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Time-dependent expectation values and correlation functions for many-body quantum systems are
evaluated by means of a unified variational principle. It optimizes a generating functional depending
on sources associated with the observables of interest. It is built by imposing through Lagrange
multipliers constraints that account for the initial state (at equilibrium or off equilibrium) and for
the backward Heisenberg evolution of the observables. The trial objects are respectively akin to
a density operator and to an operator involving the observables of interest and the sources. We
work out here the case where trial spaces constitute Lie groups. This choice reduces the original
degrees of freedom to those of the underlying Lie algebra, consisting of simple observables; the
resulting objects are labeled by the indices of a basis of this algebra. Explicit results are obtained
by expanding in powers of the sources. Zeroth and first orders provide thermodynamic quantities
and expectation values in the form of mean-field approximations, with dynamical equations having a
classical Lie-Poisson structure. At second order, the variational expression for two-time correlation
functions separates—as does its exact counterpart—the approximate dynamics of the observables
from the approximate correlations in the initial state. Two building blocks are involved: (i) a
commutation matrix which stems from the structure constants of the Lie algebra; and (ii) the
second-derivative matrix of a free-energy function. The diagonalization of both matrices, required
for practical calculations, is worked out, in a way analogous to the standard RPA. The ensuing
structure of the variational formulae is the same as for a system of non-interacting bosons (or of
harmonic oscillators) plus, at non-zero temperature, classical gaussian variables. This property
is explained by mapping the original Lie algebra onto a simpler Lie algebra. The results, valid
for any trial Lie group, fulfill consistency properties and encompass several special cases: linear
responses, static and time-dependent fluctuations, zero- and high-temperature limits, static and
dynamic stability of small deviations.
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I. INTRODUCTION

Variational methods have proved their flexibility and efficiency in many domains of physics, chemistry and applied
mathematics, in particular when no small parameter allows perturbative approaches. In physics one may wish, for
systems of fermions, bosons or spins, to evaluate variationally various quantities, such as thermodynamic properties,
expectation values, fluctuations or correlation functions of some observables of interest. One may deal with the ground
state, with equilibrium at finite temperature, or with time-dependences in off-equilibrium situations.
We want, moreover, to perform these evaluations consistently. Suppose for instance that we have optimized the

free energy of a system by determining variationally its approximate state within some trial class; nothing tells us
that this state is also suited to a consistent evaluation of other properties. Is it possible, remaining in the same trial
class, to optimize some other quantity than the free energy, for instance a statistical fluctuation?
The wanted properties can be of different types. For instance, one may be interested in both the expectation

values and the correlations of some set of basic observables. Consistency then requires the simultaneous optimization
of these quantities. In order to evaluate them in a unified framework it appears natural, as in probability theory
and statistical mechanics, to rely on characteristic functions, or more generally for time-dependent problems, on
functionals that generate correlation functions. As in field theory, time-dependent sources ξj(t) are associated with
the basic observables Qj . Expansion of the generating functional in powers of these sources will supply expectation
values and correlation functions of the set Qj in a consistent fashion.
Our strategy, therefore, will be the variational optimization of a generating functional ψ{ξ} for (connected) corre-

lation functions. To face this problem we will rely on a general method [1, 2] allowing the systematic construction of
a variational principle that optimizes some wanted quantity. In this procedure, the equations that characterize this
quantity are implemented as constraints by means of Lagrange multipliers.
The desired generating functional is expressed as ψ{ξ} ≡ lnTrA(ti)D in terms of two entities, the state D in the

Heisenberg picture and the ”generating operator” A(t) ≡ T exp[i

∫ ∞

t

dt′
∑

j

ξj(t
′)QH

j (t
′, t)] taken at the initial time

t = ti. The operators QH
j (t

′, t) entering A(t) are the observables of interest in the Heisenberg picture, t′ being the

running time and t the reference time at which QH
j (t, t) reduces to the observable Qj in the Schrödinger picture. The

variational determination of ψ{ξ} together with its expansion at successive orders in the sources ξj(t
′) provides the

various desired outcomes: namely, at zeroth order (for A(t) = I) thermodynamic potentials if D is a (non-normalized)
Gibbs state, or ground state energy in the zero-temperature limit; at first order expectation values; at second order
correlation functions for an initial off-equilibrium state D, etc... Static correlations within the state D will be obtained
from sources located at the origin ti of times.
Implementing the variational principle requires the use of formally simple equations which characterize the two

ingredients D and A(ti) of the generating functional ψ{ξ}, and which will be taken as constraints accounted for by
Lagrange multipliers. The state D = exp(−βK) will be characterized by Bloch’s equation for D(τ) = exp(−τK); the
associated Lagrange multiplier is an operator depending on an imaginary time τ . In order to characterize the second
ingredient A(ti) of ψ{ξ}, we have defined A(t) for an arbitrary initial time t. The observables QH

j (t
′, t) entering the

”generating operator” A(t) then satisfy a backward Heisenberg equation [Eq. (10)] in terms of the reference time t
which will eventually be fixed at ti. This backward Heisenberg equation plays a crucial role as it produces for A(t)
the formally simple differential equation (11); the associated Lagrange multiplier is a time-dependent operator. The
equations for the density operator D(τ) and for the generating operator A(t) are complemented by the boundary
conditions D(0) = I and A(+∞) = I, where I is the unit operator. The ”time” τ of D(τ) varies forward, the time t
of A(t) backward.
Unrestricted variations of the trial operators D(τ) and A(t), and of their associated multipliers, yield the exact

generating functional, the stationarity conditions being the exact dynamical equations for D(τ) and A(t). These
operators should be restricted within a trial subspace to make the evaluations feasible, and then the resulting equations
become coupled. Their solution will be simplified by expansion in powers of the sources ξj(t), yielding a tractable,
unified and consistent treatment.

In this article, we choose as trial subspace a Lie group of operators. This will be the sole approximation. The
formalism will be developed for an arbitrary Lie group (Secs. III-V). Explicit calculations are then allowed for a
sufficiently simple underlying Lie algebra.
For arbitrary systems and for any trial Lie group, mean-field like approximations are recovered at zeroth and first

orders in the sources (Sec. IV) for thermodynamic quantities and static or dynamic expectation values (for instance,
selecting for fermions at finite temperature the Lie algebra of single-particle operators yields back in this general
framework the static and time-dependent Hartree-Fock theories).
However, at second order in the sources, the formalism generates non trivial results for fluctuations, for static
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correlations and for two-time correlation functions (Sec. V). Remarkably, new variational approximations come out
for these quantities, although the trial operators belong to the same simple class as the one that provides standard
results for the expectation values (exponentials of single-particle operators in the example of fermions). Within the
Lie group the trial operators adapt themselves to each question being asked so as to optimize the answer – while the
use of the generating functional ensures the consistency of the results thus obtained.
The second half of this article (Secs.VI-X) is devoted to the properties of the outcomes of the present variational

theory with trial Lie groups. In particular, the static and dynamic stabilities are related to each other (Sec. IX); a
quasi-bosonic structure (Sec. VIII) and a classical structure (Sec. X) are exhibited for any system; various consistency
properties are reviewed (Sec. VI).
Some past works are related to the present variational approach, which generalizes and unifies them within a natural

framework. For fermions at finite temperature, the optimization of expectation values has been shown to lead to the
static HF and dynamic TDHF equations [3], while variational expressions for fluctuations [4] and correlation functions
[5] have been derived. In particular, the large fluctuations observed in heavy ion nuclear reactions have thus been
correctly reproduced [6–11], as recalled in Sec. VIB 5. Applications of the variational principle of Sec. II C have been
made to bosonic systems [12], to Bose condensation [13, 14], to field theory in φ4, including two-time correlation
functions [15, 16], and to restoration of broken particle-number invariance for paired fermions at finite temperature
[17]. Let us also mention an application to cosmology [18] and an extension to control theory [19, 20]. In the case
of small fluctuations around the mean-field trajectory for fermions, the variational principle leads to time-dependent
RPA corrections similarly to other approaches assuming either initial sampling of quantum fluctuations [21, 22] or
directly solving time-dependent RPA [23] (for a recent review, see [24]).

The main results are recapitulated in Sec. XI, before the conclusion in Sec. XII.

II. A UNIFIED VARIATIONAL APPROACH

A. Generating functional

We consider a quantum physical system prepared at the initial time ti in a state represented by a density operator
of the form D̃ ∝ exp(−βK) in the Hilbert space H . The dynamics is generated by the Hamiltonian H , possibly
time-dependent. If the system is in canonical (or grand canonical) equilibrium, one has K = H (or K = H − µN);
for dynamical problems K needs not commute with H . Ground state problems are traited by letting β → ∞.
Partition functions will be evaluated as TrD for the unnormalized state

D = e−β K . (1)

The normalized state will be denoted as D̃ = D/TrD. We are mainly interested in expectation values, fluctuations
and correlation functions of some set of observables denoted as QS

j in the Schrödinger picture. We will work in the
Heisenberg picture in which the observables

QH
j (tf , ti) = U †(tf , ti)Q

S
j U(tf , ti) (2)

depend on two times, the initial reference time ti and the final running time tf . In the unitary evolution operator

U(tf , ti) = Te
− i

~

∫ tf
ti
dtH(t)

(3)

T denotes time ordering from right to left.
In order to generate consistently the desired quantities, we associate with each observable Qj a time-dependent

source ξj(t) and we introduce the generating operator

A(t) ≡ Te
i
∫∞

t dt′
∑

j ξj(t
′)QH

j (t
′, t)

. (4)

Then, the generating functional

ψ{ξ} ≡ lnTrA(ti)D , (5)

which depends on the functions ξj(t), encompasses the quantities of interest. In particular the partition function
TrD, the expectation values

〈Qj〉t = TrQH
j (t, ti)D̃ (6)
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at the time t, and the two-time correlation functions

Cjk(t
′, t′′) = TrT QH

j (t
′, ti)Q

H
k (t

′′, ti) D̃ − 〈Qj〉t′〈Qk〉t′′ , (7)

are obtained as functional derivatives with respect to the sources according to the successive terms of the expansion
of ψ{ξ},

ψ{ξ} = lnTrD + i
∫∞

ti
dt

∑

j ξj(t)〈Qj〉t

− 1
2

∫∞

ti
dt′

∫∞

ti
dt′′

∑

jk ξj(t
′) ξk(t

′′)Cjk(t
′, t′′) + . . . .

(8)

Variances ∆Q2
j(t), hence fluctuations ∆Qj(t), are found as Cjj(t, t); static expectation values and correlations in the

state D̃ are found by letting both times equal to ti. Linear responses are also covered by the formalism.

B. The constraints

In order to optimize simultaneously all the quantities embedded in the generating functional ψ{ξ}, use is made of
a general procedure [1, 2] inspired by the Lagrange multiplier method. The purpose is to construct an expression
whose stationary value provides the quantity we are looking for, namely here ψ{ξ} = lnTrA(ti)D. To implement in
this expression the quantities D = e−βK and A(t), we will characterize them by equations regarded as constraints.
To characterize the state D, we introduce a trial ”time”-dependent operator D(τ) compelled to satisfy the initial

condition D(0) = I and the Bloch equation

dD(τ)

dτ
+K D(τ) = 0 , (9)

where the imaginary ”time” τ runs from 0 to β. One recovers D = exp(−βK) from the solution of (9) for τ = β.
Let us turn to the generating operator A(t) defined by (4) in terms of the observables QH

j (t
′, t). In this form, A(t)

looks difficult to handle and we wish to characterize it by a formally simple equation that can be taken as a constraint.
To this aim, the operators QH

j (t
′, t) are regarded as functions of the initial time t rather than of the final running time

t′ which is kept fixed at t′ = tf . They thus satisfy the backward Heisenberg equation [3]

dQH
j (tf , t)

dt
= − 1

i ~
[QH

j (tf , t), H ] . (10)

This differential equation, together with its final boundary condition QH
j (tf , tf) = QS

j (tf) at t = tf , is equivalent to

the definition (2) of QH
j (tf , t). Contrary to the standard forward Heisenberg equation (a differential equation in

terms of t′), the backward equation (10) holds even when the observable QS
j and/or the Hamiltonian H depend on

time in the Schrödinger picture. Note that in the backward Eq.(10), H is written in the Schrödinger picture if it is
time-dependent.
In the present context, the forward equation for QH

j (t
′, t) would be of no help in dealing with the definition (4) of

the generating operator A(t) whereas the backward Heisenberg equation (10) readily provides the differential equation
[5]

dA(t)

dt
+

1

i ~
[A(t), H ] + iA(t)

∑

j

ξj(t)Q
S
j = 0 , (11)

which, together with the boundary condition A(+∞) = I, is equivalent to (4). The generating functional ψ{ξ} defined
by (5) involves A(ti), and this operator will be found by letting t run backward in Eq.(11) from +∞ to ti, with the
final condition A(+∞) = I. Here again we shall simulate the operator A(t), solution of the exact equation (11), by a
trial operator A(t) which will satisfy (11) approximately.
In order to optimize the generating functional ψ{ξ} = lnTrA(ti)D, a variational expression [Eq. (12) below] will

be constructed, which relies on the equations (9) for D and (11) for A(t). These equations are regarded as constraints
with which Lagrange multipliers will be associated. We denote the Lagrange multiplier accounting for the Bloch
equation (9) by A(τ), an operator depending on the ”time” τ ; we denote the Lagrange multiplier accounting for
Eq.(11) by D(t), a time-dependent operator. These notations are inspired by the duality between observables A and
states D at the root of the algebraic formulation of quantum mechanics [25, 26] where expectation values are expressed
as scalar products TrAD. Here, D(τ) (for 0 ≤ τ ≤ β) and the multiplier D(t) (for t ≥ ti) are state-like quantities,
whereas the multiplier A(τ) and the operator A(t) are observable-like quantities.
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C. The variational principle

The implementation of the constraint (9) for D(τ) by introducing the Lagrange multiplierA(τ), and of the constraint
(11) for A(t) by introducing of the Lagrange multiplier D(t), results in the variational expression [5]

Ψ{A,D} = lnTrA(t = ti)D(τ = β) (12)

−
∫ β

0

dτ TrA(τ)

[

dD(τ)

dτ
+KD(τ)

]

[TrA(τ)D(τ)]−1

+

∫ ∞

ti

dtTr





dA(t)

dt
+

1

i ~
[A(t), H ] + iA(t)

∑

j

ξj(t)Q
S
j



D(t)[TrA(t)D(t)]−1 ,

where normalizing denominators are included for convenience. Together with the mixed boundary conditions

A(t = +∞) = I , D(τ = 0) = I , (13)

Ψ{A,D} should be made stationary with respect to the four time-dependent operators D(τ),A(τ),A(t),D(t) (with
0 ≤ τ ≤ β and ti ≤ t ≤ +∞). The stationarity conditions include the additional continuity relations

D(τ = β) = D(t = ti) and A(τ = β) = A(t = ti) , (14)

another argument for the notation. (In view of this continuity one might replace τ by a complex time t = ti+i(β−τ)~
so as to rewrite the two integrals of (12) as a single integral on a Keldysh-like contour [5, 27].)
For unrestricted variations of A and D the stationary value of Ψ is the required generating functional ψ{ξ}. It

is attained for values of A and D that let the two square brackets of (12) vanish, so that we recover the evolution
equations (9) and (11), the solutions of which are D(τ) = exp (−τK) and A(t) = A(t).
The data of the problem, K,H and the observables QS

j , are operators in the Hilbert space H . They all enter
explicitly the variational expression Ψ{A,D}. Simpler variational principles (VPs) derive from (12) in two special
circumstances. If the initial state D is workable, the first integral over τ should be omitted. In this case, the variational
principle (12) can be viewed for ξj(t) = 0 as a transposition of the Lippmann-Schwinger VP [28] from the Hilbert
space, with duality between bras and kets, to the Liouville space, with duality between observables and states [3].
For static problems, the last integral over t is irrelevant [17]. Classical problems enter the same framework, with the
replacement of the Hilbert space by the phase space, traces by integrals and commutators by Poisson brackets.
As usual, practical exploitation of the above variational approach relies on restricting the trial spaces so that the

expression (12) of Ψ{A,D} can be explicitly worked out. The denominators TrAD have been introduced so as to let
the functional Ψ{A,D} be invariant under time-dependent changes of normalization of D and A. This allows us to
select a ”gauge”, that is, to fix at each time the traces of D and A in such a way that the stationarity conditions take
the form

Tr δA(τ)

[

dD(τ)

dτ
+KD(τ)

]

= 0 , (0 ≤ τ ≤ β) (15)

Tr

[

dA(τ)

dτ
−A(τ)K

]

δD(τ) = 0 , (0 ≤ τ ≤ β) (16)

Tr





dA(t)

dt
+

1

i~
[A(t), H ] + iA(t)

∑

j

ξj(t)Q
S
j



 δD(t) = 0, (t ≥ ti) (17)

Tr δA(t)





dD(t)

dt
− 1

i~
[H,D(t)] − i

∑

j

ξj(t)Q
S
jD(t)



 = 0, (t ≥ ti) (18)

in the restricted space for D(τ), A(τ), A(t), D(t) and the corresponding space for their infinitesimal variations. In
agreement with the boundary conditions (13) and (14) relating the sectors τ and t, equations (15) and (18) for D
should be solved forward in time, with τ running from 0 to β and t running from ti to ∞, whereas Eqs.(17) and (16)
for A should be solved backward. We obtain the stationary value of Ψ as

ψ{ξ} ≃ ln TrA(t)D(t) = ln TrA(τ)D(τ) (19)

for arbitrary t or τ , as a consequence of the stationarity conditions written for δA ∝ A, δD ∝ D. In the following the
restricted choice of the trial space will imply that the allowed variations δA around A depend on A, and likewise for
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δD, so that the forward or backward equations (15-18) are coupled. Practical solutions will take advantage of their
expansion in powers of the sources ξj(t).
The variational procedure has duplicated the dynamical equations, introducing Eqs.(16) and (18), besides the

approximate Bloch equation (15) and the approximate equation (17) for the generating operator A(t). While the
formalism was set up in the Heisenberg picture, the stationarity condition (18) reduces, in the absence of sources and
for unrestricted variations of A(t) and D(t), to the Liouville-von Neumann equation

dD(t)

dt
=

1

i~
[H,D(t)] . (20)

The Lagrange multiplier matrix D(t) thus behaves as a time-dependent density operator in the Schrödinger picture.
However, such an interpretation does not hold in the presence of sources, in which case D(t) is not even hermitian.

III. LIE GROUP AS TRIAL SPACE

A. Parametrizations and entropy

From now on, we specialize the trial space for the operators A and D involved in the variational principle (12),
assuming it to be endowed with a Lie group structure. This will be our sole approximation. The Lie group is generated
by a Lie algebra {M} of operators acting on the Hilbert space H , a basis of which is denoted as Mα. This algebra is
characterized by the structure constants Γγ

αβ entering the commutation relations

[Mα,Mβ] = i ~Γγ
αβ Mγ . (21)

(We use throughout the convention of summation over repeated indices.) These constants are antisymmetric and
satisfy the Jacobi identity

Γǫ
αβ Γ

δ
ǫγ + Γǫ

βγ Γ
δ
ǫα + Γǫ

γα Γδ
ǫβ = 0 .

It is convenient to include in the algebra the unit operator I, denoted as M0. A seminal example is provided, for a
many-fermion problem, by the algebra of fermionic single-particle operators Mα = a†µaν [with α ≡ (ν, µ) 6= 0]. Other
examples are given in Sec. XIA, such as, for condensed bosons, the set of creation and annihilation operators and of
their products in pairs.
The operators A and D are then parametrized, at each time τ or t, according to

A = eL
αMα , D = eJ

αMα . (22)

The parameters Lα and Jα are functions of the times τ or t; their sets will be denoted as {L} and {J}. They will
be complex due to the presence of the sources ξj(t), and to a possible non-hermiticity of the operators Mα. [In
the fermionic example, the operators D have the nature of non-normalized independent-particle states; for bosonic
problems they would encompass coherent states.]

The results will be conveniently expressed by writing D as D = ZD̃, where Z denotes the normalization factor

Z{J} ≡ TrD = Tr eJ
α Mα , (23)

and where D̃ is a normalized operator. Instead of the set {J}, the operator D can alternatively be parametrized by
Z and by the set {R}, defined by

Rα ≡ TrMα D̃ =
∂ lnZ

∂Jα
(24)

and including R0 = 1. [In the example of fermions, for α = (ν, µ) 6= 0, the set Rα ≡ Rνµ = Tr a†µaνD̃ are the Wick

contractions associated with the independent-particle trial operator D̃, so that a covariant vector {R} can also be
regarded as a single-particle density matrix. Contravariant vectors such as {L} or {J} are then regarded as matrices
with switched indices, so as to produce the usual expressions in Hilbert space for operators and scalars, such as
LαMα = a†µL

µνaν or JαRα = JµνRνµ.]
The converse equations of (24), which relate the set {J} to the set {R}, Z, involve the von Neumann entropy

(kB = 1)

S{R} ≡ −Tr D̃ ln D̃ ≡ lnTrD − TrD lnD
TrD = lnZ − JαRα , (25)
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and they read

Jα = −∂S{R}
∂Rα

(α 6= 0) , J0 = lnZ − S{R} −
∑

α6=0

JαRα . (26)

The Legendre transform (25)-(26) from lnZ{J} to the von Neumann entropy S{R} stems from the exponential
form of D as function of the parameters {J}. The situation is the same as in thermodynamics where a Legendre
transform relates thermodynamic potentials and entropy when going from intensive to extensive variables, due to the
the Boltzmann-Gibbs form of the equilibrium states.
The Jacobian matrix of the transformation relating the two parametrizations of D̃ is the entropic matrix

S
αβ ≡ ∂2S{R}

∂Rα ∂Rβ
= − ∂Jα

∂Rβ
,

(

S
−1

)

αβ
= −∂

2 lnZ{J}
∂Jα ∂Jβ

= −∂Rα

∂Jβ
(α, β 6= 0) , (27)

which is the (negative) matrix of second derivatives of S{R}.
As a remark, we note that a metric ds2 can be defined in the full space of density operators D̃ by ds2 = −d2S{D̃}

[29]. The quantity −δRαS
αβδRβ can indeed be interpreted as the square of the distance, within the trial subset of

density operators, between the state D̃ parametrized by {R} and the state D̃ + δD̃ parametrized by {R+ δR}. The
matrix −S can thus be regarded as a metric tensor, and the relation δJα = −SαβδRβ (α, β 6= 0) as a correspondence
between covariant and contravariant coordinates.

B. Symbols and images

We shall have to deal with quantities of the form TrQD, where D will be some element of the Lie group and Q
some operator in the full Hilbert space H , not necessarily belonging to the Lie algebra. In order to take care of such
operators it appears convenient to represent them by means of two useful tools.
Let us first introduce the symbol q{R} of Q, a scalar which depends both on the operator Q (in the Schrödinger

picture) and on a normalized running element D̃ of the Lie group. This symbol is defined by

q{R} ≡ TrQ D̃ , (28)

as function of the parameters Rα (with α 6= 0) that characterize D̃. If Q belongs to the Lie algebra, this function is

linear since Rα = TrMα D̃ itself is the symbol of Mα. Otherwise q{R} is non-linear. If D̃ were a density operator, a

symbol would be an expectation value but here D̃ is an arbitrary normalized element of the Lie group, not necessarily
hermitian. The symbol q{R} of the operator Q may be viewed as a generalization, for any Lie group and for mixed
states, of the expectation value of Q in a coherent state [30], this value being regarded as a function of the parameters
that characterize this state.
Let us then introduce a second object associated with an operator Q, its image Q{R}, an element of the Lie algebra

depending again both on Q and on the running operator D̃. The image Q{R} of Q is constructed by requiring that
both operators Q{R} and Q should be equivalent, in the sense that

TrQ{R} D̃ = TrQ D̃ = q{R} , (29)

and that

TrQ{R} δD = TrQδD (30)

for any infinitesimal variation δD around D̃ within the Lie group, in particular for δD ∝ MαD̃, or δD ∝ D̃Mα, or
δD ∝ ∂D̃/∂Rα. Let us show that these conditions are sufficient to determine uniquely the image Q{R} associated with
a given Q. Since it must belong to the Lie algebra, Q{R} is parametrized by a set of coordinates Qα{R} according to

Q{R} = Qα{R}Mα . (31)

For α 6= 0, these coordinates Qα{R} are determined by inserting (31) into (30), by taking δD ∝ (∂D̃/∂Rβ)δRβ and
by using the definition (28) of the symbol of Q, which yields

Qα{R} =
∂q{R}
∂Rα

, (α 6= 0) . (32)
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The coordinate Q0{R} is obtained from (29). Altogether, the image Q{R} of Q defined by their equivalence (29),(30)
is related to the symbol q{R} of Q through

Q{R} = q{R}M0 + (Mα −Rα M0)
∂q{R}
∂Rα

(α 6= 0) . (33)

An operator Q belonging to the Lie algebra coincides with its image. Otherwise, its coordinates Qβ depend on the
Rα’s, so that Q{R} is an effective operator simulating Q in the Lie algebra, for a state close to D̃. The dependence

of Qα{R} on {R} arises from the occurrence of D̃ in the equivalence relation (29),(30).

C. The commutation matrix C and the entropic matrix S

We shall have to handle products of two operators of the Lie algebra. When solving the dynamical equations we
shall in particular encounter commutators [Mα, Mβ]. Their symbol defines the commutation matrix

Cαβ{R} =
1

i ~
Tr [Mα, Mβ ] D̃ = Γγ

αβ Rγ , (34)

expressed in terms of the structure constants Γγ
αβ (for γ = 0, we have R0 = 1). The matrix C will play a crucial role.

Using lnD = JγMγ , the vanishing of Tr[Mβ , lnD]D̃ = 0 is expressed by

Cβγ J
γ = Γδ

βγ Rδ J
γ = 0 . (35)

Taking the derivatives of this identity with respect to Rα and using the relation (27) between the two parametrizations
{J} and {R} of D, one obtains for the product CS the relations

Γα
βγ J

γ = Cβγ S
γα , (α 6= 0) (36)

Γ0
βγ J

γ = −Cβγ S
γδ Rδ .

These equations help to show that the automorphism of the Lie algebra engendered by the element Dλ of the group
can be expressed in the two equivalent forms

Mα −Rα 7→ D− λ(Mα −Rα)Dλ =
(

e i ~C Sλ
) γ

α
(Mγ −Rγ) . (37)

(This is proved by evaluating the derivative with respect to λ of the left-hand-side, using (36) then integrating from
0 to λ.)
The property (37) will be exploited later on (Sec. VE and Appendix A). We use it here to find the expression of

the symbol of the product Mα Mβ, or equivalently of the correlation TrMαMβD̃ − RαRβ = Tr(Mα −Rα)MβD̃ (with

Rα = TrMαD̃). To this aim, we start from the expression (27) of S−1, and evaluate explicitly therein the derivatives
with respect to {J}:

−
(

S
−1

)

αβ
=
∂2 lnZ{J}
∂Jα ∂Jβ

=
∂

∂Jα

Tr e Jγ Mγ Mβ

Tr e Jγ Mγ

= Tr

∫ 1

0

dλ D̃1−λ(Mα −Rα)D̃λ
Mβ , (38)

where we made use of the first-order expansion in the shift {δJ} of

exp (Jγ Mγ + δJγ Mγ) ≈ D + δJγ

∫ 1

0

dλD1−λ Mγ Dλ, (39)

with D = exp Jγ Mγ . We recognize in the r.h.s. of (38) the Kubo correlation of Mα and Mβ in the normalized state

D̃. By means of (37) the integration over λ can be performed explicitly in (38), which yields

− (S−1)αβ = Tr

∫ 1

0

dλ
(

e i ~C Sλ
) γ

α
(Mγ −Rγ)Mβ D̃ (40)

=

(

e i ~C S − I

i ~CS

) γ

α

Tr (Mγ −Rγ)Mβ D̃ .
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Hence the ordinary correlations between operators of the Lie algebra in any element D̃ of the Lie group are found to
be given by

TrMαMβD̃ −RαRβ =

(

− i ~CS

e i ~C S − I
S
−1

)

αβ

. (41)

D. The variational formalism in the restricted space

With the above tools in hand, it is possible to implement the Lie-group form (22) of the trial operators into the
variational expression (12) of Ψ{A,D} by taking as variables the parameters {L}, {R}, Z that characterize A and D
at the times τ or t. These operators A and D appear within Ψ{A,D} through products AD and DA. Such products
belong to the Lie group and are characterized by the parameters RAD

α = TrMαAD/TrAD, RDA
α = TrMαDA/TrDA,

ZAD = ZDA = TrAD, which should be expressed in terms of our basic variables {L}, {R}, Z by relying on the group
properties.
The initial state operatorK = −β−1 lnD, the Hamiltonian H and the observables QS

j enter Ψ{A,D} through traces

of the form TrQAD/TrAD and TrQDA/TrDA, where Q stands for K,H or QS
j . We are thus led to introduce, for

any operator D̃ parametrized by {R}, the symbols

k{R} ≡ TrK D̃ , h{R} ≡ TrH D̃ , qj{R} ≡ TrQS
j D̃ (42)

of K,H and QS
j . These symbols occur within Ψ{A,D} for values of {R} equal to {RAD} or {RDA}. The variational

expression Ψ{A,D}, when specialized to a Lie group, then takes the form

Ψ{A,D} = lnTrA(t = ti)D(τ = β) (43)

−
∫ β

0

dτ

(

∂ lnZAD

∂Rα

dRα

dτ
+
d lnZ

dτ
+
i

~
k{RDA}

)

+

∫ ∞

ti

dt





∂ lnZAD

∂Lα

dLα

dt
+

1

i ~

[

h{RDA} − h{RAD}
]

+ i
∑

j

ξj(t) qj{RDA}



 ,

which should be regarded as a functional of the original trial parameters {L}, {R} taken at times τ and t, and
Z(τ) = TrD(τ).
The stationarity conditions (15-18), obtained by functional derivation with respect to these parameters, now read

dD(τ)

dτ
+ K{RDA}D(τ) = 0 , (0 ≤ τ ≤ β) (44)

dA(τ)

dτ
−A(τ)K{RDA} = 0 , (0 ≤ τ ≤ β) (45)

dA(t)

dt
+

1

i ~

[

A(t)H{RDA} − H{RAD}A(t)
]

+ i
∑

j

ξj(t)A(t)Qj{RDA} = 0 , (t ≥ ti) (46)

dD(t)

dt
+

1

i ~

[

D(t)H{RAD} − H{RDA}D(t)
]

− i
∑

j

ξj(t)Qj{RDA}D(t) = 0 , (t ≥ ti) . (47)

These equations involve the images K{R},H{R} and Qj{R} issued, according to the general relation (33), from the
derivatives of the corresponding symbols k{R}, h{R} and qj{R} defined by (42). The stationarity conditions (44)-(47)
should be solved with the boundary conditions (13) and (14). When they are satisfied, ZAD is constant in τ and t,
and the optimal estimate for the generating functional ψ{ξ} reduces to the first term lnZAD of (43), in agreement
with (19).
For most Lie groups, solving the coupled equations (44-47) is hindered by the need of expressing explicitly the

parameters {RDA}, {RAD}, ZAD of AD and DA in terms of those ({L}, {R} and Z) of A and D. However, we are
interested in the first terms of the expansion of ψ{ξ} in powers of the sources ξj(t). Accordingly we shall only need
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to express, as functions of the parameters {R} and Z of an arbitrary element D of the Lie group, the following
ingredients: (i) the symbols (42) of the operators K,H and QS

j , and (ii) the entropy function (25) which allows us to
relate the sets {R} and {J}. This is feasible for many Lie groups. [In the example of the algebra of single-fermion
operators a†µaν , this is achieved by Wick’s theorem.] Thus, explicit solutions of the equations of motion will be found
at the first few orders in the sources.

IV. ZEROTH AND FIRST ORDERS

A. Thermodynamic quantities

At zeroth-order in the sources {ξ}, the quantity of interest is the partition function Tr e−βK , or the ”generalized
free energy”

F ≡ − β−1 lnTr e−β K = − β−1 ψ{ξ = 0} (48)

(kB = 1, T = β−1) which reduces to the standard free energy for K = H , or to the grand potential for K = H − µN .
It is variationally approximated by − β−1 Ψ{A(0),D(0)} = − β−1 lnTrA(0)(t = ti)D(0)(τ = β), where the upper index
denotes the order in the sources {ξ}.
For {ξ} = 0, the stationarity condition (46) yields A(0)(t) = I for t ≥ ti, hence, from Eq.(14), A(0)(τ = β) = I

and F ≃ − β−1 lnTrD(0)(τ = β). Thus D(0)(τ = β) ≡ D(0) appears as an approximation, variationally suited to the
evaluation of thermodynamic quantities, of the exact state D = e−β K .
To obtain D(0)(τ = β) we have to solve the first two stationarity conditions (44-45) with D(0)(0) = A(0)(β) = I.

We make the Ansatz

D(τ)A(τ) = D(0) , (49)

where D(0) ≡ D(0)(τ = β) is a constant operator, still to be determined and characterized by its parameters R
(0)
α ≡

TrMαD̃(0) for α 6= 0 and Z(0) ≡ TrD(0). The image K{RDA} is then the constant operator K{R(0)}, so that we can
solve Eqs.(44) and (45) in the form D(0)(τ) = [D(0)]τ/β, A(0)(τ) = [D(0)](β−τ)/β, where D(0) is determined by the
equation

lnD(0) = − βK{R(0)} . (50)

The operator equation (50) provides D(0)(τ = β) = D(0). More explicitly, in the basis {M} of the Lie algebra, the
components α 6= 0 of (50) read J (0)α = − βKα{R(0)} in terms of the coordinates J (0)α of lnD(0) ≡ J (0)αMα and the
coordinates Kα{R(0)} of K{R(0)} [defined as in (31-33)]. This yields the self-consistent equations

∂S{R(0)}
∂R(0)

α

= β
∂k{R(0)}
∂R(0)

α

(51)

which determine the parameters {R(0)} of D̃(0). The component α = 0 of (50) yields J (0)0 = k{R(0)} −
R

(0)
α ∂k{R(0)}/∂R(0)

α , where Eq.(33) has been used for K. Together with (26) and (51), this equation provides for the
sought free energy F the alternative expressions

F ≃ − β−1 lnTr e−β K{R(0)} = − β−1 lnZ(0) = f{R(0)} , (52)

where we defined the free-energy function f{R} through

f{R} ≡ k{R} − T S{R} . (53)

The above self-consistent equations determine a hermitian operator D̃(0) which can be interpreted as an approx-
imation for the exact density operator D̃ (whereas the trial operator D occurring in the presence of sources is not
hermitian). The general relation (35) entails

Γγ
αβ Kβ{R(0)}R(0)

γ = 0 , (54)

an equation which is equivalent to TrMγ [lnD(0), D̃(0)] = 0. [In the Hartree-Fock example, (54) expresses the com-
mutation of the single-particle density matrix with the effective hamiltonian matrix.]
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Our variational principle provides solutions for ψ{ξ = 0} = − β F that are not maxima but only stationary values of
Ψ{A,D}; it relies on the Bloch equation rather than on the maximization of the entropy under constraints. However,
it turns out that the above result (51) coincides with the outcome of the standard maximum entropy procedure.
Indeed the latter amounts to minimizing the left-hand side of the Bogoliubov inequality

TrK D̃ + β−1 Tr D̃ ln D̃ ≥ − β−1 lnTr e−β K ≡ F (55)

with respect to the normalized trial density operator D̃. When D̃ in (55) is restricted to the Lie group, the left-hand

side reduces to f{R}, where {R} is the set characterizing D̃. The best estimate for F is thereby the minimum of
the free-energy function f{R}, which requires that the equations (51) are satisfied. The equivalence between the
two variational approaches provides a criterion for selecting the best solution {R(0)} of the self-consistent stationarity
conditions (51) when they have several solutions, namely, the one for which f{R(0)} is the absolute minimum of f{R}.
The standard relations S = −∂F/∂T ≃ −Tr D̃(0) ln D̃(0) = S{R(0)} and 〈K〉 = F + TS ≃ k{R(0)} are satisfied

as usual, so that the approximation is thermodynamically consistent. Thermodynamic coefficients are obtained by
derivation, which introduces the matrix (α, β 6= 0)

F
αβ =

∂ 2f{R(0)}
∂R

(0)
α ∂R

(0)
β

= K
αβ − T S

αβ =
∂ 2k{R(0)}
∂R

(0)
α ∂R

(0)
β

− T
∂ 2S{R(0)}
∂R

(0)
α ∂R

(0)
β

. (56)

In particular, the heat capacity is found for K = H as

C ≃ βKα{R(0)}(F−1)αβ Kβ{R(0)} . (57)

The positivity of the stability matrix F at the minimum of f{R}, entailed by the inequality (55), will play an important
role below. [For the fermionic single-particle Lie algebra a†µaν , we recover the thermal HF approximation, either under
the form (50) or through the minimization of f{R}.]

B. Expectation values

Expectation values are obtained by expanding the generating functional ψ{ξ} at first order in the sources ξj(t)
[Eq.(8)]. These sources occur both directly in Ψ{A,D}, as exhibited by the last term of (43), and indirectly through
the values of A and D at the stationarity point where ψ{ξ} = Ψ{A,D}. At this point, however, the partial derivatives
of Ψ{A,D} with respect to A and D vanish; one is left with the explicit derivative ∂Ψ{A(0),D(0)}/∂ξj(t) taken at

the zeroth-order point {A(0),D(0)}, so that

〈Qj〉t =
1

i

∂ψ{ξ}
∂ξj(t)

∣

∣

∣

∣

ξ=0

≃
TrQS

j D(0)(t)A(0)(t)

TrA(0)(t)D(0)(t)
(58)

involves only the zeroth-order approximations A(0)(t) and D(0)(t).

We have seen that A(0)(t) = I for t ≥ ti, and that D̃(0)(ti), equal to D̃(0)(τ = β) ≡ D̃(0), is given self-consistently

by (50). Hence, the static expectation value 〈Qj〉ti in the state D̃ is variationally expressed by

TrQS
j D̃ =

TrQS
j e

−βK

Tr e−βK
≃ TrQS

j D̃(0) ≡ qj{R(0)} = Qα
j {R(0)}R(0)

α , (59)

that is, by the symbol (28) of the observable QS
j of interest.

For dynamical problems, the expectation value (58) involves D̃(0)(t), provided by the last stationarity condition

(47) taken for ξj(t) = 0 and for A(0)(t) = I. Thus, D̃(0)(t) is determined by the zeroth order self-consistent equation

dD̃(0)(t)

dt
=

1

i ~

[

H{R(0)(t)}, D̃(0)(t)
]

, (60)

with the initial condition D̃(0)(ti) = D̃(0). [The norm Z(0)(t) is constant and equal to Z(0).] In (60) the operator

H{R(0)(t)} is the image taken for R
(0)
α (t) = TrMαD̃(0)(t) of the Hamiltonian H . The time-dependent expectation

values (58) are therefore found as

〈Qj〉t ≡ TrQH
j (t, ti)D̃ ≃ TrQS

j D̃(0)(t) ≡ qj{R(0)(t)} . (61)
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As noted at the end of Sec. III, the variational equation (60) for the Lagrange multiplier D(0)(t) comes out as an
approximation for the Liouville-von Neumann equation (20).

In coordinate form, the equations of motion for the variables R
(0)
α (t) = 〈Mα〉t that parametrize D̃(0)(t) are found

from (60) as

dR
(0)
α (t)

dt
= Cαβ{R(0)(t)} ∂h{R

(0)(t)}
∂R

(0)
β (t)

, (62)

with the initial conditions {R(0)(ti)} = {R(0)}. [For the single-fermion Lie algebra, we recover the time-dependent

Hartree-Fock (TDHF) approximation for the single-particle density matrix R
(0)
νµ (t), with the static HF solution as

initial condition. Indeed, the multiplication in (62) by Cαβ{R} produces for this algebra a commutation with R
(0)
νµ (t).

The usual single-particle effective HF Hamiltonian comes out as the image H{R(0)(t)}. The current use of TDHF to
evaluate expectation values is thus given a variational status.]
Equations (62) can be rewritten in the alternative form

dR
(0)
α

dt
= L

γ
α R(0)

γ (t) , (63)

where the matrix

L
γ
α {R(0)(t)} = Γ γ

αβ Hβ{R(0)(t)} (64)

plays the role of an effective Liouvillian acting in the Lie algebra; the quantities Hβ{R} are the coordinates Hβ{R} ≡
∂h{R}/∂Rβ [Eq.(32)] of the image H{R} of H .

The dynamics of the density operator D̃(0)(t) takes therefore the classical form (63) in terms of the scalar variables

R
(0)
α parametrizing D̃(0)(t). This classical structure will be analyzed in Sec. X. Non-linearity occurs through the

restriction of the trial space: the image H{R} depends on the variables {R(0)(t)} when H does not belong to the Lie
algebra.

V. CORRELATION FUNCTIONS

Variational approximations for the two-time correlation functions Cjk(t
′, t′′) are provided by the second-order term

of the expansion (8) of the generating functional ψ{ξ} in powers of the sources ξj(t). However, we have seen that,
owing to the stationarity of Ψ, zeroth order was sufficient to determine the variational approximation for expectation
values. Likewise, it is sufficient here to expand up to first order the first derivative of the generating functional ψ{ξ}
according to

1

i

∂ψ{ξ}
∂ξk(t′′)

≈ 〈Qk〉t′′ + i

∫ ∞

ti

dt′
∑

j

ξj(t
′)Cjk(t

′, t′′) (65)

≃ 1

i

∂Ψ{A,D}
∂ξk(t′′)

=
TrQS

k D(t′′)A(t′′)

TrD(t′′)A(t′′)
,

where the stationarity of Ψ{A,D} with respect of A and D has been used. We can thus obtain Cjk(t
′, t′′) from the

first-order contribution to the r.h.s. of (65), and only A(0), D(0), A(1) and D(1) have to be determined from the
variational equations (44-47).

A. The approximate backward Heisenberg equation

One building block for correlation functions will be the quantity QH
k (t

′′, t) defined for t′′ > t by expanding the trial
operator A(t), which enters (65), up to first order as

A(t) ≈ A(0)(t) +A(1)(t) ≡ I + i

∫ ∞

t

dt′′
∑

k

ξk(t
′′)QH

k (t
′′, t) . (66)
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Comparison with the expansion of the exact generating operator A(t) defined by (4) shows that QH
k (t

′′, t) simulates
the Heisenberg observable QH

k (t
′′, t). Since A(t) belongs to the Lie group, QH

k (t
′′, t) belongs to the Lie algebra and

can be expressed as QHα
k (t′′, t)Mα.

The stationarity condition (46) with respect to A(t), expanded up to first order, determines the coordinates
QHα

k (t′′, t). For α 6= 0 these obey for t ≤ t′′ the equations

dQHα
k (t′′, t)

dt
= −QHβ

k (t′′, t) (L+ CH)
α
β (α, β 6= 0) , (67)

which appear as the reduction in the Lie algebra of the backward Heisenberg equation (10) for QH
k (t

′′, t). The matrix
L is the effective Liouvillian (64), C is the commutation matrix defined by (34) and H is the second-derivative matrix
of the symbol h{R} of the Hamiltonian H ,

H
αβ{R} =

∂ 2h{R}
∂Rα ∂Rβ

. (68)

These three matrices are functions of {R}; in (67) they are taken at the point Rα = R
(0)
α (t) determined by the

zeroth-order equations (63). Equations (67) should be solved backward in time from the final boundary condition

QHα
k (t′′, t′′) = Qα

k{R(0)(t′′)} =
∂qk{R(0)(t′′)}
∂R

(0)
α (t′′)

, (69)

where Qα
k{R}Mα = Qk{R} is the image of the observable Qk while qk{R} is its symbol.

The exact Ehrenfest equation for TrMαD̃(t) [issued from the Liouville-von Neumann Eq.(20)] and the exact Heisen-
berg equation for QH

k (t
′′, t′′) involve the same Liouvillian. However, in the variational treatment, the corresponding

approximate Ehrenfest equation (63) and the approximate Heisenberg equation (67) differ; the latter contains the
corrective term CH in addition to the effective Liouvillian L. This difference arises because the variational equations

for the set R
(0)
α (t) occur at zeroth order in the sources whereas those for the set QHα

k (t′′, t) occur at first order.

From the stationarity condition (46) for A(t) one also finds the component QH0
k (t′′, t) of A(1). This gives an

alternative expression for the time-dependent expectation value of Qk at a time t,

〈Qk〉t ≃ qk{R(0)(t)} = QHα
k (t, t′′)R(0)

α (t′′) = TrQH
k (t, t

′′) D̃(0)(t′′) (70)

(including α = 0 with R
(0)
0 = 1), which holds for any intermediate time t′′, and thus interpolates the Schrödinger

picture for t′′ = t [Eq.(61)] and the Heisenberg picture for t′′ = ti, as does the exact expression

〈Qk〉t = TrQH
k (t, t

′′)[U(t′′, ti) D̃ U †(t′′, ti)] . (71)

B. Bypassing D
(1)(t) for real times t

The correlation functions that we want to determine through (65) depend on the combination D(1)(t′′) +
D(0)(t′′)A(1)(t′′), since A(0) = I. The time-dependence of A(1)(t′′) has been expressed through Eqs.(66) and (67).
We still need the other ingredient, the first-order operator D(1)(t′′) whose evolution is not simple. However, using the
coupled equations of motion for D(t) and A(t), we will show below that the time t′′ occurring in (65) can be shifted
down to ti.
From Eqs.(46) and (47), one can derive for the products D(t)A(t) and A(t)D(t) the uncoupled equations

d(DA)

dt
=

1

i ~

[

H{RDA}, DA
]

+ i
∑

j

ξj(t)
[

Qj{RDA}, DA
]

, (72)

d(AD)

dt
=

1

i ~

[

H{RAD}, AD
]

. (73)

These equations cannot be fully solved because the boundary conditions on A and D occur at different times [Eq.(13)].
Nevertheless, Eq.(72) will happen to be sufficient for our purpose.
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In parallel with Eq.(66), we parametrize at first order the product D(t)A(t) by R
(1)
jβ (t, t

′) according to

RDA
β (t) =

TrMβ D(t)A(t)

TrD(t)A(t)
≈ TrMβ [D̃(0)(t) + δD̃(t)] (74)

= R
(0)
β (t) + i

∫ ∞

ti

dt′
∑

j

ξj(t
′)R

(1)
jβ (t, t′).

We have in (74) denoted as δD̃(t) the first-order variation of DA/TrDA around D̃(0)(t). The quantity Cjk(t
′, t′′) that

we wish to evaluate now satisfies from (65) and (74) the relation

+ i

∫ ∞

ti

dt′
∑

j

ξj(t
′)Cjk(t

′, t′′) = TrQS
k δD̃(t′′) . (75)

Since δD̃(t′′) is a variation around D̃(0)(t′′) within the Lie group, the image property (30) allows us to replace the

operator QS
k by its image Qk{R(0)(t′′)} = Qβ

k{R(0)(t′′)}Mβ . Comparing Eqs.(74) and (75), we can get rid of the
sources ξj(t

′), so that

Cjk(t
′, t′′) = R

(1)
jβ (t

′′, t′)Qβ
k{R(0)(t′′)} . (76)

Remember that the coordinates Qβ
k{R(0)(t′′)} of the image of QS

k are related to the symbol qk{R(0)(t′′)} ≡
TrQS

k D̃(0)(t′′) by

Qβ
k{R(0)(t′′)} =

∂qk{R(0)(t′′)}
∂R

(0)
β (t′′)

. (77)

The time-dependence of R
(1)
jβ (t, t′) is found by expanding Eq.(72) at first order. Noting that TrDA does not depend

on time, one obtains

dR
(1)
jβ (t, t′)

dt
= (L+ CH)

γ
β R

(1)
jγ (t, t′) + i ~Cβγ Qγ

j {R(0)(t)} δ(t− t′), (78)

where again L, C and H depend on time through {R(0)(t)}. The same kernel L+CH as in the approximate backward
Heisenberg equation (67) is recovered; it will also be encountered in the context of small deviations (Sec. IXB). [For
fermionic systems, L+CH is the time-dependent RPA matrix issued from the kernel L of the TDHF equation (63).]
As a consequence of the duality between the kernels of Eqs.(67) and (78), we obtain the identity

d

dt
[R

(1)
jβ (t, t

′)QHβ
k (t′′, t)] = − i ~Qγ

j {R(0)(t)}Cγβ QHβ
k (t′′, t) δ(t− t′) . (79)

Since QHβ
k (t′′, t) vanishes for t′′ < t, the r.h.s. of (79) disappears if t′′ < t′. One can therefore evaluate Cjk(t

′, t′′) for

t′ ≥ t′′ from (76) by noting that the product R
(1)
jβ (t, t

′)QHβ
k (t′′, t) does not depend on t for t′ ≥ t′′ > t > ti. Using the

boundary condition QHβ
k (t′′, t′′) = Qβ

k{R(0)(t′′)}, we then shift t′′ down to ti in (76), which yields

Cjk(t
′, t′′) = R

(1)
jβ (ti, t

′)QHβ
k (t′′, ti) , (t′ ≥ t′′) . (80)

The continuity condition D(ti)A(ti) = D(β)A(β) entails that this correlation function (80) is equal to

Cjk(t
′, t′′) = R

(1)
jβ (β, t

′)QHβ
k (t′′, ti) (t′ ≥ t′′) (81)

in terms of the boundary value at τ = β of {R(1)
j (τ, t′)}. One needs therefore to determine, only in the interval

0 ≤ τ ≤ β, the set {R(1)
j (τ, t′)} defined through the first-order parametrization of D(τ)A(τ) by

RDA
β (τ) =

TrMβ D(τ)A(τ)

TrD(τ)A(τ)
≈ R

(0)
β + i

∫ ∞

ti

dt′
∑

j

ξj(t
′)R

(1)
jβ (τ, t′) , (82)
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where R
(0)
β = TrMβ D̃(0).

The evaluation of D(t) at times t > ti has been bypassed, and it remains to solve the coupled equations (44) and
(45) for A(1)(τ) and D(1)(τ) in the range 0 ≤ τ ≤ β, with the boundary conditions D(1)(τ = 0) = 0 and

A(1)(τ = β) = i

∫ ∞

ti

dt′
∑

j

ξj(t
′)QHα

j (t′, ti)Mα (83)

issued from (13) and (66), respectively. For t′′ ≥ t′, the symmetry Cjk(t
′, t′′) = Ckj(t

′′, t′) can be checked by means
of the r.h.s. of Eq.(79).

C. Two-time correlation functions

The linear structure of the boundary condition (83) for A(1)(τ), together with the boundary condition D(1)(τ =

0) = 0 for D(1)(τ), entail the occurrence of an overall factor QHα
j (t′, ti) in A(1)(τ) and D(1)(τ), hence in R

(1)
jβ (τ, t′),

and finally in the correlation function Cjk(t
′, t′′). We had already acknowledged the explicit dependence of Cjk(t

′, t′′)

on QHβ
k (t′′, ti). Therefore, for any trial Lie group, the two-time correlation functions have the general form (α, β 6= 0)

Cjk(t
′, t′′) ≃ QHα

j (t′, ti)Bαβ QHβ
k (t′′, ti) , (t′ > t′′) . (84)

Beside the approximate Heisenberg observables given by the dynamical equations (67) and the boundary condition
(69), a matrix Bαβ appears, which depends only on the zeroth and first order contributions to D(β) and A(β).
Noticeably, the expression (84) has the same factorized structure as the exact formula (7). In spite of the coupling

between the stationarity conditions in the sectors t ≥ ti and 0 ≤ τ ≤ β, Eq.(84) [as Eq.(7)] displays separately two
types of ingredients: The result B of the optimization of the initial state is disentangled from that of the dynamics,
embedded in the approximate Lie-algebra Heisenberg observables QH

j (t
′, ti) and QH

k (t
′′, ti).

D. The correlation matrix B

The last task consists in determining explicitly the correlation matrix Bαβ . We have noted above that, through

the boundary condition (83), the factor QHα
j (t′, ti) occurs in R

(1)
jβ (τ, t

′). By introducing new (α-indexed) operators

A(1)
α (τ) and D(1)

α (τ), again determined by the coupled equations (44) and (45) but with the boundary conditions

A(1)
α (β) = Mα and D(1)

α (β) = 0, one can explicitly factorize R
(1)
jβ (τ, t′) as

R
(1)
jβ (τ, t′) = QHα

j (t′, ti)R
(1)
αβ(τ) . (85)

The quantities R
(1)
αβ(τ) defined by (82) and (85) will then be given by

R
(1)
αβ(τ) = Tr [D(0)(τ)A(1)

α (τ) +D(1)
α (τ)A(0)(τ)](Mβ −R

(0)
β ) /TrD(0) , (86)

and the correlation matrix Bαβ will be found as Bαβ = R
(1)
αβ(τ = β), that is,

Bαβ = TrMα(Mβ −R
(0)
β )D̃(0) +

TrD(1)
α (β)(Mβ −R

(0)
β )

TrD(0)
. (87)

It remains to determine the coupled operatorsD(1)
α (τ) andA(1)

α (τ). The solution is explicitly worked out in Appendix
A.1. It had already been given in special cases, for fermionic systems [5], extended BCS theory [17], φ4 quantum field
[15].
The result thus found for the correlation matrix B is

B =
i ~CF

11− exp(−i ~β CF)
F
−1 (88)

=

[

1

2
i ~CF coth

(

1

2
i ~ βCF

)]

F
−1 +

1

2
i ~C .
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It involves the commutation matrix C defined by (34) and the positive matrix F = K− T S of second derivatives (56)
of the trial free energy. Both are taken for the parameters {R(0)} that were determined at zeroth order. For vanishing
eigenvalues of iCF, the coefficient of F−1 is meant as β−1. [For the single-particle fermionic Lie group, the matrix
iCF is the static RPA kernel.]
By letting t′ − 0 = t′′ = ti and Q

S
j = Mα, Q

S
k = Mβ in (84), one identifies Bαβ as the variational approximation for

the correlations, in the initial state D̃, of the operators Mα that span the Lie algebra:

TrMαMβD̃ − TrMαD̃TrMβD̃ ≃ Bαβ , (α, β 6= 0) . (89)

The variational expressions (84), (88) [together with Eqs.(67)] for the correlation functions issued from the use of
a Lie-group trial space are the most important outcomes of the present variational approach. We comment below the
features of this expression, and work out its consequences in the forthcoming sections.

E. Status of the result for static correlations; Kubo correlations

The optimization of thermodynamic quantities and expectation values (Sec. IV) has resulted in a mean-field type
of approximation, with the mere replacement of the exact state D by the zeroth-order contribution D(0) to the trial

object D, as in TrMαD̃ ≃ TrMαD̃(0) = R
(0)
α . However, the optimized approximation (88),(89) that we found for the

correlations Bαβ of Mα and Mβ does not follow from such a simple replacement. Evaluated in the state D̃(0) by the
formula (41), such correlations, instead of (88), would be given by

TrMα Mβ D̃(0) −R(0)
α R

(0)
β = −

(

i ~CS

exp[i ~CS]− 11
S
−1

)

αβ

, (90)

where S and C are evaluated from (27) and (34) for {R} = {R(0)}. Contrary to B, the naive expression (90) is not
variationally optimized. While the first term of the variational expression (87) of B provides a contribution equal

to (90), its second term, arising from D(1)
α (β), introduces a correction which substitutes S − βK = −βF to S . The

matrix K takes into account effects coming from the part of the operator K that lies outside the Lie algebra. [When

{M} is the fermionic single-particle algebra, the left-hand-side of (90) is the Fock term from Tr (a†µaν)(a
†
σaτ )D̃(0)

since R
(0)
α R

(0)
β is the Hartree term. The full matrix B involves an RPA kernel, in which the matrix K is the effective

two-body interaction.]
Although the approximations for expectation values and correlations functions stem from the same variational

principle, they appear intrinsically different. Not only B cannot be expressed from D(0), but moreover there is no
density operator approximating D in the original Hilbert space H that would produce the optimized correlations B
in the same form as (89). While D̃(0) can be interpreted as a state, the trial operator D has no perturbative status

and is just a calculational tool involving the sources. In the expression (87) of B, the operator D(1)
α , which depends

on Mα, is not a correction to D̃(0).
Nevertheless, we will show in Sec. VII that, through a mapping of the original Hilbert space H into a new space

H and of the Lie algebra {M} into a reduced algebra {M}, the matrix elements of B can be interpreted as exact

correlations between the operators {M} in an effective state D̃. The quantities {R(0)} will also appear as exact

expectation values of {M} in D̃. The variational results, for both expectation values and correlations, will thus be
unified through a modification of the Lie algebra.
One may also wonder about the origin of the Bose-like factor exhibited, for arbitrary Lie groups, by the expression

(88) of B. A clue will be given in Secs. VII and VIII where an algebra of Bose operators arises from the mapped Lie
algebra {M}.
An alternative understanding of the structure of the matrix B can be reached by relating it to the matrix of Kubo

correlations, even though the latter have less direct physical relevance than ordinary correlations. Kubo correlations
between the operators Mα and Mβ are defined for the exact state D̃ by

Tr
1

β

∫ β

0

dτ e τ K Mα e
− τ K Mβ D̃ − TrMα D̃TrMβ D̃ . (91)

We have seen in Sec. III C that, if the state D̃ were bluntly replaced in (91) by the element D̃(0) of the Lie group,
Kubo correlations would be directly related by (38) to the matrix S. We show in Appendix A.2 that a variational
approximation BK for the Kubo correlations (91) reads

B
K =

1

β
(F−1) = (βK− S)−1 . (92)
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The naive approximation (38), namely BK ≃ −S−1, obtained by replacing D̃ by D̃(0) in (91), is thus variationally
corrected by inclusion in (92) of the term βK. Likewise, the naive approximation (90) for the ordinary correlations

in the state D̃ results from the variational expression (88) for B by omission of K within F = K− T S.
Once BK has been obtained in the form (92), it is possible to recover from it the expression (88) for B. In the

special case K = 0, for which β F = −S, this was achieved in Sec. III C. We saw there that the factor [D(0)]−τ/β(Mα −
Rα)[D(0)]τ/β entering the Kubo correlation (91) is expressed as

(

e i ~C S τ/β
) γ

α
(Mγ −Rγ) through the automorphism

(37) of the Lie algebra. Integration of e i ~C S τ/β between 0 and β yields

B
K =

e i ~C S − I

i ~CS
B , (93)

in agreement with (41). In the general case K 6= 0, it is shown likewise in Appendix B that

B(BK)−1 =
i ~ β CF

11− exp(−i ~β CF)
. (94)

This ratio stems therefore from a property inherent to the Lie group underlying our variational approach, namely the
exponentional form of the automorphism (37). The Bose-like factor that enters B arises from this property, and from
the simplicity of BK. [The quasi-boson structure of the static thermal RPA for fermions [17] appears as a special case,
see Sec. VIII.]

Thermodynamic quantities and expectation values were determined in Sec. IV; they depend on the mean-field images
of K and H within the Lie algebra, namely, K(0) which self-consistently (Sec. IVA) determines {R(0)} and H which
governs (Sec. IVB) the time-dependence of {R(0)(t)}. More elaborate ingredients are required for the evaluation of
static and dynamic correlation functions: The matrix K enters B through F while the matrix H (together with the
mean-field Liouvillian L) governs the time-dependence of the approximate Heisenberg observables QH

j (t
′, t).

In the rest of this article we will analyse the properties of the approximate correlation functions [expressed by
Eqs.(84),(88) and (67)] and of the dynamics [expressed by Eqs.(62)].

VI. PROPERTIES OF APPROXIMATE CORRELATION FUNCTIONS AND FLUCTUATIONS

In this section we review some consequences of the variational expressions found above for the correlation functions,
encompassing special cases and conservation laws.

A. Time-dependent correlation functions in an equilibrium initial state

We first consider the special case of an equilibrium initial state D = exp(−βK) for which the operator K is equal
to the Hamiltonian H , plus possibly some constants of motion such as the particle number for a grand-canonical
equilibrium. One can then generate simply the dynamics by using K instead of H in the backward Heisenberg
equation (10).
The exact expectation values 〈Qj〉t then do not evolve. Their approximation (61) depends on time through {R(0)(t)}

governed by (63). In the effective Liouvillian L defined by (64), the coordinates Hβ of the image of the Hamiltonian
are replaced by those of the image K of K, that is, Kγ{R} = ∂k{R}/∂Rγ . Using the self-consistent equilibrium

condition (50) for D̃(0) and the identity (36) for the product CS, we find

L
α
β {R(0)} = Γ α

βγ Kγ{R(0)} = −T Γ α
βγ J

(0)γ = −T Cβγ S
γα . (95)

The identity (54) then entails, as expected, that R
(0)
α (t) = R

(0)
α , and hence that the approximation 〈Qj〉t does not

depend on time.
For two observables Qj and Qk that do not commute with K, the exact two-time correlation function Cjk(t

′, t′′)
defined by (7) depends only on the time difference t′ − t′′. This property is not obvious for the approximation (84),
which involves two factors depending separately on t′ and t′′. To elucidate this point, let us solve for H = K the
approximate backward Heisenberg equation (67) for the image QH

j (t
′, t) = QH

j (t
′ − t) with the boundary condition

QH
j (0) = Qj{R(0)}. This equation involves the kernel L + CH which, according to (95), takes the simple form
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C(K− T S) = CF. Hence, the Heisenberg equation (67) simplifies into dQHα
j (t′, t)/dt = −QHβ

j (t′, t) (CF)
α
β , where C

and F are evaluated for {R(0)}; it is readily solved as

QHα
j (t′, ti) = Qβ

j {R(0)}
[

eC F (t′−ti)
]α

β
(96)

(with α, β 6= 0) in terms of the boundary condition Qβ
j {R(0)} = ∂qj{R(0)}/∂R(0)

β .

In order to evaluate the correlation function (84), use is also made of

QHα
k (t′′, ti) =

[

e− FC (t′′−ti)
]α

β
Qβ

k{R(0)} , (97)

and of the relation

F
−1 e− FC (t′′−ti) = e−CF (t′′−ti) F

−1 . (98)

The explicit dependence on time of the correlation functions is then given for t′ > t′′ by

Cjk(t
′, t′′) ≃ Qα

j {R(0)}
[

eCF (t′−t′′) i ~CF

11− exp(−i ~β CF)
F
−1

]

αβ

Qβ
k{R(0)} . (99)

The identity of H and K has led to the occurrence of the same matrix CF in the dynamical equation (96) and in
the matrix B [Eq.(88)] that accounts for the correlations in the initial state. As a consequence, only t′ − t′′ appears
in (99), as it should. This property would not have been satisfied if the correlation matrix B were naively evaluated,

as in Eq.(90), by replacing in (89) the exact state D̃ by D̃(0).
For j = k, Cjj(t

′ − t′′) provides the variational approximation for the autocorrelation function of the observable Qj

in the equilibrium state D ∝ exp(−βK).

B. Other special cases

1. Commutators and linear responses

The antisymmetric part of B, namely i~C/2, is simple and depends only on the zeroth order in the sources, not on

F. As a consequence the approximation Bαβ − Bβα for the expectation value Tr [Mα, Mβ ]D̃ = i~TrΓγ
αβMγD̃ of the

commutator [Mα, Mβ ] is obtained as i~Cαβ{R(0)}, a property in agreement with the expectation value R
(0)
γ of Mγ

found at first order in the sources.
Linear responses are expectation values of commutators, and therefore involve only this antisymmetric part of

Cjk(t
′, t′′). Alternatively, they can be evaluated directly from the variational expression Ψ{A,D} by including a

time-dependent perturbation in the Hamiltonian. Then, the response of Qj to a perturbation Qk appears as an
expectation value, and is hence directly obtained at first order in the sources, without the occurrence of K which
enters the symmetric part of Cjk(t

′, t′′). Both approaches yield

χjk(t
′, t′′)= (1/i~)θ(t′ − t′′)[Cjk(t

′, t′′)− Ckj(t
′′, t′)]

≃ θ(t′ − t′′)QHα
j (t′, t)Cαβ{R(0)(t)}QHβ

k (t′′, t) , (100)

where t is an arbitrary time in the interval ti ≤ t ≤ t′′ and θ the usual step function. In particular, by letting t = ti in
(100), the responses are variationally expressed in the Heisenberg picture in terms of the matrix C{R(0)} and of the
Heisenberg observables QH

j (t
′, ti) and QH

k (t
′′, ti) given by the approximate backward Heisenberg equations (67).

For H = K, D ∝ exp(−βK), the response (100) in an equilibrium state depends only on the time difference and
takes the form

χjk(t
′, t′′)= (1/i~) θ(t′ − t′′)Tr D̃

[

e iH (t′−t′′)/~Qj e
− iH (t′−t′′), Qk

]

≃ θ(t′ − t′′)Qα
j {R(0)}

[

eC F (t′−t′′)
C

]

αβ
Qβ

k{R(0)} . (101)
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2. Static correlations; classical limit

Static correlations between observables Qj and Qk in the state D̃ ∝ e−βK are variationally obtained by letting
t′ − 0 = t′′ = ti in (84), which yields

Cjk(ti + 0, ti) = Qα
j {R(0)}Bαβ Qβ

k{R(0)} . (102)

The matrix B of correlations between the operators {M} is here saturated by the coordinates Qα
j {R(0)} =

∂qj{R(0)}/∂R(0)
α of the images in the Lie algebra of the considered observables.

For an Abelian algebra, the matrix C vanishes and the ratio (94) reduces to unity. The ordinary and Kubo
correlations are identical, and the matrix B simplifies into BK = (β F)−1. In the high-temperature limit β → 0 and in
the classical limit ~ → 0, the ratio (94) also tends to I, so that

B → (βF)−1.

If Qj and Qk are commuting conserved observables, the occurrence of the commutation matrix C in this ratio also
reduces it to I.
For a Curie-Weiss model of interacting spins σj = ±1 at equilibrium, the Weiss mean-field expressions for the

thermodynamic properties and the expectation values 〈σj〉 are recovered, while the Ornstein-Zernike approximation
[31] for correlations is recovered from B = (β F)−1.
For the fermionic single-particle Lie algebra, the matrix B is the variational approximation for the correlations of

the operators a†µaν and a†σaτ :

Tr (a†µaν)(a
†
σaτ )D̃ − Tr a†µaνD̃Tr a†σaτ D̃ ≃ Bνµ,τσ . (103)

If D̃ were replaced by an independent-particle state D̃, the expectation value Tr (a†µaν)(a
†
σaτ )D̃ would be given by

Wick’s theorem and Tr a†µaνD̃Tr a†σaτ D̃ would be the Hartree term so that the left-hand side of (103) would reduce

to the Fock term Tr(a†µaτ D̃)Tr(aνa
†
σD̃). For a more general state D̃, the expression (88) of B involves the static RPA

kernel iCF, which takes into account not only the Fock term but also, through K, effects of the interactions present
in K.

3. Fluctuations

The static fluctuation ∆Qj of the observable Qj in the state D̃ is variationally given by (102) where k = j, that is,

∆Q2
j = Qα

j {R(0)}Bαβ Qβ
j {R(0)} . (104)

This fluctuation ∆Qj(t) evolves in time according to (84) with k = j, t′ = t′′ = t, that is,

∆Q2
j(t) ≃ QHα

j (t, ti)Bαβ QHβ
j (t, ti) , (105)

which involves only the symmetric part of (88). For H = K, the fluctuation is time-independent. For H 6= K,
examples of time-dependences that are not properly accounted for by non-variational mean-field approximations are
given at the end of Sec.VIA and in Sec. VIC.

4. Initial state in the Lie group

In case the exact density operator D̃ belongs to the trial Lie group, the operator K belongs to the Lie algebra and
coincides with its image, D̃(0) equals D̃; the matrix K vanishes, F reduces to −T S and B to the trivial form (90). [For

fermions, B reduces to the Fock terms.] The quantities QHα
j (t′, ti) and QHβ

k (t′′, ti) are in this case the only ingredients,

apart from D̃(0), that enter Cjk(t
′, t′′).
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5. Zero-temperature limit

The present formalism encompasses ground-state properties, found by letting β → ∞. This limit entails simplifica-
tions. [For instance, in the fermionic case, the parameters {R(0)} of D̃(0) constitute a matrix satisfying [R(0)]2 = R(0).]
The number of vanishing eigenvalues of the commutation matrix C increases. While S{R(0)} tends to 0 as T → 0,

the quantities β−1∂S/∂R
(0)
α , β−1S and CF remain finite, due to the singularity of the von Neumann entropy (25) for

vanishing eigenvalues of D̃. The resulting simplifications of the correlation matrix B will be exhibited below in the
diagonalized form (135) of B.
A further simplification occurs if the initial state lies in the Lie group. For fermions (possibly with pairing) the

initial state is then a Slater determinant (or a BCS state). In this case, it has been shown [6] that one can by-pass the
solution of the equations (67) for QHα

j (t′, ti), of the RPA type. The proof relies on the fact that these equations (67)

for QHα
j (t′, ti) involve the same kernel as the dynamical equations (165) for small deviations δR

(0)
α (t), and that the

latter equations can in practice be worked out by expansion of the simpler time-dependent mean-field equations (62)

for R
(0)
α (t). Two-time correlation functions Cjk(t

′, t′′) and time-dependent fluctuations ∆Qj(t) can thus be evaluated
by running the existing TDHF (or TDHFB) codes alternatively forward and backward, with appropriate shifts in
the boundary conditions. (For another derivation, see [4, 11, 32].) This technique, variationally consistent, has been
successfully applied [7–10] to describe, in nuclear systems, the fluctuations of single-particle observables which were
severely underestimated by the conventional use of TDHF; for a review, see [11].

C. Images of Heisenberg operators; conservation laws

It has already been noted that the equations of motion (67) for the coordinates QHα
j (t′, t) of A(1)(t) appear as

a variational counterpart of the backward Heisenberg equation (10). To be more precise, let us write the time
dependence of the Lie algebra operator QH

j (t
′, t) = QHα

j (t′, t)Mα. Using the relation (L+ CH) α
β = Γα

βγ Hγ{R(0)(t)}+
Cβγ{R(0)(t)}Hγα{R(0)(t)} = ∂(CβγHγ)/∂R

(0)
α (t) and the definition (33) of images, one can rewrite the equations of

motion for QHα
j (t′, t) (including α = 0) as

dQH
j (t

′, t)

dt
= Image of

{

− 1

i ~
[QH

j (t
′, t), H ]

}

= − 1

i ~
[QH

j (t
′, t), H] , (106)

the image H of the Hamiltonian H being evaluated with respect to {R(0)(t)}. While the equations (67) were written
in terms of the coordinates QHα

j of QH
j , the introduction of images gives these equations a simple operator form: The

right-hand side is simply the image of the r.h.s. of the exact backward Heisenberg equation (10) for time-dependent
observables. The boundary condition QH

j (t
′, t′) = QS

j is also the image of the boundary condition for the Heisenberg

observable QH
j (t

′, t).

Up to now, no specific assumptions have been made about the data. Let us now consider an observable QS
j that

belongs to the Lie algebra and commutes with H . This conservation law, together with the equation of motion (106),
shows that the operator QH

j (t
′, t) is constant and equal to QS

j . Hence, the approximate expectation value 〈Qj〉t,
evaluated through (70) for t′ = ti, is constant. Less trivially, the fluctuation ∆Qj(t), evaluated through (105), is also
constant as it should. This property, which arises naturally through the use of the approximate backward Heisenberg
equation, was not granted. [For instance, in the time-dependent Hartree-Fock approximation for fermions, fluctuations
evaluated from D(0)(t) through Wick’s theorem are not constant for a conserved single-particle observable.]
Another conservation property holds for two observables QS

j and QS
k of the Lie algebra such that QS

j is conserved,

[QS
j , H ] = 0, and that [QS

k, H ] = i~QS
j . This occurs for instance if QS

k = X is a coordinate of the center of mass

of the system, and QS
j = P/m the associated velocity operator (m is the total mass). Then, Eq.(106) implies that,

as the exact Heisenberg operators, the approximate ones satisfy PH(t′, t) = PS and XH(t′, t) = XS + (t′ − t)PS/m
(see Sec. 5.5 of [4]). Hence, not only 〈X〉t and 〈P〉t, but also the fluctuations and correlations of X and P produced
by the general formula (84) have the proper time dependence. In particular, ∆P is constant and ∆X2(t) satisfies
d∆X2(t)/dt = ∆P2/m2; we thus acknowledge that the present approximation for the fluctuations accounts for the
exact spreading of the wave packet [whereas the TDHF approximation produces a constant width].
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VII. MAPPED LIE ALGEBRA AND MAPPED HILBERT SPACE

The purpose of this section is to rewrite in a unified form the variational approximations (59),(61) for expectation
values and (84),(88),(99) for correlation functions . To this aim, we will rely on a correspondence that associates with
the Lie algebra {M} a simpler Lie algebra {M}. It will turn out that the various expressions found above can be

re-expressed as traces over a single effective density operator D̃ acting in a new mapped space H rather than in the
original Hilbert space H .

A. Unifying the approximate expectation values and correlations in the initial state

The optimization of the expectation value 〈Mα〉 = Tr D̃Mα has yielded the approximation 〈Mα〉app = R
(0)
α =

Tr D̃(0)Mα; in contrast the optimization of 〈Mα Mβ〉 = Tr D̃Mα Mβ has yielded 〈MαMβ〉app = Bαβ + R
(0)
α R

(0)
β that

cannot be expressed as a trace over a density operator in the Hilbert space H . We wish to map the set {M} acting

in H onto a new set {M} acting in a new space H , and to introduce in H an effective density operator D̃ so as to

re-express our approximations in terms of D̃. Namely, we wish the exact expectation values over D̃ in the mapped
space H , denoted as 〈Mα〉map and 〈Mα Mβ〉map, to coincide with the corresponding variational approximations in the
original space H , denoted as 〈Mα〉app and 〈MαMβ〉app, according to

〈Mα〉map ≡ TrMα D̃ = 〈Mα〉app = R(0)
α , (107)

〈Mα Mβ〉map ≡ TrMα Mβ D̃ = 〈Mα Mβ〉app = Bαβ +R(0)
α R

(0)
β . (108)

Going from the space H to H will be a price to pay for expressing both expectation values and correlations in terms
of a unique effective state D̃.
The first step consists in replacing, in the original Lie structure [Mα,Mβ] = i ~Γγ

αβ Mγ , the operator Mγ on the right

side by the c-number R
(0)
γ = TrMγD̃(0), the expectation value ofMγ in the state D̃(0) of H . This procedure associates

with the original Lie algebra {M} in H a reduced Lie algebra {M} characterized by the simpler commutation relations

[Mα, Mβ ] = i ~Γ γ
αβ R

(0)
γ M0 = i ~Cαβ . (109)

(From now on we shall most often drop, as in the end of (109), the unit operator M0.)
Multiplication of any number of operators Mα generates an enveloping algebra, the space of representation of which

defines H . The structure of this space will be cleared up in Sec. VIII by setting Cαβ into a canonical form.

In order to satisfy the conditions (107) on expectation values 〈Mα〉app the sought effective density operator D̃

should depend only on the differences Mα − R
(0)
α . As regards the conditions (108), we remember that correlations

are often generated in statistical mechanics by a probability distribution having the form of an exponential of the
free energy regarded as a function of the running variables. For instance an energy distribution is the product
e−β F (E) = e−β E+S(E) of the Boltzmann-Gibbs exponential e−β E by the level density, the exponential eS(E) of the
entropy, which accounts for the discarded variables. Another example was provided in our approximation by the
thermodynamic coefficients given by the second derivative (56) of the free energy f{R} at {R} = {R(0)}. Here,
likewise, the reduction from {M} to {M} suggests to rely on an effective free-energy operator rather than on an
effective Hamiltonian. We therefore replace, in the free-energy function f{R} ≡ k{R} − TS{R} defined by (53), the

variables {R} by the corresponding new operators {M}. The operators Mα fluctuate around R
(0)
α , and this leads us

to expand the operator f{M} as

f{M} ≈ f{R(0)}+ 1

2
(Mα −R(0)

α )Fαβ (Mβ −R
(0)
β ) + ... , (110)

where the first-order term is absent thanks to the stationarity of f{R} at {R(0)}.
We thus guess that the distribution D̃ governing the operators {M}, which is expected to yield the identities

(107)-(108), should have in the mapped space H the exponential form

D̃ ≡ e−β F

Tr e−β F
, F ≡ 1

2
(Mα −R(0)

α )Fαβ (Mβ −R
(0)
β ) , (111)

where F behaves as a kind of free-energy operator. The inclusion of an entropic contribution in the exponent of D̃
accounts for the elimination of degrees of freedom associated with the replacement of the original Hilbert space H
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by the space H that involves a smaller set of observables, those generated by the operators {M} and their products.
The non-negativity of the operator F is ensured by that of the matrix F. More concrete interpretations of F will be
given in Sec.VIII by Eqs.(139) or (144).

While 〈Mα〉map = R
(0)
α is evident, the surmise (108) is proved in Appendix B. It is first shown there that the Kubo

correlations of the operators {M} in the state D̃ are given by

〈

1

β

∫ β

0

dτ e τF (Mα −R(0)
α ) e− τF (Mβ −R

(0)
β )

〉

map

=
1

β

(

F
−1

)

αβ
. (112)

The ordinary correlation matrix of the operators {M} is then derived from (112) and shown to coincide with the
matrix B defined by (88):

〈(Mα −R(0)
α )(Mβ −R

(0)
β )〉map =

(

i ~CF

11− exp[−i ~β CF]
F
−1

)

αβ

= Bαβ . (113)

Thus, the operator D̃ can be regarded as a substitute in H to the exact state D̃ ∝ exp(−βK) that satisfies the
anticipated identities (107) and (108): We can interpret the matrix elements of B as exact correlations of the operators

{M} in the state D̃.
At first order in the sources, the variational treatment amounted to replace the operators {M} by their expectation

values {R(0)}. Here, at second order, we reproduce the variational approximation B for correlations by keeping
contributions of lowest order in the deviation {M−R(0)}, both as regards the reduction (109) of the algebra of {M}
into that of {M} and as regards the expansion (110) of the free energy operator.

B. Heisenberg dynamics of the mapped Lie algebra

Let us extend the above results to the time-dependent correlation functions. We restrict here to the case where
H = K, as in Sec. VIA. As already seen, the solution of the approximate backward Heisenberg equation is then
generated by the kernel iCF according to Eqs.(96) for the coordinates α 6= 0 [and to Eq.(70) for α = 0]. This
time-dependence keeps the Heisenberg operators MH

α (t
′, t) in the Lie algebra {M} since they are given by

MH
α (t

′, t)−R(0)
α =

[

eCF (t′−t)
] β

α
(Mβ −R

(0)
β ) , (114)

or equivalently by

dMH
α (t

′, t)

d t
= −(CF) β

α (MH
β (t

′, t)−R
(0)
β ) . (115)

The equations (115) constitute a linear set. We are thus led to define, in the mapped space H , the time-dependent

operators MH
α (t

′, t) by the corresponding equation

dMH
α (t

′, t)

d t
= −(CF) β

α (MH
β (t

′, t)−R
(0)
β ) , (116)

with the boundary condition M
H
α (t, t) = Mα. Moreover, from the definition (111) of the operator F and from the

mapped algebra (109), it follows that

[Mα, F ] = i ~ (CF) β
α (Mβ −R

(0)
β ) . (117)

Hence the equations of motion of the set {MH(t′, t)} defined by (116) read alternatively

dMH
α (t

′, t)

d t
= − 1

i ~

[

M
H
α (t

′, t), F
]

. (118)

One recognizes the structure of an exact backward Heisenberg equation (10) in the space H , where the free-energy
operator F plays the role of a Hamiltonian. As in the static case, the mapping of the operators {M} onto {M} replaces
approximate properties in H by exact ones in H , here the approximate dynamical equation (115) in the space H
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by (118) where the commutator is restored in the space H . Accordingly, the mapped Heisenberg operators MH
α (t

′, t)
are given by

M
H
α (t

′, t) = e i F (t′−t)/~ Mα e
− i F (t′−t)/~ , (119)

a mere unitary transformation in the space H , whereas the transformation (114) of the set {M} in the space H is
not unitary.
The linearity of Eqs.(116), or equivalently the quadratic nature of F , exhibits harmonic-oscillator dynamics in the

mapped space. This will be made more precise in Secs. VIII D and VIII E. In Eq.(118) the effective ”Hamiltonian” F
in the space H should not be confused with an approximation for the Hamiltonian H = K of the original problem.
Its expressions (111) and (56) are related to the free-energy function f{R} and its deviations, rather than to the
original Hamiltonian H . The contribution to F of the entropic term −β−1S, through F = K−β−1S, is essential. This
contribution is the only one left if K belongs to the Lie algebra, and it remains finite at zero temperature.

C. Unified formulation of the variational expressions

Our mapping has provided a formalism (Sec. VII A) in which both optimized expectation values and correlations

in the state D̃ are generated, in the mapped space H , as traces over the effective density operator D̃ ∝ exp(−βF ).
This operator depends on the temperature both explicitly and through the kernel F of the operator F .
An arbitrary observable Qj acting in the original Hilbert space is now represented by its mapped image given,

according to (33), by

Q
j
= qj{R(0)}M0 + (Mα −R(0)

α M0)
∂qj{R(0)}
∂R

(0)
α

(α 6= 0) . (120)

Then, the optimized expectation value of a single operator Qj is

〈Qj〉app = qj{R(0)} = 〈Q
j
〉
map

≡ TrQ
j
D̃ , (121)

and that of the product Qj Qk is

〈Qj Qk〉app = 〈Q
j
Q

k
〉
map

≡ TrQ
j
Q

k
D̃ , (122)

both being directly obtained from the effective state D̃ in the space H .
In the case H = K considered in Secs. VIA and VII B, the time-dependence of the Heisenberg operator associated

with Q
j
is governed by the backward Heisenberg equation (118), which yields

Q
H
j
(t) = e i F t/~

Q
j
e− i F t/~ . (123)

Hence, the variational two-time correlation functions take in the mapped space H the simple form

Cjk(t
′, t′′) = 〈T Q

H
j
(t′ − t′′)Q

k
〉
map

− 〈Q
j
〉
map

〈Q
j
〉
map

. (124)

The same operator F [Eq.(111)] occurs both in the density operator D̃ and as an effective Hamiltonian in (123). It

depends on the following ingredients: R
(0)
α defined self-consistently by Eq.(51), Cαβ{R(0)} given by Γγ

αβ R
(0)
γ , F given

by (56) and D̃ by (111).

VIII. THE EIGENMODES AND THEIR INTERPRETATION

In this section, we consider only initial states at equilibrium, in which case the dynamics is governed by the
Hamiltonian H = K. The variational expressions of correlation functions obtained in Sec. V then involve functions of
the sole matrices C and F. Practical evaluations rely on their diagonalization. The eigenvalues and eigenvectors thus
obtained will enable us to interpret the above results.



25

A. Diagonalization of the evolution kernel and the correlation matrix

The product iCF of the commutation matrix C and the stability matrix F is the kernel which governs the evolution,
as exhibited by the dynamical equations (96) of Sec. VIA. It also occurs in the expression (88) of the correlation
matrix B. The diagonalization of the matrix iCF, and the study of its properties, appear therefore appropriate.
The Lie algebra is globally hermitian, namely, if the operators Mα of the basis are not individually hermitian, they

come in conjugate pairs (e.g., a†µaν and a†νaµ in the fermionic example). We denote as α the index of the operator

Mα ≡ M†
α, which may or may not differ from Mα. The change α 7→ α of all the indices in the quantities Rα, Qα, Cαβ

or Fαβ transforms them into their complex conjugates. Hence, iC, which is antisymmetric, and F, which is symmetric,
are equivalent to hermitian matrices. Moreover, F is non negative. (Only the case of a strictly positive matrix F is
examined here; vanishing eigenvalues are considered in the end of Sec. IXC.) Altogether, the matrix iCF is equivalent
to the antisymmetric hermitian matrix iF1/2CF1/2, so that its right and left eigenvectors, respectively denoted as ψ
and φ, constitute a complete biorthonormal basis in the space α, while its eigenvalues are real and either vanish or
come in opposite pairs.
Using the above properties, one can classify into three subsets the eigenvectors of iCF, denoted with indices n, −n

and p, respectively:
(i) To the positive eigenvalues Ωn > 0 are associated the right and left eigenvectors ψn and φn defined by (α, β 6= 0)

iCαγ F
γβ ψn

β = Ωn ψ
n
α , (125)

φαn iCαγ F
γβ = φβn Ωn , φβn = (ψn

α)
∗
F
αβ . (126)

(ii) Taking the complex conjugate of (125) provides the right and left eigenvectors ψ−n and φ−n associated with
the negative eigenvalue −Ωn:

ψ−n
α = (ψn

α)
∗
, φα−n = (φαn)

∗
. (127)

(iii) The eigenvectors ψp and φp associated with vanishing eigenvalues are given by

iCαγ F
γβ ψp

β = 0 , φαp Cαβ = 0 , (128)

ψp
α = (ψp

α)
∗
, φβp = (φβp )

∗
= (ψp

α)
∗
F
αβ . (129)

The biorthonormality of the sets {ψ} and {φ} is equivalent to the orthonormalization relations for the right eigen-
vectors {ψ} expressed by

φβn ψ
n′

β = (ψn
α)

∗
F
αβ ψn′

β = δnn
′

, φβp ψ
n′

β = (ψp
α)

∗
F
αβ ψp′

β = δpp
′

,

ψn
α F

αβ ψn′

β = ψn
α F

αβ ψp
β = (ψn

α)
∗
F
αβ ψp

β = 0 . (130)

Likewise, the closure property is equivalent to

(F−1)αβ =
∑

n

[ψn
α (ψn

β
)
∗
+ (ψn

α)
∗
ψn
β ] +

∑

p

ψp
α ψ

p
β . (131)

The matrix iCF is thus diagonalized as

i(CF)βα =
∑

n

Ωn[ψ
n
α φ

β
n − (ψn

α)
∗
(φβn)

∗
] , (132)

a sum involving only the modes n associated with Ωn > 0. The matrices F and C can then be expressed in the form

F
αβ =

∑

n

[(φαn)
∗ φβn + φαn (φβn)

∗] +
∑

p

φαp φ
β
p , (133)

iCαβ =
∑

n

Ωn[ψ
n
α (ψn

β
)∗ − (ψn

α)
∗ ψn

β ] , (134)

which for F includes also terms associated with the vanishing eigenvalues of iCF.
The above diagonalization appears as a generalization, for an arbitrary Lie group and at non-zero temperature,

of the standard diagonalization of the RPA matrix for fermion systems [33, 34]. The reality of the eigenvalues Ωn,
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which follows, as shown above, from the positivity of the matrix F is well known in that case [35–37]. The present
diagonalization is also similar to the diagonalization of a quadratic Hamiltonian of boson operators [34].
Inserting the expansions (133) and (134) of F and C into the expression (88) of the correlation matrix B yields

Bαβ =
∑

n

ψn
α

~Ωn

1− exp(−β ~Ωn)
(ψn

β
)∗ (135)

+
∑

n

(ψn
α)

∗ ~Ωn

exp(β ~Ωn)− 1
ψn
β +

1

β

∑

p

ψp
α ψ

p
β .

This expression involves only the eigenvalues and right eigenvectors of iCF, normalized according to (130).
In the zero-temperature limit, only the first term of (135) survives, and B reduces to

Bαβ =
∑

n

ψn
α ~Ωn (ψ

n
β
)
∗
, (136)

where the parameters Ωn and ψn
α are found from the limit β → ∞ of iCF. The quasi-scalars do not contribute.

In the high-temperature limit or in the classical limit, B = (βF)
−1

is given in diagonalized form by (131). The same
holds for the Kubo correlations.

B. Diagonalization of the effective free-energy operator

The above diagonalization of the matrix F will help us to give an interpretation of the effective Hamiltonian F
defined in the mapped space H [Eq.(111) of Sec. VIIA]. Let us introduce, besides the unit operator M0 = I, the
following new basis for the mapped algebra {M} (α 6= 0):

An ≡ φαn (Mα −R
(0)
α )√

~Ωn

, A−n = A
†
n , (137)

Yp ≡ φαp (Mα −R(0)
α )

√

β = (Yp)
†
.

The pair of operators An, A−n is associated with each mode Ωn, and the single operator Yp with each vanishing
eigenvalue of iCF. Conversely, the original operators of the mapped Lie algebra are decomposed over the modes n
and p according to

Mα −R(0)
α =

∑

n

√

~Ωn [ψ
n
α An + (ψn

α)
∗
A
†
n] +

∑

p

ψp
α Yp/

√

β . (138)

The eigenvectors ψ appear as the amplitudes of Mα on the different modes.
The free-energy operator F takes in the new basis the diagonal form

F =
∑

n

~Ωn
1

2

(

A
†
n An + An A

†
n

)

+
∑

p

1

2β
Y
2
p . (139)

The commutation relations of the operators An, A
†
n and Yp follow from those ([Mα, Mβ ] = i ~Cαβ) of the opera-

tors {M}, from the diagonal form (134) of the commutation matrix Cαβ and from the biorthogonality (130) of the
amplitudes ψ and φ. The transformation (137) thus implies

[An,A
†
n′ ] = δnn′ , (140)

[An, An′ ] = [An, Yp] = [Yp, Yp′ ] = 0 .

C. A bosonic and scalar algebra

The mapped algebra {M} is spanned, according to (138), by two sets of operators. On the one hand, the commuta-

tion relations (140) express that this algebra has a symplectic sector n: the set {A,A†} is simply an algebra of bosonic
operators, with single-boson states labelled by the index n. On the other hand, in the sector p, the set {Y} commute
with all other operators of the mapped algebra, and hence each Yp can be regarded as a scalar random variable.
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The form (139) of the free-energy operator F in the space H is suggestive. It can be identified with a Hamiltonian
of non-interacting bosons, with single-particle states n having the energy ~Ωn, plus a classical quadratic part with a
coefficient 1/2β for each variable Yp.

The evaluation of expectation values 〈...〉map involves traces over the space H with the weight D̃ ∝ exp(−βF ). As
regards the bosonic part of (139), H contains a Fock space and the trace is as usual a summation over the occupation
numbers of each single-boson state. As regards the scalar part, the trace is meant as the integration

∏

p

∫

dYp. Thus,

the expectation values over D̃ ∝ exp(−βF ) of single operators An,A
†
n or Yp vanish, while we find for pairs

〈A†
n An〉map =

1

e β ~Ωn − 1
= 〈An A

†
n〉map − 1 , (141)

〈Yp
2〉

map
= 〈M2

0〉map = 1 ;

all other expectation values of pairs vanish. Each mode n yields a Bose factor associated in canonical equilibrium
with the energy ~Ωn; no chemical potential occurs for the distribution D̃ ∝ exp(−βF ). For the scalar variables, the

variance 1 arising from the Gaussian weight exp(−Yp
2/2) within D̃ provides an expectation value 1/2β for the term

Yp
2/2β of F , in agreement with the equipartition theorem of classical statistical mechanics.
We are considering in this section the dynamics (119) for H = K, and we have seen that F then plays the role of

a Hamiltonian in the space H . The diagonal form (139) of F indicates that the mapped operators An oscillate as

A
H
n (t

′, t) = e−iΩn(t
′−t)An , (142)

while the scalars Yp remain constant. Thus, the operators An ,A
†
n behave as bosonic annihilation and creation

operators in all respects: commutation relations (140), average occupation in canonical equilibrium (141) and dynamics
(142).

D. Interpretation in terms of oscillators

The mapped bosonic Fock space can equivalently be regarded as a space of oscillators, each single bosonic state n
corresponding to an oscillator mode with frequency Ωn. The operators An,A

†
n are thus replaced by the position and

momentum operators

Xn =
√

~/2 (An + A
†
n) , Pn =

√

~/2 (An − A
†
n)/i , (143)

satisfying the canonical commutation relations [Xn, Pn′ ] = i~δnn′ . The effective Hamiltonian F then takes the form

F =
∑

n

Ωn (Pn
2 + Xn

2) +
1

2β

∑

p

Yp
2 . (144)

It now describes uncoupled harmonic oscillators, plus a quadratic energy associated with the classical variables Yp.
In this alternative interpretation, we have

〈X2
n〉map = 〈P2

n〉map =
~

2
coth

β ~Ωn

2
, (145)

and the dynamics describes harmonic oscillators with frequency Ωn.

E. Quasi-bosons and quasi-scalars

From now on, we return to the original space H . The correspondence between the algebras {M} and {M} leads
us to perform on the original Lie algebra the same transformation as (137)-(138), which introduces for a given D(0)

a new basis An, A†
n, Yp (besides M0) in the algebra {M}.

The commutators between these operators, issued from the Lie structure (21), are not simple. However, the

expectation values of these commutators, evaluated as traces over D̃(0), have the same structure as the commutators
(140) of the corresponding mapped operators An, A

†
n, Yp, that is,

〈[An, A
†
n′ ]〉app = δnn′ , (146)

〈[An, An′ ]〉app = 〈[An, Yp]〉app = 〈[Yp, Yp′ ]〉app = 0 .
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The operators An, A
†
n can thus be termed ”quasi-boson” annihilation and creation operators, while the operators Yp

can be termed ”quasi-scalars”.
The matrix i~Cαβ was defined as the expectation value 〈[Mα, Mβ]〉app in the original basis of the Lie algebra.

Going to the new basis amounts to diagonalize C according to (134). In this new basis, i~C takes a form involving

only 2× 2 diagonal blocks

(

0 1
−1 0

)

and zeros, in agreement with the above relations.

The variational expectation values in the state D̃(0) of the operators An, A
†
n and Yp vanish,

〈An〉app = 〈A†
n〉app = 〈Yp〉app = 0 , (147)

while 〈M0〉app = 1. The approximate expectation values of pairs of operators,

〈A†
n An〉app =

1

e β ~Ωn − 1
= 〈An A†

n〉app − 1 , (148)

〈Yp
2〉app = 〈M2

0〉app = 1 ,

are the same as the equations (141) which were exact in the space H ; again all other expectation values of pairs
vanish. We recognize, as in the mapped space, the Bose factor of a mode n for the quasi-boson operators An, A

†
n, and

the unit variance for the Gaussian quasi-scalar variables Yp.
The change of basis {M} 7→ {A,A†,Y} is issued from the diagonalization of Sec.VIII A. This change leads to

re-express the correlation matrix B as

Bαβ = 〈Mα Mβ〉app −R(0)
α R

(0)
β =

∑

n

ψn
α ~Ωn 〈An A

†
n〉app (ψn

β
)∗ (149)

+
∑

n

(ψn
α)

∗
~Ωn 〈A†

n An〉app ψn
β +

1

β

∑

p

ψp
α〈Yp

2〉appψ
p
β .

The Bose-like factors that appeared in the expression (135) of B now come out as expectation values (148) of pairs

of quasi-boson operators An and A
†
n′ , while the last term of (135) is consistent with the variance equal to 1 of the

quasi-scalar operators Yp. The coefficients arise from the change of basis (138) that expresses the operators Mα−R(0)
α

on the basis {A,A†,Y}.
More generally, to write the optimized correlation of arbitrary observables Qj and Qk, one should express their

images on the basis A,A†,Y according to

Qj = qj{R(0)}M0 +
∑

n

[Qn
jb An + (Qn

jb)
∗
A
†
n] +

∑

p

Qp
js Yp , (150)

where the new, bosonic and scalar, coordinates are (α 6= 0)

Qn
jb =

√

~Ωn ψ
n
α Qα

j {R(0)} (151)

Qp
js =

1√
β
ψp
α Qα

j {R(0)} ,

(we recall that Qα
j {R(0)} ≡ ∂qj{R(0)}/∂R(0)

α ). One thus finds for the correlations

〈QjQk〉app − 〈Qj〉app〈Qk〉app = Cjk(ti, ti) (152)

=
∑

n

[

coth
β ~Ωn

2
ReQn

jb (Qn
kb)

∗
+ i ImQn

jb (Qn
kb)

∗

]

+
∑

p

Qp
js Q

p
ks .

The antisymmetric part of the correlations,

1

2
〈QjQk −QkQj〉app =

∑

n

i ImQn
jb (Qn

kb)
∗
, (153)
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agrees with [Qj,Qk] = i ~Qα
j {R(0)}Cαβ Qβ

k{R(0)}. An alternative interpretation of the symmetric part is obtained by
replacing, as in Sec. VIIID, quasi-bosons by quasi-oscillators with variables Xn, Pn. Writing the image of Qj in the
basis {X,P,Y} then produces the factors (~/2) coth(β ~Ωn/2) which are the expectation values 〈X2

n〉app = 〈P2
n〉app.

Since H = K here, the approximate Heisenberg operators in the space H follow the same evolution as (142) in the
mapped space H , that is,

AH
n (t

′, t) = e−iΩn(t
′−t)An , YH

p (t
′, t) = Yp . (154)

Hence, the two-time correlation function Cjk(t
′, t′′) is given, when the initial state is at equilibrium, by

Cjk(t
′, t′′) =

∑

n

[

Qn
jb

e− iΩn(t
′−t′′)

1− e−β ~Ωn
(Qn

kb)
∗

(155)

+ (Qn
jb)

∗ e
iΩn(t′−t′′)

e β ~Ωn − 1
Qn

kb

]

+
∑

p

Qp
js Q

p
ks , (t′ > t′′) ,

which is the explicit form for the general equation (124). It exhibits the coefficients of the images Qj and Qk on the
quasi-boson and quasi-scalar basis, the Bose factors and the boson dynamics.

F. Linear response and excitation energies

The linear response (100) is directly found from (101) and (150); it does not involve the quasi-scalar contributions
nor the Bose factor. Its dissipative part, defined through a Fourier transform with respect to t′ − t′′, comes out as

χ
′′

jk(ω) =
π

~

∑

n

[

Qn
jb δ(ω − Ωn) (Qn

kb)
∗ − (Qn

jb)
∗
δ(ω +Ωn)Qn

kb

]

. (156)

Thus, the present approximation yields the Ωn’s as resonance frequencies. Consistency properties such as the Kramers-
Kronig dispersion relations and the Kubo fluctuation-dissipation relations are satisfied.
At the zero-temperature limit, the exact expression of χ

′′

jk(ω) is given, in terms of the ground state |0〉 of K and of

the excited states |exc〉 with excitation energies Eexc, as

χ
′′

jk(ω) = π
∑

exc

[〈0|Qj|exc〉〈exc|Qk|0〉 δ(~ω − Eexc) (157)

−〈0|Qk|exc〉 〈exc|Qj |0〉 δ(~ω + Eexc)] .

Comparison with (156) shows that the positive eigenvalues ~Ωn of i~CF can be identified as approximations for the
excitation energies En of some set of states, labelled as |n〉. The amplitude Qn

jb of the image Qj over the quasi-boson

annihilation operator An appears as an approximation for the matrix element 〈0|Qj|n〉. In particular, the quasi-boson
operators An satisfy approximately

〈0|An|n′〉 = δnn′ , (158)

as if the state |n〉 were obtained by creating a quasi-boson.

IX. SMALL DEVIATIONS

We consider in this section static and dynamic changes brought in by a shift of the initial conditions.

A. Static deviations

The change in the equilibrium properties arising from a variation δK of the operator K that defines the state
D̃∝ exp(−βK) is accounted for in the variational treatment by the shift δD̃(0) of D̃(0), parametrized by the set

δR(0)
α = Tr δD̃(0) Mα = Tr[D̃(0) + δD̃(0)](Mα −R(0)

α ) . (159)
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Denoting by δK the image of δK, the first-order change in the self-consistent equations (51) provides

S
αβ δR

(0)
β = β δKα + βK

αβ δR
(0)
β , (160)

that is, using the definition (56) of the matrix F,

δR(0)
α ≡ −(F−1)αβ δKβ (α, β 6= 0) . (161)

The resulting change ∆F of the free energy F ≃ minf{R} = min[k{R} − T S{R}], expanded up to second order in
δK, is found as

∆F ≈ δk +
1

2
δR(0)

α F
αβ δR

(0)
β + δKα δR(0)

α (162)

= δk − 1

2
δR(0)

α F
αβ δR

(0)
β = δk − 1

2
δKα (F−1)αβ δKβ .

In (160)-(162), the matrices K, S, F, the image δK and the symbol δk of δK are taken at {R(0)}. In particular, the
expression (57) of the heat capacity is recovered by taking δK = Kδβ/β.
This shift takes a suggestive form if Fαβ is replaced by its diagonalized form (133). Using (159) and (147), and

denoting as

δR
(0)
nb = Tr [D̃(0) + δD̃(0)]An = Tr δD̃(0) An , (163)

δR
(0)∗
nb = Tr δD̃(0) A†

n , δR(0)
ps = Tr δD̃(0) Yp

the variations of the symbols of the quasi-boson and quasi-scalar operators An,A
†
n and Yp, one finds from the variation

of f{R} the form

∆F ≈ δk − 1

2
δR(0)

α F
αβ δR

(0)
β (164)

= δk −
∑

n

~Ωn |δR(0)
nb |2 −

∑

p

1

2β
(δR(0)

ps )
2
.

Each oscillator mode provides a contribution ~Ωn weighted by the amplitude |δR(0)
nb |

2
, while each quasi-scalar mode

brings in the equipartition contribution (2β)−1.

B. Dynamic deviations

Let us turn to the change in the time-dependent expectation values induced by a shift D̃(0) 7→ D̃(0) + δD̃(0) around

the equilibrium state D̃(0). The resulting small deviations δR
(0)
α (t) around R

(0)
α (t) are governed by the set of equations

d δR
(0)
α (t)

dt
= (L+ CH)βα δR

(0)
β (t) , (165)

obtained by varying R
(0)
α (t) in Eq.(62); the initial conditions δR

(0)
α (ti) are given by (159). [For the fermionic single-

particle Lie-algebra, (165) is the dynamical RPA equation issued from the TDHF equation.] The kernel L + CH

governing the forward equation (165) for the small deviations turns out to be the dual of the kernel governing the
backward equation (67) for the approximate Heisenberg observables QH

j (t
′, t). The shift δ〈Qj〉t, variationally given

by δ〈Qj〉t = Qα
j {R(0)(t)}δR(0)

α (t), is therefore equal to

δ〈Qj〉t ≃ QHα
j (t, t′′) δR(0)

α (t′′) (166)

for any intermediate time t′′. This independence on t′′ agrees with the expression (70) of 〈Qj〉t.
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C. Dynamic and static stability

We now specialize to the case H = K, for which an initial shift {δR(0)} generates a deviation {δR(0)(t)} of {R(0)(t)}
around the fixed value {R(0)}. The linearized equations (165) then involve the constant kernel L + CH = CF, and
can be solved as

δR(0)
α (t) =

[

e (t−ti)CF

] β

α
δR

(0)
β . (167)

Here, as in the backward equations (114),(115), the dynamics is governed by the product CF, so that the result (167)
can alternatively be written as

δR(0)
α (t) =

[

e (t−ti)CF

] β

α
Tr δD̃(0)(Mβ − R

(0)
β ) = Tr δD̃(0)[MH

α (t, ti)−R(0)
α ]. (168)

Within the variational treatment we recover for small deviations the equivalence between Schrödinger and Heisenberg
pictures, already exhibited in Eq.(70).
If the matrix F is positive, one can change the basis so as to diagonalize iCF according to (132) and use the new

variables δR
(0)
nb = Tr δD̃(0)An and δR

(0)
ps = Tr δD̃(0)Yp, which yields

δR
(0)
nb (t) = e− iΩn (t−ti) δR

(0)
nb , (169)

δR(0)
ps (t) = δR(0)

ps .

These evolutions merely reflect the motion (154) of the Heisenberg operators {AH, YH}. Again the modes are decou-
pled, quasi-bosons (or oscillators) undergo pure oscillations and quasi-scalars are static.
The above sinusoidal form of the dynamics entails Lyapunov stability. This property is defined, according to [38],

as follows: ”The equilibrium point x0 is said to be Lyapunov stable if given any neighborhood U of x0, there is a sub-
neighborhood V of x0 such that if x lies in V then its orbit remains in U forever.” In other words, the trajectories tend
uniformly to {R(0)} as their initial point {R(0)(ti)} tends to {R(0)}. Hence, the Lyapunov stability of the linearized

motion is ensured if all eigenvalues of F are positive, that is, if the approximate free energy associated with D̃(0) is
a local minimum of f{R}. Such a property is well known for fermions, both at zero [35] and at finite temperature
[36, 37], in which case the minimization of the Hartree-Fock (free) energy entails the reality of the RPA modes. We
find here, in a general variational context for any trial Lie group, that the static stability of the approximate ”state”
D(0) implies the dynamic stability of motions δR(0)(t) around it.
The matrix F may have vanishing eigenvalues. This occurs, for instance, if a continuous invariance is broken by

the approximation D̃(0) for the equilibrium state; in this case f{R} is minimum for a continuous set of solutions
{R(0)}. Since F is then not invertible, iF1/2CF1/2 is no longer defined and it is not ascertained that the matrix iCF
is diagonalizable (some right eigenvectors may be missing). If iCF is diagonalizable, all its vanishing eigenvalues
yield a constant contribution to the set δR(0)(t) so that Lyapunov stability is still ensured. However, if it is not,
contributions behaving as powers of t come out, so that the dynamics is unstable (for a more detailed discussion, see
Appendix B of [39]). Such a behavior may be associated with Goldstone modes. For instance, if the original problem

is translationally invariant and if this invariance is broken by a localized solution D̃(0), a small shift in the initial
conditions produces an instability, characterized by a boost at some constant velocity.

X. CLASSICAL STRUCTURE OF LARGE AMPLITUDE MOTION

We have written in Sec. IVB several equivalent dynamical equations for the time-dependent expectation values
{R(0)(t)} of the operators {M}. We now analyse the structure of these equations, which will turn out to have a
classical form for any Lie group.

A. Poisson structure

Let us consider {R} as a set of classical dynamical variables, and let us show that the tensor Cαβ{R} ≡ Γ γ
αβ Rγ

can be regarded as the generator for this set of a Poisson structure issued from the Lie algebra (21). We first recall
the definition of Poisson structures [40, 41]. Consider some set of dynamical variables {x} parametrizing points on
a manifold, and functions f, g, h, ... of these variables. A Poisson structure is a mapping {{f, g}} = k from a pair of
functions f, g to a third function k, which obeys the following rules:
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(i) bilinearity;
(ii) antisymmetry: {{f, g}} = −{{g, f}};
(iii) Jacobi identity: {{{{f, g}}, k}}+ {{{{k, f}}, g}}+ {{{{g, k}}, kf}} = 0;
(iv) Leibniz derivation rule: {{fg, k}} = f{{g, k}}+ {{f, k}}g .
We consider here functions g{R} of the variables {R}, and define a Poisson structure through

{{Rα, Rβ}} = Cαβ{R} ≡ Γγ
αβRγ (170)

and

{{g1, g2}} =
∂g1
∂Rα

Cαβ{R}
∂g2
∂Rβ

. (171)

One can readily check that the above rules are satisfied, owing in particular to the properties of the structure
constants Γγ

αβ , namely, antisymmetry and Jacobi identity. The Poisson structure (170)-(171) is thus generated by the

Lie algebra of the set {M}.
The equations of motion (62) for {R(0)(t)} can now be rewritten as

dR
(0)
α (t)

dt
= {{R(0)

α (t), h{R(0)(t)}}} . (172)

These quantum variational equations are therefore identified with classical equations involving the brackets (171) and
governed by a classical Hamiltonian h{R(0)(t)}, the symbol of the quantum Hamiltonian H .
The relation (61) expresses the time-dependent expectation value of the observable 〈Qj〉t as a function of {R(0)(t)};

together with (172), it implies that 〈Qj〉t evolves according again to the classical dynamical equation

d〈Qj〉t
dt

= {{qj{R(0)(t)}, h{R(0)(t)}}} , (173)

which involves the symbols of Qj and H . The variational approach, together with the introduction of symbols, thus
generate approximate dynamics of expectation values that have a classical structure, generated by the Lie-Poisson
bracket (171) and by a Hamiltonian.
The symbol h{R(0)(t)} is obviously a constant of the motion. Moreover, the von Neumann entropy S{R(0)(t)}

defined by (25) is also a constant of the motion. Indeed, using (26) then (35), one finds

{{R(0)
β (t), S{R(0)(t)}}} = Cβγ{R(0)} ∂S{R

(0)(t)}
∂R

(0)
γ (t)

= −Cβγ{R(0)(t)} Jγ(0)(t) = 0 , (174)

which implies that S{R(0)(t)} remains constant during the evolution (172) of {R(0)(t)}.
Lie-Poisson structures for dynamical equations issued from a variational principle have been recognized in cases

such as the Vlasov equation [40], time-dependent Hartree-Fock equations [39], time-dependent Hartree equations for
bosons [12] and for φ4 field theory [15, 16].
Proposals of non-linear extensions of quantum mechanics [42] have suggested a formulation in terms of a Poisson

structure [43]. Here it is the restriction of the algebra of observables to the trial Lie algebra which produces a Poisson
structure within standard quantum mechanics.

B. Canonical variables

We have seen in Secs. VIII B and VIII D that the diagonalization of CF generates in the mapped space H a linear
transformation (137),(143) of the operators {M}, which produces pairs of canonically conjugate operators Xn, Pn and
scalars Yp. This corresponds in the original Hilbert space to a construction of quasi-oscillator operators Xn, Pn and
quasi-scalars Yp (Sec. VIII E). Accordingly, the expectation values of their small deviations, defined by

δXn(t) ≡
√

~/2 [δR
(0)
nb (t) + δR

(0)∗
nb (t)] ≡

√

~/2Tr δD̃(0)(t) (An + A†
n) ,

δPn(t) ≡
√

~/2 [δR
(0)
nb (t)− δR

(0)∗
nb (t)]/i ≡

√

~/2Tr δD̃(0)(t) (An − A†
n)/i ,

evolve according to (169) as conjugate variables of classical harmonic operators with frequency Ωn, while the quantities

δYp ≡ δR
(0)
ps ≡ Tr δD̃(0)(t)Yp remain constant since {{Yp, h}} = 0 for any h. A classical symplectic structure thus
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appears for linearized motions, with ordinary Poisson brackets {δXn, δPn′} = δnn′ , {δXn, δXn′} = {δPn, δPn′} = 0
and Hamiltonian (1/2)

∑

n Ωn (Pn
2 +Xn

2) .

The above canonical classical structure pertains to the dynamics of small amplitude motions of {R(0)(t)} = {R(0)}+
{δR(0)(t)} around equilibrium {R(0)}. We have seen however (Sec. XA) that a more elaborate Poisson structure occurs
for large amplitude motions. In this case, the bracket {{Rα, Rβ}} ≡ Cαβ{R} depends on the dynamical variables,

whereas for linearized motions we had simply to diagonalize the constant matrix Cαβ{R(0)} according to (134).
Moreover, the motion is no longer harmonic.
Nevertheless, one can re-express the classical dynamics of Sec. XA in terms of canonical variables by means of a

non-linear change of variables in the space {R}. Indeed, a ”splitting theorem” [40] states than an arbitrary Poisson
structure can locally be split into symplectic components and invariant components: There exist independent (non-
linear) functions ξn, πn, ηp of the coordinates {R} such that their brackets (171) reduce to

{{ξn, πn′}} = δnn′ , {{ξn, ξn′}} = {{πn, πn′}} = 0 , (175)

{{ξn, ηp}} = {{πn, ηp}} = {{ηp, ηp′}} = 0 .

In general such a transformation does not exist globally but only locally in some neighborhood around each point of
the trajectory of the point {R(0)(t)} in the space {R}. The dynamical variables ξn and πn are canonically conjugate
in the elementary sense (their brackets {{ , }} reduce to ordinary Poisson brackets). These variables are dynamically
coupled and their motion (173) is governed by Hamilton’s equations, while the variables ηp (the Casimir invariants)
are structurally conserved in the flow.
The construction of the set {ξ, π, η} is not simple and does not result from the mere diagonalization of Cαβ{R} at

each point, contrary to the linearized dynamics. In fact, the reduction of the Lie-Poisson structure to the form (175)
has been achieved only in special cases; relevant to the present work are the Vlasov equation for which a rigorous
proof has been given [40], the time-dependent Hartree-Fock theory at zero [16, 44–47] and finite [39] temperatures.

C. Stability of equilibrium and of non-linearized motions

In Sec. IXC we have shown that small amplitude motions around thermodynamic equilibrium {R(0)} governed by
the linearized equations for {R(0)(t)} (with H = K) are Lyapunov stable if the trial free-energy function f{R} is
minimum at {R(0)}. Let us show that this stability property also holds for motions around equilibrium governed by
the non-linearized equations of motion (62).
To this aim, we rely on the classical form (172) of this equation written in the Poisson formalism. We note moreover

that, owing to the property (174) of the entropy function S{R(0)(t)}, the addition of −β−1S{R(0)(t)} to the classical
Hamiltonian h{R(0)(t)} = k{R(0)(t)} does not affect the dynamics, so that the free-energy function also generates the
large amplitude trajectories of {R(0)(t)}:

dR
(0)
α (t)

dt
= {{R(0)

α (t), f{R(0)(t)}}} ≡ Cαβ{R(0)(t)} ∂f{R
(0)(t)}

∂R
(0)
β (t)

. (176)

The time-dependence of f{R(0)(t)} is given, according to (173), by df{R(0)(t)}/dt = {{f{R(0)(t)}, f{R(0)(t)}}} = 0.
Hence f{R(0)(t)} remains constant along any trajectory. On the other hand, if {R(0)} is a stable static equilibrium
point, f{R} has an isolated minimum equal to f{R(0)} = F . These two conditions ensure Lyapunov stability according
to the Lagrange-Dirichlet theorem (see for instance [41]): the trajectory {R(0)(t)} uniformly tends to the point {R(0)}
if the initial value f{R(0)(ti)} tends to F .
Thus, for non-linearized as well as for linearized motions of {R(0)(t)}, the present variational approximations

preserve the following property of the exact dynamics near an equilibrium state: the static stability, f{R} minimum
at {R} = {R(0)}, entails the Lyapunov stability of the dynamics in some neighborhood.

XI. RÉSUMÉ OF OUTCOMES AND DIRECTIONS FOR USE

We have dwelt at length on the derivation of the results of a variational approach based on the principles of Sec. II
and on the restriction of trial spaces to Lie groups. We summarize below some of the formal outcomes thus obtained;
they are sufficient for practical applications to specific many-body problems.
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A. General features

The initial step consists in selecting, among the whole set of operators in Hilbert space, a Lie algebra spanned by a
set of operators {M} labeled by the index α. (We include in this Lie algebra the unit operator I, denoted as M0.) We
gave above as seminal example a system of fermions for which the set {M} encompasses the single-particle operators
a†µaν , the index α denoting the pair (ν, µ). The approach can be applied to many other systems. For fermions with

pairing, the Lie algebra {M} includes the operators aµaν and a†νa
†
µ (with µ > ν); here the index α denotes not only the

pair (ν, µ) but also distinguishes between the operators a†µaν , aµaν and a†νa
†
µ. For bosons with possible condensation,

one can take as basis {M} for the Lie algebra the operators I, aµ, a
†
µ, a

†
µaν , aµaν (µ ≥ ν) and a†νa

†
µ (µ ≥ ν); coherent

states arise from the inclusion of the operators aµ and a†µ. If such a bosonic system is translationally invariant, the

algebra can be reduced to I, a0, a
†
0, a

†
kak, aka−k, a

†
−ka

†
k (where k denotes the momentum of single-particle states).

The formalism also applies to other sub-algebras, or to other systems such as mixtures of fermions and bosons, spin
systems or quantum fields as in [15], the only restriction being the Lie algebraic structure of the set {M}. In all such
cases the algebra {M} is characterized by the structure constants Γγ

αβ entering the commutation relations

[Mα,Mβ] = i ~Γγ
αβ Mγ . (177)

As we wish to derive static or dynamic properties of some observablesQj of interest, we have relied on the variational
evaluation of a generating functional (Secs. II A and IIC), so as to deal simultaneously and consistently with all such
properties. This has entailed the introduction of two sets of trial objects, namely, trial ”generating operators” A that
depend on the observables Qj and their associated (time-dependent) sources, and trial density operators D. Both A
and D are elements of the Lie group generated by the chosen Lie algebra {M}, that is, exponentials of elements of this
algebra. We focused on expectation values and pair correlations of the observables Qj ; they are found by expansion
of the generating functional in powers of the sources. We summarize below the results thus obtained.
We parametrize the trial operators D, which behave as non-normalized density operators, by their normalization

Z = TrD and by the numbers Rα = TrMα D̃ associated with the operators Mα (α 6= 0), where D̃ denotes the
normalized operator Z−1D. The exponential form of the operator D is suited to investigate systems at non-zero
temperature; ground state problems are dealt with by taking a zero-temperature limit. We may thus approximately
answer questions about an equilibrium (unnormalized) state D = exp(−βK); for a system in canonical equilibrium,
K is the Hamiltonian. Other choices of K allow us to deal with non-equilibrium problems, D = exp(−βK) being
then the initial state.
An essential tool consists in the representation of the observables Qj , of the operator K entering D = exp(−βK)

and of the Hamiltonian H by their symbols qj{R}, k{R} and h{R} within the Lie group (Sec. III B). Defined for any

operator Q and an arbitrary element D̃ of the Lie group as

q{R} ≡ TrQ D̃ , (178)

a symbol is a function of the scalar variables Rα (α 6= 0) that parametrize D̃. The practical implementation of
the approach is based on the possibility of evaluating explicitly such symbols q{R}. (In the fermionic and bosonic
examples, this is feasible owing to Wick’s theorem.) One also needs to express in terms of the variables Rα the entropy

function S{R} ≡ −Tr D̃ ln D̃.

B. Static quantities

The generalized free energy F ≡ − β−1 lnTr exp(− β K) and the thermodynamic quantities issued from it are
obtained (Sec. IVA) by looking for the minimum of the trial free-energy function f{R} ≡ k{R} − T S{R} (where

k{R} is the symbol of K); the values of Rα = R
(0)
α at this minimum are given by ∂f{R}

∂Rα
= 0. The resulting, consistent,

approximations are then, for the free energy:

F ≡ − β−1 lnTr e− βK ≃ f{R(0)} = − β−1 lnTr e

[

−β
∂k{R(0)}

∂R
(0)
α

Mα

]

, (179)

for the entropy:

S ≃ S{R(0)} = − ∂f{R(0)}
∂T

, (180)
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for the energy (when K is the Hamiltonian):

〈K〉 ≃ k{R(0)} , (181)

and for the expectation values of the observables Qj in the state D̃ ∝ exp (−βK) (Sec. IVB):

〈Qj〉 ≡
TrQS

j e
−βK

Tr e−βK
≃ qj{R(0)} . (182)

Thermodynamic coefficients, such as the specific heat [Eq.(57)], are found from the second derivatives

F
αβ =

∂ 2f{R(0)}
∂R

(0)
α ∂R

(0)
β

= K
αβ − T S

αβ ≡ ∂ 2k{R(0)}
∂R

(0)
α ∂R

(0)
β

− T
∂ 2S{R(0)}
∂R

(0)
α ∂R

(0)
β

, (183)

which appear as a matrix in the space of indices α.
While the above expressions appear as mere extensions to arbitrary Lie groups of standard mean-field results, the

approach has also provided variational expressions for the correlations in the state D̃ ∝ exp (−βK) (Secs.VD and
VE). For correlations between the elements of the Lie algebra, we have obtained (α, β 6= 0)

〈MαMβ〉 − 〈Mα〉 〈Mβ〉 ≃ Bαβ , B =
i ~CF

11− exp(−i ~β CF)
F
−1 , (184)

where the matrix C is defined by Cαβ = Γγ
αβ R

(0)
γ . More generally, the correlations between two observables Qj and

Qk have been found as

〈QjQk〉 − 〈Qj〉 〈Qk〉 ≃
∂qk{R(0)}
∂R

(0)
α

Bαβ
∂qk{R(0)}
∂R

(0)
α

, (185)

in terms of the matrix B and of the symbols of the operators Qj and Qk. Fluctuations ∆Qj result for j = k. In the

classical or high-temperature limit, B reduces to (βF)
−1

.

C. Time-dependent quantities

Here D̃ ∝ exp (−βK) is the exact initial state at the time ti, and the subsequent evolution is governed by the
Hamiltonian H . The above results hold as variational approximations at the time ti. For later times, the optimization
of the expectation value 〈Qj〉t yields (Sec. IVB)

〈Qj〉t ≡
Tr e−βK e iH t/~QS

j e
− iH t/~

Tr e− βK
≃ qj{R(0)(t)} , (186)

where the time-dependent expectation values R
(0)
α (t) of the operators Mα are given by the equations

dR
(0)
α (t)

dt
= L

γ
α {R(0)(t)}R(0)

γ (t) (187)

with the initial conditions R
(0)
α (ti) = R

(0)
α . The effective Liouvillian L is expressed self-consistently in terms of the

symbol h{R} of the Hamiltonian by

L
γ
α {R} = Γ γ

αβ

∂h{R}
∂Rβ

. (188)

(In the presence of non-vanishing structure constants Γ 0
αβ, R

(0)
0 (t) should be replaced by 1 in the term γ = 0 of (187).)

We have shown (Sec. X) that the dynamical equations (187) and the resulting ones for 〈Qj〉t have a classical
structure, where Cαβ{R} = Γγ

αβ Rγ appears as the Lie-Poisson tensor associated with the classical coordinates {R}
and where h{R} behaves as a classical Hamiltonian.
Here again, non standard variational results have been obtained (Sec. VC) for two-time correlation functions. Their

expression involves an approximation (Sec. VA) for the observables in the Heisenberg picture defined by

QH
j (t

′, t) ≡ e iH(t′−t)/~QS
j e

− iH(t′−t)/~ , (189)
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where t′ is the usual final running time and t is a reference time at which QH
j (t + 0, t) reduces to the Schrödinger

observable QS
j . This approximation QH

j (t
′, t) ≃ QH

j (t
′, t) ≡ QHα

j (t′, t)Mα is characterized by the differential equations

dQHα
j (t′, t)

dt
= −QHβ

j (t′, t) (L+ CH)
α
β (α, β 6= 0) , (190)

in terms of the reference time t which runs backward from t′ to the initial time ti. The boundary condition is given
by

QHα
j (t′, t′ − 0) =

∂qj{R(0)(t′)}
∂R

(0)
α (t′)

. (191)

In Eq.(190), the three matrices L defined by (188), Cαβ{R} = Γγ
αβ Rγ and H, which denotes the matrix of second

derivatives of the symbol h{R} with respect to the variables Rα, are evaluated at the point R = R(0)(t).
The optimized expression for the two-time correlation functions Cjk(t

′, t′′) then reads (Secs.VC and VD)

Cjk(t
′, t′′) ≡

Tr e−β K QH
j (t

′, ti)Q
H
k (t

′′, ti)

Tr e−β K
− 〈Qj〉t′〈Qk〉t′′

≃ QHα
j (t′, ti)Bαβ QHβ

k (t′′, ti) (t′ > t′′) , (192)

which involves both the approximate correlations (184) at the initial time and the approximate Heisenberg operators
given by Eqs. (190) and (191).

D. Properties of the results and consequences

Special cases (Sec. VI) include time-dependent fluctuations, obtained from Cjj(t+ 0, t), and linear responses

χjk(t
′, t′′)= (1/i~)θ(t′ − t′′)[Cjk(t

′, t′′)− Ckj(t
′′, t′)]

≃ θ(t′ − t′′)QHα
j (t′, t)Cαβ{R(0)(t)}QHβ

k (t′′, t) , (193)

where t is arbitrary in the interval ti ≤ t ≤ t′′. If the initial state D ∝ e−βK is in equilibrium, with a dynamics
generated by H equal to K (or to K plus a constant of motion), the approximate expectation values 〈Qj〉t remain
constant. The equations (191) are solved as

QHα
j (t′, ti) = Qβ

j {R(0)}
[

eCF (t′−ti)
]α

β
. (194)

Hence, two-time correlation functions are variationally given in this case by

Cjk(t
′, t′′) ≃ Qα

j {R(0)}
[

eCF (t′−t′′) i ~CF

11− exp(−i ~β CF)
F
−1

]

αβ

Qβ
k{R(0)} , (195)

an expression which, as it should, depends only on the time difference t−t′. Derived within a unified framework, these
results satisfy consistency properties and conservation laws. For instance, the approximation preserves the relation
between the static stability of a thermodynamic equilibrium state (f{R} minimum) and the dynamical stability of
the motions (187) around it.
Other special cases are also considered in Sec. VI, including classical, high-temperature and zero-temperature limits,

as well as Kubo correlations. Results for small deviations are presented in Sec. IX.
In Secs. VII and VIII C-VIII F, we have exhibited, for any Lie group, an attractive interpretation for the static

correlations (184) and for the two-time functions (194)-(195). To this aim, the Lie algebra {M} has been mapped into
a simpler Lie algebra {M}, the operators Mα of which are linear combinations of creation and annihilation bosonic

operators An and A
†
n (or equivalently of position and momentum operators Xn and Pn of harmonic oscillators),

and of scalar random variables Yp. Then, the dynamics (194) is mapped onto a dynamics governed by an effective
Hamiltonian

F =
∑

n

~Ωn
1

2

(

A
†
n An + An A

†
n

)

+
∑

p

1

2β
Y
2
p (196)

=
∑

n

Ωn (Pn
2 + Xn

2) +
1

2β

∑

p

Yp
2 ,
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which describes uncoupled modes. The above correlations (184) and (195) take for an arbitrary Lie group the form of
expectation values of pairs of quasi-boson operators and of scalars in a canonical equilibrium state with Hamiltonian
F .
The explicit expression

Cjk(t
′, t′′) =

∑

n

[

Qn
jb

e− iΩn(t
′−t′′)

1 − e−β ~Ωn
(Qn

kb)
∗

(197)

+ (Qn
jb)

∗ e
iΩn(t

′−t′′)

e β ~Ωn − 1
Qn

kb

]

+
∑

p

Qp
js Q

p
ks , (t′ > t′′)

derived in Sec. VIII relies on the diagonalization (132) of the matrix iCF, which enters the formalism at several
places. The coefficients Qn

jb and Qp
js appear as coordinates, in the new basis of the Lie algebra, of the observable

Qj , their explicit form being given by Eqs.(151) in terms of the eigenvalues ±Ωn and eigenvectors of the matrix iCF

(which satisfy the equations (130), (133) and (134)). Special cases of (197) are the static correlations written in the
diagonalized form (135) and the linear responses, which satisfy the Kramers-Kronig dispersion relations and the Kubo
fluctuation-dissipation relation.

XII. CONCLUSION

We have presented above a variational approach to the determination of various physical quantities pertaining to
many-body systems. Although our scope has been formal, the generality and flexibility of the treatment appear well
suited to many specific problems. The results, listed in Sec. XI, have been obtained by merging several ingredients:
(i)The evaluation of a generating functional (Sec. II A) has allowed the simultaneous optimization of different quan-

tities such as the (static or time-dependent) expectation values and correlations of the observables of interest: they
are obtained by expanding in powers of the sources the functional ψ{ξ} ≡ lnTrA(ti)D. Deriving the correlation
functions as second-order contributions in the sources of this generating functional provides for them non-trivial ap-
proximations, even for a simple restricted trial space. As an example, for a system of interacting fermions, the use of
independent-particle trial objects leads to standard mean-field theories for expectation values but to expressions of
the form (192) for correlation functions. It is the dependence of the trial objects on the sources which leads to such
elaborate results. Moreover, approximating all quantities in a unique framework preserves consistency properties.
(ii)The variational principle for the optimization of the generating functional is built by means of a general method

(Sec. II C). The object to be optimized is characterized by some simple equations, regarded as constraints on the
ingredients, namely, on the initial state D ∝ exp(−βK) and on the time-dependent observables of interest QH

j (t
′, t).

Lagrange multipliers are then associated with these constraints.
(iii) For dynamical problems, the Heisenberg observables QH

j (t
′, t) enter the generating functional, together with

the sources ξj(t), through the ”generating operator”

A(t) ≡ Te
i
∫∞

t
dt′

∑

j ξj(t
′)QH

j (t
′, t)

. (198)

The operatorA(t) is characterized by the differential equation (11) expressing dA(t)
dt , which plays the role of a constraint

in the variational principle. This Eq.(11) has been derived as a consequence of the backward Heisenberg equation

dQH
j (t

′, t)

dt
= − 1

i ~
[QH

j (t
′, t), H ] . (199)

We recall that, while the standard (forward) Heisenberg equation describes the variation of the Heisenberg observable
QH

j (t
′, t) as function of the running time t′, (199) is a differential equation with respect to a reference time t which

runs backward from t′ to the initial time ti. We have explained in Sec. II B why this backward dynamics is the suitable
one.
(iv) As regards the initial state D = e−βK , we have characterized it by the Bloch equation

dD(τ)

dτ
+K D(τ) = 0 , (200)

where τ runs from 0 to β. We thus deal with finite temperature. Ground state problems are treated in the limit
β → 0; in fact, this procedure turns out to be more convenient than the direct implementation of ground states.
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(v) The variational equations associated with the above constraints on A(t) and D(τ) have been worked out by
taking a Lie group as trial space for A(t), D(τ) and for their associated Lagrange multipliers (Sec. III), thus replacing
operators in Hilbert space by functions, their symbols. The approximate states that occur in mean-field theories belong
to such Lie groups, for instance static and dynamic states in Hartree-Fock approximations for fermions, Hartree-Fock-
Bogoliubov states for fermions with pairing, or coherent states for bosons. However, the trial operators D used here
depend on the sources; they are not overall approximations for the exact state D, but serve only to optimize the
generating functional (and hence all quantities of interest).
We have recalled in Sec. XI the outcomes of the above approach. Some well-known approximate results have been

recovered in special cases, for instance, static and dynamic mean-field or RPA treatments which now appear within
a general unified framework based on the use of a Lie group as trial space. Moreover, the new variational results
(184), (185), (192) and (195) have been derived for correlations and fluctuations. In particular, we have shown for
H = K that quasi-bosons (or quasi-oscillators) come out for any Lie group, and not only in the usual context of
zero-temperature RPA for fermions. Let us add a few comments.
In order to determine the generating functional ψ{ξ} ≡ lnTrA(ti)D, we have characterized A(ti) and D = e−βK

by introducing the functions A(t) and D(τ) = e−τK determined from the simple differential equations (11) and (200).
To build a tractable variational principle, we have been led to introduce the trial time-dependent quantities D(τ) and
A(t) whereas we need only their boundary values D(β) and A(ti). Moreover, the number of variables is doubled by the
introduction of the Lagrange multipliers A(τ), associated with the equation for D(τ), and D(t), associated with the
equation for A(t). These quantities are not coupled by the exact equations of motion. However, in a restricted trial
space, the stationarity conditions entail a coupling between them which allows a better optimization of the generating
functional ψ{ξ}.
In spite of their resemblance with density operators and exponentials of observables, the trial objects D(τ), A(t),

A(τ), D(t) are only computational tools for the evaluation of expectation values and correlation functions. In particular
the trial quantity D(t), which looks formally like a density operator in the Schrödinger picture, adapts itself to the
question asked, namely to the value of ψ{ξ}. It thus depends on the sources (and is not even hermitian). It cannot
be interpreted as an approximate state of the system, and in fact there exists no approximate density operator in the
original Hilbert space that would produce both the optimized expectation values (186) and correlations (184), (185),
(192).
Since all the results have been derived from the same variational principle, they naturally satisfy some consistency

properties fulfilled by exact quantities. For instance, if an observable Qj belongs to the Lie algebra and commutes with
H , exact conservation laws express the constancy in time of the expectation value 〈Qj〉t and of the fluctuation ∆Qj(t).
These two properties are ensured by the variational approximations (Sec. VIC). In contrast, a naive evaluation of

fluctuations based on the approximation TrQj
2 D̃(t) ≃ TrQj

2 D̃(0)(t) where D̃(0)(t) evolves according to (60), would

provide an unphysical time dependence: The Schrödinger picture for D̃(0)(t) is variationally suited to the evaluation
of expectation values, but not of correlation functions or fluctuations, which involve here the approximate Heisenberg
operators QH

j (t, t
′). The variational approximation (195) fulfils another consistency property, as discussed in Sec. VIA,

namely that any correlation function Cjk(t
′, t′′) depends only on the time difference t′ − t′′ when H = K. We have

also stressed that the approach unifies static and dynamical properties, generalizing theorems well known for fermion
systems [35–37] : When the thermodynamic equilibrium is stable, i.e., when the trial free energy f{R} is minimum at
{R} = {R(0)}, the matrix F of second derivatives is positive, and this implies that the eigenvalues of iCF are real. The
latter property ensures dynamical stability: a small deviation of {R} around {R(0)} is never amplified (Sec. IXC).
The approximate equations (182) and (186) determine the expectation values 〈Qj〉t at the initial time ti and for

arbitrary t, express these quantities in terms of the expectation values R
(0)
α (t) = TrMα D̃(0)(t), which are the symbols

of the elements Mα of the Lie algebra. Thus, at first order in the sources, these elements Mα are replaced by the

c-numbers R
(0)
α (t) as if the algebra were replaced by a commutative one. Accordingly, the approximate dynamical

equations then have a classical Lie-Poisson structure (Sec. X). At second order in the sources, we have shown (Sec. VII)
that in the initial state the fluctuations and correlations B of the operators Mα have the same form as if the Lie
algebra were replaced by a mapped algebra in which the commutators [Mα, Mβ] are replaced by c-numbers (109),
which are their expectation values (34). We have also seen that this amounts to replace the deviations (138) by linear
combinations of operators of non-interacting quasi-bosons (or of harmonic oscillators) together with quasi-scalars.
This property extends for H = K to two-time correlations. We thus acknowledge two successive modifications of
the Lie algebra: For first-order quantities, the operators Mα are approximated by scalars, whereas for second-order
quantities it is their commutators which are approximated by scalars.
Although formal and technical, the present approach is systematic, flexible, and consistent owing to the optimization

of the generating functional. It allows a variational evaluation of correlation functions, which lie beyond the realm of
standard mean-field theories. It generalizes some known approaches to arbitrary Lie groups, setting them within a
unified framework. It may be applied to various questions of statistical physics and field theory, static or dynamic,
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at zero or non-zero temperature, at equilibrium or off equilibrium.
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Appendix A: Derivation of the correlation matrices B and B
K

1. Ordinary correlations

As indicated in Sec. VD, the determination of the correlation matrix B involves the solution at first order of the

coupled equations (44),(45) for D(τ),A(τ) in the range 0 ≤ τ ≤ β, with the boundary conditions D(1)
α (0) = 0 and

A(1)
α (β) = Mα. The zeroth order operatorsD(0)(τ) = exp[−τ K(0)], A(0)(τ) = exp[(τ−β)K(0)] andD(0) = exp[−β K(0)],

where we denote for shorthand K{R(0)} ≡ K(0), have been derived in Sec. IVA. At first order, we have parametrized
the combination D(τ)A(τ) by {R(1)(τ)} ∼ {RDA(τ)} − {R(0)}, that is,

R
(1)
αβ(τ) ∼ Tr[D(0)(τ)A(1)

α (τ) +D(1)
α (τ)A(0)(τ)](Mβ −R

(0)
β )/TrD(0) . (A1)

The matrix element Bαβ was then identified with

Bαβ = R
(1)

αβ(τ = β) (A2)

= TrMα(Mβ −R
(0)
β )D̃(0) +

TrD(1)
α (β)(Mβ −R

(0)
β )

TrD(0)
.

A preliminary task is to find the τ -dependence of R
(1)
αβ(τ). This is done through the equation

d

dτ
[D(τ)A(τ)] =

[

D(τ)A(τ), K{RDA}
]

, (A3)

a consequence of (44),(45) equivalent to

dRDA
β (τ)

dτ
= − i ~Γ δ

βγ Kγ{RDA}RDA
δ (τ) . (A4)

This equation, since the boundary conditions D(1)
α (τ = 0) = 0 and A(1)

α (τ = β) = Mα are imposed at different times

τ , cannot fully determine the quantity R
(1)
αβ(τ) but it will provide its dependence on τ . Expanding (A4) up to first

order involves the kernel

K{RAD(τ)} ≈ K0 +R
(1)
αβ(τ)K

βδ Mδ , (A5)

which depends self-consistently on D(1)
α (τ) and A(1)

α (τ) through {R(1)(τ)}. Using (A5), then (35),(36) and (56), one
obtains

dR
(1)
αβ(τ)

dτ
= − i ~Cβγ F

γδ R
(1)
δ (τ) , (A6)

which is readily solved, in terms of the still unknown quantities R
(1)
αβ(τ = β) = Bαβ , as

R
(1)
αβ(τ) =

[

e i ~CF (β−τ)
] γ

β
R(1)

αγ (β) = Bαγ

[

e i ~ FC (τ−β)
]γ

β
. (A7)

We now turn to the determination of D(1)
α (τ) which enters (A2) for τ = β. (We shall not need A(1)

α (τ) for 0 ≤ τ < β.)
The first order contribution to (44) takes the form

d

dτ
[D(1)

α (τ)A(0)(τ)] =
[

D(1)
α (τ)A(0)(τ), K(0)

]

−R
(1)
αβ(τ)K

βγ Mγ D(0) . (A8)
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Using the boundary condition D(1)
α (0) = 0, we can solve (A8) as

D(1)
α (τ)A(0)(τ) = −

∫ τ

0

dτ ′R
(1)
αβ(τ

′)Kβγ eK
(0)(τ ′−τ)Mγ e

K(0)(τ−τ ′) D(0) . (A9)

The integrand involves the transform of the element Mγ of the Lie algebra by the element eK
(0)(τ ′−τ) of the group,

with K(0) = MβK(0)β . This transform is also an element of the algebra given by the automorphism (37) for D = D(0)

and λ = (τ − τ ′)/β as

eK
(0)(τ ′−τ)Mγ e

K(0)(τ−τ ′) =
[

e i ~β−1
C S (τ ′−τ)

] δ

γ
Mδ . (A10)

Inserting (A7) and (A10) into (A9) leads to

D(1)
α (τ)A(0)(τ) = (A11)

−
∫ τ

0

dτ ′ Bαβ

[

ei~ FC (τ ′−β)
(

F+ β−1
S
)

ei ~β−1
C S (τ ′−τ)

]βγ

Mγ D(0) .

We note that the bracket in Eq.(A11) is the derivative with respect to τ ′ of

e i ~ FC (τ ′−β) − I

i ~FC
F e i ~β−1

CS (τ ′−τ) + S
e i ~β−1

CS (τ ′−τ) − I

i ~CS
,

where (ex − 1)/x is defined by continuity as 1 for x = 0. Thus, by integration of (A11), we obtain for τ = β:

D(1)
α (β) = Bαβ

[

e− i ~β FC − I

i ~FC
F e− i ~C S + S

e− i ~C S − I

i ~CS

]βγ

Mγ D(0) . (A12)

We have thus found the expression of D(1)
α (β) to be inserted into (A2) so as to obtain Bαβ . The resulting two

terms in (A2) involve a correlation in the state D̃(0) ∝ exp[−βK(0)] between two operators of the basis {M} of the
Lie algebra, Mα and Mβ, or Mβ and Mγ , respectively. Such correlations have been evaluated in Sec. III C (within

replacement of D by D(0)) and are provided by Eq.(41). Inserting both terms in (A2), we find

B =
i ~CS

I− e i ~C S
S
−1 (A13)

+B

(

F
e− i ~β CF − I

i ~CF
e− i ~C S +

e− i ~ S C − I

i ~ SC
S

)

S
−1 i ~ SC

e− i ~C S − I
,

and hence

B =
i ~CF

11− e−i ~β C F
F
−1 . (A14)

2. Kubo correlations

In order to find a variational approximation for the Kubo correlation

Tr
1

β

∫ β

0

dτ e τ K Mα e
− τ K Mβ D̃ − TrMα D̃TrMβ D̃ , (A15)

we first replace A(t) by I in the generating functional lnTrA(ti)D and introduce, instead of the sources ξj(t) entering
the exponent of A, small sources δJα entering terms −β−1δJαMα added to K in the exponent of D = exp(−βK). We
now deal with a single exponential operator instead of a product of two, and Kubo correlations are the second-order
terms in {δJ} in the expansion of lnTrD.
The variational approximation BK for Kubo correlations is then obtained through the formalism of Sec. IVA within

replacement of the image K by K − β−1δJαMα. This yields lnTr exp(−βK + δJαMα) ≃ −βf{R} + δJαRα where
{R} = {R(0) + δR} is given by the stationarity condition β ∂f{R(0) + δR}/∂Rα = β FαβδRβ = δJα. As in the
evaluation of the thermodynamic coefficients, the second-order terms in {δJ} are finally found as

B
K
αβ =

1

β
(F−1)αβ = [(βK− S)−1]αβ . (A16)

Here as in the case of B, this approximation for (A15) is obtained by replacing −S by β F = βK − S in the naive

expression (38) written for D̃ = D̃(0).
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Appendix B: The variational results and the effective state

We prove in this Appendix that the variational approximations TrMαD̃ ≃ 〈Mα〉app = R
(0)
α and TrMαMβD̃ ≃

〈MαMβ〉app = Bαβ + R
(0)
α R

(0)
β found in Secs. IV and V are reproduced in the mapped Hilbert space H as exact

expectation values of Mα and MαMβ over the effective state D̃ defined by Eq.(111).
Let us introduce the generating function

φ{λ} ≡ ln
Tr exp(− β F + λα Mα)

Tr exp(− β F )
(B1)

which will produce the expectation values 〈Mα〉map and the Kubo correlations 〈Mα Mβ〉
K

map
in the state D̃ by derivation

with respect to the sources λα. We can rewrite it as

φ{λ} ≡ ln
Tr exp

[

− 1
2 βM

′

α Fαγ M
′

γ + λαR
(0)
α + 1

2 β
−1 λα

(

F−1
)

αγ
λγ

]

Tr exp(− β F )
(B2)

where the operators M
′

α in the mapped space H are defined through the shift (we drop M0):

M
′

α = Mα − β−1
(

F
−1

)

αγ
λγ −R(0)

α . (B3)

These operators obey the same commutation relations as (109), so that the replacement of {M} by {M′} does not
modify the trace. Hence, we find

φ{λ} = λαR(0)
α +

1

2 β
λα

(

F
−1

)

αγ
λγ . (B4)

We now expand Tr exp[− β F + λα Mα] in powers of the sources λα:

Tr e−β F+λα Mα ≈ (B5)

Tr e−β F + λα Tr
(

e−β F Mα

)

+
1

2 β
λα λγ

∫ β

0

dτ Tr
(

e− (β−τ)F Mα e
− τ F Mγ

)

.

Inserting in (B1) and identifying with (B4), we recover at first order

〈Mα〉map = R(0)
α . (B6)

At second order, we obtain in the space H the Kubo correlations of the operators {M}:

〈(Mα −R(0)
α )(Mβ −R

(0)
β )〉

K

map
= (B7)

〈

1

β

∫ β

0

dτ e τF (Mα −R(0)
α ) e− τF (Mγ −R(0)

γ )

〉

map

=
1

β

(

F
−1

)

αγ
.

In order to derive therefrom the ordinary correlations we proceed as in Sec. III C. We note that

d

dτ
e τF Mα e

− τF = e τF [F , Mα] e
− τF = − i ~ (CF) γ

α e
τF (Mγ −R(0)

γ ) e− τF , (B8)

where we used the expression (111) of F and the commutation relations (109). Integration over τ then yields

e τF (Mα −R(0)
α ) e− τF =

(

e− i ~ τ CF
) β

α
(Mβ −R

(0)
β ) , (B9)

and hence, through a new integration as in (40),

〈(Mα −R(0)
α )(Mβ −R

(0)
β )〉

K

map
= (B10)

(

11− exp[− i ~ βCF]

i ~β CF

) β

α

〈(Mβ −R
(0)
β )(Mγ −R(0)

γ )〉map .
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By combining (112) and (B10) we find that the ordinary correlations of the operators {M} are given by

〈(Mα −R(0)
α )(Mβ −R

(0)
β )〉map =

(

i ~CF

11− exp[−i ~β CF]
F
−1

)

αβ

= Bαβ , (B11)

so that we recover here the matrix B of Eq.(88), now derived as an exact correlation in the mapped space H .
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