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Abstract—Usually, the joint transmission friction model for 

robots is composed of a viscous friction force and of a constant 

dry sliding friction force. However, according to the Coulomb 

law, the dry friction force depends linearly on the load driven 

by the transmission. It follows that this effect must be taken into 

account for robots working with large variation of the payload 

or inertial and gravity forces, and actuated with transmissions 

as speed reducer, screw-nut or worm gear. This paper proposes 

a new inverse dynamic identification model for n degrees of 

freedom (dof) serial robot, where the dry sliding friction force is 

a linear function of both the dynamic and the external forces, 

with a velocity-dependent coefficient. A new identification 

procedure groups all the joint data collected while the robot is 

tracking planned trajectories with different payloads to get a 

global least squares estimation of inertial and new friction 

parameters. An experimental validation is carried out with a 

joint of an industrial robot. 

I. INTRODUCTION 

HE usual identification method is based on the inverse 

dynamic model (IDM) which is linear in relation to the 

dynamic parameters, and uses least squares (LS) technique. 

This procedure has been successfully applied to identify 

inertial and friction parameters of a lot of prototypes and 

industrial robots  [1]- [10]. An approximation of the kinematic 

Coulomb friction, ( )CF sign qɺ , is widely used to model 

friction force at non zero velocity qɺ , assuming that the 

friction force FC is a constant parameter. It is identified by 

moving the robot without any load (or external force) or with 

constant given payloads  [9].  

However, the Coulomb law suggests that FC depends on 

the transmission force driven in the mechanism. It depends 

on the dynamic and on the external forces applied through 

the joint drive chain. Consequently for robots with varying 

load, the identified IDIM is no more accurate when the 

transmission uses industrial speed reducer, screw-nut or 

worm gear because their efficiency significantly varies with 

the transmitted force. The significant dependence on load 

has been often observed for transmission elements  [15]- [19] 

through direct measurement procedures. Moreover, the 

mechanism efficiency depends on the sense of power transfer 

leading to two distinct sets of friction parameters. In 

addition, when the robot moves at very low velocity, as for 

teleoperation, one observes a velocity-dependency of the dry 

 
 

friction. 

This paper presents a new inverse dynamic identification 

model for n degrees of freedom (dof) serial robot, where the 

dry sliding friction force CF  is a linear function of both the 

dynamic and the external forces, with asymmetrical behavior 

depending on the signs of joint force and velocity, and a 

variation depending on the velocity amplitude. A new 

identification procedure is proposed. All the joint position 

and joint force data collected in several experiments, while 

the robot is tracking planned trajectories with different 

payloads, are concatenated to calculate a global least squares 

estimation of both the inertial and the new friction 

parameters. 

An experimental validation is carried out on the third joint 

of an industrial robot: Stäubli RX130L  [25]. Both models are 

compared. 

II. USUAL INVERSE DYNAMIC MODELING AND 

IDENTIFICATION 

A. Modeling 

In the following, all mechanical variables are given in SI 

units in the joint space. All forces, positions, velocities and 

accelerations have a conventional positive sign in the same 

direction. That defines a motor convention for the 

mechanical behavior. 

The dynamic model of a rigid robot composed of n 

moving links is written as follows  [11]: 

dyn in f ext= + +τ τ τ τ  (1) 

where: 

• dynτ  is the (nx1) vector of dynamic forces due to the 

inertial, centrifugal, Coriolis, and gravitational effects: 

( ) ( ) ( )dyn ,= + +ɺɺ ɺ ɺτ M q q C q q q Q q  (2) 

where q, ɺq  and ɺɺq  are respectively the (nx1) vectors of 

generalized joint positions, velocities and accelerations, 

M(q) is the (nxn) robot inertia matrix, ( , )ɺC q q  is the (nxn) 

matrix of centrifugal and Coriolis effects, Q(q) is the (nx1) 

vector of gravitational forces. 

• inτ  is the (nx1) input torque vector on the motor side of 

the drive chain: 

Dynamic Identification of Robots with a Dry Friction Model 

Depending on Load and Velocity 

P. Hamon
(1)

, M. Gautier
(2)

, and P. Garrec
(1)

 

(1)
 CEA, LIST, Interactive Robotics Laboratory, 18 route du Panorama, BP6, Fontenay-aux-Roses, F-92265, France. 

(2)
 University of Nantes/IRCCyN, 1 rue de la Noë, BP 92101, Nantes Cedex 03, F-44321, France. 

T 

The 2010 IEEE/RSJ International Conference on 
Intelligent Robots and Systems 
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 6187



  

( )
0in f f f= −τ g v v  (3)  

where fv  is the (nx1) vector of current references of the 

current amplifiers, 
0f

v  is a (nx1) vector of amplifiers offsets, 

gf is the (nxn) matrix of the drive gains, 

f i t=g NG K  (4) 

N is the (nxn) gear ratios matrix of the joint drive chains 

( m =ɺ ɺq Nq  with m
ɺq  the (nx1) velocities vector on  the motor 

side), Gi is the (nxn) static gains diagonal matrix of the 

current amplifiers, Kt is the (nxn) diagonal matrix of the 

electromagnetic motor torque constants  [14]. 

• fτ  is the (nx1) vector of the loss force due to frictions. 

Usually, it is approximated with a viscous friction and a 

dry friction: 

( )f V C Coff= − − −ɺ ɺτ F q F sign q F  (5) 

where FV is the (nxn) diagonal matrix of viscous 

parameters, FC is the (nxn) diagonal matrix of dry friction 

parameters, and sign(.) denotes the sign function, FCoff is a 

(nx1) vector of asymmetrical Coulomb friction force 

between positive and negative velocities. This friction model 

is linear to FV and FC (Fig. 1.a). 

• extτ  is the (nx1) external forces vector in the joint space. 

 

Thus (1) becomes: 

( ) ( )

( )

0dyn ext f f V C Coff f f

out V C off

− = − − − +

⇔ = − − −

ɺ ɺ

ɺ ɺ

τ τ g v F q F sign q F g v

τ τ F q F sign q τ
 (6) 

where out dyn ext= −τ τ τ  is the output force (the load force) of 

the drive chain, 
0off Coff f f= +τ F g v  is an offset force that 

regroups the amplifier offset and the asymmetrical Coulomb 

friction coefficient. 

f f=τ g v  (7) 

is the motor force, without offset, and defined by vf which is 

the current reference calculated by the numerical control and 

stored for the identification. 

Then (1) can be rewritten as the inverse dynamic model 

(IDM) which calculates the motor torque vector τ as a 

function of the generalized coordinates: 

( ) ( ) ( ) ( )

( )

C V off ext

out C V off

,= + + + + + −

= + + +

ɺɺ ɺ ɺ ɺ ɺ

ɺ ɺ

τ M q q C q q q Q q F sign q F q τ τ

τ F sign q F q τ
(8) 

B. Identification 

The choice of the modified Denavit and Hartenberg 

frames attached to each link allows to obtain a dynamic 

model linear in relation to a set of standard dynamic 

parameters Stχ   [6],  [11]: 

( )St St, ,= ɺ ɺɺτ D q q q χ  (9) 

where ( )St , ,ɺ ɺɺD q q q  is the regressor and Stχ  is the vector of 

the standard parameters which are the coefficients XXj, XYj, 

XZj, YYj, YZj, ZZj of the inertia tensor of link j denoted 
j
Jj, the 

mass of the link j called mj, the first moments vector of link j 

around the origin of frame j denoted 
j
Mj = [MXj MYj MZj]

T
, 

the friction coefficients FVj, FCj, the actuator inertia called 

Iaj, and the offset τoff j. The velocities and accelerations are 

calculated using well tuned band pass filtering of the joint 

position  [7]. 

The base parameters are the minimum number of 

parameters from which the dynamic model can be calculated. 

They are obtained by eliminating and by regrouping some 

standard inertial parameters  [12],  [13]. The minimal inverse 

dynamic model can be written as: 

( ), ,= ɺ ɺɺτ D q q q χ  (10) 

where ( ), ,ɺ ɺɺD q q q  is the minimal regressor and χ is the vector 

of the base parameters. 

The inverse dynamic model (10) is sampled while the 

robot is tracking a trajectory to get an over-determined linear 

system such that  [6]: 

( ) ( ), ,= +ɺ ɺɺY τ W q q q χ ρ  (11) 

with Y(τ) the measurements vector, W the observation 

matrix and ρ the vector of errors. 

The LS solution χ̂  minimizes the 2-norm of the vector of 

errors ρ. W is a (r×b) full rank and well conditioned matrix 

where er N x n= , with Ne the number of samples on the 

trajectories. The LS solution χ̂ is given by: 

( )
1

T Tˆ
−

+= =χ W W W Y W Y  (12) 

It is calculated using the QR factorization of W. Standard 

deviations 
iχ̂σ  are estimated using classical and simple 

results from statistics. The matrix W is supposed to be 

deterministic, and ρ, a zero-mean additive independent noise, 

with a standard deviation such as: 

( )TE 2

rρρ ρσ= =C ρρ I  (13) 

where E is the expectation operator and Ir, the (r×r) identity 

matrix. An unbiased estimation of σρ is: 

( )
22 ˆˆ r bρσ = − −Y Wχ  (14) 

The covariance matrix of the standard deviation is 

calculated as follows: 

T 2 T 1

χχ ρ
E ( )( ) σ ( )ˆ ˆ

ˆ ˆ − = − − = C χ χ χ χ W W  (15) 

i

2
ˆ ˆ ˆ iiCχ χχσ =  is the i

th
 diagonal coefficient of ˆ ˆχχC . The 
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relative standard deviation 
ri

ˆ% χσ  is given by: 

ri i
ˆ ˆ i

ˆ% 100χ χσ σ χ=  (16) 

However, experimental data are corrupted by noise and 

error modeling and W is not deterministic. This problem can 

be solved by filtering the measurement vector Y and the 

columns of the observation matrix W as described in  [7],  [8]. 

III. NEW DRY FRICTION MODEL AND IDENTIFICATION 

In this section, we introduce a dry friction model 

dependent on the load, that is outτ , and on the velocity ɺq . 

A. Load-Dependent Friction Model 

The Coulomb friction is still written ( )C sign ɺF q , with FC a 

(nxn) diagonal matrix. But here, for each link j, ( )C j , jF  (the 

(j,j)
th

 element of the matrix CF ) depends linearly on the 

absolute value of the load of joint j which is out jτ  (Fig. 1.b), 

 [15]- [19]. As one can see in  II.B, out jτ  is a function of 

, , ɺ ɺɺq q q  and is linear in relation to base parameters. 

Then the inverse dynamic model for each link j becomes: 

( ) ( )( )j out j j out j j j V j , j j off jsign q qτ τ α τ β τ= + + + +ɺ ɺF  (17) 

where jα  and jβ  are parameters to be identified. These new 

parameters depend on the mechanical structure of the 

reducers used to actuate the robot. 

 

For ease of understanding, the subscript j is omitted for all 

variables in the following to simplify the notation. 

 

 
Fig. 1.  a) Usual friction model with constant dry friction + viscous friction. 

b) Model with load-dependent dry friction + viscous friction. 

c) Model with load- and velocity-dependent dry friction + viscous friction. 

 

The inverse dynamic model can be written as follows: 

( ) ( )out out V offsign q sign q F qτ τ α τ β τ= + + + +ɺ ɺ ɺ  (18) 

And with ( )out out outsignτ τ τ=  and 

( ) ( ) ( ) ( )out out outsign sign q sign q sign Pτ τ= =ɺ ɺ , one obtains: 

( ) ( )out out out V offsign P sign q F qτ τ ατ β τ= + + + +ɺ ɺ  (19) 

Thus, the IDM depends on the signs of the output power 

out outP qτ= ɺ . One defines 4 quadrants in the frame ( )outq,τɺ , 

which can be grouped two by two (Fig. 2.a). In the quadrants 

1 and 3, outP  is positive and the actuator has a motor 

behavior. In the quadrants 2 and 4, outP  is negative and the 

actuator has a generator behavior which may save the power 

to the power supply, assuming a 4 quadrants amplifier. 

B. Dry Friction Model Depending on the Power Sign 

In the model (19), α  and β  do not depend on the output 

power sign. But, generally they take different values: mα  

and mβ  for the motor quadrants, and gα  and gβ  for the 

generator quadrants. 

( ) ( )

( ) ( )

out m out m V off

out g out g V off

P 0 1 sign q F q

P 0 1 sign q F q

τ α τ β τ

τ α τ β τ

> ⇒ = + + + +


< ⇒ = − + + +

ɺ ɺ

ɺ ɺ
 (20) 

The model (20) is illustrated in Fig. 2.b for a constant 

velocity 0qɺ . This model is not valid anymore for very low 

forces in the stiction area ( q 0=ɺ ): one approximates the 

friction as the limit of model (20) in the rectangle 

( ) ; ( ) ( )m V 0 off g V 0 off gF q F q 1β τ β τ α+ + + − −ɺ ɺ . 

 
Fig. 2.  a) Four quadrants frame ( )

out
q,τɺ  for motor or generator behavior.  

b) Asymmetrical friction for a given velocity 
0

qɺ and the stiction area. 

C. Dry Friction Model Depending on the Velocity 

For a robot moving at low velocities, one observes a dry 

friction variation, functions of the velocity, which is similar 

to the Stribeck model (Fig. 1.c),  [20],  [21],  [22]. 

if  and 

( ) if  and 

( ) if 

out stout

st out out st

q 0 F

F F sign q 0 F

F q q 0

ττ

τ τ

= <


= = ≥


≠

ɺ

ɺ

ɺ ɺ

 (21) 

with: 

( )( ) ( ) ( )sq / q

sl st slF q F F F e sign q
−

= + −
ɺ ɺ

ɺ ɺ   (22) 

where Sqɺ  is a velocity constant, stF  is the dry friction in 

stiction and slF  is the dry friction in sliding mode. 

 

To combine the variation due to the load (17) with the one 

due to velocity (22), one takes: 

  et  sl out st outF Fα τ β γ τ δ= + = +  (23) 

Then, (22) becomes: 

a) b) 

qɺ  
Pout > 0 

Motor 

Pout > 0 

Motor 

Pout < 0 

Generator 

τout 

Pout < 0 

Generator 

1 

4 3 

2 

τout 

τ 

1 

Approximated 

stiction area 

Friction 

Friction 

1 + αm 

1 

1 – αg 

1 

motor

g
en

er
at

or

motor

g
en

er
at

or

 
0

q 0
<

ɺ

 
0

q 0
<
ɺ

 
0

q 0
>
ɺ

 
0

q 0
>ɺ

b) 

qɺ  

β 

-β 

outτ  

increases 

a) 

qɺ  

Fc 

-Fc 

f Coff( F )τ− +  c) 

qɺ  

outτ  

increases 

f Coff( F )τ− +  
f Coff( F )τ− +  
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( )
( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

S

S S

q q

out out out

q q q q

out out

F q e sign q

e sign P e sign q

α τ β γ τ δ α τ β

α γ α τ β δ β

−

− −

= + + + − −

= + − + + −

ɺ ɺ

ɺ ɺ ɺ ɺ

ɺ ɺ

ɺ

 (24) 

Because of the dependence on power sign, one has 2 sets 

of parameters α , β , γ , δ  for the 2 behaviors: motor and 

generator. Considering m ma 1 α= + , m m mb γ α= − , m mc β= , 

m m md δ β= − , and g ga 1 α= − , g g gb γ α= − , g gc β= , 

g g gd δ β= − , the inverse dynamic model becomes: 

( ) ( )

( ) ( )

S S

S S

out

q q q q

m out m out m m V off

out

q q q q

g out g out g g V off

P 0

a b e c sign q d e sign q F q

P 0

a b e c sign q d e sign q F q

τ τ τ τ

τ τ τ τ

− −

− −

> ⇒


= + + + + +


< ⇒


= − + + + +

ɺ ɺ ɺ ɺ

ɺ ɺ ɺ ɺ

i

ɺ ɺ ɺ

i

ɺ ɺ ɺ

(25) 

D. Friction Identification Method 

In order to keep a IDM linear in relation to the parameters, 

one decides on an a priori value of Sqɺ . This constant 

represents the exponential transitional behavior between 

stiction and sliding, that is about 3 Sq∗ ɺ , more or less 5%. 

Measurements show that the amplitude of this transitional 

behavior is close to 10% of the nominal velocity 1.2 rad/s, 

that is 0.04 rad/sSq =ɺ . A final adjustment to 0.03 rad/sSq =ɺ  

at the moment of the identification gives a minimal residual 

ρ a little lower. This value for Sqɺ  is close to the value 

given in  [22] for a Kuka IR 161 robot. 

Furthermore, the model (25) depends on the sign of outP  

which is unknown. To overcome this problem, the samples 

of τ  measurements are selected outside of the stiction area 

( q 0=ɺ  – Fig. 2.b) in order to get the same sign for outτ  and 

τ . This allows to get the sign of outP  with: 

( ) ( ) ( ) ( )out outsign P sign q sign q sign Pτ τ= = =ɺ ɺ  (26) 

One can then write the IDM linear in relation to 

parameters and use the LS technique. To have only one 

expression instead of two in (25), 3 variables are introduced, 

P
+ , P

− , and Exp, defined by: 

( )1 sign P
P

2

+ +
= , 0 1P P+> ⇔ = , 0 0P P+< ⇔ =  (27) 

( )1 sign P
P P

2

− +−
= =  (28) 

Sq q

xpE e
−

=
ɺ ɺ

 (29) 

The inverse dynamic model is then written: 

( ) ( )

 ( ) ( ) ( ) ( )

m m xp out g g xp out

m m xp g g xp V off

P a b E P a b E ...

... P c d E sign q P c d E sign q F q

τ τ τ

τ

+ −

+ −

= + + − +

+ + + + +ɺ ɺ ɺ

 (30) 

As outτ  is linear in relation to parameters, so is τ . 

IV. EXPERIMENTAL SETUP AND IDENTIFICATION 

A. Study case: Stäubli RX130L Robot 

The Stäubli RX130L robot is an industrial robot with 6 

rotational joints. The joint 3 has been chosen for this study 

because unlike the joint 1, it has large gravity variation, and 

no compensation gravity spring contrary to the joint 2. The 

links 1 and 2 are lined up and locked in a vertical position. 

The arm 3 is composed of the links 4, 5 and 6 brought into 

line with the link 3 and locked (Fig. 3), with a total mass of 

about 30 kg and a length of 1.33 m. The maximum velocity 

is 1.2 rad/s and the maximum acceptable load at the 

extremity is 10 kg.  

 

The inverse dynamic model of joint 3 is written: 

( ) ( ) ( )3 3 3 3 3 3 3 C3 3 V3 3 off 3J q MX gcos q MY gsin q F sign q F qτ τ= + + + + +ɺɺ ɺ ɺ  (31) 

where: 

• 3 3 3J Ia ZZ= +  is the inertia moment 3Ia  of the drive 

chain plus the inertia moment ZZ3 of the arm, 

• 
2 m/sg 9.81=  is the gravity acceleration. 

All variables and parameters are given in SI units on the 

joint space. In the following, the subscript 3 is omitted to 

simplify the notation. 
 

 
Fig. 3.  RX130L drawing: joints 1, 2, 4, 5 and 6 locked in position. 

B. Data Acquisition 

The identification of dynamic parameters is carried out 

with and without payloads: two different additional masses 

can be fixed to the arm extremity. To excite properly the 

friction parameters to be identified, sinusoidal and 

trapezoidal velocities trajectories were used. 

The estimation of qɺ  and qɺɺ  are carried out with pass band 

filtering of q  consisting of a low pass Butterworth filter and 

a central derivative algorithm. The Matlab function filtfilt 

can be used  [23]. The motor torque is calculated using the 

current reference (7). In order to cancel high frequency 

ripple in τ , the vector Y  and the columns of the 

observation matrix W  are both low pass filtered and 

decimated. This parallel filtering procedure is carried out 

with the Matlab decimate function  [2],  [10]. 

C. Identification 

To identify the load-dependent friction, measurements 

1 

2 

4 5 6 
x3 

y3 

z3 
3q 0>  
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with known payloads are used. Gravity and inertial forces 

due to the additional mass fixed to the robot extremity have 

to be added in the IDM. 

Let Rm be the frame set at the center of gravity Gm of the 

additional masse Ma, and parallel to the frame ( )3 3 3 3R x , y ,z  

linked to the arm (Fig. 3). One gives the inertia matrix IGa of 

the additional mass which is a disk with a radius r and a 

thickness l: 

( )

( )

( )
m m

2

a

2 2

Ga a

2 2

a
G ,R

M r 2 0 0

I 0 M r 4 l 12 0

0 0 M r 4 l 12

 
 

= + 
 + 

 (32) 

The vector of translation between R3 and Rm is 
 T

aT L 0 0=     and as the 2 frames are parallel, one can 

apply the Huygens theorem: 

( )

( )

2

a

2 2

a a

2 2 2

a a a

M r 2 0 0

J 0 M r 4 l 12 0

0 0 M r 4 l 12 M L

 
 

= + 
 + + 

 (33) 

As the terms r²  and e²  are negligible, compared with 
2

aL , one keeps only the term 2

a aM L qɺɺ . 

For the gravity, considering the vector of translation T, 

one has: ( )a aM L g cos q . 

 

Thus, for the samples ( )kτ  with an additional mass ( )a kM , 

(31) becomes: 

( ) ( )

( )

( ) ( )

                 ( ) ( )

2

k a k a

a k a C V off

Jq MXg cos q MYg sin q M L q ...

...M L g cos q F sign q F q

τ

τ

= + + + +

+ + +

ɺɺ ɺɺ

ɺ ɺ
 (34) 

where: 

• ( )a kM  is one of the additional masses, fixed to robot 

extremity, with accurate weighed values: 0 kg, 3.4584 kg 

and 6.970 kg, 

• aL  is the length from the joint 3 to the additional mass 

position (measured distance): 1.277 m 

 

At a first step, to identify the usual model with all samples, 

one distinguishes the weighed mass awM  and the mass aeM  

estimated by the identification. Thus, the usual model is: 

( )

( )

( )

( )

( ) ( )

         ( ( )) ( )

k

ae k

aw k a a C V off

aw k

Jq MXgcos q MYg sin q ...

M
... M L L q gcos q F sign q F q

M

τ

τ

= + + +

+ + + +

ɺɺ

ɺɺ ɺ ɺ
 (35) 

Then, the sampled measurements, for k from 1 to 3, are 

concatenated using the ( )aw kM  corresponding to each 

experiment (k), to get the linear system: 

usual usual usual usual = +Y W χ ρ  (36) 

with the measurements vector, the observation matrix, and 

the vector of base parameters below: 

T
T T T

usual (1) (2) (3)
 = =  Y τ τ τ τ  (37) 

( ) ( ) ( ( )) ( )usual aw a a sign= +  ɺɺ ɺɺ ɺ ɺW q gcos q gsinq M L Lq gcos q q q 1  (38) 

T

ae

usual C V off

aw

M
J MX MY F F

M
τ

 
=  
 

χ  (39) 

 

At a second step, the proposed model is identified with: 

new new new new = +Y W χ ρ  (40) 

with the measurements vector, the observation matrix, and 

the vector of base parameters defined as follows: 

new usual= =Y Y τ  (41) 

( )

( ) ( ) ( )

( ( )) ( ( ))

( )

( ) ( ) ( )

new xp

xp xp

a a a xp a a a

xp

xp xp

a

...

... ...

... ...

... ...

... ...

...

+ + +

+ + +

+ +

− − −

− − −

−

=

+

−

− −

ɺɺ ɺɺ

ɺɺ ɺɺ

ɺɺ ɺɺ

W P q P E q P gcos q

P E gcos q P gsin q P E gsin q

P M L L q gcos q P E M L L q+gcos q

P q P E q P gcos q

P E gcos q P gsin q P E gsin q

P M L ( ( )) ( ( ))

( ) ( ) ( ) ( )

a a xp a a a

xp xp

...

...

−

+ + − −

+ − +




ɺɺ ɺɺ

ɺ ɺ ɺ ɺ ɺ

L q gcos q P E M L L q gcos q

P sign q P E sign q P sign q P E sign q q 1

 (42) 

T

new m m m m m m m m

g g g g g g g g

m m g g V off

a J b J a MX b MX a MY b MY a b ...

... a J b J a MX b MX a MY b MY a b ...

... c d c d F τ

=



χ

 (43) 

The expressions of newW  and newχ  are obtained by 

inserting ( ) ( ) ( ( ))out a a a aJq MXgcos q MYgsin q M L L q M gcos qτ = + + + +ɺɺ ɺɺ  

in the inverse dynamic model (30). 

 

Here +P , −P , and xpE  are diagonal matrices, with: 

( )

( ) ( )
i Sq qi i

i ,i i ,i xp i ,i

1 sign 1 sign
, , e

2 2

−+ −+ −
= = =

ɺ ɺP P
P P Ε (44) 

The two models are compared using exactly the same 

identification method with the same measurements. 

D. Results 

The significant values identified with usual IDM and OLS 

regressions are given in Table I and those with the new IDM 

in Table II (the parameters with a large relative deviation are 

not significant and have been eliminated). For each model, 

Fig. 4 and Fig. 5 present a direct validation comparing the 

actual τ  with its predicted value ˆWχ . Moreover, Table III 
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presents the relative norm of errors ρ Y  for the two 

models and for several sets of experiments: all measurements 

(all velocities), with low velocities (0 to 10% of the 

maximum velocity) or high velocities (35% to 100% of the 

maximum velocity). Finally, Table IV compares the relative 

norms of errors for the two models, with two different 

identifications: the first one is carried out with all 

measurements, that is with variation of the payload fixed to 

arm extremity, and the second one is carried out with only 

the samples obtained without payload. 

As one can see in all figures and tables, the new dynamic 

model improves the residual. 

 

 
TABLE I 

IDENTIFIED VALUES WITH USUAL IDM 

Parameters 
Identified 

Values 

Standard 

deviation * 2 

Relative 

deviation 

J 30.921 0.283 0.46 % 

MX 21.109 0.016 0.04 % 

Mae/Map 0.922 0.003 0.15 % 

FC 39.890 0.084 0.11 % 

FV 29.429 0.395 0.67 % 

τoff 9.931 0.077 0.39 % 

 

 
TABLE II 

IDENTIFIED VALUES WITH NEW IDM 

Parameters 
Identified 

Values 

Standard 

deviation * 2 

Relative 

deviation 

amJ 32.420 0.262 0.40 % 

amMX 22.204 0.033 0.07 % 

bmMX 1.621 0.050 1.55 % 

am 0.942 0.005 0.25 % 

bm 0.240 0.008 1.72 % 

agJ 29.294 0.276 0.47 % 

agMX 19.432 0.042 0.11 % 

bgMX 1.798 0.051 1.43 % 

ag 0.915 0.005 0.27 % 

bg 0.266 0.008 1.59 % 

cm 21.152 0.143 0.34 % 

cg 15.588 0.244 0.78 % 

FV 48.139 0.317 0.33 % 

τoff 9.950 0.051 0.26 % 

 

 
TABLE III 

RELATIVE NORM OF ERRORS WITH BOTH MODELS 

Measurements used Usual model New model 

All Samples (all velocities) 0.0733 0.0484 

Samples with low velocities 0.0737 0.0401 

Samples with high velocities 0.0863 0.0881 

 

 
TABLE IV 

RELATIVE NORM OF ERRORS FOR 2 IDENTIFICATIONS 

Identification carried out Usual model New model 

With payload variations 0.0733 0.0484 

Without payload 0.0742 0.0598 
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Fig. 4. Direct validation performed with usual IDM. 
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Fig. 5. Direct validation performed with new IDM. 

 

V. DISCUSSION 

The parameters of the new model are identifiable (low 

standard deviation) and so significant. The identification 

process does not change as the new model is still linear in 

relation to the parameters. The originality is that the global 

identification groups all measurements, with all payloads, in 

only one LS process. The main difficulty is to distinguish the 

different behaviours, motor and generator, but a solution has 

been proposed along this paper. One can also note that the 

measurements have to be more exciting than usual: each test 

has to be done with different loads and low velocities to 

highlight the effect on the friction variations. So, this 

identification protocol is more time-consuming and the 

setting up must be adapted for the measurements with 

additional masses. 

The figures of direct validation show an improvement of 

the estimated torque by the new model, which is confirmed 

by the Table III. Indeed, one observes a decrease of 34% in 

the relative norm of errors. The improvement is mostly 

important for the low velocities where the errors are divided 
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by two, thanks to the new model (decrease of 46%). At high 

velocity, the friction term with the exponential function 

approaches zero, and the new model is equivalent to the 

usual. 

Moreover, the Table IV shows that the model is especially 

interesting for robots carrying some payloads. However, for 

a robot without payload but with high gravity variation, as 

the third joint of the RX130L, one obtains still a decrease of 

19% of the errors. 

Finally, this new model can be easily applied to a multi 

dof robot, using (30) for each joint j. 

 

This model is important for example in teleoperation, 

where the robots work at reduced velocity and can carry 

payloads or perform tasks with the effector subjected to 

external forces. 

VI. CONCLUSION 

This paper has presented a new dry friction model, with 

load- and velocity-dependency, and its identification method. 

The inverse dynamic model and the identification of its 

parameters have been successfully validated on a rotational 

joint of an industrial robot. As a result, one observes a 

significant improvement comparing to the usual model, for 

joints with large load variations, and especially at low 

velocity. Robots carrying important masses or with large 

inertial or gravity variations are concerned. In addition, this 

technique can be applied to multi dof robots. 

Future works concern the application of this model to the 

multi dof robot and for different types of transmission. Then, 

the model will be used for torques monitoring and collision 

detection. 
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