
HAL Id: cea-01199765
https://cea.hal.science/cea-01199765

Submitted on 16 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Power Consumption Estimation Approach for
Embedded Software Design using Trace Analysis

Yassine Ben Atitallah, Julien Mottin, Nicolas Hili, Thomas Ducroux,
Guillaume Godet-Bar

To cite this version:
Yassine Ben Atitallah, Julien Mottin, Nicolas Hili, Thomas Ducroux, Guillaume Godet-Bar. A Power
Consumption Estimation Approach for Embedded Software Design using Trace Analysis. Euromicro
Conference series on Software Engineering and Advanced Applications (SEAA), Aug 2015, Funchal,
Madeira, Portugal. �cea-01199765�

https://cea.hal.science/cea-01199765
https://hal.archives-ouvertes.fr

A Power Consumption Estimation Approach for
Embedded Software Design using Trace Analysis

Yassine Ben Atitallah1, Julien Mottin1, Nicolas Hili1, Thomas Ducroux2, and Guillaume Godet-Bar3

1CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
2STMicroelectronics, Grenoble, France

3MAGILLEM Design Services S.A.S, Paris, France
{yassine.benatitallah,julien.mottin,nicolas.hili}@cea.fr , thomas.ducroux@imag.fr, godet-bar@magillem.com

Abstract—With the explosion of advanced power control
knobs such as dynamic voltage frequency scaling, mastering
energy constraints in embedded systems is becoming challenging
for software developers. Several power estimation techniques have
been proposed over the past years, from electrical level to more
abstract models such as SystemC/TLM. They offer various trade-
offs between performance and accuracy, but suffer from a num-
ber of shortcomings. They are expensive and time-consuming,
requiring intricate models of the architecture and finally, fail to
be applied from the software developer perspective. In this paper,
we propose a lightweight and cost-effective approach suitable for
software developers. It relies on trace analysis and high-level
modeling of architectures to perform quick and efficient power
consumption estimations without loosing accuracy. This approach
is fully supported by a tool and is validated using a simple thermal
mitigation case study and checked against physical measurements.
We show that, for our case study, the relative error between our
tool and real values is 8% in average.

Keywords : power consumption, embedded software design,
power management and trace analysis.

I. INTRODUCTION

Estimating the power consumption of embedded applica-
tions is a crucial task [1] that requires a good knowledge
of not only the application itself, but also the hardware
platform (HW) that executes it. Understanding the HW specific
features is required to achieve the best power efficiency.
Runtime power management design is however often left to
the software developer who needs to master the complexity
resulting from the heterogeneity of the models he or she
has to interact with: programming models, toolchains, HW
descriptions (datasheets) and power profiles of the execution
platform.

Over the last decade, many dynamic power management
components have been proposed and integrated in HW plat-
forms. The most popular techniques include Power Gating [2],
Dynamic Voltage Frequency Scaling (DVFS) [3] or recently
CPU migration using specific HW support such as In-Kernel
switcher for big.LITTLE architectures [4]. All those techniques
can be used at runtime and need to be monitored precisely to
limit the impact on the performance. While quantifying the
performance impact can be straightforward for the software
developer who knows what performance metric is relevant for
his or her application, fast and precise power estimation of an
entire execution can become really hard.

To manage this complexity, several approaches have been
proposed [5]. They usually rely on power models at different
HW abstraction layers including gate-level, Register Transfer
Level (RTL), functional level and so forth, offering various
accuracy / performance trade-offs. However while low-level
models are accurate, they are often too complex, relying on
intricate electrical descriptions and are therefore not relevant
for software developers. High-level models are more easy to
handle from, but are less accurate and may require additional
work from software developers who possibly need to extract
an application model from the original source code or execute
the application on a platform model not always available.

Another possibility for the estimation of the power con-
sumption from the software developer perspective would be
direct physical measurement. Even if it could be feasible for
systems with a quite regular power profile, it becomes harder
for circuits with a high dynamic in their power consumption.
For instance Internet of Thing (IoT) nodes used in [6] may op-
erate in transmission mode with an electrical current of 17mA,
and in idle mode with a residual current of 10µA. Measuring
so different currents would require to use different probes: this
cannot be achieved while executing the application.

In this paper we propose a power estimation approach
based on trace analysis that does not require the software
developer to access more than the targeted HW and its vendor
datasheet. This approach allows the HW vendor and the
software developer to interact using the IP-XACT standard
for all the platform documentation. We introduce a simple
extension to capture power profiles of HW components based
on finite state machines. This extension is authored by the
vendor and come along with the datasheet, and can be seen
as a formal documentation of textual information regarding
power in state-of-art datasheets. The software developer can
then execute its multiple application configurations on the
targeted HW and produce execution traces. Thanks to the IP-
XACT model, it is then possible to filter the traces to only
keep the information relevant with respect to the proposed
extension, to drastically limit the traces size growth. Based
on the HW documentation and the filtered execution traces, a
power estimation is then computed for the software developer
for all the candidate application configurations to help him
select the best one.

The rest of this paper is organized as follows. Section II
introduces the related works. Sections III and IV detail both

IP Provider
Software Developer

<component>
<name>. . .</name>
<vendor>. . .</vendor>
<memoryMaps>
<!−− . . . −−>

</memoryMaps>
</component>

IP-Xact Description

Behavior
Modeling

Power
Annotation

Trace
Analysis

Software
Execution

Power Behavior Model

. . .
w r i t i n g 4 by t e (s) a t 0x4. . .
w r i t i n g 0x00 a t 0 x400503a4
w r i t i n g 0x01 a t 0 x400503a5
w r i t i n g 0x00 a t 0 x400503a6
w r i t i n g 0x02 a t 0 x400503a7

Trace
A

B

C

D

rd reg.bf

wr reg.bf [value=0x1]

A

29%

B

12%

C 19%

D

40%

Power Consumption Estimation

1

2 2 3

4

Fig. 1: Proposed Estimation Process

the proposed approach and the tool we developed to support it.
Finally, section V describes the experiment we performed to
estimate the power consumption on a real case study executing
several power strategies and compares the results with real
physical power measurements.

II. RELATED WORK

Techniques for estimating and optimizing power consump-
tion have been intensively studied over the past [5]. Many
power models have been proposed at all levels of abstraction:
from electrical level to functional ones [7]. While low-level
models provide accurate results, they suffer from a number of
shortcomings. Their application can be cumbersome, requiring
specific equipments and knowledge and finally are expensive
and time-consuming. Therefore, those techniques are not rel-
evant for software developers who utilize high level power
models.

High level power models can be classified into two main
categories, Instruction Level Power Analysis (ILPA) [8] and
Functional Level Power Analysis (FLPA) [9], [10]. ILPA
techniques permit to estimate the consumption of a single
processor, provided a detailed cost model of each instruction
plus inter-instruction overheads cost models. ILPA is then
conducted using an Instruction Set Simulator (ISS) that has
to be delivered and integrated in a virtual platform simulator,
not able to run the application code with the same performance
as the real HW.

FLPA techniques abstract the HW to extract power models.
These models are used either by a platform model (simulator)
or by the application code (code-based analysis). Recent work
by [11] aims to use UML-based diagram models to estimate
the power consumption of embedded applications, with the
major benefit of relying on a widely used standard for their
functional power model. Work presented in [12] uses an UML
profile to extend MARTE model for non-functional aspects like
power consumption for embedded system development. Power
consumption is modeled using state machine annotations based
on prior knowledge, specifications, or measurements from
prototypes. Application software is split in operation modes

that are mapped to execute on the power state machines. [13]
proposes a multi-view power model approach according to
knowledge and expertise based on the UML, MARTE and
SysML standards. However, all those techniques require either
to derive an application model from the original source code
with additional efforts for the software developer, or to execute
the application on a platform model that is not always available
or may require additional costs once the real HW has been
shipped to the software developer.

The main drawback of these techniques is to rely on
abstracted HW models rather than comprehensive real HW
descriptions. Such descriptions are currently address by stan-
dards like IP-XACT standard [14]. IP-XACT can be seen as an
electronic version of the vendor datasheet of an HW platform.
It gives a formal specification of the structural information of
the platform and how its constituting components are hierarchi-
cally connected together. However, IP-XACT lacks of concepts
to describe the functional part of the HW. The functional part
is usually defined with ad-hoc code such as VHDL linked
to the model, preventing to perform straightforward analyzes
for power consumption estimation. On the other hand, UML
behavior diagrams such as State machine diagrams are well
suited to define the functional part of the system, but they
lack of concepts related to the HW.

To address this issue, we present in the next section a new
approach for power consumption estimation. It is based on
an extension of the IP-XACT standard that captures power
information and can be served as a unique, complete and
comprehensive documentation for the SW developer.

III. PROPOSED ESTIMATION PROCESS

We propose in this section a lightweight approach to esti-
mate the power consumption of System-on-Chip applications.
It is a trace-based software approach that is involved both at
design time and execution time. This approach has several
advantages. It is cost-effective, time-saving, easy-to-use by
non-expert users and is fully supported by a tool presented
in section IV.

Fig. 1 illustrates the approach. It is composed of four steps:

Fig. 2: Clock Generator Registers

behavior modeling, power annotation, software execution and
trace analysis. The two first steps are performed by the
platform vendor while the two others are preformed by the
software developer.

The input of the approach is an Hardware Component
Model, describing the structure of a System-on-Chip or part
of a SoC. This model is based on the IP-XACT standard. It
can be seen as a comprehensive formal documentation of a
hardware platform. In particular, it gives structural information
on its content (e.g., registers, signals, address map, bus width,
etc.). To configure a hardware block or control its operation,
software interacts with its registers. The impact of a register
access by the software is part of the vendor documentation.
Typically, the registers are decomposed in bitfields to allow
a hardware component to hold several variables in the same
register. The registers are memory mapped for the software,
so that reading or writing to a specific register requires a
memory read or write at specific address. This address can
be computed from the IP-XACT model, using the hierarchical
definition of the memory map. For our approach we only focus
on the definition of the registers, their bitfields and their access
modes.

Each Hardware Component Model described in IP-XACT
owns a local memory map. This map includes a set of local
registers. A register is defined with its offset, i.e., its initial
address in the memory map, its width and its access mode.
Access mode can be set to Read-Only (RO), Write-Only (WO)
or Read-Write (RW). At finer grain, a register is composed of
bitfields. A bitfield is also defined by an offset, i.e., its initial
address in the register, an access mode and a width. Fig. 2 is
an extract of a documentation about the local memory of the
Clock Generator IP. The Clock Generator has four registers
to configure each frequency mode and an additional register
to switch between frequency modes. From this description
one could derive the Clock Generator Hardware Component
Model. Listing 3 illustrates an extract of IP-XACT description
of the component.

A. Energy Behavior Modeling

In our approach, we introduce an extension of the the struc-
tural definition of IPs by adding a model of their functional
behaviors. It is done in the Behavior Model step. This model

<s p i r i t : c o m p o n e n t>
<s p i r i t : n a m e>ClkGen< / s p i r i t : n a m e>
<s p i r i t : b a s e A d d r e s s>0x0< / s p i r i t : b a s e A d d r e s s>
< s p i r i t : r a n g e>0x2C< / s p i r i t : r a n g e>
< s p i r i t : w i d t h>32< / s p i r i t : w i d t h>

< s p i r i t : r e g i s t e r>
<s p i r i t : n a m e>C o n f i g c l k g e n< / s p i r i t : n a m e>
< s p i r i t : a d d r e s s O f f s e t>0x24< / s p i r i t : a d d r e s s O f f s e t>
< s p i r i t : s i z e>32< / s p i r i t : s i z e>
< s p i r i t : f i e l d>
<s p i r i t : n a m e>F o r c e f r e q m o d e v a l u e< / s p i r i t : n a m e>
< s p i r i t : b i t O f f s e t>8< / s p i r i t : b i t O f f s e t>
< s p i r i t : b i t W i d t h>3< / s p i r i t : b i t W i d t h>
< s p i r i t : a c c e s s>read−w r i t e< / s p i r i t : a c c e s s>

< / s p i r i t : f i e l d>
< s p i r i t : f i e l d>
<s p i r i t : n a m e>Force f req mode< / s p i r i t : n a m e>
< s p i r i t : b i t O f f s e t>25< / s p i r i t : b i t O f f s e t>
< s p i r i t : b i t W i d t h>1< / s p i r i t : b i t W i d t h>
< s p i r i t : a c c e s s>read−w r i t e< / s p i r i t : a c c e s s>

< / s p i r i t : f i e l d>
< / s p i r i t : r e g i s t e r>

< / s p i r i t : c o m p o n e n t>

Fig. 3: Fragments of the component hardware description in IP-XACT

captures any component state change operated during register
accesses. A register access can be either a write or a read. It
may both capture register accesses and verifications on values
written and read. Verifications may concern the value written /
read for the overall register or just for a bitfield of the register.

The Energy Behavior Model is based on the UML State
machines. Fig. 4 illustrates the Energy Behavior Model of a
hardware component called Clock Generator. Four states, cor-
responding to the four frequency modes of the clock generator
are modeled. Transitions between each state are also modeled.
Thus, it is possible to switch from one frequency mode to
another one by writing the value of the target frequency
mode to the Config_clk_gen register. In digital systems,
dynamic power consumption is typically proportional to the
frequency: knowing in which frequency mode the system is
operating in function of the time will help us estimate is entire
power profile of an execution.

At this point, it might be important to note that we are
not interested here in modeling the whole behavior of an IP.
Instead, we only focus on modeling a black-box behavior seen
by the embedded Software and capturing any component state
change that would have a direct impact on the power consump-
tion on the IP. Attempting to model the whole behavior of an
IP would be painful and inefficient.

As we only want to capture register accesses and evaluation
on the values written or read, we choose to expand the semantic
of the UML transitions. Only the trigger and the guard parts
of the UML transition syntax is used. The transition follows
the BNF expression below:

<transition> ::= ‘Rd’|‘Wr’ <register-name>
[‘.’<bitfield-name>]
[‘[’<guard>‘]’]

<guard> ::= ‘value =|<|>|<=|>=|<>’ <value>

Clock Generator Behavior Model

freq mode 0

freq mode 1

Wr. . .

Wr. . .

freq mode 2

freq mode 3

Wr. . .

Wr. . .

Wr Config_clk_gen.Force_freq_mode_value[value=0x0]

Wr Config_clk_gen.Force_freq_mode_value[value=0x3]

Fig. 4: Clock Generator Energy Behavior Model

Each transition is triggered by a register access. Register
access is either a read (Rd) or a write (Wr) access. <register-
name> refers to the qualified name of a register of the hard-
ware component model in its IP-XACT definition illustrated in
Listing 3. <bitfield-name> refers to the qualified name of an
optional register’s bitfield. One should notice that no transition
should be triggered by a read or write event on a register
or bitfield whose access mode does not match (e.g., a read
event on a register in WO mode, a write event on a bitfield in
RO mode). <guard> is an optional expression to evaluate the
value written / read in the register or a particular bitfield of
the register. Possible evaluations are equal, less, greater, less
or equal, greater or equal or different. The guard is always
evaluated after the event that may cause the transition trigger
is dispatched. <value> is an hexadecimal value. When the
bitfield is defined, the value refers to the data read from /
written into the bitfield. Otherwise, it refers to the register
value.

B. Power Annotation

At the end of the first step, an Energy Behavior Model
has been produced. The power annotation step allows an IP
provider to enrich the model with power annotations. These
annotations can be used to weight each component state with
an estimation of the power consumption. In addition, state
transitions can also be annotated with absolute energy cost.
As a result, the IP is now documented with power estimation
knowledge from the vendor. This knowledge is then added to
the energy behavior model that stores power information in a
dedicated UML profile.

P (f) = Pc + α ∗ f (1)

Equation 1 illustrates the power annotation of each state
of the Energy Behavior Model of the Clock Generator IP. Pc

is a constant power consumption when the system is running
and ready to execute a program, α is constant coefficient and
f is the frequency of the system. Depending of the frequency
we impose to any of the four frequency modes of the Clock

Replay (Ri,Si)
trace data

R

FSM (S,
TSi)

Search Ri

in TSi

Stay at
Si update
Ri ← Ri+1

isSi

Stay at
Si update
Ri ← Ri+1

Ntij

update
∆TSi,Ntij

moveSk/tik
Ri ← Ri+1

no

yes

no

yes
variables

Si : Current State from the model
Ri : Current Record from the trace file
tij : The transition from Si to Sj

∆TSi: Elapsed time in Si

Ntij : Number of tij been crossed

Set of Item
R : Set of Records
S : Set of States
TSi: Set of outgoing Transitions from Si

Fig. 5: Trace Analysis Flow Chart

Generator component, we annotate the power value of each
state of the Energy Behavior Model.

C. Software Execution

The third step of our approach consists in executing the
embedded software on the target platform which is a real
hardware platform. We suppose that the execution can be
captured in a trace file that contains all the accesses to
the register of selected components, for instance the clock
generator registers. This trace file also contains accurate timing
results, directly captured by hardware timers. This trace file
can be generated with the help of commercial tools such as
Greenhills our Lauterbach, or using instrumented Hardware
Abstraction Layers (HAL) with software trace generators. The
trace file is a sequence of records that can be converted to the
unified record format as below :
[timestamp , (writing — reading), value at address]

D. Trace Analysis

The objective of the trace analysis step is to compute the
time spent in each state and the number of time each transition
has been triggered. The trace file is therefore sequentially
parsed and compared to the Hardware Behavior Model. Each
of its records is then analyzed, to detect if a state transition
occurred. The Figure 5 illustrates the trace analysis flow chart.

More precisely, the analysis operates on a Finite State
Machine (FSM) and a sequence of Records (R). The FSM
is a set of states Si and a set of outgoing transitions TSi. Each
record Rj contains a timestamp and a register access. During
the analysis, we enumerate the records and perform the two
following steps. First, we search if register contained in record
Rj is triggering one of the outgoing transition of current state
Si. To do so, we apply the method described in Algorithm 1.

Using the IP-XACT model of the hardware component we
can compute the absolute address of one of the component’s
register and compare this address to the value contained in the
record : this is done in the Resolve function. If no outgoing
transition has been found, we just stay in current state and
move to next record as described in Figure 5. Otherwise, we
go to the second step where we simply check if the found
outgoing transition has triggered a state change. If no, we
only increment the corresponding transition counter. If yes,
we increment the corresponding transition counter, stop the Si

timer and start the Si+1 timer. The start/stop values of the
timers are evaluated using the timsestamp information stored
in record Rj .

Data: Ri, Si

Result: isMatched, isSi
begin

TSi ←− getOutgoingTransitions(Si)
isMatched←− False
isSi←− False
for tj ∈ TSi do

if Resolve(tj) == Ri then
if endState(tj) == Si then

isMatched←− True
isSi←− True

end
else

isMatched←− True
end

end
end

end
Algorithm 1: Search Ri in TSi

At the end of the trace analysis step, we have collected all
the data needed for the power model to estimate the overall
power consumption for the corresponding software execution.

E. The Power Model

The goal of the step is to compute the energy burned
by the target platform while executing a specific embedded
application. The background needed for power and energy
modeling for electronic circuits has been fully detailed in [15].
The power model we propose in our approach can be split
in two main terms. One term for energy consumed in the
states, one term for energy consumed in transitions. Energy
consumption of each state EState measured in Joule can be
estimated thanks to equation 2

EState = T ∗ PState (2)

Where T is the time spent in the state, measured in second,
that has been extracted thanks to the trace analysis. PState in
watt is the average power value of the state. This value has
been either provided by the component vendor, or obtained by
profiling. The time T is the product of n the number of clock
cycles and τ the cycle period. Is given by equation 3 as below

T = n ∗ τ (3)

The execution time of a transition is supposed to be
constant and close to zero. We therefore have modeled the
energy consumed in a transition ti as a constant value Eti .
For a given execution, the overall energy consumption of a
transition triggered N times is given by equation 4

Etransition = N ∗ Eti (4)

We then assume that the total energy consumption of an
execution Etotal according to our proposed power model is the
sum of the energy burned in the states and the energy burned
in the transitions. It is given in equation 5

Etotal =

K∑
i

EStatei +

M∑
j

Etransitionj
(5)

From the equations 2 and 4, we then derive the following
formula for Etotal :

Etotal =

K∑
i

Ti ∗ PStatei +

M∑
j

Nj ∗ Etj (6)

At this stage of our approach, we are able to evaluate the
energy consumption of a given application execution a specific
target platform. The approach gives both coarse grain figures
such as the overall energy consumption of the execution, and
more precise metrics such as the time spent in each state, the
corresponding energy burned, the number of transitions trig-
gered, and a time view of instantaneous energy consumption.
The approach however involves a precise sequence of oper-
ations, with several actors and multiple models interactions.
To efficiently support it, we offer a tool that integrates all the
steps and all the models editors.

IV. TOOL SUPPORT

The presented approach is currently entirely supported by
the Magillem Design Services [16] platform and Papyrus as a
component of the Model Development Tools (MDT) project on
Eclipse Environment. The Magillem platform helps designers
to design IP components according to the IP-XACT standard.
Papyrus provides a framework to extend the UML language by
the use of UML profiles and customizations of UML common
diagrams. The integration between IP-XACT description and
UML state machine was done by extending the UML state
machine through a UML profile.

The Figure 6 presents the UML profile designed called
Power State Machine. A Stereotype is the profile element
instantiated to customize a metaclass element from UML meta-
model. The StateMachine stereotype is extended from UML
state Machine and customized by adding a component property
to store a link to the Hardware Component Model. The Power-
State stereotype is extended from UML State and customized
by adding a consumption property to store an average power
value for the state. And finally, the PowerTransition stereotype
is extended from UML transition and customized by adding
register access event properties and a consumption property to
store its energy value. With Papyrus tool, we have customized

Fig. 6: Power State Machine UML Profile

the state machine, the properties menu and the palette editors
to adapt it to the Power State Machine profile. Our goal
was to offer an easy-to-use tool for the different users in
an embedded system development flow. Tool users are then
assisted to execute the steps of our approach as described
below :

• Modeling the system State Machine using a cus-
tomized state machine editor and palette,

• Setting power values in the appropriate system states
by a properties menu. Values are presented in Watt.
Setting energy cost of transitions using a similar
properties menu. Values are here presented in Joule,

• Loading and analyzing an execution trace. As illus-
trated in section III, the software developer is respon-
sible for extracting the trace. Once the trace has been
produced, a dedicated replay view is featured in the
tool to assist the software developer understanding and
simulating its execution,

• Visualizing the detailed energy consumption report.
Each state has its time elapsed and energy cost. And,
Each transition has its crossed number and energy
cost. As a result, the report present the total energy
consumption of the application.

By extracting information contained in both the the Hard-
ware Component Model and the Hardware Behavior Model,
the tool assist the developer to edit the transitions in the state
machine editor. The state machine model of a component
is connected to its IP-XACT hardware description. While
editing the transitions, an assistant is provided to the user. This
assistant automatically lists available registers and bitfields,
consistently with the Hardware Component Model, and checks
for access modes. This prevents for instance the user to define
transition guards that would imply a write on a read-only
register.

V. EXPERIMENTAL RESULTS

In this section, we applied our approach to a case study
involving a real hardware platform, a regular matrix multiply
application, and several runtime power management strategies
and demonstrate the validity of the approach and qualify its
precision. First, we present a case study application. Second
we conduct a power profiling step since no vendor information
were available for the power characterization of our platform,

this allows us to build the power state model. Then, to validate
the estimation results provided by our tool, we compare our
estimations to real physical measurements. And finally, we
discuss the experimental results in order to present how our
approach can help the software developer to decide which
power management strategy to use.

A. Case study Algorithm

The Algorithm 2 is a simple thermal mitigation strategy. Its
main objective is to limit the temperature elevation of the chip
while reducing power consumption and achieving maximum
performance. It is based on frequency modes switch. A initial
frequency mode is set at the beginning program. While the
temperature remains low, the algorithm switch from the current
frequency to a higher one to increase performance. If the
temperature exceeds a maximum threshold, it switches to a
lower frequency mode to reduce temperature. In our case study,
the software developer does not know how many modes he
should use, and which ones. A simple view of the algorithm
is illustrated below :

Data: numberofMode,value0,value1,value2,value3,
thresholdtemp
setFrequencyForMode(0, value0);
setFrequencyForMode(1, value1);
setFrequencyForMode(2, value2);
setFrequencyForMode(3, value3);
currentMode←− 0 ;
m we used is a real har while acquisition do

temperature←− gettemperature() ;
if temperature < thresholdtemp then

if currentMode < numberofMode then
currentMode+ +;
setFrequency(currentMode);

end
else

if currentMode > 0 then
currentMode−−;
setFrequency(currentMode);

end
end

Algorithm 2: Case study Algorithm

We used an execution platform called STHORM [17]. It
is a power efficient manycore architecture consisting of a host
processor and a manycore fabric. The host processor is a dual-
core ARM cortex A9 and the fabric comprises 64 computing
elements. The clock of the fabric is supplied by the Clock
Generator described in Figure 4. Depending on the frequencies
configured for each mode, the average power values of each
state of the fabric has to be defined.

B. Behavior and power modeling of the System

We consider that each frequency mode is a power state
that has to be characterized with a single power consumption
value. According to Power annotation process described in
section III, the software developer can obtain the power cost
of frequency mode from equation 1. In our case study, we
have been able to identify the corresponding parameters values.
Pc the constant power is 196mW and the coefficient α is
0.8wW/MHz. So, the equation 1 becomes:

P (f) = 196 + 0.8 ∗ f (7)

Applying equation 7 for the four frequency modes used in
our case study algorithm, we obtain the power values showed
in Table I.

TABLE I: Power of frequency mode

Frequency Mode (MHz) Average Power (mW)
10 204
100 276
200 356
400 516

Depending on the frequency modes of the algorithm, the
software developer updates the power value into power state
property in the system behavior model.

C. Results and benefits

Table II shows three different configurations for the thermal
mitigation strategy used in our case study. Depending on
the strategy, 4 or 2 frequency modes are used, with various
frequency values. The first strategy S1 has 4 frequency modes
(in Mhz) respectively (m1 = 10, m2 = 100, m3 = 200, m4 =
400). The second strategy S2 has 2 modes (m1 = 100, m2 =
200) and the third S3 has 2 modes (m1 = 100, m2 = 400).
For all the three strategies, the execution duration T is the
same T = 25s. The last column of the table shows the overall
energy cost of the strategies.

TABLE II: Energy consumption results

Application mode 0 mode 1 mode 2 mode 3 Energy (J)
S1 10 100 200 400 8.93
S2 100 200 N/A N/A 9.21
S3 100 400 N/A N/A 11.63

In order to help the software developer pick the best
strategy, the energy cost has to be compared simultaneously
with the application performance. For this matter, a relevant
metric is to divide the number of processed items by the
energy, which is equivalent to the throughput/power ratio.
Traditionally efficiency is expressed in GFlop/s/W or GFlop/J
where GFlop stands for Giga floating point operations. Here
we don’t have precise estimation of the number of GFlop spent
in our application, so we expressed the achieved efficiency in
number of iterations per Joule and normalized it to 1 for the
first strategy in Table III.

TABLE III: Energy efficiency comparison

Application Max Frequency Energy Normalized Efficiency
S1 400 8.93 1
S2 200 9.21 0.96
S3 400 11.63 1.19

As we can see on previous table, the strategy S3 with only
2 modes at 200 and 400 MHz is achieving the maximum
efficiency. It is therefore the best choice for the software
developer.

In Table IV an overview of the performance of the trace
analysis in our tool is presented. The performance was esti-
mated on a regular desktop computer with an Intel Core i3

processor. The two first lines respectively presents the trace
size and the analysis time for the strategies S3 and S1. The last
line is a generated scenario that corresponds to an execution
time of 5 minutes. In all cases, the analysis time is negligible
compared to the execution time.

TABLE IV: Time consumed by the trace analysis

Data (B) Matched records Proc. time (ms) Time/record (ms)
11860 8 172.5 21.5
38790 26 193.5 7.5

458995 250 1376 5.5

D. Comparison with real measurements

The capability of our approach has been demonstrated, we
now have to estimate its accuracy. To do so, we have built an
experimental set up where, it was possible to simultaneously
execute the application and produce the execution trace, while
capturing the instantaneous power consumption using an exter-
nal tool, in our case an oscilloscope. The corresponding set-up
is described in the electric schematic illustrated in Figure 7.
To estimate the power of the circuit, simultaneous acquisition
of its supply voltage and current has been made.

The power P is given by equation 8.

P = I ∗ Vdd (8)

Vdd is the supply voltage and I is the average current. We
can get I as the ratio between the resistance voltage Vr and
the resistance value R as illustrated in equation 9.

I =
Vr
R

(9)

Fig. 7: Electrical schema for power acquisition

For current measurement, a resistance has been put on the
power line of the chip. This resistance was sufficiently small
to avoid large voltage drops in the chip, and sufficiently large
to get enough signal for the measurement. In our setup, we
found that R = 0.22Ω was a good trade-off.

Applying Kirchhoffs voltage law, we obtain Vr illustrated
in equation 10 as the difference between the source voltage Vs
and the chip voltage Vc.

Vr = Vs − Vc (10)

Referring to equations 8, 9 and 10, we obtain the power P :

P = Vc ∗
Vs − Vc
R

(11)

The Figure 8 shows a view of the power (in mW) variation
in function of time in s for the first strategy S1. The blue dots
are the actual physical measurements of the oscilloscope. To
reduce the noise, we applied a smoothing filter on the results
using a simple moving average over 8 values and produced
the black curve. The red plot shows the power estimation by
our approach.

Fig. 8: Comparing between real and estimation power consumption
measurements

We can see a really good correlation of the two curves,
and computed an average relative error of 8% for our approach
compared to physical measurements, which is the same error
rate as reference power simulators for our platform [18].

VI. CONCLUSION

A power consumption estimation approach for embedded
software design using trace analysis has been presented. This
approach is well suited for software designers who have to
deal with time-to-market constraints and short development
cycles, who often fail to access to complex power simulators
involving virtual platforms and long execution times. Here,
their power management design exploration is fully supported
by the tool we have developed and the power analysis is
done off-line almost instantaneously. The approach we propose
has also been checked against real power measurement and
demonstrated to achieve state-of-art precision compared to
traditional power virtual simulations. Finally, the approach is
built upon industry standards such as IP-XACT and UML and
leverages documentation efforts accomplished on vendor side.

Future work would be to integrate this approach in au-
tomated power exploration flows, possibly for strongly con-
strained domains such as IoT applications involving several
platforms and distributed applications.

ACKNOWLEDGMENT

The authors would like to thank the ACOSE project for
their support. It has been funded by France in the frame of
a program called ”Investissements d’Avenir Développement
de l’Economie Numérique - Briques génériques du logiciel
embarqué”.

REFERENCES

[1] C. Ebert and C. Jones, “Embedded software: Facts, figures, and future,”
Computer, 2009.

[2] D. Brooks, P. Bose, S. Schuster, H. Jacobson, P. Kudva, A. Buyukto-
sunoglu, J.-D. Wellman, V. Zyuban, M. Gupta, and P. Cook, “Power-
aware microarchitecture: design and modeling challenges for next-
generation microprocessors,” Micro, IEEE, 2000.

[3] M. Pedram, “Power optimization and management in embedded sys-
tems,” in ASP-DAC, 2001.

[4] K. Yu, D. Han, C. Youn, S. Hwang, and J. Lee, “Power-aware task
scheduling for big.little mobile processor,” in ISOCC, Nov 2013.

[5] S. Reda and A. N. Nowroz, “Power modeling and characterization of
computing devices: A survey,” Found. Trends Electron. Des. Autom.,
2012.

[6] M. Sichitiu, “Cross-layer scheduling for power efficiency in wireless
sensor networks,” in INFOCOM, 2004.

[7] A. Bogliolo and L. Benini, “Node sampling: a robust rtl power modeling
approach,” in ICCAD, 1998.

[8] V. Tiwari, S. Malik, A. Wolfe, and M. T. chien Lee, “Instruction level
power analysis and optimization of software,” Journal of VLSI Signal
Processing, 1996.

[9] J. Laurent, N. Julien, E. Senn, and E. Martin, “Functional level power
analysis: An efficient approach for modeling the power consumption of
complex processors,” in DATE, 2004.

[10] H. Blume, D. Becker, L. Rotenberg, M. Botteck, J. Brakensiek, and
T. G. Noll, “Hybrid functional- and instruction-level power modeling for
embedded and heterogeneous processor architectures,” J. Syst. Archit.,
2007.

[11] D.-H. Kim, J.-P. Kim, and J.-E. Hong, “A power consumption anal-
ysis technique using uml-based design models in embedded software
development,” in SOFSEM’11, 2011.

[12] T. Arpinen, E. Salminen, T. D. Hmlinen, and M. Hnnikinen,
“{MARTE} profile extension for modeling dynamic power management
of embedded systems,” Journal of Systems Architecture, 2012.

[13] C. Gomez, J. DeAntoni, and F. Mallet, “Multi-view power modeling
based on uml, marte and sysml,” 2012.

[14] “IEEE Standard for IP-XACT, Standard Structure for Packaging, In-
tegrating, and Reusing IP within Tools Flows,” IEEE Std 1685-2009,
2010.

[15] L. Scheffer, L. Lavagno, and G. Martin, EDA for IC System Design,
Verification, and Testing (Electronic Design Automation for Integrated
Circuits Handbook). 2006.

[16] “Magillem Design Services.” http://www.magillem.com/.
[17] D. Melpignano et al., “Platform 2012, a many-core computing accel-

erator for embedded socs: Performance evaluation of visual analytics
applications,” in DAC, 2012.

[18] T. Ducroux, G. Haugou, V. Risson, and P. Vivet, “Fast and accurate
power annotated simulation: Application to a many-core architecture,”
in PATMOS, 2013.

http://www.magillem.com/

	Introduction
	Related Work
	Proposed estimation process
	Energy Behavior Modeling
	Power Annotation
	Software Execution
	Trace Analysis
	The Power Model

	Tool Support
	Experimental results
	Case study Algorithm
	Behavior and power modeling of the System
	Results and benefits
	Comparison with real measurements

	Conclusion
	References

