and power consumption) we get on the many-core are promis-

ing. On the one hand, even if the GPU beats the test-
ing hardware in term of computation time, the many-core
performs an interesting computation time of 168ms by
finding a trade-off on the algorithm parameters to get val-
ues that can be adapted to certain scenarios. On the other
hand, the power consumption on the many-core is 40
times lower than on the GPU. The result in the second
line on table 1 represents an example of trade-off between
the number of particles (19000) and the resolution (0.2m).
The power consumption remains low (less than 1W) and the
computation time lasts 325ms which is still in the state of
the art navigation requirements according to [5].

6. CONCLUSION
The HSBOF needs a high computational performance to

be executed in a reasonable duration. It is currently imple-
mented in CUDA on a NVIDIA GPU that is power consum-
ing. In this paper, we proved that, the couple embedded
many-core/OpenCL is a feasible hardware/software archi-
tecture for replacing the couple GPU/CUDA. The experi-
mental results are promising. They were validated by a low
average relative error compared to the results produced by
the GPU. While consuming a lesser power, the many-core
can produce an occupancy grid within a reasonable time.
On our testing hardware, the many-core consumes less than
1W which is 40 times less power consmption than the GPU.
Though, the many-core can output an occupancy grid every
168ms. These results are obtained by tuning the implemen-
tation parameters provided by OpenCL: the mapping of the
algorithm on the available computing resources, the scalabil-
ity, the data locality and the DMA for improving the mem-
ory bandwidth. We conclude that the many-core/OpenCL is
a promising hardware/software architecture for integrating
HSBOF into intelligent vehicles.

7. REFERENCES
[1] The open standard for parallel programming of

heterogeneous systems. www.khronos.org/opencl.
[2] J. D. Adarve, M. Perrollaz, A. Makris, and C. Laugier.

Computing Occupancy Grids from Multiple Sensors using
Linear Opinion Pools. In IEEE ICRA, 2012.

[3] Q. Baig, M. Perrollaz, and C. Laugier. A robust motion
detection technique for dynamic environment monitoring: A
framework for grid-based monitoring of the dynamic
environment. Robotics Automation Magazine, IEEE, 2014.

[4] C. Coué, C. Pradalier, C. Laugier, T. Fraichard, and
P. Bessiere. Bayesian Occupancy Filtering for Multitarget
Tracking: an Automotive Application. International Journal
of Robotics Research, 2006.

[5] D. Held, J. Levinson, and S. Thrun. Precision tracking with
sparse 3d and dense color 2d data. In ICRA 2013.

[6] Melpignano et al. Platform 2012, a many-core computing
accelerator for embedded socs: performance evaluation of
visual analytics applications. In DAC 2012.

[7] A. Negre, L. Rummelhard, and C. Laugier. Hybrid sampling
bayesian occupancy filter. In Intelligent Vehicles Symposium
Proceedings, 2014 IEEE.

[8] T. Weiss et al. Robust driving path detection in urban and
highway scenarios using a laser scanner and online occupancy
grids. In Intelligent Vehicles Symposium, 2007 IEEE.

