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Abstract

We construct the first example of a superstratum: a class of smooth horizonless supergravity
solutions that are parameterized by arbitrary continuous functions of (at least) two variables
and have the same charges as the supersymmetric D1-D5-P black hole. We work in Type
IIB string theory on T 4 or K3 and our solutions involve a subset of fields that can be
described by a six-dimensional supergravity with two tensor multiplets. The solutions can
thus be constructed using a linear structure, and we give an explicit recipe to start from
a superposition of modes specified by an arbitrary function of two variables and impose
regularity to obtain the full horizonless solutions in closed form. We also give the precise
CFT description of these solutions and show that they are not dual to descendants of chiral
primaries. They are thus much more general than all the known solutions whose CFT dual
is precisely understood. Hence our construction represents a substantial step toward the
ultimate goal of constructing the fully generic superstratum that can account for a finite
fraction of the entropy of the three-charge black hole in the regime of parameters where the
classical black hole solution exists.
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1 Introduction

There has been growing evidence that string theory contains smooth, horizonless bound-state
or solitonic objects that have the same charges and supersymmetries as large BPS black holes
and that depend on arbitrary continuous functions of two variables. These objects, dubbed
superstrata, were first conjectured to exist in [1], by realizing that some of the exotic brane
bound states studied in [2]1 can give rise to non-singular solutions in the duality frame where
the charges of these objects correspond to momentum, D1-branes and D5-branes.

It was subsequently argued that, assuming that superstrata existed, the most general class
of such objects could carry an entropy that scales with the charges in exactly the same way as
the entropy of the D1-D5-P black hole, and possibly even with the same coefficient [5]. Since
this entropy would come entirely from smooth horizonless solutions, this would substantiate
the fuzzball description of supersymmetric black holes in string theory: the classical solution
describing these black holes stops giving a correct description of the physics at the scale of the
horizon, where a new description in terms of fluctuating superstrata geometries takes over.

Partial evidence for the existence of superstrata can be obtained by analyzing string emission
in the D1-D5 system [6, 7], or by constructing certain smaller classes of supergravity solutions
[8–13]. However, to prove that superstrata indeed exist, one needs to explicitly construct smooth
horizonless solutions that have the same charges as the D1-D5-P black hole and are parameterized
by arbitrary continuous functions of two variables, which is a challenging problem.

The purpose of this paper is to construct such solutions and thus demonstrate that superstrata
exist. Furthermore, we will be able to find precisely the CFT states dual to these solutions and
show that these states are not descendants of chiral primaries, which means that they are much
more general than all the known solutions whose CFT dual is precisely understood [8,10,14,15].
This is a huge step toward achieving the ultimate goal of constructing all smooth horizonless
solutions that have the right properties for reproducing the black-hole entropy and thus proving
the fuzzball conjecture for BPS black holes.

Our procedure relies on the proposal [1] that superstrata can be obtained by adding mo-
mentum modes on two-charge D1-D5 supertubes: Supertube solutions [16–18] have eight super-
charges and are parameterized by functions of one variable; adding another arbitrary function-
worth of momentum modes to each supertube was argued to break the supersymmetry to four
supercharges and result in a superstratum parameterized by arbitrary continuous functions of
two variables. However, as anybody familiar with supertube solutions might easily guess, trying
to follow this route brings one rather quickly into a technical quagmire.

A simpler route to prove that superstrata exist is to start from a maximally-rotating supertube
solution and try to deform this solution by making the underlying fields and metric wiggle in
two directions. This approach is attractive for several reasons. First, the holographic dictionary
for the 1

4
-BPS (8-supercharge) 2 D1-D5 supertubes is well understood [19,20] and so, as we will

describe later in this paper, we can then generalize this dictionary to the 1
8
-BPS (4-supercharge)

D1-D5-P superstrata. Second, the equations that govern the superstrata solutions are well-
known [21, 22], and can be organized in a linear fashion [23], and so this technique appears to

1In [2], double supertube transitions [3] of branes were argued to lead to configurations that are parametrized
by functions of two variables and are generically non-geometric. For further developments on exotic branes see [4].

2Throughout this paper 1
N -BPS will denote a state with 32

N supercharges.
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be the technique of choice, all the more so because it has enabled the construction of solutions
that depend of two arbitrary functions each of which depends upon a different variable [12].
Nevertheless, while extensive trial and error has led to many solutions that depend on functions
of two variables they have all, so far, been singular3.

The key ingredient simplifying the task of smoothing the singularities of these solutions is a
fourth type of electric field that appears neither in the original five-dimensional U(1)3 ungauged
supergravity, where most of the known black hole microstate solutions have been built [24–26],
nor in the six-dimensional uplift in [21, 23], where the solutions of [12] were constructed. The
presence of this field can drastically simplify the sources that appear on the right-hand sides of
the equations governing the superstratum and allows us to find smooth solutions depending on
functions of two variables in closed form. The solutions with this field can only be embedded in
a five-dimensional ungauged supergravity with four or more U(1) factors, or in a six-dimensional
supergravity with two or more tensor multiplets. Fortunately, the equations underlying the most
general supersymmetric solution of the latter theory were found in [27] and these equations can
also be solved following a linear algorithm similar to the one found in [23].

The essential role for this fourth type of electric field in the solutions dual to the typical
microstates of the D1-D5-P black hole was first revealed by analyzing string emission from the
D1-D5-P system [6, 7] and from D1-D5 precision holography [19, 20]. Furthermore, in [28, 29]
it was shown that adding this field to certain fluctuating supergravity solutions can make their
singularities much milder4. The fact that the extra field plays an important part in both obtaining
smooth, fluctuating three-charge geometries and in the description of D1-D5-P string emission
processes is, in our opinion, no coincidence, but rather an indication that the solutions we
construct are necessary ingredients in the description of the typical microstates of the three-
charge black hole.

Our plan is to start from a round supertube solution with the fourth electric field turned on
and to prove that this solution is part of a family of solutions that is parameterized by functions
of two variables. There are two natural perspectives on these solutions.

The first is to recall that, in the D1-D5 duality frame, the infra-red geometry of the two-
charge supertube solution is AdSglobal

3 × S3. This background has three U(1) symmetries, which
we will parametrize by (v, ψ, φ): v corresponds to the D1-D5 common direction, ψGH ≡ ψ + φ
is the Gibbons-Hawking fiber that comes from writing the R4 in which supertube lives as a
Gibbons-Hawking space and φGH ≡ ψ−φ is the angular coordinate in the Gibbons-Hawking R3

base. The Lunin-Mathur two-charge supertube solutions [16,18], as well as their generalizations
that have the fourth type of electric field turned on [8,19,20], correspond to shape deformations
of the supertube, and their shapes and charge densities can be viewed as being determined by
arbitrary functions of the coordinate ψGH . One can also construct solutions that depend on v
by simply interchanging v and ψGH [12]. Both these classes of solutions are parameterized by
functions of one variable and, as such, correspond to special choices of spherical harmonics on the

3It is important to remember that our purpose is to reproduce the black hole entropy by counting smooth
horizonless supergravity solutions, or at most singular limits thereof, that one can honestly claim to describe in a
controllable way. If we were to count black hole microstate solutions with singularities, we could easily overcount
the entropy of many a black hole.

4This has allowed, for example, the construction of an infinite-dimensional family of black ring solutions that
gives the largest known violation of black-hole uniqueness in any theory with gravity [29].
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three-sphere of the round supertube solution. Our superstrata will depend non-trivially upon all
three angular coordinates, but only through a two-dimensional lattice of mode numbers (defined
in (3.23)).

The second perspective comes from decomposing the functions of two variables that
parametrize our superstratum solutions under the SU(2)L × SU(2)R isometry of the S3 and
the SL(2,R)L×SL(2,R)R isometry of the AdS3. The shape modes of the two-charge supertube
preserve eight supercharges and have SU(2)L × SU(2)R quantum numbers (J3, J̃3) = (j, j̃) and
SL(2,R)L × SL(2,R)R weights5 h = h̃ = 0; since |j − j̃| determines the spin of the field in
the theory, each Fourier mode is determined essentially by one quantum number. Thus, these
solutions are parameterized by functions of one variable, as expected.

The solutions we construct have four supercharges and correspond to adding left-moving
momentum modes to the supertube. The generic mode will have SL(2,R)L weight h > 0. Since
h is independent of j, these will generate intrinsically two-dimensional shape modes on the S3.
Since the equations underlying our solutions can be solved using a linear algorithm, superposing
multiple spherical harmonics gives rise to very complicated source terms in the equations we
are trying to solve. Furthermore, most of the solutions one finds by brute force give rise to
singularities. In the earlier construction of microstate geometries, such singularities were canceled
by adding homogeneous solutions to the equations. Here we will see that this technique does not
allow us to obtain smooth solutions from a generic superposition of harmonics on the S3 in all
electric fields, and that we have to relate the combinations of spherical harmonics appearing in
the electric fields. At the end of the day, the resulting smooth solutions will contain one general
combination of spherical harmonics on a three-sphere, which can be repackaged into an arbitrary
continuous function of two variables.

Our superstratum can be precisely identified with a state at the free orbifold point of the
D1-D5 CFT. The dual CFT interpretation, besides providing a crucial guide for the supergravity
construction, firmly establishes that our solutions contribute to the entropy of the three-charge
black hole, and clarifies what subset of the microstate ensemble is captured by our solutions.
In the previous literature, all three-charge geometries with a known CFT dual [8, 10, 14,15] had
been obtained by acting on a two-charge solution (in the decoupling limit) with a coordinate
transformation that does not vanish at the AdS3 boundary. On the CFT side this is equivalent
to acting with an element of the chiral algebra on a Ramond-Ramond (RR) ground state, and
produces a state which is identified with a descendant of a chiral primary state in the Neveu-
Schwarz–Neveu-Schwarz (NSNS) sector. In contrast, the microstate solutions we construct here
cannot be related, generically, to two-charge microstate solutions via a global chiral algebra
rotation. They thus do not correspond to descendants of chiral primaries but represent much
more generic states than the ones previously considered in [8, 10,14,15].

In the interests of full disclosure, while the results presented here represent a major step
forward in the microstate geometry programme, it is also very important to indicate what we
have not yet achieved.

First, the superstratum solutions we construct in this paper are still rather “coarsely grained”
in that they do not fully capture states in the twisted sector of the dual CFT (see Section 7).
That is, while we do indeed have a superstratum that fluctuates non-trivially as a function of

5Here we are considering the Ramond-Ramond (RR) sector.
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two variables, the fluctuations we construct here are dual to restricted classes of integer-moded
current-algebra excitations in the dual CFT and so, at present, our superstrata solutions do not
have sufficiently many states to capture the black-hole entropy. Thus, we have not yet achieved
the “holy grail” of the microstate geometry programme.

One should also note that typical states will contain general combinations of fractional-
moded excitations in a twisted sector of very high twisting, corresponding to a long effective
string of length equal to the product of the numbers of D1 and D5 branes. This sector of the
CFT might not be well described within supergravity. However, to prove the validity of the
microstate geometry programme it is sufficient to show the existence of a superstratum which
contains general fractional modes in twisted sectors of arbitrary finite order; this will establish
the existence of a mechanism which allows to encode the information of generic states in the
geometry. The fact that, in the limit of very large twisting, corrections beyond supergravity
might have to be taken into account does not invalidate the existence of such a mechanism.
In particular, we hope that in subsequent work we will be able to refine the mode analysis
and the holographic dictionary obtained in this paper and obtain superstrata containing general
fractional modes.

The other, more technical issue is that the systematic procedure given in this paper does
not yet provide a complete description of the solution for all combinations of Fourier modes of
the arbitrary function of two variables that parametrizes the superstratum. As yet, we have not
been able to obtain the closed expression for one function that appears in some components of
the angular momentum vector. In principle these could be singular, but we do not expect this,
for two reasons: First, we have the general explicit solution for one of the components of the
angular momentum vector and this component is regular and, from our experience, if there are
singularities in the angular momentum vector they always appear in this particular component.
Secondly, we have actually been able to find this function and construct the complete solution
for several (infinite) families of collections of Fourier modes. These families were chosen so as
to expose possible singular behaviors and none were found. Thus, while we do not have explicit
formulae for one function that appears in the angular momentum vector for all combinations
of Fourier modes we believe that this is merely a technical limitation rather than a physical
impediment.

The construction presented in this paper establishes that the superstratum exists as a bound
state object of string theory, and that its supergravity back-reaction gives rise to smooth hori-
zonless three-charge solutions. Having shown this, we believe that a fully generic superstratum
is within reach and thus one will be able to show that a finite fraction of the entropy of the BPS
black hole comes from smooth horizonless solutions. This, in turn, would imply that the typical
states of this black hole will always have a finite component extended along the direction of the
Hilbert space parameterized by horizonless solutions, and hence will not have a horizon. Thus
one would confirm the expectations and goals of the fuzzball/firewall arguments6: the horizon
of an extremal supersymmetric black hole is not an essential, fundamental component but the
result of coarse-graining multiple horizonless configurations.

More broadly, we would like to emphasize that results presented here provide a remarkable
confirmation of the power of the approach we have been using to establish that there is struc-

6See [30–45] for some developments in that area.
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ture that replaces the horizon of a black hole: we have directly constructed this structure in
supergravity. As we emphasized in [46], this approach could have failed at many different stages
throughout its development. The most recent hurdle has been to show that supergravity has
structures that might contain enough states to count the entropy of the black hole. In [5] we have
argued that this can happen if string theory contains three-charge superstrata solutions that can
be parameterized by arbitrary continuous functions of two variables. The present paper shows
explicitly that these solutions exist and furthermore that they are smooth in the duality frame
where the black hole has D1,D5 and momentum charges. (It was the successful clearing of this
latest hurdle that led to our somewhat celebratory title for this paper.) Though most of the recent
literature on the information paradox has focused on “Alice-and-Bob” Gedankenexperiments, we
believe that general quantum information arguments about physics at a black-hole horizon will
always fall short of resolving the paradox: failure is inevitable without a mechanism to support
structure at the horizon scale. It is remarkable that string theory can provide a natural and
beautiful solution to this essential issue and, as was shown in [47], microstate geometries provide
the only possible gravitational mechanism and so must be an essential part of the solution to
the paradox.

In Section 2 we introduce the six-dimensional supergravity theory where our D1-D5-P mi-
crostate solutions are constructed and also recall the connection of these solutions to those
constructed in the more familiar M2-M2-M2 duality frame. We write the equations governing
the supersymmetric solutions of the six-dimensional supergravity theory in a form that high-
lights their linear structure and simplify the problem by choosing a flat four-dimensional base
space metric. The equations governing the supersymmetric solutions can then be organized in
a first layer of linear equations, which determine the electric and magnetic parts of the gauge
fields associated with the D1- and D5-branes, and a second layer of linear but inhomogeneous
equations, which determine the momentum and the angular momentum vectors.

In Section 3 we solve the first layer of equations. We start from a round D1-D5 supertube
carrying density fluctuations of the fourth type of electric field and apply a CFT symmetry
transformation to generate a two-parameter family of modes that carry the third (momentum)
charge. We then use the linearity of the equations to build solutions that contain arbitrary
linear combinations of such modes. Section 4 contains the most challenging technical part of
the superstratum construction: finding the solution of the second layer of equations. We explain
how the sources appearing in these equations have to be fine tuned to avoid singularities of
the metric, and how this requirement selects a restricted set of solutions to the first layer of
equations. These solutions are parameterized by certain coefficients that can be interpreted
as the Fourier coefficients of a function of two variables, which defines the superstratum. We
then construct the general solution for the particular component of the angular momentum 1-
form that, from our experience, controls the existence of closed timelike curves. We also find
in Section 5 the remaining components of this 1-form, thus deriving the complete solution for
several (infinite) families of collections of Fourier modes. We verify the regularity of the solutions
in these examples.

Although we mostly work in the “decoupling” regime, in which geometries are asymptotic
to AdS3 × S3, in Section 6 we present a way to extend our solutions and obtain asymptotically
five-dimensional (R4,1 × S1) superstrata geometries. We also derive the asymptotic charges and
angular momenta of these geometries. These results are then used in Section 7 to motivate the
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identification of the states dual to the superstrata at the free orbifold point of the D1-D5 CFT.
We point out that states dual to our superstrata are descendants of non-chiral primaries and we
show how some of the features of the gravity solution have a natural explanation in the dual
CFT.

Section 8 summarizes the relevance of our construction for the black-hole microstate geometry
programme and highlights possible future developments. Several technical results are collected
in the Appendices. In Appendix A we recall the form of general two-charge microstates and in
Appendix B we explain how to use a recursion relation to solve some of the differential equations
of the second layer.

Readers who are not so interested in the gory technical details of our solutions can simply read
Sections 2 and 3 in order to understand the supergravity structure that we use in constructing
the explicit superstratum solution, and read Section 7 in order to understand the corresponding
states in the dual CFT.

2 Supergravity background

The existence of the superstratum was originally conjectured based upon an analysis of super-
symmetric bound states within string theory. The (1

2
-BPS) exotic branes of string theory were

thoroughly analyzed in [2, 4], where it was also argued that objects carrying dipole charges cor-
responding to such branes can result from simple or double supertube transitions. In [1] it was
pointed out that the hallmark of these bound state objects is that they are locally 1

2
-BPS, but

when they bend to form a supertube they break some of the supersymmetry. In particular the
objects that result from a simple supertube transition are 1

4
-BPS and are parameterized by arbi-

trary functions of one variable, while the objects that result from a double supertube transition
are 1

8
-BPS and are parameterized by arbitrary functions of two variables. As explained in [2, 4],

most of the double supertube transitions result in objects carrying exotic brane charges, which
are therefore non-geometric. However, in [1] it was pointed out that when D1 branes, D5 branes
and momentum undergo a double supertube transitions the resulting 1

8
-BPS object is not only

geometric but also potentially giving rise to a class of smooth microstate geometries parame-
terized by arbitrary functions of two variables. This object became known as the superstratum.
Thus, this fundamental bound state in string theory could, as a microstate geometry, provide
a very large semi-classical contribution to the 1

8
-BPS black-hole entropy. Indeed it was argued

in [5] that a fully generic superstratum could capture the entropy to at least the same parametric
growth with charges as that of the three-charge black hole. Thus the construction of a completely
generic superstratum has become a central goal of the microstate geometry programme.

The supertube transitions that yield the superstratum were analyzed in detail in [1] and it
was shown that indeed such solitons could be given shape modes as a function of two variables
while remaining 1

8
-BPS. Based on the forms of these supertube transitions it was argued that the

resulting geometry should be smooth but this remained to be substantiated through computation
of the fully-back-reacted geometries in supergravity. Since this initial conjecture, much progress
has been made in finding the supergravity description of the superstratum.

The structure of the BPS equations led to the construction of doubly fluctuating, but singular
BPS, “superthreads and supersheets” in [9,11]. Simple but very restricted classes of superstrata
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were obtained in [12]. In parallel with this, string amplitudes were used to very considerable
effect to find the key perturbative components of the superstratum [6–8, 13, 48]. The fact that
the BPS equations underlying the superstratum are largely linear [23] means that knowledge
of the perturbative pieces can be sufficient for generating the complete solution. Finally, in an
apparently unrelated investigation of new classes of microstate geometries [28] and new families
of black-ring solutions [29], a mechanism arising out of the perturbative superstrata programme
was used to resolve singularities and find new physical solutions.

We are now in a position to pull all these threads together and obtain, for the first time, a
non-trivial, fully-back-reacted smooth supergravity superstratum that fluctuates as a function
of two variables. We begin by reviewing the basic supergravity equations that need to be solve,
starting in the D1-D5-P duality frame and discussing how this reduces to an analysis within
six-dimensional supergravity. While we will be working with the T 4 compactification of IIB
supergravity to six dimensions, it is important to note that in our supergravity solutions only
the volume of T 4 is dynamical and thereby we work with N = 1 supergravity theory in six
dimensions without vector multiplets. This implies that all our supergravity results may be
trivially ported to IIB supergravity on K3.

2.1 The IIB solution

The general solution of type IIB supergravity compactified on T 4 × S1 that preserves the same
supercharges as the D1-D5-P system and is invariant under rotations of T 4 has the form [27,
Appendix E.7]:

ds2
10 =

1√
α
ds2

6 +

√
Z1

Z2

dŝ2
4 , (2.1a)

ds2
6 = − 2√

P
(dv + β)

[
du+ ω +

F
2

(dv + β)
]

+
√
P ds2

4 , (2.1b)

e2Φ =
Z2

1

P
, (2.1c)

B = −Z4

P
(du+ ω) ∧ (dv + β) + a4 ∧ (dv + β) + δ2 , (2.1d)

C0 =
Z4

Z1

, (2.1e)

C2 = −Z2

P
(du+ ω) ∧ (dv + β) + a1 ∧ (dv + β) + γ2 , (2.1f)

C4 =
Z4

Z2

v̂ol4 −
Z4

P
γ2 ∧ (du+ ω) ∧ (dv + β) + x3 ∧ (dv + β) + C , (2.1g)

C6 = v̂ol4 ∧
[
−Z1

P
(du+ ω) ∧ (dv + β) + a2 ∧ (dv + β) + γ1

]
− Z4

P
C ∧ (du+ ω) ∧ (dv + β) , (2.1h)

with

α ≡ Z1Z2

Z1Z2 − Z2
4

, P ≡ Z1 Z2 − Z2
4 . (2.2)
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Here ds2
10 is the ten-dimensional string-frame metric, ds2

6 the six-dimensional Einstein-frame
metric, Φ is the dilaton, B and Cp are the NS-NS and RR gauge forms. (It is useful to also list
C6, the 6-form dual to C2, to introduce all the quantities entering the supergravity equations.)

The flat metric on T 4 is denoted by dŝ2
4 and the corresponding volume form by v̂ol4. The metric

ds2
4 is a generically non-trivial, v-dependent Euclidean metric in the four non-compact directions

of the spatial base, B. We have traded the usual time coordinate, t, and the S1 coordinate,
y = x9, for the light-cone coordinates

u =
t− y√

2
, v =

t+ y√
2
. (2.3)

The quantities, Z1, Z2, Z4,F are scalars; β, ω, a1, a2, a4 are one-forms on B; γ1, γ2, δ2 are two-
forms on B; and x3 is a three-form on B. All these functions and forms can depend not only
on the coordinates of B but also on v. As discussed below, if the solution is v-independent, the
one-forms a1, a2, a4 may be viewed as five-dimensional Maxwell fields. Finally, C is a v-dependent
top form in B which can always be set to zero by using an appropriate gauge [27]. To preserve the
required supersymmetry, these fields must satisfy BPS equations [27] and thus get interrelated
to one another as we will explain in subsection 2.3 .

Note that we use the fact that the internal manifold of our solutions is T 4 only as an interme-
diate technical tool, but the final solutions we obtain are solutions of six-dimensional supergravity
with two tensor multiplets, which can describe equally well microstate geometries for the D1-
D5-P system on K3.

2.2 The M-theory and five-dimensional pictures

Three-charge microstate geometries are expected to be smooth only in the D1-D5-P duality
frame, in which we exclusively work in this paper. However, it is useful to make connection to
other duality frames that are probably more familiar to the reader, in particular the M-theory
frame in which all the electric charges are on the same footing and described by M2-branes.
Moreover, by compactifying M-theory on T 6 and truncating the spectrum one can understand
much of the structure of the solutions in terms of five-dimensional, N = 2 supergravity coupled to
n vector multiplets. However, it is important to note that the M-theory and D1-D5-P frames are
different in one crucial respect: v-dependent solutions in the D1-D5-P frame, which are essential
ingredients of the superstratum conjecture, are not describable in the M-theory frame, because
the T-duality along the common D1-D5 direction, which connects the two frames, transforms
v-dependent solutions into solutions that contain higher KK harmonics and therefore cannot
be described by supergravity. Therefore, for the purposes of the current paper, the M-theory
picture explained here should be regarded as a book-keeping device to understand the degrees of
freedom appearing in the general three-charge geometries. We will work in the D1-D5-P frame
except for this subsection.

In the five-dimensional description, including the graviphoton, there are thus (n + 1) five-
dimensional vector fields, A(I), encoded in the eleven-dimensional three-form potential C(3), and

9



the scalars t(I), encoded in the Kähler form J for the compact six-dimensional space [49,50]:

C(3) =
n+1∑
I=1

A(I) ∧ JI , J =
n+1∑
I=1

t(I) ∧ JI . (2.4)

Here, JI are harmonic (1, 1)-forms on the compact six-dimensional space that are invariant under
the projection performing the N = 2 truncation. In addition the t(I)’s satisfy the constraint

1
6
CIJKt

(I) t(J) t(k) = 1 , (2.5)

where CIJK is given by the intersection product among the JI , so only n scalars are independent.
Here we will take the compact six-dimensional space to be T 6 . If we parametrize the T 6 by the
holomorphic coordinates:

w1 = x5 + ix6 , w2 = x7 + ix8 , w3 = x9 + ix10 , (2.6)

then the requisite forms are the real and imaginary parts of dwa ∧ dw̄b, a, b = 1, 2, 3.
5
However, we will only need the subset of these:

J1 ≡ i
2
dw1 ∧ dw̄1 = dx5 ∧ dx6 , J2 ≡ i

2
dw2 ∧ dw̄2 = dx7 ∧ dx8 ,

J3 ≡ i
2
dw3 ∧ dw̄3 = dx9 ∧ dx10 ,

J4 ≡ 1
2
√

2
(dw1 ∧ dw̄2 + dw̄1 ∧ dw2) = 1√

2
(dx5 ∧ dx7 + dx6 ∧ dx8) ,

J5 ≡ i
2
√

2
(dw1 ∧ dw̄2 − dw̄1 ∧ dw2) = 1√

2
(dx5 ∧ dx8 − dx6 ∧ dx7) . (2.7)

In this basis, the only non-zero components of CIJK are

C3JK ≡ ĈJK = ĈJK , J,K ∈ {1, 2, 4, 5} (2.8)

where

ĈJK =


0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1

 . (2.9)

The standard “STU” supergravity corresponds to setting A(5) = A(4) = 0 and retaining A(I),
I = 1, 2, 3, with A(1) +A(2) +A(3) being the graviphoton. The degrees of freedom in our particular
examples of a superstratum correspond to the presence of one extra vector multiplet and this
involves identifying in the fourth and fifth sets of fields: A(5) = A(4) and t(5) = t(4) as in [48,51].

In the “STU” model, the standard route (see, for example, the appendices in [52]) for getting
from the IIB frame to the M-theory frame is to perform T-dualities on (x9, x5, x6) and then
to uplift the resulting IIA description to eleven dimensions. In the IIB solution there are four
independent scalar functions (F ≡ −2(Z3 − 1) and ZI with I = 1, 2, 4) whose ratios correspond
to the scalars in the vector multiplets. The fourth function represents a convenient way of writing
the warp factor of the five-dimensional metric as a relaxation of the constraint (2.5):

Z ≡
(

1
6
CIJKZI ZJ ZK

) 1
3 , (2.10)
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In our particular class of solutions with (2.8) and (2.9) we have

Z3 = 1
2
Z3

(
ĈIJZI ZJ

)
= Z3

(
Z1 Z2 − Z2

4

)
= Z3P , (2.11)

where ĈIJ ≡ ĈIJ and we identified A(5) = A(4). The combination P will be ubiquitous as a warp
factor in the six-dimensional formulation. The function, F , and the vector field, β, encode the
momentum and the KK-monopole charges and form the time and the space components of the
five-dimensional vector A(3), while the other two scalars Z1 and Z2 combine with a1 and a2 to
give A(1) and A(2). As mentioned above, the degrees of freedom of the IIB solution (2.1) require
an extra vector multiplet. In order to map the IIB configuration in the M-theory frame one needs
a slightly more complicated combination of T-dualities and one S-duality [6]. However the final
result is very similar to that of the “STU” model, with the scalar Z4 and vector a4 forming the
new vector multiplet.

One can also uplift the five-dimensional description given here to N = 1 supergravity in six
dimensions. [53, 54]. This is more appropriate for our solution, since this formulation allows
v-dependent solutions. Indeed, the six-dimensional formulation is the T 4 reduction of the IIB
description in Section 2.1. In the uplift, the five-dimensional graviton multiplet combines with one
of the vector multiplets to yield the six-dimensional graviton multiplet, while all the remaining
vector multiplets become anti-self-dual tensor multiplets. Thus the “STU” model corresponds
to minimal N =1 supergravity (whose bosonic sector consists of a graviton, gµν , and a self-dual
tensor gauge field, B+

µν) plus a tensor multiplet (whose bosonic sector consists of an anti-self-dual
tensor gauge field, B−µν , and a scalar, Φ). The BPS equations for these systems were obtained
in [21,22] and were fully analyzed and greatly simplified in [23]. To build our solutions we need to
add an extra anti-self-dual tensor multiplet and the corresponding analysis of the BPS equations
is discussed in [27]. We now summarize this result and present the equations that we need to
solve in order to construct a superstratum in the class of solutions presented in (2.1).

2.3 The equations governing the supersymmetric solutions

The BPS conditions require that everything be u-independent and, in particular, ∂
∂u

must be
a Killing vector. It is convenient to think of the fields in terms of the four-dimensional base
geometry and so one defines a covariant exterior derivative

D ≡ d− β ∧ ∂

∂v
. (2.12)

Here and throughout the rest of the paper, d denotes the exterior differential on the spatial base
B 7. The derivative, D, is covariant under diffeomorphisms mixing v and xi:

v → v − V (xi) , β → β + dV . (2.13)

Given that everything is u-independent, the class of diffeomorphisms of u that respect the form
of the solution (2.1) may be recast in terms of a gauge invariance:

u→ u+ U(xi, v) , ω → ω − dU + U̇ β , F → F − 2 U̇ , (2.14)

7Note that this convention differs from that of much of the earlier literature in which the exterior differential
on the spatial base B is denoted by d̃.
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where a dot denotes differentiation with respect to v.
It was shown in [23] that the supersymmetry constraints and the equations of motion have a

linear structure and this will be crucial for the construction of solutions. The only intrinsically
non-linear subset of constraints (the “zeroth layer” of the problem) is the one that involves the
four-dimensional metric, ds2

4, and the one-form β. In this paper we restrict to a class of solutions
where these constraints are trivially satisfied: we take the spatial base B to be R4 and its metric
ds2

4 to be the flat, v-independent metric. We will also require β to be v-independent but all other
functions and fields will be allowed to be v-dependent. In this situation, the BPS equations for β
now reduce to the simple, linear requirement that β has self-dual field strength

dβ = ∗4dβ , (2.15)

where ∗4 denotes the flat R4 Hodge dual.
We have described the solution in terms of gauge potentials B and Cp (p = 0, 2, 4, 6) but this

means that some of the fields do not have a gauge invariant meaning. The field strengths can be
written [27] in terms of the 2-forms

Θ1 ≡ Da1 + γ̇2 , Θ2 ≡ Da2 + γ̇1 , Θ4 ≡ Da4 + δ̇2 , (2.16)

and the 4-form, Ξ4, obtained from x3

Ξ4 = Dx3 −Θ4 ∧ γ2 + a1 ∧ (Dδ2 − a4 ∧ dβ) + C . (2.17)

The combinations in (2.16) are invariant under the transformations a1 → a1 − ξ̇, γ2 → γ2 +Dξ
where ξ is a 1-form, and similarly for (a2, γ1) and (a4, δ2). The 4-form in (2.17) is invariant under
the transformation involving a1 provided that x3 → x3 + Θ4 ∧ ξ and C → C − ∗4DZ4 ∧ ξ, as it
can be checked by using (2.21).

The next layer (the “first layer”) of BPS equations determine the warp factors Z1, Z2, Z4

and the gauge 2-forms Θ1, Θ2, Θ4:8

∗4 DŻ1 = DΘ2 , D ∗4 DZ1 = −Θ2 ∧ dβ , Θ2 = ∗4Θ2 , (2.19)

∗4 DŻ2 = DΘ1 , D ∗4 DZ2 = −Θ1 ∧ dβ , Θ1 = ∗4Θ1 , (2.20)

∗4 DŻ4 = DΘ4 , D ∗4 DZ4 = −Θ4 ∧ dβ , Θ4 = ∗4Θ4 . (2.21)

It is worth noting that the first equation in each set involves four component equations, while
the second equation in each set is essentially an integrability condition for the first equation.
The self-duality condition reduces each Θj to three independent components and adding in
the corresponding Zk yields four independent functional components upon which there are four
constraints.

8Using the intersection numbers (2.9), the equations (2.19)–(2.23) can be written more succinctly as

∗4DŻ ′I = ĈIJDΘJ , D ∗4 DZ ′I = −ĈIJΘI ∧ dβ, ΘI = ∗4ΘI , (1 + ∗4)Dω + F dβ = Z ′IΘ
I ,

∗4D ∗4
(
ω̇ − 1

2
DF

)
=

1

2
∂v(Ĉ

IJZ ′IZ
′
J)− 1

2
ĈIJ Ż ′I Ż

′
J −

1

4
ĈIJ ∗4 (ΘI ∧ΘJ),

(2.18)

where Z ′1 ≡ Z1, Z ′2 ≡ Z2, Z ′4 = Z ′5 ≡ −Z4, Θ4 = Θ5, and ΘI ≡ ΘI .
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The final layer (the “second layer”) of constraints are linear equations for ω and F :

Dω + ∗4Dω + F dβ = Z1Θ1 + Z2Θ2 − 2Z4Θ4 , (2.22)

and a second-order constraint that follows from the vv component of Einstein’s equations9

∗4D ∗4

(
ω̇ − 1

2
DF

)
= Ż1Ż2 + Z1Z̈2 + Z2Z̈1 − (Ż4)2 − 2Z4Z̈4 −

1

2
∗4

(
Θ1 ∧Θ2 −Θ4 ∧Θ4

)
= ∂2

v(Z1Z2 − Z2
4)− (Ż1Ż2 − (Ż4)2)− 1

2
∗4

(
Θ1 ∧Θ2 −Θ4 ∧Θ4

)
.

(2.23)
The important point is that these equations determine the complete solution and form a system
that can be solved in a linear sequence, because the right-hand side of each equation is made of
source terms that have been computed in the preceding layers of the BPS system.

2.4 Outline of the construction of a superstratum

We start in much the same way as in [1, 5, 12], with a round, D1-D5 supertube solution, in the
decoupling limit. The geometry of this background is global AdS3 ×S3. The SU(2)L × SU(2)R
isometry of the S3 corresponds to the R-symmetry and the SL(2,R)L × SL(2,R)R isometry of
the AdS3 yield the finite left-moving and right-moving conformal groups. The mode analysis and
holographic dictionary of this background is extremely well-understood [19,20]. The background
is dual to the Ramond ground state with maximal angular momentum: j = j̃ = (n1n5)/2,
h = h̃ = 0, with j the eigenvalue of the SU(2)L generator J3

0 , and h the eigenvalue of the
SL(2,R)L generator L0 − c/24 (tilded quantities denote the right-moving sector counterparts).
n1 and n5 are the number of D1 and D5-branes, respectively. The “supertube” shape modes
associated with generic 1

4
-BPS D1-D5 states have j, j̃ ≤ (n1n5)/2, but always h = h̃ = 0. In

particular, |j − j̃| is the spin of the underlying supergravity field. Thus, for a fixed spin field,
these shape Fourier modes are determined by one quantum number and hence correspond to
one-dimensional shape modes.

Adding momentum modes while maintaining 1
8
-supersymmetry means that we allow more

general excitations in the left sector of the CFT in such a way that h > 0, while preserving the
right-sector structure of the excitation (and hence h̃ = 0). Thus, generic 1

8
-BPS modes will have

quantum numbers (j, h; j̃, h̃ = 0). Since h is independent of j, these will generate intrinsically
two-dimensional shape modes, for fixed spin. In this way, we can think of the superstratum as
two-dimensional shape modes on the homology 3-cycle of the underlying microstate geometry.

It is also useful to consider the NS sector states obtained by spectral flow from the Ramond
sector. Ramond ground states are mapped to chiral primaries, which have j = h and j̃ = h̃. Act-
ing on chiral primaries with SU(2)L×SL(2,R)L generators generically gives non-chiral primaries
with j 6= h, which map back to states carrying momentum in the Ramond sector [55].

Since we know the action of SU(2)L × SL(2,R)L on gravity fields, we can construct the
modes corresponding to descendants10 of chiral primaries [8]. At the linearized level, we can take

9This simplified form is completely equivalent to (2.9b) of [8].
10The states obtained by acting R-symmetry generators on a chiral primary state must more precisely be called

super-descendants, but for simplicity we refer to them as descendants.
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arbitrary linear combinations of these modes to make the superstratum. As we will see more
explicitly in the next section, this will give us the solution of the first layer of the BPS equations.
To construct the fully non-linear solution, we use the power of the observation [23] that the
upper layers of the BPS equations are a linear system of equations. This means that the linear
excitations can be used directly to obtain the complete solution in which the fluctuations are
large. While simple, in principle, there are several essential technical obstacles to be overcome:

(i) The construction of the generic linear modes explicitly in some manageable form.

(ii) Solving the linear equations for the upper layers with sources constructed from combinations
of the linearized modes.

(iii) Removal of the singularities and building a smooth solution by fixing some of the Fourier
modes but doing so in a manner that leaves two arbitrary quantum numbers, thus preserv-
ing the intrinsically two-dimensional form of the fluctuations.

We now proceed to solve each of these problems one after another. This will mean that we have
to dive into some very technical computations but we will regularly step back and orient the
reader in terms of the goals stated here.

3 Solving the first layer of BPS equations

While supersymmetry does not allow the solutions to depend on u, states carrying momentum
are generically going to be v-dependent. In the rest of this paper we will make the simplifying
assumption that the four-dimensional metric ds2

4 is v-independent and simply that of flat R4. We
also assume that the one-form β, which determines the KKM fibration along the D1-D5 common
direction, is v-independent. We make this assumption simply for expediency; we do not know
how to solve the system otherwise. These assumptions could, in principle, prevent us from finding
a “suitably generic” superstratum because all the fluctuations that we will introduce in the other
fields may ultimately require v-dependent base metrics and v-dependent β in order for the solution
to be smooth. Indeed, generic superstrata will have v-dependence everywhere but our goal here is
to demonstrate that there is at least one class of superstrata that is a “suitably generic” function
of two variables. The fact that we will succeed despite this technical restriction is remarkable
even though there are a posteriori explanations of this somewhat miraculous outcome.

3.1 Two-charge solutions

It is useful to think of the three-charge solutions as obtained by adding momentum-carrying
perturbations to some two-charge seed. This will not only facilitate the CFT interpretation of
the states but also give important clues for the construction of the geometries. All two-charge
D1-D5 microstates have been constructed in [18,20,56,57] and are associated with a closed curve
in R8, gA(v′) (A = 1, . . . , 8). This curve has the interpretation of the profile of the oscillating
fundamental string dual to the D1-D5 system. The parameter along the curve is v′, which has a
periodicity L = 2πQ5

R
where Q5 is the D5 charge and R is the radius of S1.
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In the duality frame of the fundamental string, the profile can be split into four R4 components
(A = 1, . . . , 4) and four T 4 components (A = 5, . . . , 8). The states with non-vanishing gA(v′) for
A = 5, . . . , 8 break the symmetry of T 4 but, when one dualizes to the D1-D5 duality frame, one
of the T 4 components, which we take to be A = 5, plays a distinct role and, in fact, the D1-D5
geometries that have non-trivial values of gA(v′) for A = 1, . . . , 5 are invariant under rotations of
T 4. These solutions therefore fall in the class described by the class of solutions (2.1). We recall
in Appendix A how to generate the geometry from the profile gA(v′) for this restricted class of
two-charge states.

The simplest two-charge geometry is that of a round supertube, described by a circular profile
in the (1, 2) plane:

g1(v′) = a cos
(2π v′

L

)
, g2(v′) = a sin

(2π v′

L

)
, gA(v′) = 0 for A = 3, . . . , 8 . (3.1)

The metric of the supertube is more easily expressed in the spheroidal, or two-centered, coordi-
nates in which R4 is parameterized as

x1 + ix2 =
√
r2 + a2 sin θ eiφ , x3 + ix4 = r cos θ eiψ . (3.2)

The locus r = 0 thus describes a disk of radius a parameterized by θ and φ with the origin of
R4 at (r = 0, θ = 0) while the tube lies at the perimeter of this disk (r = 0, θ = π/2). In these
coordinates the flat R4 metric is

ds2
4 = (r2 + a2 cos2 θ)

( dr2

r2 + a2
+ dθ2

)
+ (r2 + a2) sin2 θ dφ2 + r2 cos2 θ dψ2 . (3.3)

The metric coefficients specifying the supertube geometry are

Z1 = 1 +
Q1

Σ
, Z2 = 1 +

Q5

Σ
, (3.4a)

β =
Ra2

√
2 Σ

(sin2 θ dφ− cos2 θ dψ) , ω =
Ra2

√
2 Σ

(sin2 θ dφ+ cos2 θ dψ) , (3.4b)

Z4 = F = 0 , Θ1 = Θ2 = Θ4 = 0 , (3.4c)

where
Σ ≡ r2 + a2 cos2 θ . (3.5)

The parameter a is related to the D1 and D5 charges Q1, Q5 and the radius, R, of S1 by

R =

√
Q1Q5

a
. (3.6)

As one would expect, this geometry is asymptotic to R4,1×S1×T 4. The charges Q1 and Q5 are
related to the quantized D1, D5-brane numbers, n1 and n5, by the relation (A.3).

15



3.2 The solution generating technique

As usual, one can define a decoupling limit which corresponds to cutting off the asymptotic part
of the geometry. This is achieved by taking

r �
√
Qi � R (i = 1, 5) , (3.7)

and it implies that the “1” in the warp factors Z1 and Z2 can be neglected. In this limit, the
supertube geometry reduces to AdS3 × S3 × T 4, as one can explicitly verify by performing the
coordinate redefinition

φ→ φ+
t

R
, ψ → ψ +

y

R
(3.8)

in the geometry (2.1a) with the data (3.4).
Working in the decoupling region has the advantage that one can generate new solutions via

the action of the symmetries of the CFT. These symmetries form a chiral algebra whose rigid
limit is SU(2)L × SU(2)R × SL(2,R)L × SL(2,R)R × U(1)4. On the gravity side, each CFT
transformation is realized by a diffeomorphism that is non-trivial at the AdS boundary. The
SU(2) factors areR-symmetries of the CFT with generators {J i0, J̃ i0}, i = {±, 3}, and correspond,
in gravity, to rotations of S3. The SL(2,R) factors, with generators {L0, L±1, L̃0, L̃±1}, are
conformal transformations in AdS3. The U(1) factors are torus translations. The extension of
these transformations to the full chiral algebra with {J i−n, J̃ i−n, L−n, L̃−n}, n ∈ Z is discussed,
from the gravity point of view, in [58]. The affine extension of U(1) torus translations was
considered in [10] and used to generate an exact family of three-charge solutions.

One can generate a three-charge solution by acting on a two-charge solution by a generator
with n ≥ 1, because the level, n, corresponds to the third (momentum) charge11. To preserve
half (four supercharges) of the supersymmetry preserved by the two-charge state, one can only
act with generators in the left-moving sector. For example, one can consider the transformation
eχ(J+

−1−J
−
1 ), whose action on a particular two-charge state was studied in [8], while the action on

generic two-charge states at the linearized level was found in [13]. The action of this operator is
particularly easy to implement, because J+

−1− J−1 is related to the rotation, J+
0 − J−0 = 2iJ2

0 , on
S3 by the change of coordinates that generates a spectral flow (3.8) [55]. Explicitly, the relation
is

J+
−1 − J−1 = eS(J+

0 − J−0 )e−S , (3.9)

where e−S describes the coordinate transformation (3.8).
The simplest two-charge geometry corresponding to the round profile (3.1) is mapped by

this e−S coordinate transformation to the space AdS3× S3× T 4, which is rotationally invariant.
Therefore, the operator eχ(J+

−1−J
−
1 ) acts trivially on the round supertube seed solution and we

do not get a new three-charge solution. In order to generate a non-trivial three-charge solution,
instead, one should start with a deformed two-charge seed.

11If we take the decoupling limit of the two-charge solution, the corresponding state in the boundary CFT is a
ground state in the RR sector. By the “level” here, we mean the one in the RR sector. The momentum charge
np is given by np = LRR

0 − L̃RR
0 . If one excites the left-moving sector only, this gives np = LRR

0 (modulo the
zero-point energy shift by −c/24).
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3.3 A “rigidly-generated” three-charge solution

Perhaps the simplest two-charge seed solution12 that can be used to generate a new three-charge
solution is the one obtained by turning on the A = 5 component of the profile gA. This produces
a three-charge geometry that fits in the class (2.1), has undeformed one-forms β and ω, but a
non-trivial Z4. Concretely, we consider the following profile as the seed:

g1(v′) = a cos
(2π v′

L

)
, g2(v′) = a sin

(2π v′

L

)
, g5(v′) = − b

k
sin
(2π k v′

L

)
, (3.10)

where k is a positive integer and the remaining components of gA remain trivial. The corre-
sponding two-charge geometry is described by

Z1 =
R2

2Q5

[2a2 + b2

Σ
+ b2 a2k sin2k θ cos(2kφ)

(r2 + a2)k Σ

]
, Z2 =

Q5

Σ
, (3.11a)

β =
Ra2

√
2 Σ

(sin2 θ dφ− cos2 θ dψ) , ω =
Ra2

√
2 Σ

(sin2 θ dφ+ cos2 θ dψ) , (3.11b)

Z4 = R b ak
sink θ cos(kφ)

(r2 + a2)k/2 Σ
, (3.11c)

F = 0 , Θ1 = Θ2 = Θ4 = 0 , (3.11d)

where we are restricting to the decoupling region and hence have dropped the “1” in Z1 and Z2.
The relation between the parameters a, b, the asymptotic charges Q1, Q5, and the S1 radius R
is now

R =

√
Q1Q5

a2 + b2

2

. (3.12)

For fixed Q1, Q5, R and k, the solutions thus admit a freely varying parameter, that could be
taken to be b/a. We will discuss in Section 7 the CFT interpretation of this family of two-charge
solutions.

We note the appearance of a non-trivial, φ-dependent Z4, which is accompanied by a φ-
dependent deformation, at second order in the deformation parameter b, in Z1. The function
Z2 remains unchanged. It is also very interesting to note that the combination Z1Z2 − Z2

4 is
deformed at order b2, but the form of the φ-dependent terms in Z4 and Z1 is such that Z1Z2−Z2

4

is φ-independent. As a result, the six-dimensional Einstein metric does not depend on φ. This is
very similar to the mechanism that plays a central role in obtaining neutral black hole microstate
geometries [59] and smooth “coiffured” black rings [29].

Now we apply the solution generating technique by acting with eχ(J+
−1−J

−
1 ) on the two-charge

solutions (3.11) with nonzero b and obtaining a new three-charge solution13 [8]. The resulting
solution represents a very particular three-charge state which, by construction, is a chiral algebra

12Another possibility is to turn on a “density fluctuation” on the profile (3.1) by changing the profile
parametrization as v′ → Λ(v′) for some function Λ(v′); the corresponding geometry would have undeformed
1-forms and no Z4 would be generated, but Z1 and Z2 would be modified.

13The explicit change of coordinates realizing eχ(J
+
−1−J

−
1 ) on the gravity side can be found in [8].
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descendant of a two-charge state. We will refer to such a solution as a “rigidly-generated” three-
charge solution but we will use this solution as an inspiration to construct far more general
classes of solution that are far from being rigid, and, in particular, are no longer descendants
of two-charge states. It turns out that the transformation eχ(J+

−1−J
−
1 ) does not modify the four-

dimensional metric and the one-form β. Namely, our particular rigidly-generated three-charge
solution still has

ds2
4 = Σ

( dr2

r2 + a2
+ dθ2

)
+ (r2 + a2) sin2 θ dφ2 + r2 cos2 θ dψ2 , (3.13)

and

β =
Ra2

√
2 Σ

(sin2 θ dφ− cos2 θ dψ) . (3.14)

As mentioned in Section 2.3, we assume that the same happens in all three-charge geometries
we consider, even if they are not descendant of two-charge microstates. So, hereafter, we always
assume that ds2

4 and β are given by (3.13) and (3.14).
The Z4 in the rigidly-generated solution is a linear superposition of modes of the form [8]:

Z
(k,m)
4 = R

∆k,m

Σ
cos

(
m

√
2 v

R
+ (k −m)φ−mψ

)
, (3.15)

with

∆k,m ≡
( a√

r2 + a2

)k
sink−m θ cosm θ . (3.16)

The solution also has a non-trivial spatial component of the NS-NS 2-form in (2.1d). One finds
that this may be most simply written in terms of the gauge invariant quantities

Θ
(k,m)
4 =−

√
2m∆k,m r sin θ Ω(1) sin

(
m

√
2 v

R
+ (k −m)φ−mψ

)
(3.17)

−
√

2m∆k,m Ω(2) cos

(
m

√
2 v

R
+ (k −m)φ−mψ

)
,

where Ω(1), Ω(2) and Ω(3) are a basis of self-dual 2-forms on R4:

Ω(1) ≡ dr ∧ dθ
(r2 + a2) cos θ

+
r sin θ

Σ
dφ ∧ dψ ,

Ω(2) ≡ r

r2 + a2
dr ∧ dψ + tan θ dθ ∧ dφ ,

Ω(3) ≡ dr ∧ dφ
r

− cot θ dθ ∧ dψ .

(3.18)

Note that these are not normalized but satisfy

∗4(Ω(1) ∧ Ω(1)) =
2

(r2 + a2)Σ2 cos2 θ
, ∗4(Ω(2) ∧ Ω(2)) =

2

(r2 + a2)Σ cos2 θ
,

∗4(Ω(3) ∧ Ω(3)) =
2

r2Σ sin2 θ
, ∗4(Ω(i) ∧ Ω(j)) = 0, i 6= j.

(3.19)
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For generic values of the rotation angle χ, one finds that all terms with m ≤ k appear in
the rigidly-generated solution. We will see in Section 7 that this happens because the operator
(J+
−1)m annihilates the two-charge state if m > k. The reflection of this fact on the gravity side is

that the functions ∆k,m are obviously singular for θ = 0 if m > k and thus should not appear in

physically allowed solutions. Hence the modes, Z
(k,m)
4 and Θ

(k,m)
4 , are only allowed if m ≤ k. Note

that, for these modes, the functions multiplying the v, φ, ψ-dependent trigonometric functions
vanish fast enough to avoid singularities at (r = 0, θ = 0) according to the criterion discussed
at the beginning of Section 4. In the rigidly-generated solution, the coefficients with which the
terms Z

(k,m)
4 appear in the total Z4 are not all independent, but are fixed functions of a single

parameter, the rotation angle χ.14

3.4 A general class of solutions to the first layer

The beauty of the solution generating technique is that it provides us with all the modes we need
to solve the first layer of the BPS equations; indeed, one can explicitly check that each individual
mode given by (3.15) and (3.17) solves the first layer of equations, (2.21). These modes depend
upon two integers, (k,m), and provide an expansion basis for generic functions of two variables
on the S3. So, as far as this layer of the problem is concerned, we can take advantage of the
linearity of the BPS system and consider solutions in which Z4,Θ4 are linear combinations of
Z

(k,m)
4 , Θ

(k,m)
4 with arbitrary coefficients:

Z4 = R
∑
(k,m)

bk,m
∆k,m

Σ
cos v̂k,m , (3.20)

Θ4 = −
√

2
∑
(k,m)

bk,mm∆k,m (r sin θ Ω(1) sin v̂k,m + Ω(2) cos v̂k,m) , (3.21)

where ∑
(k,m)

≡
∞∑
k=1

k∑
m=0

(3.22)

and

v̂k,m ≡ m

√
2 v

R
+ (k −m)φ−mψ + ηkm . (3.23)

Compared to (3.15), we have added a mode-dependent constant phase-shift in the definition of
v̂k,m, so that (3.20) can be thought of as the general Fourier expansion of Z4. We can think of
bk,m as the Fourier coefficients of a function of two variables since these modes are related to the
φ and ψ coordinates.

14For an explicit example see Appendix A of [8]. From that example one can also see that there exists one
particular value of χ (χ = π/2) for which all coefficients apart from those of the terms with m = k vanish: this
shows that solutions where Z4 contains only modes with m = k are descendants of two-charge states.
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Similarly, for the other pairs (Z1,Θ2) and (Z2,Θ1), a general class of solutions is given by

ZI = R
bI0
Σ

+R
∑
(k,m)

bIk,m
∆k,m

Σ
cos v̂k,m , (3.24a)

ΘJ = −
√

2
∑
(k,m)

bIk,mm∆k,m (r sin θ Ω(1) sin v̂k,m + Ω(2) cos v̂k,m) (3.24b)

(for {I, J} = {1, 2}), where bI0, bIk,m (I = 1, 2) are new sets of arbitrary Fourier coefficients. We
could also introduce new, independent phase constants, ηIkm, in (3.24). We have thus found a
quite general class of solutions to the first layer of BPS equations (2.19)–(2.21), that can be
parameterized by several arbitrary functions of two variables.

As far as the first layer of equations go, the functions (3.20)–(3.24) are solutions, however, it
still remains to solve the second layer of equations and impose regularity on the full geometry.
We will discuss this in detail in examples in Section 5, but we will not tackle this problem in
full generality in this paper. Our goal here is to show that there are microstate geometries that
fluctuate as a generic function of two variables. To that end, we will simplify the problem by
using further insights from the rigidly-generated solution discussed in section 3.3 and constraining
the form of the Fourier expansions in (3.24), to obtain a relatively simple family of superstrata
solutions.

3.5 A three-charge ansatz

In this paper we will make an ansatz in which the Fourier expansions for (Z1,Θ2) and (Z2,Θ1) are
determined in terms of the Fourier expansion of (Z4,Θ4). Because the bk,m will remain arbitrary,
this will still represent a solution that depends on a function of two variables. For simplicity, we
will set all the phase constants to zero: ηk,m = ηIk,m = 0.

Our ansatz is inspired by the rigidly-generated three-charge solution in subsection 3.3. First,
one finds that this rigidly-generated solution actually leaves Z2 and Θ1 = 0 unchanged from the
two-charge solution. Thus, we also assume that Z2 is not deformed and remains as it is in the
two-charge solution (3.11). Then, (2.20) implies Θ1 = 0. So, we set

Z2 =
Q5

Σ
, Θ1 = 0 . (3.25)

Namely, we set bI=2
k,m = 0 for all k,m.

Again, drawing inspiration from the two-charge seed solution (3.11), one would expect Z1 to
have v-dependent terms that are quadratic in bk,m (namely, bI=1

k,m will be quadratic in bk,m). A
first guess (which will be further substantiated by our analysis in Section 4) would be to adjust
these terms in such a way that Z1Z2 − Z2

4 be non-oscillating. However, one can immediately

see that when Z4 contains more than one mode this is not possible; the product of Z
(k1,m1)
4 and

Z
(k2,m2)
4 has the form

∆k1+k2,m1+m2

(
cos v̂k1+k2,m1+m2 + cos v̂k1−k2,m1−m2

)
.

The first term is precisely of the form of the terms that can appear in the mode expansion (3.24)
of (Z1,Θ2), but the second term is not of this form. In Z1Z2−Z2

4 , it is thus possible to cancel all
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the terms proportional to the mode v̂k1+k2,m1+m2 , but the modes v̂k1−k2,m1−m2 will remain. As we
will see below, arranging this partial cancellation appears to be an important part of regularity
of the solution. These observations motivate the following ansatz:

Z1 =
R2

2Q5

[
2a2 + b2

Σ
+
∑

(k1,m1)

∑
(k2,m2)

bk1,m1bk2,m2

(
∆k1+k2,m1+m2

Σ
cos v̂k1+k2,m1+m2

+ ck1,m1;k2,m2

∆k1−k2,m1−m2

Σ
cos v̂k1−k2,m1−m2

)]
,

(3.26)

where ck1,m1;k2,m2 are coefficients that we will fix by requiring regularity. The ansatz for the
2-form, Θ2, corresponding to this form of Z1 is precisely the appropriate parallel of (3.21):

Θ2 = − R√
2Q5

∑
(k1,m1)

∑
(k2,m2)

bk1,m1bk2,m2

×
[
(m1 +m2)∆k1+k2,m1+m2

(
r sin θ Ω(1) sin v̂k1+k2,m1+m2 + Ω(2) cos v̂k1+k2,m1+m2

)
(3.27)

+ ck1,m1;k2,m2(m1 −m2)∆k1−k2,m1−m2

(
r sin θ Ω(1) sin v̂k1−k2,m1−m2 + Ω(2) cos v̂k1−k2,m1−m2

)]
,

which indeed satisfies (2.19). We assume that the coefficients ck1,m1;k2,m2 are non-vanishing only
when the mode (k1−k2,m1−m2) is allowed: for this one needs k1−k2 6= 0; if we assume, without
loss of generality, that k1− k2 > 0, one also needs k1− k2 ≥ m1−m2 ≥ 0. As we will see below,
the value of the ck1,m1;k2,m2 will be determined in such a way that the angular-momentum one-
form, ω, is regular at the center of the R4 base space of the solution. The parameter b appearing
in the non-oscillating part of Z1 has its origins in the terms with k1 = k2 and m1 = m2, and b
will be fixed by the regularity of the metric at the supertube position Σ = 0.

4 The second layer

To completely specify the ten-dimensional geometry one must first solve the second layer of the
equations, (2.22) and (2.23), and thereby obtain expressions for the one-form, ω, which encodes
the angular momentum, and the function, F , associated with the momentum charge. Having
done this, one must also impose whatever constraints are necessary to achieve regularity.

One of our early concerns was that, given our assumptions about the v-independence of the
base metric and the one-form, β, the regularity constraints might show that there are no generic
superstrata in this class. However, the solution-generating techniques show that there must be
at least a family of non-trivial solutions that are obtained from rotations of generic shape modes
of the D1-D5 configurations. Such a family would still only be parameterized by functions of one
variable, but our approach is more general: we have used the solution-generating techniques to
find modes that solve the first layer of equations and we now take arbitrary linear superpositions
of them to generate new families of solutions.

In this and the next sections, we will demonstrate that this approach indeed leads to a
(smooth) superstratum that fluctuates as a generic function of two variables. As will become
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evident, this is technically the hardest part of the construction and so we will try to break
the problem into manageable pieces before going into generalities. In this section we outline
the general structure of the equations that ω and F must satisfy, and then, in the subsequent
section, we will give explicit examples illustrating the cancellation of singularities to demonstrate
the existence of families of smooth solutions.

Here we concentrate on the regularity constraints that come from the behavior of the metric
at the center of R4, which in our coordinates is at (r = 0, θ = 0). At this point the angular
coordinates θ, φ, ψ degenerate, and if a tensor depends on these coordinates and/or has legs along
these angular directions, it might be singular even without exhibiting an explicit divergence.
The conditions for regularity are analogous to the ones at the center of the plane in polar
coordinates. Another possible source of singularities are the terms diverging at the supertube
location (r = 0, θ = π/2). The singularity analysis at this location parallels the one of two-charge
solutions and we leave it to Section 6.

4.1 The system of equations for ω and F
We begin with the general mode expansions (3.24) where (Z1,Θ2), (Z2,Θ1) and gradually proceed
to our specific ansatz (3.25)–(3.27) in which the Fourier coefficients in (Z1,Θ2), (Z2,Θ1) have
restricted forms.

Equations (2.22) and (2.23) form a linear system of differential equations for ω and F , and
the source term on the right hand side is a quadratic combination of ZI and ΘI where I = 1, 2, 4.
In general, each of ZI and ΘI is a sum over modes labeled by (k,m) and so the source term will
be a product of two modes. Linearity means that one can solve these equations independently
for each such pair of modes. We will denote the contribution to ω and F coming from the
product of two modes (k1,m1) and (k2,m2) by ωk1,m1;k2,m2 and Fk1,m1;k2,m2 . Thus ω and F have
the following general form:

ω = ω0 +
∑

(k1,m1)

∑
(k2,m2)

ωk1,m1;k2,m2 , F =
∑

(k1,m1)

∑
(k2,m2)

Fk1,m1;k2,m2 , (4.1)

where ω0 is the contribution of the round supertube. The product formula of trigonometric
functions means that the v-, ψ- and φ-dependence of ωk1,m1;k2,m2 and Fk1,m1;k2,m2 will either
involve the sum or the difference of the source phases: v̂k1+k2,m1+m2 or v̂k1−k2,m1−m2 . Again,
linearity means that we may address such pieces separately, so let us analyze the solution of (2.22)
and (2.23) for an arbitrary mode whose phase is v̂p,q. The form of terms appearing as sources
shows that the full ω is a linear combinations of contributions of the form

ωp,q = (ωr dr + ωθ dθ) sin v̂p,q + (ωφ dφ+ ωψ dψ) cos v̂p,q , (4.2)

Fp,q =
2
√

2

R
W cos v̂p,q , (4.3)

where W and ωi, with i = r, θ, φ, ψ, are functions only of r and θ. On this ansatz the differential
operator that appears in (2.22) acts as

Dωp,q + ∗4Dωp,q + Fp,q dβ ≡ sin v̂p,q Ω(1) L(p,q)
1 + cos v̂p,q (Ω(2) L(p,q)

2 + Ω(3) L(p,q)
3 ) , (4.4)
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where

L(p,q)
1 = (r2 + a2) cos θ (∂rωθ − ∂θωr)−

q r

sin θ
ωφ +

1

r sin θ
(q (r2 + a2)− pΣ)ωψ ,

L(p,q)
2 =

r2 + a2

r
∂rωψ + cot θ ∂θωφ +

q r (r2 + a2)

Σ
ωr

+ cot θ
(q (r2 + a2)

Σ
− p
)
ωθ + 4a2 cos2 θ

r2 + a2

Σ2
W ,

L(p,q)
3 = r ∂rωφ − tan θ ∂θωψ + r

(q (r2 + a2)

Σ
− p
)
ωr −

q r2 tan θ

Σ
ωθ − 4a2 sin2 θ

r2

Σ2
W .

(4.5)

The operator in (2.23) reduces to15

∗4 D ∗4

(
∂vωp,q −

1

2
Fp,q

)
≡
√

2

R
cos v̂p,q (qL(p,q)

0 + L̂(p,q) W ) , (4.6)

where

L(p,q)
0 = − 1

rΣ
∂r(r (r2 + a2)ωr)−

1

Σ sin θ cos θ
∂θ(sin θ cos θ ωθ)

+
1

sin2 θ

( p

r2 + a2
− q

Σ

)
ωφ −

q

Σ cos2 θ
ωψ ,

(4.7)

and the action of the operator L̂(p,q) on an arbitrary function, F (r, θ), is defined by:

L̂(p,q) F ≡ 1

rΣ
∂r
(
r(r2 + a2) ∂rF

)
+

1

Σ sin θ cos θ
∂θ
(

sin θ cos θ ∂θF
)

− 1

sin2 θΣ

( p2 Σ

r2 + a2
− 2 pq +

q2

cos2 θ

)
F (4.8)

=
1

rΣ
∂r
(
r(r2 + a2) ∂rF

)
+

1

Σ sin θ cos θ
∂θ
(

sin θ cos θ ∂θF
)

+
1

Σ

( p2 a2

r2 + a2
− (p− q)2

sin2 θ
− q2

cos2 θ

)
F . (4.9)

Note that L̂(0,0) ≡ L̂ is the scalar Laplacian in the metric (3.3). The second expression in (4.9)
shows that this operator is separable.

By using the gauge freedom in (2.14) we can set all v-dependent modes of F to zero and thus
we can set W to zero when q 6= 0.

In terms of the operators defined above, one can show that the parts in ωk1,m1;k2,m2 and
Fk1,m1;k2,m2 that depend on phases v̂k1±k2,m1±m2 satisfy differential equations which can be written
as the following system of equations:

qL(p,q)
0 + L̂(p,q) W =

R√
2

∆k,m

Σ

(q2

Σ
+

m2 − q2

2 (r2 + a2) cos2 θ

)
,

L(p,q)
1 =

Rq√
2

r sin θ∆k,m

Σ
, L(p,q)

2 =
Rm√

2

∆k,m

Σ
, L(p,q)

3 = 0 .

(4.10)

15The unhatted letters L(p,q)
i represent scalar quantities while the hatted L̂(p,q) is an operator.
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Here p, q, k and m are integers that depend on the particular source term in question, and
their specific values will be given below. The overall coefficients of the right-hand side of (4.10)
depend on the particular normalization we choose for ZI , ΘI , and they have been chosen for
later convenience as we will explain below.

On the other hand, in our specific ansatz for (Z1,Θ2) and (Z2,Θ1) given in (3.25)–(3.27), not
all of ZI ,ΘJ are given by a single sum over modes labeled by (k,m); some of them contain double
sums and some of them contain no sum. However, by construction, it is still true that the source
term appearing on the right-hand side of Eqs. (2.22) and (2.23) is a quadratic combination of
the coefficients bk,m. Therefore, even for this ansatz, we can solve the equations independently
for each pair of modes, using the mode expansion (4.1). The resulting equations for a pair of
modes again turn out to be given by the same system of equations (4.10), although the values of
p, q, k,m will depend upon the particular source term. These parameters will be are given below.
The overall coefficients of the source on the right-hand side of (4.10) has been conveniently chosen
to correspond to the normalization of ZI ,ΘI given in (3.25)–(3.27).

To summarize, both for the general moding (3.24) and for the specific ansatz (3.25)–(3.27),
the equations for ω and F can be solved independently for each pair of modes (k1,m1), (k2,m2).
Each such pair includes pieces that depend on different phases v̂p,q, and each piece satisfies the
system of equations (4.10) with specific values of p, q, k,m. In the next subsection, we analyze
the various possibilities that can occur separately, giving explicit values of the numbers p, q, k,m.
For convenience, we define

k± ≡ k1 ± k2, m± ≡ m1 ±m2. (4.11)

4.2 The first type of source

For the general mode expansion (3.24), the fields ωk1,m1;k2,m2 and Fk1,m1;k2,m2 contain terms that
depend upon the phase v̂k+,m+ as discussed above. The system of equations (4.10) for these terms
corresponds to the following values:

(p, q) = (k,m) = (k+,m+). (4.12)

Remarkably enough, it is easy to guess a solution to the system for these values of parameters.
One can readily verify that the following is a solution:

ωp,q =
R

2
√

2
∆p,q

(
− dr

r(r2 + a2)
sin v̂p,q +

sin2 θ dφ+ cos2 θ dψ

Σ
cos v̂p,q

)
≡ ω(1)

p,q . (4.13)

Note that the dr part is singular at r = 0. One might be tempted to try to remove this singularity
by adding a homogeneous solution, but we have been unable to find one that achieves this. In
fact, we believe that there is no regular choice for ωp,q and, in physically allowed solutions, either

(A) This class of source does not occur, or

(B) The singularity must be canceled by other terms in the full ω.
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So, in general, we must choose between these two options in order to construct physically
allowed solutions. Actually, in our specific ansatz (3.25)–(3.27) we have already chosen option
(A) to remove the singularity. To see this recall the mode coefficients bIk,m in (Z1,Θ2) are given
by quadratics of the mode coefficients bk,m of Z4, while Z2 has been kept independent of these
modes. This was done so as to cancel the terms that depended on v̂k+,m+ in the warp factor
Z1Z2−Z2

4 . One can easily see that this ansatz also means that the source contributions depending
on v̂k+,m+ in (2.22) and (2.23) precisely cancel between terms quadratic in (Z4,Θ4) and terms
linear in (Z1,Θ2). Namely, in our ansatz, there is no singularity with parameters (4.12) because
the dangerous source terms depending on v̂k+,m+ have been arranged to cancel among themselves
— this is what we meant by option (A).

Recall, however, that we have also put in an extra structure in the ansatz (3.25)–(3.27) as
terms proportional to ck1,m1;k2,m2 . They lead to source terms depending on v̂k−,m− , which in turn
generate contributions to ω depending on v̂k−,m− . This part of ω is the solution of the system
(4.10) with the parameters

(p, q) = (k,m) = (k−,m−). (4.14)

For these values of the parameters, the solution is given by ω
(1)
k−,m−

in (4.13) and is singular. As
discussed at the end of subsection 3.5, these singularities are useful to cancel other singularities
arising from other contributions to ω discussed below. Namely, we will choose option (B) for the
source term proportional to ck1,m1;k2,m2 .

4.3 The second type of source

We now restrict to the ansatz (3.25)–(3.27) and study the remaining terms in ω that are de-
pendent upon v̂k1−k2,m1−m2 and independent of ck1,m1;k2,m2 . The relevant equations are again the
system (4.10), now with

(p, q) = (k−,m−), (k,m) = (k+,m+) . (4.15)

We will denote this class of solutions by ω
(2)
k−,m−

. The source terms are more complicated to
analyze and, while we have succeeded in doing this iteratively, we have not been able to come
up with the general solution. There is, however, one major simplification that we can explicitly
use to leverage the rest of the solution in many examples. If q 6= 0, one can use the equations for
L(p,q)

2 and L(p,q)
3 to solve algebraically for ω

(2)
r and ω

(2)
θ . One can then eliminate these functions

from the other equations and show that

µ̂(2) ≡ 1

2
(ω

(2)
φ + ω

(2)
ψ ) +

R

4
√

2

∆k,m

Σ
(4.16)

satisfies a Poisson equation for the operator L̂(p,q) with the choice (4.15):

L̂(p,q)µ̂(2) = − R

4
√

2 q

q [(p− q)2 − (k −m)2] ∆k,m+2 + (p− q)(m2 − q2) ∆k,m

(r2 + a2) cos2 θΣ
. (4.17)

It is convenient to introduce the functions F
(p,q)
k,m satisfying

L̂(p,q)F
(p,q)
k,m =

1

r2 + a2

∆k,m

cos2 θΣ
. (4.18)
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Then one finds

ω
(2)
φ + ω

(2)
ψ = − R

2
√

2

(∆k,m

Σ
+ [(p− q)2 − (k −m)2]F

(p,q)
k,m+2 +

(p− q)(m2 − q2)

q
F

(p,q)
k,m

)
. (4.19)

The recursion relation described in Appendix B allows to write F
(p,q)
k,m explicitly:

F
(p,q)
k,m = − 1

4 k1k2 (r2 + a2)

k2−1∑
s=0

s∑
t=0

(
s

t

)(k1−s−1
m1−t−1

)(
k2−s−1
m2−t−1

)(
k1−1
m1−1

)(
k2−1
m2−1

) ∆k−2s−2,m−2t−2 , (4.20)

where we are assuming that k1 ≥ k2.
Thus we do have the general solution for one of the components of ω. Moreover, since ω

(2)
r

and ω
(2)
θ are given algebraically in terms of ω

(2)
φ and ω

(2)
ψ , we need just to solve another equation

to complete the analysis of (4.10) for this second type of source. We have not been able to
simplify this last step in general, but we have been able to solve this equation for several infinite
families of solutions and the solutions are series somewhat akin to (4.20). We therefore expect
that there is a general systematic procedure but, as yet, we have not managed to bring it out.

4.4 The full ω and F
In the next section we will provide several examples of different non-trivial families of solutions
that we hope will clarify the general features of the system of equations (4.10). From these
examples we extract the following general solution-hunting pattern:

• For all values of ki and mi, the source terms whose phase is v̂k+,m+ vanish, as explained
in subsection 4.2. However, the source terms with phase v̂k−,m− remain in general and we

have to consider the solutions ω
(2)
k−,m−

discussed in subsection 4.3.

• When k− ≥ m− ≥ 0 and k− > 0, the solution ω
(2)
k−,m−

is singular at r = 0. In this range

of parameters, the full ω contains also an ω
(1)
k−,m−

contribution discussed at the end of

subsection 4.2, with a singularity of the same type. Thus the singularities of ω
(1)
k−,m−

and

ω
(2)
k−,m−

can be canceled by an appropriate choice of the constant ck1,m1;k2,m2 , leaving an ω

which is regular at the center of R4.

• For all other values of k− and m−, when the ω(1) contribution is absent, there exists a
solution for ω(2) which is by itself regular at the center of space (r = 0, θ = 0).

Thus, the solution to the equations is of the form:

ωk1,m1;k2,m2 = bk1,m1bk2,m2 (ω
(2)
k−,m−

+ ck1,m1;k2,m2 ω
(1)
k−,m−

) . (4.21)

As for F , we know that it can be chosen to be v-independent using the gauge freedom (2.14)
and so it gets contribution only from q = 0

Fk1,m1;k2,m2 = bk1,m1bk2,m1 Fk−,0 . (4.22)
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The term proportional to ck1,m1;k2,m2 is present only when k− ≥ m− ≥ 0 and k− > 0.
In conclusion, for all values of the mode numbers ki, mi, there is a regular solution. We

will see that the parameters bk,m which specify the amplitudes of the (k,m) modes inside Z4

are unconstrained, while the constant ck1,m1;k2,m2 , which appears in Z1, is uniquely fixed by the
regularity requirement.

5 Examples

We will give in this Section explicit expressions for the contributions, ωk1,m1;k2,m2 and Fk1,m1;k2,m2 ,
to ω and F coming from the modes (k1,m1) and (k2,m2), for some particular values of (ki,mi).
We will first consider the terms coming from equal modes: (k1,m1) = (k2,m2). These contribu-
tions are independent of v, ψ and φ and hence are the ones that contribute to the global charges
of the geometry. We can construct the explicit solution for any value of (k1,m1) = (k2,m2) and
we will use it in section 6 to compute the angular momenta and the momentum charge of our su-
perstratum. We will then look at “oscillating” contributions produced by unequal modes, which
depend on v and/or φ and ψ. We do not know the solution for generic values of k1, k2,m1,m2,
but we have constructed several two-parameter families of solutions. We will present two of
these families: the first one shows how the various terms in our Ansatz (3.26) for Z1 crucially
conspire to give a regular ω. The second family is rather more intricate and should provide a
representative sample of the computation for generic values of ki and mi.

5.1 Example 1: (k1,m1) = (k2,m2)

For brevity, we will rename these contributions as ωk1,m1;k1,m1 ≡ (bk1,m1)
2 ωk1,m1 and Fk1,m1;k1,m1 ≡

(bk1,m1)
2Fk1,m1 . In general ωk1,m1;k2,m2 and Fk1,m1;k2,m2 can depend on v̂k1−k2,m1−m2 but this van-

ishes here, and thus the contributions to ω and F from equal modes are independent of v, φ and
ψ.

The equations for ωk1,m1 and Fk1,m1 are obtained from (4.10) by setting (p, q) = (0, 0) and
(k,m) = (2k1, 2m1), and can be rewritten as

dωk1,m1 + ∗4dωk1,m1 + Fk1,m1 dβ =
√

2Rm1
∆2k1,2m1

Σ
Ω(2) , (5.1)

− ∗4 d ∗4 dFk1,m1 ≡ L̂Fk1,m1 =
(2m1)2

r2 + a2

∆2k1,2m1

cos2 θΣ
. (5.2)

We have seen in Section 4.3 that the regular solution of the equation for Fk1,m1 is

Fk1,m1 = (2m1)2 F
(0,0)
2k1,2m1

, (5.3)

where the function F
(0,0)
2k1,2m1

is obtained from (4.20) by setting (p, q) = (0, 0).
In equation (5.1) we can see by inspection that when (p, q) = (k−,m−) = (0, 0) the r and θ

components of ω can be set to zero. One can then write

ωk1,m1 = µk1,m1(dψ + dφ) + ζk1,m1(dψ − dφ) . (5.4)
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Inspired by the results of [12], we define

µ̂k1,m1 ≡ µk1,m1 +
R

4
√

2

r2 + a2 sin2 θ

Σ
Fk1,m1 +

R

4
√

2

∆2k1,2m2

Σ
. (5.5)

One can show that µ̂k1,m1 satisfies a Poisson equation of the form of equation (4.18):

L̂ µ̂k1,m1 =
R (k1 −m1)2

√
2(r2 + a2)

∆2k1,2m1+2

cos2 θΣ
. (5.6)

Therefore

µ̂k1,m1 =
R√

2
(k1 −m1)2 F

(0,0)
2k1,2m1+2 +

xk1,m1

Σ
, (5.7)

where the last term is harmonic and the constant xk1,m1 is determined by regularity as follows:
At the center of R4 (r = 0, θ = 0) the angular coordinates ψ and φ degenerate, and µk1,m1 must
vanish for ωk1,m1 to be a regular 1-form. This condition determines xk1,m1 :

xk1,m1 =
R

4
√

2

[
δk1,m1 +

(
k1

m1

)−2 k1−1∑
s=0

(
s

s− (k1 −m1 − 1)

)]
=

R

4
√

2

(
k1

m1

)−1

. (5.8)

So we find

µk1,m1 =
R

4
√

2

[ 1

Σ

(
k1

m1

)−1

− ∆2k1,2m1

Σ
+ (2k1 − 2m1)2 F

(0,0)
2k1,2m1+2 − (2m1)2 r

2 + a2 sin2 θ

Σ
F

(0,0)
2k1,2m1

]
.

(5.9)
The remaining component of ωk1,m1 in (5.4) is ζk1,m1 and this can now be found from (5.1),

which gives

∂rζk1,m1 =
r2 cos 2θ − a2 sin2 θ

r2 + a2 sin2 θ
∂rµk1,m1 −

r sin 2θ

r2 + a2 sin2 θ
∂θµk1,m1

+

√
2Rr sin2 θ

Σ(r2 + a2 sin2 θ)

(
m1 ∆2k1,2m1 −

a2(2r2 + a2) cos2 θ

Σ
Fk1,m1

)
,

∂θζk1,m1 =
r(r2 + a2) sin 2θ

r2 + a2 sin2 θ
∂rµk1,m1 +

r2 cos 2θ − a2 sin2 θ

r2 + a2 sin2 θ
∂θµk1,m1

− Rr2 sin 2θ√
2Σ(r2 + a2 sin2 θ)

(
m1 ∆2k1,2m1 −

a2(r2 + a2) cos 2θ

Σ
Fk1,m1

)
.

(5.10)

The relations above can be straightforwardly integrated to give ζk1,m1 . Although we have not
found a general simple expression for ζk1,m1 for general values of (k1,m1), we have verified its
regularity for several values of k1 and m1.

5.2 Example 2: (k2,m2) = (1, 0); (k1,m1) arbitrary

Consider a pair of modes with (k2,m2) = (1, 0) and generic (k1,m1) (as usual, one needs k1 ≥ 1
and k1 ≥ m1 for the mode to be allowed). Here we will simply let ω denote the contribution to
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the angular momentum vector from this pair of modes. Our ansatz for Z1 (see (3.26)) contains
a term that depends on the difference of the modes (v̂k−,m−) and the coefficient of this term,
ck1,m1;k2,m2 , will be abbreviated to c here. The contribution of this term to ω and the correspond-
ing contribution from the similar term in Θ2 will be denoted by ω(1) and the remaining part of ω
will be denoted by ω(2). We will also choose the gauge in which the contribution to F vanishes.

Thus
ω = c ω(1) + ω(2) . (5.11)

Both ω(1) and ω(2) are only functions of v̂k−,m− , which in this subsection we abbreviate as v̂:

v̂ ≡ m1

√
2 v

R
+ (k1 − 1−m1)φ−m1 ψ . (5.12)

Examining the equations for ω(1) and ω(2) derived from (2.22) and (2.23), one finds the following
solutions

ω(1) =
R√

2
∆k1−1,m1

[
− dr

r(r2 + a2)
sin v̂ +

sin2 θdφ+ cos2 θdψ

Σ
cos v̂

]
, (5.13)

ω(2) = − R√
2

∆k1−1,m1

r2 + a2

[(m1 − k1

k1

dr

r
− m1

k1

tan θdθ
)

sin v̂

+
(r2 + a2

Σ
sin2 θdφ+

(r2 + a2

Σ
cos2 θ − m1

k1

)
dψ
)

cos v̂
]
. (5.14)

We note that generically both ω(1) and ω(2) are singular at the center of R4 (r = 0, θ = 0). One
can however cancel this singularity in the full ω by choosing

c =
k1 −m1

k1

. (5.15)

For this choice one obtains

ω = − R√
2

∆k1−1,m1

r2 + a2

[
−m1

k1

tan θ dθ sin v̂ +
m1

k1

(r2 + a2)dφ− r2dψ

Σ
sin2 θ cos v̂

]
, (5.16)

which is a regular16 1-form (excluding the usual singularities at the supertube location Σ = 0,
which have to be treated separately).

The solution with k1 = m1 is exceptional: for these modes the last term in Z1 is not allowed
(because k1 − k2 = k1 − 1 < m1 −m2 = m1) and hence the contribution ω(1) is not present a
priori. One can see from (5.14) that when k1 = m1, ω(2) is regular by itself. Note that the final
result (5.16) applies also when k1 = m1.

This example shows that the form of Z1 chosen in (3.26) is crucial for the smoothness of the
full geometry. In particular, the last term in (3.26) has to be included every time it is allowed
and its coefficient is uniquely fixed by the regularity of ω.

The next example will show how this structure extends to more generic values of ki, mi.

16Note that for ω to be regular at r = 0, θ = 0 it is not sufficient that its components do not diverge. The
φ and ψ components of ω have to vanish at the center of R4, where the polar coordinates become degenerate.
Moreover, since ω depends non-trivially on φ and ψ through the combination v̂, its angular components have to
vanish at least like ∆k1−1,m1

. One can see that all these conditions are satisfied by the 1-form in (5.16).
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5.3 Example 3: k1 = m1 + 1, m2 = 1

Consider now the contribution produced by two modes with k1 = m1 + 1, m2 = 1 and generic
values of k2 and m1. This situation is quite generic because all the integers ki, mi can be
different and non-vanishing. As in the previous subsection, we will lighten the notation by
suppressing all ki and mi-dependent indices and work in the gauge with F = 0. We split ω as
ω = c ω(1) + ω(2), where the term multiplied by c is the one given in (4.13). The non-trivial task
is to determine ω(2) by solving the system of equations (4.10) with (p, q) = (m1 + 1−k2,m1− 1),
(k,m) = (k2 +m1 +1,m2 +1) and to show that its potential singularities can be canceled by ω(1)

for some suitable value of the constant c. In this subsection the oscillating factors are functions
of

v̂ ≡ (m1 − 1)

√
2 v

R
+ (2− k2)φ− (m1 − 1)ψ . (5.17)

The strategy outlined in Section 4.3, and some inspired guesses, lead to the following solution
for ω(2):

ω(2)
r = − Rr√

2 k2(m2
1 − 1)

m1(k2 +m1 + 1)∆k2+m1−1,m1−1 + (k2 +m1 − 1)∆k2+m1−3,m1−1

(r2 + a2)2
,

ω
(2)
θ =

R√
2 k2(m2

1 − 1)a2 sin θ cos θ

[
2(m1 − 1)∆k2+m1−3,m1−1

+ (m1 − 1)(m1 − 2)∆k2+m1−1,m1−1 +m1(k2 − 2)∆k2+m1−1,m1+1

−m1(m1 − 1)∆k2+m1+1,m1−1 + (m2
1(k2 − 1) + 1)∆k2+m1+1,m1+1

]
,

ω
(2)
φ = − R√

2

∆k2+m1+1,m1+1

Σ
sin2 θ − R√

2 k2(m2
1 − 1)a2

[
2(m1 − 1)∆k2+m1−3,m1−1 (5.18)

+ (m2
1 − 2m1 + k2 − 1)∆k2+m1−1,m1−1 +m1(k2 − 2)∆k2+m1−1,m1+1

+m1(k2 −m1 − 1)∆k2+m1+1,m1−1 + (k2(m2
1 +m1 − 1)−m1(m1 + 1))∆k2+m1+1,m1+1

]
,

ω
(2)
ψ = − R√

2

∆k2+m1+1,m1+1

Σ
cos2 θ − R√

2 k2(m2
1 − 1)a2

[
(k2 − 1)(m1 − 1)∆k2+m1+1,m1+3

− 2(m1 − 1)∆k2+m1−3,m1−1 − (m1 − 1)(m1 − 2)∆k2+m1−1,m1−1

− (m1 − 1)(k2 − 3)∆k2+m1−1,m1+1 +m1(m1 − 1)∆k2+m1+1,m1−1

− (m1 − 1)(m1(k2 − 1) + 1)∆k2+m1+1,m1+1

]
.

What interests us about this complicated expression is its regularity property at the center of
R4 (r = 0, θ = 0). Remembering the form of ∆k,m, we see that the most stringent regularity

constraint comes from the terms ∆k2+m1−3,m1−1(sin θ)−1 and ∆k2+m1−1,m1+1(sin θ)−1 in ω
(2)
θ : to

avoid a singularity at θ = 0 one needs k2 ≥ 3. Note that this is precisely the range of parameters
for which the term proportional to c in the Z1 of (3.26) is not allowed (because k1−k2 < m1−m2)
and hence the ω(1) contribution to ω is absent. So when k2 ≥ 3 the full ω coincides with ω(2)

and its explicit expression (5.18) shows its regularity.
On the other hand the singularities of ω(2) for k2 = 1, 2 are expected to be canceled by the

ω(1) term, which is allowed for these values of k2. Comparing the form of ω(1) in (4.13) with the

30



ω(2) above, we see however that this cancellation of singularities cannot happen directly: ω(1)

has a singular r component and a vanishing θ component, while ω(2) has a singular θ component.
There is however a resolution of this conundrum: when k2 = 1, 2 one can add to ω(2) a solution
of the homogeneous equation which shifts the ω(2) singularity from the θ to the r component;
moreover the singularity of the new r component is precisely of the type that can be canceled
by ω(1).

For k2 = 2 the appropriate homogeneous solution is

(ωhom
r , ωhom

θ , ωhom
φ , ωhom

ψ ) =
R√

2 (m1 + 1) a2
∆m1−1,m1−1

( a2

r(r2 + a2)
,− 1

sin θ cos θ
, 1,−1

)
. (5.19)

By replacing ω(2) → ω(2) + ωhom one obtains a new solution for ω(2) with a regular θ component
and a singular r component. The singularity of the r component comes entirely from ωhom.
We recall that the ω(1) contribution to ω is given in (4.13), where for this value of k2 one has

p = q = m1 − 1. Comparing then ωhom
r with ω

(1)
r , we see that the full ω = c ω(1) + ω(2) is regular

if one picks c = 2
m1+1

.
For k1 = 1 the situation is a bit more involved, because even the r, φ and ψ components of

ω(2) diverge at θ = 0. The appropriate homogeneous solution to add to ω(2) is now:

ωhom
r =

Rm1√
2(m2

1 − 1)

(m1 − 2)∆m1,m1−1 + ∆m1−2,m1−1 −∆m1,m1+1

r(r2 + a2)
,

ωhom
θ = − R√

2(m2
1 − 1)

2(m1 − 1)∆m1−4,m1−2 + (m1 − 1)(m1 − 2)∆m1−2,m1−2 −m1∆m1−2,m1

r2 + a2
,

ωhom
φ =

R√
2(m2

1 − 1)

2(m1 − 1)∆m1−2,m1−1 +m1(m1 − 2)∆m1,m1−1 −m1∆m1,m1+1

a2
, (5.20)

ωhom
ψ = − R (m1 − 1)√

2(m2
1 − 1)

2∆m1−2,m1−1 + (m1 − 2)∆m1,m1−1 − 2∆m1,m1+1

a2
.

One can check that the new solution ω(2) + ωhom is now regular with the exception of the r
component, which is given by

ω(2)
r + ωhom

r = − Rm1√
2 (m2

1 − 1)
∆m1,m1−1

3r2 − (m1 − 1)a2

r(r2 + a2)2
. (5.21)

Recall that ω(1) is given by (4.13) with (p, q) = (m1,m1 − 1) and hence its r component has
precisely the same form as (5.21) in the limit r → 0. One can thus take c = 2m1

m1+1
and obtain a

total ω free of singularities.

6 Regularity, asymptotically-flat superstrata and their

charges

Up to this point, we have focused on the regularity of the metric at the center of R4, which in
our coordinates is at r = 0, θ = 0. The metric coefficients are also singular at the supertube
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location, Σ = 0. The resolution of these singularities is familiar from the study of the rigid two-
charge supertube geometry: there are potentially singular terms in the ten-dimensional metric
proportional to (dψ+dφ)2 and the condition that guarantees the cancellation of these singularities
is

lim
Σ→0

Σ
[
− 2α√

Z1Z2

β0

(
µ+

1

2
F β0

)
+
a2

4

√
Z1Z2

]
= 0 , (6.1)

with β0 ≡ (βψ + βφ)/2 and µ ≡ (ωψ + ωφ)/2, where ω now stands for the total ω of (4.1). This
condition fixes the value of the parameter b which appears in the non-oscillating part of Z1, in
terms of the mode amplitudes bk,m. One finds

b2 =
4
√

2

R

∑
k,m

b2
k,m xk,m =

∑
k,m

b2
k,m

(
k

m

)−1

. (6.2)

The family of geometries we have constructed thus far are asymptotic (for large r) to AdS3×
S3 × T 4. These solutions can therefore be identified with microstates of the D1-D5 CFT. On
the other hand, in order to create a geometry that looks like a five-dimensional black hole one
needs to have a geometry whose large-distance asymptotic structure is R4,1 × S1 × T 4 (we will
call such geometries “asymptotically flat”). If we want to identify our solutions with black-
hole microstates, it is necessary to show that they can be extended to such asymptotically flat
geometries. This requires re-inserting the “1”’s in the warp factors Z1 and Z2:

Z1 → 1 + Z1 , Z2 → 1 + Z2 . (6.3)

Note that Z4 remains unchanged.
This modification of Z1 and Z2 adds new source terms to the BPS system: the ω equations

(2.22), (2.23) indeed imply that the change (6.3) necessarily generates a modification of ω of the
form

ω → ω + δω , (6.4)

where δω satisfies
D δω + ∗4D δω = Θ2 , ∗4D ∗4 δω = Ż1 . (6.5)

As usual one can choose a gauge in which F is unmodified.
Finding the general solution to this equation is straightforward: if one takes the general form

of the Z1 and Θ2 from (3.24) one can solve (6.5) mode by mode. If we denote by δωk,m the
contribution to δω from the (k,m) mode in (3.24), we find

δωk,m =
b1
k,mm√

2 k
∆k,m

[(
−dr
r

+ tan θ dθ
)

sin v̂k,m + dψ cos v̂k,m

]
. (6.6)

Note that, once again, there is a singularity at r = 0. The removal of this singularity can be done
following a systematic procedure: One must first collect all the terms that give rise to them via
(6.6) and (4.13). As before this will result in quadratics in the Fourier coefficients, bkm, appearing
in (Z4, Θ4) and a (now somewhat modified) linear dependence upon the Fourier coefficients b1

km

appearing in (Z1, Θ2) (see (3.24a) and (3.24b)). One can then solve for these Fourier coefficients
and remove the singularities.
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We are not going to investigate asymptotically flat superstrata any further in this paper
because it will take us into another rather technical discussion. We note that there are some
simple examples of asymptotically-flat superstrata in [8] and we will leave the construction of
families of asymptotically-flat superstrata to subsequent work [60]. Our primary focus for most
of the rest of this paper will be the examination of CFT states that are holographically dual to
the superstratum excitations and for this we only need the somewhat simpler classes of solutions
in the “decoupling limit,” where we drop the 1’s.

For the purpose of computing the asymptotic charges of the solution, all the new terms arising
from (6.3) and the concomitant cancellation of the singular modes are irrelevant because they are
proportional to non-trivial Fourier modes in v and so vanish when integrated over the S1 compact
direction. The angular momentum of the geometry can thus be derived from the “near-horizon”
ω computed in the previous sections and, in particular, from the v-independent contributions
generated by equal modes.

The quantized angular momenta j and j̃ are given by

j =
V4R

(2π)4g2
sα
′4 J , j̃ =

V4R

(2π)4g2
sα
′4 J̃ , (6.7)

where V4 is the volume of T 4, gs is the string coupling and the dimension-full parameters J and
J̃ can be extracted from the large radius behavior of the geometry as:

β0 + µ√
2

=
J − J̃ cos 2θ

2 r2
+O(r−3) . (6.8)

For our solution we find

J =
R

2

[
a2 +

∑
k,m

b2
k,m

m

k

(
k

m

)−1]
, J̃ =

R

2
a2 . (6.9)

Moreover the D1 supergravity charge can be extracted from the large distance behavior of the
warp factor Z1 and is given by

Q1 =
R2

Q5

(
a2 +

b2

2

)
=
R2

Q5

[
a2 +

1

2

∑
k,m

b2
k,m

(
k

m

)−1 ]
. (6.10)

The D5 supergravity charge, Q5, is not affected by the superstratum fluctuations we consider.
The integer numbers n1 and n5 of D1 and D5 branes are related to Q1 and Q5 by the relation
(A.3). Altogether we find that the quantized angular momenta of our solution are

j =
N
2

[
a2 +

∑
k,m

b2
k,m

m

k

(
k

m

)−1]
, j̃ =

N
2
a2 . (6.11)

with

N ≡ n1n5R
2

Q1Q5

=
n1n5

a2 + 1
2

∑
k,m b

2
k,m

(
k
m

)−1 . (6.12)
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A similar computation can be performed to derive the momentum charge of the solution. From
the geometry we can extract the supergravity momentum charge Qp as

− F
2

=
Qp

r2
+O(r−3) . (6.13)

Our geometry gives

Qp =
1

2

∑
k,m

b2
k,m

m

k

(
k

m

)−1

, (6.14)

and hence its quantized momentum charge is

np =
R2 V4

(2π)4 g2
s α
′4 Qp =

N
2

∑
k,m

b2
k,m

m

k

(
k

m

)−1

. (6.15)

In particular, we note that from (6.11) and (6.15) we have

np = j − j̃ . (6.16)

In the next section we will use the values of j, j̃ and np to help determine the map between our
geometries and the dual CFT states.

7 The CFT description

The geometries constructed in the previous sections are asymptotically AdS3×S3×T 4. According
to the general AdS/CFT paradigm, we expect that they correspond to semi-classical states in
the dual two-dimensional CFT, commonly called the D1-D5 CFT, with a large central charge
c = 6N where

N ≡ n1n5. (7.1)

In this section we briefly recall the main features of the dual CFT that are relevant here17 and
give a general description in the CFT language of the class of states dual to the superstratum
geometries that we have constructed.

7.1 Basic features of the dual CFT

The CFT we are interested in has N = (4, 4) supersymmetry with the R-symmetry group
SO(4)R ∼= SU(2)L × SU(2)R which, in the gravity dual, is identified with the rotations of the
non-compact R4 coordinates xi in the space transverse to all the branes. At a special point in its
moduli space, this CFT can be described by a sigma model whose target space is the orbifold,
(T 4)N/SN , where SN is the permutation group on N elements. Namely, we have N copies of 4
free compact bosons and 4 fermions, identified under permutations of the copies. The 4N bosons
are labeled [8, 61] as XȦA

(r) (z, z̄), where r = 1, . . . , N is the copy index of the T 4 and A, Ȧ = 1, 2

are spinorial indices for the SO(4)I = SU(2)1×SU(2)2 of the tangent space of T 4. The left- and

17For more details of the D1-D5 CFT, see e.g. [61] and references therein.
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right-moving fermions are labeled as ψαȦ(r) (z) and ψ̃α̇Ȧ(r) (z̄) where α, α̇ = ± are spinorial indices for

the R-symmetry SU(2)L × SU(2)R. Namely, under the R-symmetry, the bosons are singlets,
while the left- and right-moving fermions transform as (2,1) and (1,2), respectively.

It is useful to visualize the CFT states by representing the N copies, indexed by (r), as N
strings (see Figure 1(a)), on each of which live 4 bosons and 4 fermions:

(XȦA
(r) (z, z̄) , ψαȦ(r) (z) , ψ̃α̇Ȧ(r) (z̄)) . (7.2)

Besides the operators that can be built explicitly in terms of the free bosons and fermions, the
CFT contains also twist fields that glue together k copies of the free fields into a single strand of
length k. (See Figure 1(b).) For this reason, the free point in this CFT moduli space is usually
called the orbifold point.

Figure 1: (a) The CFT at the orbifold point can be thought of as made of N copies,
each of which contains 4 free bosons and 4 free fermions. Each circle in the figure
corresponds to a single copy. (b) A twist field intertwines k copies into a single strand
of length k.

On a strand of length k, the k copies of the fields are cyclically glued together and therefore
they are 2πk periodic instead of 2π periodic. This means that the mode numbers of the fields on
a strand of length k are 1/k times the mode numbers on a string of length one. General states
have multiple strands of various lengths. For instance, if the `th strand has length k, the mode
expansion of the fermion field ψ`(z) living on it is

ψ`(z) =
∑
n∈Z

(
ψn

k

)
`
z−

n
k
− 1

2 . (7.3)

By construction, the excitations of the bosons, XȦA
(r) , only involve motions in the compactified

(T 4) directions, whereas the fermionic excitations carry polarizations (R-charge) that must be
visible within the six-dimensional space-time. More concretely, the modes of the currents

Jαβ` (z) ≡ 1

2
ψαȦ` (z) εȦḂ ψ

βḂ
` (z) , J̃ α̇β̇` (z̄) ≡ 1

2
ψ̃α̇Ȧ` (z̄) εȦḂ ψ̃

β̇Ḃ
` (z̄) , (7.4)

can be viewed as bosonizations of the fermions, and because these currents lie entirely in spatial
directions of the six dimensional space-time it follows that suitably coherent excitations created
by these currents will be visible within six-dimensional supergravity [5].
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Note that one should not confuse the labels (r) and `: The former labels each set of bosons
and fermions (7.2) before orbifolding whereas ` indexes the strands and so labels sets of bosons
and fermions that have been orbifolded together to make a longer effective string. Thus the
currents in (7.4) are defined for each individual strand labeled by ` and thus give a current
algebra of level k, the length of the strand, rather than level 1, which would be the level of the
current algebra for each individual set of fermions in (7.2).

One can also write the current algebra of the R-symmetry by summing over all the fermions
or over all the individual currents over all strands:

Jαβ(z) ≡ 1

2

∑
(r)

ψαȦ(r) (z) εȦḂ ψ
βḂ
(r) (z) =

∑
`

Jαβ` (z) , (7.5)

J̃ α̇β̇(z̄) ≡ 1

2

∑
(r)

ψ̃α̇Ȧ(r) (z̄) εȦḂ ψ̃
β̇Ḃ
(r) (z̄) =

∑
`

J̃ α̇β̇` (z̄) . (7.6)

This current algebra has level N . The standard angular momentum operators, J i with i = 3,±,
are given in terms of the Jαβ by:

J3 = J12 = J21 , J+ = J11 , J− = J22 , (7.7)

and likewise for J̃ i. Also for the individual currents we similarly define J i` and J̃ i` , from Jαβ` and

J̃ α̇β̇` (z̄).
Even if the free description of the CFT lies outside the regime where supergravity is a reliable

approximation, it is still a very valuable framework for describing the states dual to the super-
stratum. As usual, supersymmetry is responsible for this utility: the conformal dimensions of
states preserving 1/8 of the total 32 supercharges and their 3-point correlators [62] are protected
and so, for these observables, it makes sense to match directly the CFT results obtained at the
orbifold point to those derived in the supergravity description. A detailed comparison between
these two pictures for the class of states described in this paper deserves a separate paper fol-
lowing the spirit of what was done in [19,20] for the 1

4
-BPS states. Here we will provide just the

basic features of the duality between CFT states and bulk geometries.
As one would expect, the first entry in the dictionary maps the global AdS3×S3×T 4 solution

to the SL(2,C) invariant vacuum in the NS-NS sector. However, we are interested in states in the
RR sector, which correspond to geometries that can be glued to an asymptotically R1,4×S1×T 4

region. The round supertube solution specified by the profile (3.1) is the simplest of such RR
states. In order to find the CFT description for this state, it is sufficient to relate the change of
variables (3.8) to the spectral flow on the CFT side. We first choose a U(1) × U(1) subgroup
of the R-symmetry group, and refer to the corresponding currents as J3 and J̃3 (these currents
correspond to the two U(1) rotation symmetries in the R4 for the round supertube solution)
and their modes as J3

n and J̃3
n. Then, we simply perform a spectral flow of the NS-NS vacuum

state to the RR sector by using J3 and J̃3. In this way we obtain an eigenstate of (J3
0 , J̃

3
0 ) with

eigenvalues equal to (N
2
, N

2
). At the orbifold point, it is possible to write the J i0 and J̃ i0 as the sum

of generators acting on the `-th strand, (J i0)` and (J̃ i0)`. To avoid clutter, we define j` ≡ (J3
0 )`,

j̃` ≡ (J̃3
0 )`. Then, in the free CFT limit, the state is composed of N independent strands, each
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Figure 2: The state/geometry dictionary for the maximally-spinning supertube with
dipole charge 1. The circular profile given in (3.1) on the gravity side (shown on the
left) corresponds to the CFT state with N strands all with length one and R-charge
eigenvalues (j`, j̃`) = (1

2
, 1

2
) (shown on the right).

one with eigenvalues (j`, j̃`) = (1
2
, 1

2
). This type of strands is annihilated by the modes (ψ+Ȧ

0 )`.
For a visual explanation of this correspondence, see Figure 2.

We can now build a dictionary between the supergravity solutions discussed earlier and a set
of pure semi-classical states in the CFT. We parallel our approach to the supergravity solution
by starting with a review of the 1

4
-BPS semi-classical states and their descendants. We then

move to the CFT description of the fluctuating superstrata geometries by examining precisely
how we added momentum modes to the 1

4
-BPS supertubes.

7.2 1
4
-BPS states and their descendants

The semi-classical RR ground states that are dual to 1
4
-BPS geometries were discussed in detail

in [19, 20] and here we will review the previous results in a language that is convenient for the
generalization in the next section.

All 1
4
-BPS geometries are determined by a closed profile gA(v′) in R8 but, as mentioned above,

we focus only on a profile in an R5 subspace in order to have states that are invariant under
rotations of the T 4 coordinates. Thus, on the geometry side, we have five periodic functions
gA(v′), A = 1, . . . , 5 that can be Fourier expanded in modes. By using the language of the
orbifold free field description, we can characterize the properties of the profile on the CFT side
as follows: the mode numbers of the Fourier expansion correspond to the lengths of the strands,
the different components (A = 1, . . . , 5) of the profile determine the quantum numbers of each
strand under the SU(2)L × SU(2)R R-symmetry generators, and finally the amplitude of each
Fourier mode is related to the number of strands of a particular type present in the dual CFT
state. Since we are focusing on 1

4
-BPS states, each strand has the lowest eigenvalue for both

(L0)` and (L̃0)` and so the same is true for the full state.
The profile in (3.10) represents a non-trivial “deformation” of the simple vacuum state rep-

resented by the profile (3.1) whose CFT interpretation, as discussed above, can be thought of as
N strands of length 1. The profile (3.10) has an extra non-trivial component, g5, that has been
added to the functions g1 and g2 that are already present in (3.1). It should therefore correspond
to a state with two types of strands: the standard strands with (j`, j̃`) = (1

2
, 1

2
) that are the

basic ingredients of the state dual to the round supertube, and a second type of strand that
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is obtained from the first by acting with the operator O` = (ψ−Ȧ)`(ψ̃
−̇Ḃ)`εȦḂ. This operator

is a scalar under rotations of the T 4 and carries (j`, j̃`) = (−1
2
,−1

2
), so that the new strands

have quantum numbers (j`, j̃`) = (0, 0) and are also invariant under R4 rotations. Thus it is
natural to associate these new strands to the component g5 of the profile. The coefficients a
and b determine the number of the constituent strands of the first and the second type: a2 is
proportional to the number of strands of the first type and b2/(2k) is proportional to the number
of strands of the second type.18 Note that this is consistent with the relation (3.12), since the
total length of the state is fixed in terms of N . Finally the Fourier mode numbers k of the various
components of the profile determine the total length of the corresponding type of strands. We
consider states for which the (1

2
, 1

2
) strands have length 1, since this is the only Fourier mode

present in g1 and g2 and the (0, 0) strands have arbitrary length, k.19 For a pictorial explanation
of this correspondence, see Figure 3.

Figure 3: The state/geometry dictionary for the 1/4-BPS states on which we will
add momentum to create superstrata. The profile given in (3.10) on the gravity side
(shown on the left) corresponds to the CFT state with two types of strands (shown
on the right). The first type of strand has length one and (j`, j̃`) = (1

2
, 1

2
) while the

second type of strand has length k and (j`, j̃`) = (0, 0).

In a similar way, it is possible to map different Fourier modes of each profile components to
CFT strands with particular SU(2)L × SU(2)R quantum numbers. The components g1 ± ig2 of
the profile correspond to (±1

2
,±1

2
) strands and the components g3 ± ig4 correspond to (±1

2
,∓1

2
)

strands. Together with the correspondence for the component g5 discussed in the example above,
this completes the dictionary between Fourier modes and strand types; see Figure 4 for a visual
explanation. Of course, supergravity solutions correspond to semi-classical states where each type
of strand appears in many copies so as to be suitably coherent. The only relevant information for
defining the dual state on the CFT side is the distribution of the numbers of each type of strand
in the full state. Order one variations from the states discussed above are not visible within the
supergravity limit.

At this point it is straightforward to extend this correspondence to descendant states: Both
on the bulk and on the CFT side one just needs to act on the same 1

4
-BPS states with certain

18As discussed in [19, 20], this is not the exact characterization of the dual semi-classical state, even in the
large n1n5 limit: in general the dual state is a linear combination of many terms, that is peaked around the
configuration described in the text, with a spread determined by the coefficients a and b.

19Note that the geometries dual to these states do not have any conical defects even if the corresponding CFT
state has strands of length k > 1. This is to be contrasted with the examples considered previously in the
literature where all the components of the profile had the same Fourier mode k.
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Figure 4: The state/geometry dictionary for more general 1/4-BPS states. The
Fourier components of profiles gA with mode number k in gravity (shown on the left)
correspond to the strands in the CFT states with length k with specific values of the
R-charge (j`, j̃`) (shown on the right).

generators of the superconformal algebra. This programme was initiated in [55] and a general
discussion at the linearized level can be can be found in [58]. In this paper have we focused
on the R-symmetry generators. As summarized in Section 3.3, a first example of a non-linear
descendant geometry can be constructed simply by acting with the exponential eχ(J+

−1−J
−
1 ) [8,27].

Clearly this operation brings about a non-trivial momentum charge, as the action of each J+
−1

obtained by expanding the exponential increases the momentum by one unit and the average
momentum of the descendant state is determined by the rotation parameter, χ (See [8] for the
explicit matching of the momentum and the angular momentum expectation values between the
bulk and the CFT descriptions).

It is very important to understand the commonalities and differences between the construction
of the “rigidly-generated” states obtained by the rotation above and our generic superstratum
fluctuations. In the orbifold CFT language the “rigidly-generated” states contain not only the
strands that were present in the original 1

4
-BPS states before the rotation but also have a new

type of momentum-carrying strand that is obtained by acting with the superalgebra generators
involved in the rotation. The relative number of the two types of strands (i.e. the RR ground
states and the momentum-carrying ones) is determined by the rotation parameter. On the
other hand, to make a fluctuating superstratum we rebuilt a complete supergravity solution
starting from almost20 arbitrary superpositions of the linearized forms of all possible “rigidly-
generated” states and thereby generated far richer families of CFT states. As we will see in
the next subsection, the rigid rotation is crucial to developing the holographic dictionary for
each individual mode and in this way we will obtain the CFT dual of the generic superstratum
geometry.

20Modulo the constraints imposed by regularity.
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7.3 A class of superstrata: the CFT description

We do not, yet, have an exhaustive description of the 1
8
-BPS geometries as we do for the 1

4
-BPS

ones. So it is easier to construct the dictionary between supergravity solutions and semi-classical
CFT states starting from the intuition built by studying the 1

4
-BPS solutions and working our

way backwards. As described above, we use the orbifold point language and our proposal for the
1
8
-BPS dictionary is:

A 1
8
-BPS solution in supergravity describing a finite fluctuation with modes v̂k,m given

in (3.23) around AdS3×S3 corresponds in the CFT to a semi-classical state composed
of strands of different types. The types of strands considered in this paper are char-
acterized by the length, k, the (left-moving) momentum number, m, and the choice of
fermion ground state ((0, 0) or (1

2
, 1

2
)). The frequency with which each type of strand

appears in the CFT state must be large, and corresponds in the bulk to how much the
parameters of the supergravity solution (such as the Fourier coefficients in ZI and
ΘI) differ from those of AdS3 × S3 (given in (3.4)).

Clearly the novelty as compared to the two-charge states is the appearance of a new quantum
number m determining the momentum of each type of strand. In general, the momentum is
carried by all possible types of excitation that are available in the CFT and, in particular, on a
strand of length k, we can have modes of the free boson and fermion fields carrying a fractional
quantum of momentum in units of the inverse of the radius R. The usual orbifold rules only
constrain the total momentum on each strand to be integer-valued21.

For general momentum-carrying states on a strand, it seems quite non-trivial to determine
the precise correspondence between the frequency with which the strand appears in the CFT
state and the deformation parameter of the supergravity data. However, for the particular ansatz
we consider here, the dictionary is simple enough and can be inferred from the data we have
collected.

As discussed in the gravity part of this paper, we have focussed on a class of states in which
the momentum excitations are the operators (J+

−1)` acting on different groups of (0, 0) strands
(recall that the subscript ` means that this operator belongs to the `th strand). This is the
same type of strand that, in absence of momentum carrying excitations, is related to the g5

component of the profile (3.10). Thus it is natural to relate the presence of this type of strand to

the presence of a term Z
(k,m)
4 (see (3.15)) in the supergravity solution. As a consistency check,

if we set m = 0, then this correctly reduces to the dictionary discussed above for the 1
4
-BPS

states: on the CFT side this kills the momentum-carrying excitations and on the gravity side
we recover the solution (3.11) which can be obtained from the profile from (3.10) by using the
general relations summarized in (A.1).

It is now straightforward to characterize the states that are dual to the superstrata geometries
we constructed: it is sufficient to look at the form of Z4 in (3.20) and interpret each term of the
sum as indicating the presence of Nk,m strands (on average) of the type (j`, j̃`) = (0, 0) with m

21Note however the important fact that this orbifold-CFT rule, that each strand carries integral units of
momentum, must be refined in certain situations in the D1-D5 CFT; see [63, Section 6.3] for more detail. Here
we ignore this point and only consider integral units of momentum on each strand.
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units of momentum carried by [(J+
−1)`]

m/m!, with

Nk,m = N
(
k

m

)−1
(bk,m)2

2k
, N =

R2N

Q1Q5

. (7.8)

We will also identify the number of strands of the type (j`, j̃`) = (1
2
, 1

2
) with Na2. The numerical

factors are suggested by the supergravity expressions for the charges derived in Section 6. First,
in our superstratum state the average numbers of strands of winding k multiplied by k should
sum up to the total number of CFT copies:

N = N

a2 +
∑
(k,m)

k

(
k

m

)−1
(bk,m)2

2k

 . (7.9)

This relation matches (6.10). Also the angular momentum charges (6.11) can be easily checked
from the microscopic picture: only the first type of strands in Figure 5 carries right-moving
angular momentum. Since the number of such strands is proportional to a2, this matches the
second relation in (6.11). The first relation in this equation follows from the fact that strands
with [(J+

−1)`]
m in Figure 5 carry m units of left-moving angular momentum j, while the fermion

zero modes of the strand (1
2
, 1

2
) contribute 1

2
each to j. Similarly, (6.15) is consistent with the fact

the operator [(J+
−1)`]

m adds m units of momentum on each strand where it acts. Indeed, (6.16)
shows that one quantum of momentum is associated with one quantum of angular momentum
and so each such quantum must be created by some (J−1)`.

The identification between each single term Z
(k,m)
4 and the presence of many copies of an

excited type of strand is also supported by some general properties of the momentum-carrying
operator we used. For instance, by using the free orbifold description of the CFT it is possible
to see that [(J+

−1)`]
m vanishes when it acts on a strand of length k if m > k. This can be easily

verified in the orbifold CFT. One can simply note that this is a standard null vector identity
in a current algebra of level k, or one can use (7.3) and (7.4) directly. The terms in (J+

−1)`
that act non-trivially on the (0, 0) strands have the form (ψ+1̇

n
k

)`(ψ
+2̇
1−n

k
)` with 0 ≤ n ≤ k; so in

[(J+
−1)`]

m with m > k at least one fermionic creation operator appears twice, which implies that
only strands with m ≤ k are possible. As one can see from equation (3.16) exactly the same
constraint arises on the supergravity side as a regularity condition for ∆k,m.

Another check that one can perform is to choose very particular values for the parameters
defining the superstratum states so as to reconstruct a descendant state. For instance, in Figure 5
we can consider just a single type of momentum-carrying strand with m = k. By generalizing
the CFT analysis of [8], one can check that this is a descendant obtained by choosing χ = π/2 in
the rotation of Section 3.2. Then the (average) number of momentum-carrying strands has to be
equal to the (average) number of (0, 0) strands in the seed two-charge geometry of Section 3.1,
as it can be seen by putting m = k in (7.8).

The main message of this construction is that the linearized (in the parameters bk,m) expres-
sion for the scalar fields Zi is sufficient to identify the dual state on the CFT side. On the bulk
side the supergravity equations allow one (at least for this class of states) to find the explicit
non-linear solutions. At this point it is possible to further check the dictionary between CFT
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Figure 5: The dual CFT state for the superstrata geometries in Section 5. The
symbol [(J+

−1)`]
m above a (0, 0) strand means that we act m times by the operator

(J+
−1)` on the ground state of the CFT on the strand. The wavy arrows represent

the non-vanishing momentum modes excited on the strand. The number of strands
of the same type is O(N), meaning that our solution represents a finite non-linear
deformation around the AdS3×S3 background. For the precise numbers of each type
of strand, see (7.8).

states and geometries by comparing the expectation values for the protected operators as it was
done for the 1

4
-BPS solutions in [19,20] and for their 1

8
-BPS descendants in [27].

To conclude this section we want to underline the significance of the three-charge supergravity
solutions that we have built. The three-charge geometries with a precise CFT dual that have been
known prior to this paper [8,10,14,15] have been obtained by a solution-generating technique [55]
that amounts to applying R-symmetry generators such as J+

−1 on 1
4
-BPS states. This procedure

can only generate an extremely restricted class of momentum-carrying states. In technical terms,
one can only obtain the R-current descendants of chiral primaries.22 In contrast, our geometries
correspond to descendants of non-chiral primaries and specifically, states generated by the small
current algebras, (7.4), on different types of strand. Our approach thus yields completely new,
broad classes of solutions.

From the CFT perspective, the way we have achieved this can be described more precisely as
follows: Our three-charge states, such as the one described in Figure 5, are composed of multiple
strands, in each of which we have applied the modes (J+

−1)` on a 1
4
-BPS ground state (= chiral

primary). Such a strand on its own can be thought of as representing a descendant of a chiral
primary. However, when we have two or more strands, the full state is a tensor product of
descendants of chiral primaries. Now recall that, although the tensor product of chiral primaries
is again a chiral primary, the tensor product of descendants of chiral primaries is in general a
descendant of a non-chiral primary [64]. Therefore, a multi-strand state in general represents a
descendant of a non-chiral primary. This is because a tensor product of strands each of which
is acted by (J+

−1)` cannot generally be written as the R-symmetry generator J+
−1 =

∑
`(J

+
−1)`

acting on a chiral primary, except for special states in which numbers of different types of strand
are tuned in some precise way.

22There is minor abuse of terminology here: since the D1-D5 CFT is in the RR sector, what we really mean
by a chiral primary is the spectral flow of a chiral primary in the NS-NS sector. The same caveat applies to the
subsequent discussions.
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We can see the same physics from the supergravity perspective: In our solution we allowed
for arbitrary coefficients bk,m in the linear combination in (3.20). This means that, in general, it
will not be possible to rewrite the solution as an element of the R-symmetry group, which is an
exponential of the operator J i =

∑
`(J

i)`, acting on a two-charge solution (= chiral primary).
Descendant states such as the “rigidly-generated” solution discussed in subsection 3.3 or those
considered in [8, 27] appear as special cases where the coefficients of the various terms in the
expression for the ZI are chosen in a precise way that allows one to reconstruct the currents J i.

8 Discussion, conclusions and outlook

First and foremost we have constructed an example of a superstratum with sufficient genericity
to substantiate the claim that the superstratum exists within supergravity as a smooth solution
parameterized by at least one function of two variables. This, in itself, represents huge progress
within the programme of reproducing the black-hole entropy by counting microstate geometries
that are valid in the same regime of parameters where the classical black hole solution exists,
and is cause enough for the “white smoke” and celebration suggested by this paper’s title. At a
more technical level we have given an algorithm that can be effectively implemented to generate
shape modes of the superstratum.

We have also begun to develop a systematic picture of the holographic duals of our superstrata
and the results presented here contain several important new results: Up until now, all the
three-charge geometries constructed by solution generating methods starting from two-centered
geometries [8, 10, 14, 15] were dual to descendants of chiral primary states23 in the left-moving
sector of the D1-D5 CFT. To obtain the most general 1

8
-BPS state one must be able to find

the gravity duals of arbitrary left-moving states: descendants of non-chiral primaries. We have
shown how such states are indeed being captured by the superstratum.

Our focus in this paper has been to exhibit one example of a superstratum rather than
attempt an analysis of the possible families of superstrata. As a result we have passed over many
interesting and important physical and mathematical issues that arise from our construction and
we would like to catalog some of them.

We begin with the interpretation of our work in terms of the CFT. In [5], three of the present
authors conjectured that the fluctuations of the superstratum that are visible in six-dimensional
supergravity correspond to current algebra excitations of the CFT. The current algebra in
question is generated by the modes (J in)` of (7.4) acting on individual strands labeled by `, and
the associated sector of the CFT has central charge c = N which is large enough to reproduce
the asymptotic growth of the entropy of the three-charge black hole. This is in stark contrast
to the R-symmetry algebra generated by the total J in =

∑
`(J

i
n)` whose central charge is merely

c = 3N
N+2

< 3. Therefore, in order to understand the fluctuation modes of the superstratum and

reproduce the black-hole entropy growth, it is crucial to study how individual generators (J in)`
are realized in supergravity and whether they generate smooth geometries.

The solution generating technique that was used in the literature [8, 10, 14, 15] to obtain
smooth three-charge solutions starting from two-center geometries constructs solutions that are

23See footnote 22.
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descendants of a chiral primary by the action of the total generator J in, and thus does not allow
one to change independently each individual (J in)`. However, by taking a tensor product of such
descendant states, which corresponds in supergravity to taking a linear superposition24 and non-
linearly completing it, we successfully constructed smooth momentum-carrying geometries dual
to states that are not the result of acting on chiral primaries with the total J in but intrinsically
involve individual generators (J+

−1)`. These explicit solutions demonstrate that the action of some
individual generators are indeed realized as smooth geometries. We regard this as evidence in
support of the conjecture that there exist smooth supergravity solutions realizing the entire c = N
current algebra generated by the individual generators (J in)`. Furthermore, the fact that our
solutions involve two parameters k,m suggests that the general fluctuation of the superstratum
is described by functions of at least two variables, as claimed in [5].

Although this represents major progress toward showing that the action of the full algebra
of individual generators (J in)` gives smooth superstrata in gravity, there are still two more steps
needed to achieve this goal: One must study how higher generators (J i−n)` with n ≥ 2 are realized
in supergravity. Furthermore, on a strand of length k, we can have fractional generators (J i−n/k)`
with n ∈ Z; we must also study the bulk realizations of these modes. On a strand of length
k = 1, higher modes can account for the three-charge black hole entropy growth S ∼ √n1n5np
if np � n1n5, while on a strand of length k = N , fractional modes can account for the entropy
growth if n1n5np � 1. Therefore, either higher modes or fractional modes are separately sufficient
to reproduce the three-charge black hole entropy for large enough np.

We can look at these issues with the modes (J in)` from a different angle. As we have argued,
the smooth geometries we have constructed represent the tensor product of the descendants
obtained by acting on chiral primaries with the specific generator, (J+

−1)` . Actually, the tower of
descendant states built using (J+

−1)` on a chiral primary have a bulk interpretation as states of a
supergraviton [65]. When there are multiple supergravitons, the total state is the tensor product
of such supergraviton states. Therefore, the smooth geometries constructed in this paper must
correspond to the states of a supergraviton gas in the bulk. More precisely, our geometries can be
regarded as coherent states in the multi-particle Hilbert space of supergravitons. Conversely, we
expect that the quantization of our solutions reproduce the multi-particle supergraviton Hilbert
space around AdS3 × S3.25

It was shown in [66, 67] that the supergravity elliptic genus computed by counting these
supergravitons, with a stringy exclusion principle imposed by hand, agrees with the CFT elliptic
genus in the parameter region LNS

0 ≤ N+1
4

, or in the R sector, LR
0 ≤ J3 + 1

4
. (See Fig. 6.) In other

words, in this parameter region, it has been shown that every CFT state has a bulk realization
as a multi-supergraviton state, modulo the fact that some states are missed because elliptic
genus counts states with signs (it is only an index). Therefore, our geometries must be giving

24This superposition can be understood as follows. If one has a free harmonic oscillator with the annihilation

operator a, a classical configuration with amplitude α corresponds to the coherent state eαa
† |0〉 ≡ |α〉a. If one

has two oscillators with a and b, the classical configuration in which the a oscillator with amplitude α and the
b oscillator with amplitude β are classically superposed corresponds to the tensor product state |α〉a ⊗ |β〉b =

eαa
†+βb† |0〉a,b.

25The full tower of descendants of a chiral primary involves the action of L−1 and supercurrent generators,
which we did not consider in this paper. To reproduce the full Hilbert space, one needs to include the bulk
geometries generated by these generators too.
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the bulk semi-classical description of all CFT states in this parameter region (again, modulo
possibly missed states). However, this observation also illuminates what states our solutions fail
to capture. The results in [66, 67] imply that, above the bound LR

0 = J3 + 1
4
, the supergraviton

gas is not enough to account for the CFT states. By construction, the supergraviton gas includes
neither higher nor fractional modes and so we need these modes to reproduce the entropy above
the bound. In particular, because single-center supersymmetric black holes (the BMPV black
hole [68]) exist above the bound, we certainly need to understand superstratum realizations of
higher and/or fractional modes to reproduce entropy of this black hole.

Actually, the story is even more interesting, since in [69] it was shown that there are multi-
center black holes (“moulting black holes”) even below the bound. These black holes must
correspond to higher and/or fractional modes that are not visible in the elliptic genus because of
cancellations between bosonic and fermionic states. Therefore, understanding superstratum real-
izations of higher and/or fractional modes are important also for understanding the microstates
of moulting black hole configurations. The microstates of the moulting black holes may be
promising for studying higher and fractional modes, because they exist even in the neighborhood
of pure AdS3 × S3 ((J3, LR

0 ) = (N
2
, N

4
)). Presumably, we can study those modes by looking at

small deformations around AdS3 × S3.

Figure 6: The J3-LR
0 phase diagram of the D1-D5 system. Pure AdS3 × S3 cor-

responds to the point (J3, LR
0 ) = (N

2
, N

4
), and states exist only on and above the

unitarity bound (green lines). The CFT elliptic genus can be reproduced by the
bulk graviton gas for LR

0 ≤ J3 + 1
4

(blue horizontally-hatched region). Single-center

BMPV black holes exist for LR
0 ≥

(J3)2

N
+ N

4
(red vertically-hatched region). Even in

the region LR
0 <

(J3)2

N
+ N

4
, there exist multi-center configurations of black holes and

rings with a finite horizon area [69].

Returning to the supergravity perspective, some important new ingredients are needed to
make further progress in the construction of the most general supergravity superstrata.
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As we noted above, the solutions constructed in this paper are based on the action of the
generators (J−−1)`. To go beyond this, we must understand supergravity realizations of (J i−n)` with
n > 1 (higher modes) and n ∈ Z/k (fractional modes). The total generators J i−n =

∑
`(J

i
−n)`

are realized in the bulk by dressing J i0 with a v-dependent exponential factor e−i
√

2nv/R [58]. In
general, the action of the total J i−n makes all kinds of quantities v-dependent, including the base
metric ds2

4 and the 1-form β [8]. Therefore, the individual generators, (J i−n)`, must also produce
a complicated v-dependence in the solution. In particular, the new parameter, n, introduced by
this procedure is expected to generalize the phase v̂k,m in (3.23) to v̂k,m,n depending on three
parameters and lead to a much broader class of three-charge solutions.

Clearly, it is particularly important to understand how the fractional modes (J i−n/k)`, which

exist on strands of length k > 1, are encoded in supergravity. For k ∼ O(N), the fractional modes
mean that the bulk geometry must have an energy gap as low as ∼ 1/N .26 Furthermore, much of
the three-charge entropy comes from excitations on strands with k ∼ O(N). Although we have
superstrata with shape modes that are intrinsically two-dimensional, the actual modes studied
here do not have the very low energy gap ∼ 1/N . In the gravity dual, excitations with this energy
gap are known to come from fluctuations of “deep, scaling” geometries in which the wavelength of
the fluctuation is approximately the scale of the horizon [26,70–72]. There are thus two ways we
might find such superstrata: One could consider a single, large superstratum with a large dipole
moment, k, and hence a very large order, Zk, orbifold singularity and then allow multi-valued
functions with the fluctuation spectrum27. (Of course, multi-valued excitations are not allowed
in supergravity and therefore they must be excited multiple times so that their wavefunction
is single-valued.) While such a configuration is technically singular, its physical meaning is
still understandable. Alternatively, one could “completely bubble” such a configuration to a
k-centered configuration and then the lowest energy fluctuation will be some collective mode of
all the bubbles in this configuration in some deep scaling limit. While the latter would have
no orbifold singularities, its lack of symmetry might make analytical computations prohibitively
hard.

More generally, there remains an important conceptual issue in microstate geometries: we
know how to obtain modes with the energy gaps ∼ 1/N in both the D1-D5 CFT and in the deep,
scaling holographic dual geometries, but a detailed understanding of precisely how these dual
states are related remains unknown. As indicated above, part of the story must involve resolving
orbifold singularities and multi-valued functions but, on the gravity side, it must also involve
deep scaling geometries. We would very much like to understand the emergence of such scaling
geometries from the detailed matching in the holographic dictionary. Understanding this issue
is going to be an essential part of seeing how the CFT entropy is encoded in the bulk geometry.

In the construction presented here we also encountered new types of singularities that are
more difficult to remove than the singularities that appear in the standard construction of five-
dimensional microstate geometries. In the latter, the removal of singularities was related to
the removal of closed time-like curves and this could be achieved by adjusting the choices of

26BPS excitations can only have a gap of order O(1), because supersymmetry means that the excitation energy
is equal to the momentum number which is quantized to integers. Non-BPS excitations, on the other hand, are
not subject to such constraints and their energy gap can be as small as O(1/N).

27A similar approach was used in [73] to construct a restricted class of microstates containing fractional modes.
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homogeneous solutions to the linear system of equations underlying the BPS solutions. Here we
have found that the choice of homogeneous solutions is insufficient for the task of singularity
removal: one also has to interrelate the otherwise independent sets of fluctuations in order to
obtain non-singular solutions. We also noted that these interrelationships are very similar to
those required for smooth horizons in black rings with fluctuating charge densities [29]. The
physical origins and the resolutions of these potential singularities remains unclear and in this
paper we simply exploited a mathematical algorithm to remove such singularities. We would like
to understand the origins of such singularities, classify the ways in which one can cancel them
and see if there is, indeed, some physical link of this to black-ring horizon smoothness.

In this paper we have also focused on superstrata that are asymptotic to AdS3 × S3. This
choice was made for two reasons: simplicity and holography. The removal of singularities is
simpler if the space is asymptotic to AdS3 × S3 and such asymptotics is all one needs for the
study of the states that are holographically dual to our superstrata. More generally, we would
like to construct and classify superstrata that are asymptotic to R4,1 × S1 or R3,1 × T 2. This
means that constant terms need to be introduced into some of the metric functions. As noted in
Section 6, the constructions of such solutions should involve only straightforward technical issues
rather than serious conceptual or physical issues. Indeed, such solutions will be investigated
in [60].

There are also some other interesting technical issues in the mathematics of superstrata.
First, we found in Sections 4 and 5 that regularity required our Fourier coefficients to satisfy a
quadratic constraint and that constraint came from canceling a class of terms appearing in the
quadratic Z1Z2−Z2

4 . Motivated by solution generating methods [8,10,14,15] we chose to do this
by leaving Z2 and Θ1 unmodified (see (3.25)) and adjusting the modes of Z1 and Θ2 to cancel
the problematic terms arising out of Z2

4 . If one allows for a general set of modes in Z2 and Θ1

then there are presumably many more ways to satisfy the quadratic constraints and hence more
allowed excitations of the superstratum. As we also noted, one must furthermore revisit the
quadratic constraint on Fourier coefficients if one is to construct superstrata in asymptotically
flat geometries and so we intend to analyze this constraint more completely in [60].

The second technical issue has to do with the existence of a systematic approach to solving
the system of differential equations underlying our solutions. We have been in this paper able to
completely solve for all the fields of the solution in closed form except for one function appearing
in some of the components of the angular momentum vector28. The two-centered system leads to
some relatively simple differential operators and, in particular, the Laplacian (4.9) is separable.
The sources are also relatively simple functions and we have managed to find complete analytic
solutions for some infinite families of sources. Our explicit solutions are also polynomials in
simple functions of r and θ. All of this suggests that there must be a far more systematic
approach to solving this system of differential equations. Indeed, we strongly suspect that the
whole mathematical problem we have been solving in Section 4 should have a much simpler
formulation and solution in terms of some cleverly chosen orthogonal polynomials. Understanding
this may, in turn, lead to a clearer understanding of the whole system of differential equations and
maybe even a reformulation of the general solution, perhaps even for multi-centered solutions,

28We have a solution for ωψ+ωφ and if we could find the function we miss we could find ωψ and ωφ independently,
and then solve for ωr and ωθ algebraically.
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in terms of Green functions. Furthermore, solving this problem should enable the complete
analytic construction of the most general superstratum based on two centers. Work on this is
also continuing.
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A D1-D5 geometries

The 1
4
-BPS D1-D5 geometries invariant under T 4 rotations are associated with a profile gA(v′)

with non-trivial components for A = i = 1, . . . , 4 and for A = 5. Given such a profile, the
functions and fields describing the geometry in the language of the IIB solution (2.1) are

Z2 = 1 +
Q5

L

∫ L

0

1

|xi − gi(v′)|2
dv′ , Z4 = −Q5

L

∫ L

0

ġ5(v′)

|xi − gi(v′)|2
dv′ , (A.1a)

Z1 = 1 +
Q5

L

∫ L

0

|ġi(v′)|2 + |ġ5(v′)|2

|xi − gi(v′)|2
dv′ , dγ2 = ∗4dZ2 , dδ2 = ∗4dZ4 , (A.1b)

A = −Q5

L

∫ L

0

ġj(v
′) dxj

|xi − gi(v′)|2
dv′ , dB = − ∗4 dA , ds2

4 = dxidxi , (A.1c)

β =
−A+B√

2
, ω =

−A−B√
2

, F = 0 , a1 = a4 = x3 = 0 , (A.1d)

where the dot on the profile functions indicates a derivative with respect to v′ and ∗4 is the dual
with respect to the flat R4 metric ds2

4 = dxidxi. The D1 charge is given by

Q1 =
Q5

L

∫ L

0

(
|ġi(v′)|2 + |ġ5(v′)|2

)
dv′. (A.2)
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The quantities Q1, Q5 are related to quantized D1 and D5 numbers n1, n5 by

Q1 =
(2π)4 n1 gs α

′3

V4

, Q5 = n5 gs α
′ . (A.3)

where V4 is the coordinate volume of T 4.

B Solution of the (generalized) Poisson equation

The function F
(p,q)
k,m was defined in the main text to be the regular solution to equation (4.18),

which we repeat here for convenience:

L̂(p,q)F
(p,q)
k,m =

1

r2 + a2

∆k,m

cos2 θΣ
, (B.1)

where the generalized Laplacian L̂(p,q) was defined in (4.8). In this Appendix, we derive the
explicit solution to this equation, given in the main text in equation (4.20).

First, let us define the functions

Gkm ≡
1

r2 + a2
∆k,m, Skm ≡

1

r2 + a2

∆k,m

cos2 θΣ
. (B.2)

It is easy to show that these satisfy the following recursion relation:

L̂(p,q)Gkm = [p2 − (k + 2)2]Sk+2,m+2 + [(k −m)2 − (p− q)2]Sk,m+2 + (m2 − q2)Sk,m. (B.3)

Now, let us introduce the following generating functions:

F(κ, µ) ≡
∑
k,m

F
(p,q)
k,m ekκ+mµ, G(κ, µ) ≡

∑
k,m

Gk,me
kκ+mµ, S(κ, µ) ≡

∑
k,m

Sk,me
kκ+mµ. (B.4)

In terms of these, the equation we want to solve, (B.1), can be collectively written as

L̂(p,q)F(κ, µ) = S(κ, µ), (B.5)

and the recursion relation (B.3) as

L̂(p,q)G(κ, µ) =
[
−e−2κ−2µ(p2 − ∂2

κ) + e−2µ((∂κ − ∂µ + 2)2 − (p− q)2) + (∂2
µ − q2)

]
S(κ, µ).

(B.6)
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Because L̂(p,q) commutes with ∂κ and ∂µ, a comparison between (B.5) and (B.6) gives

F(κ, µ) =
[
−e−2κ−2µ(p2 − ∂2

κ) + e−2µ((∂κ − ∂µ + 2)2 − (p− q)2) + (∂2
µ − q2)

]−1

G(κ, µ)

= −
[
1− e2κ (∂κ − ∂µ + 2)2 − (p− q)2

(∂κ + 2)2 − p2
− e2κ+2µ

∂2
µ − q2

(∂κ + 2)2 − p2

]−1

× e2κ+2µ 1

(∂k + 2)2 − p2
G(κ, µ)

= −
∞∑
n=0

[
e2κ (∂κ − ∂µ + 2)2 − (p− q)2

(∂κ + 2)2 − p2
+ e2κ+2µ

∂2
µ − q2

(∂κ + 2)2 − p2

]n
× e2κ+2µ 1

(∂k + 2)2 − p2
G(κ, µ). (B.7)

By expanding the nth power using binomial coefficients and explicitly writing down the first few
terms in terms of F

(p,q)
k,m and Gk,m, one finds

F
(p,q)
k,m = −

∞∑
s=0

s∑
t=0

(
s

t

) s−t︷ ︸︸ ︷
(k −m+ p− q)(k −m+ p− q − 2) · · ·

t︷ ︸︸ ︷
(m+ q − 2)(m+ q − 4) · · ·

(k + p)(k + p− 2) · · ·︸ ︷︷ ︸
s+1

×

s−t︷ ︸︸ ︷
(k −m− p+ q)(k −m− p+ q − 2) · · ·

t︷ ︸︸ ︷
(m− q − 2)(m− q − 4) · · ·

(k − p)(k − p− 2) · · ·︸ ︷︷ ︸
s+1

Gk−2s−2,m−2t−2

= − 1

k2 − p2

∞∑
s=0

s∑
t=0

(
s

t

)( k+p
2
−s−1

m+q
2
−t−1

)( k−p
2
−s−1

m−q
2
−t−1

)
( k+p

2
−1

m+q
2
−1

)( k−p
2
−1

m−q
2
−1

) Gk−2s−2,m−2t−2.

= − 1

4k1k2(r2 + a2)

∞∑
s=0

s∑
t=0

(
s

t

)(k1−s−1
m1−t−1

)(
k2−s−1
m2−t−1

)(
k1−1
m1−1

)(
k2−1
m2−1

) ∆k−2s−2,m−2t−2, (B.8)

where the relations between (k,m, p, q) and (k1,m1, k2,m2) are given in (4.11,4.15). If we assume

k1 ≥ m1 ≥ 1, k2 ≥ m2 ≥ 1, (B.9)

then the sum truncates at finite s and F
(p,q)
k,m can be written as

F
(p,q)
k,m = − 1

4k1k2(r2 + a2)

min{k1,k2}−1∑
s=0

s∑
t=0

(
s

t

)(k1−s−1
m1−t−1

)(
k2−s−1
m2−t−1

)(
k1−1
m1−1

)(
k2−1
m2−1

) ∆k−2s−2,m−2t−2, (B.10)

which is (4.20) in the main text. It is clear that this is a regular function at r = 0.
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