Abstract-Usually, the joint transmission friction model for robots is composed of a viscous friction force and of a constant dry sliding friction force. However, according to the Coulomb law, the dry friction force depends linearly on the load driven by the transmission. It follows that this effect must be taken into account for robots working with large variation of the payload or inertial and gravity forces, and actuated with transmissions as speed reducer, screw-nut or worm gear. This paper proposes a new inverse dynamic identification model for n degrees of freedom (dof) serial robot, where the dry sliding friction force is a linear function of both the dynamic and the external forces, with a velocity-dependent coefficient. A new identification procedure groups all the joint data collected while the robot is tracking planned trajectories with different payloads to get a global least squares estimation of inertial and new friction parameters. An experimental validation is carried out with a joint of an industrial robot.

I. INTRODUCTION

HE usual identification method is based on the inverse dynamic model (IDM) which is linear in relation to the dynamic parameters, and uses least squares (LS) technique. This procedure has been successfully applied to identify inertial and friction parameters of a lot of prototypes and industrial robots [START_REF] Atkeson | Estimation of Inertial Parameters of Manipulator Loads and Links[END_REF]- [START_REF] Kawasaki | Terminal-link parameter estimation and trajectory control of robotic manipulators[END_REF]. An approximation of the kinematic Coulomb friction, ( ) C F sign q ɺ , is widely used to model friction force at non zero velocity q ɺ , assuming that the friction force F C is a constant parameter. It is identified by moving the robot without any load (or external force) or with constant given payloads [START_REF] Khalil | Identification of the payload inertial parameters of industrial manipulators[END_REF].

However, the Coulomb law suggests that F C depends on the transmission force driven in the mechanism. It depends on the dynamic and on the external forces applied through the joint drive chain. Consequently for robots with varying load, the identified IDIM is no more accurate when the transmission uses industrial speed reducer, screw-nut or worm gear because their efficiency significantly varies with the transmitted force. The significant dependence on load has been often observed for transmission elements [START_REF] Gogoussis | Coulomb friction effects on the dynamics of bearings and transmissions in precision robot mechanisms[END_REF]- [START_REF] Garrec | ABLE, an Innovative Transparent Exoskeleton for the Upper-Limb[END_REF] through direct measurement procedures. Moreover, the mechanism efficiency depends on the sense of power transfer leading to two distinct sets of friction parameters. In addition, when the robot moves at very low velocity, as for teleoperation, one observes a velocity-dependency of the dry friction.

This paper presents a new inverse dynamic identification model for n degrees of freedom (dof) serial robot, where the dry sliding friction force C F is a linear function of both the dynamic and the external forces, with asymmetrical behavior depending on the signs of joint force and velocity, and a variation depending on the velocity amplitude. A new identification procedure is proposed. All the joint position and joint force data collected in several experiments, while the robot is tracking planned trajectories with different payloads, are concatenated to calculate a global least squares estimation of both the inertial and the new friction parameters.

An experimental validation is carried out on the third joint of an industrial robot: Stäubli RX130L [25]. Both models are compared.

II. USUAL INVERSE DYNAMIC MODELING AND IDENTIFICATION

A. Modeling

In the following, all mechanical variables are given in SI units in the joint space. All forces, positions, velocities and accelerations have a conventional positive sign in the same direction. That defines a motor convention for the mechanical behavior.

The dynamic model of a rigid robot composed of n moving links is written as follows [START_REF] Khalil | Modeling, identification and control of robots[END_REF]:

dyn in f ext = + + τ τ τ τ (1) 
where:

• dyn τ is the (nx1) vector of dynamic forces due to the inertial, centrifugal, Coriolis, and gravitational effects:

( ) ( ) ( ) dyn , = + + ɺɺ ɺ ɺ τ M q q C q q q Q q (2)
where q, ɺ q and ɺɺ q are respectively the (nx1) vectors of generalized joint positions, velocities and accelerations, M(q) is the (nxn) robot inertia matrix, ( , ) ɺ C q q is the (nxn) matrix of centrifugal and Coriolis effects, Q(q) is the (nx1) vector of gravitational forces.

• in τ is the (nx1) input torque vector on the motor side of the drive chain:
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0 in f f f = - τ g v v (3)
where f v is the (nx1) vector of current references of the current amplifiers, 0 f v is a (nx1) vector of amplifiers offsets, g f is the (nxn) matrix of the drive gains,

f i t = g NG K (4)
N is the (nxn) gear ratios matrix of the joint drive chains ( m = ɺ ɺ q Nq with m ɺ q the (nx1) velocities vector on the motor side), G i is the (nxn) static gains diagonal matrix of the current amplifiers, K t is the (nxn) diagonal matrix of the electromagnetic motor torque constants [START_REF] Restrepo | Calibration of drive chain of robot joints[END_REF].

• f τ is the (nx1) vector of the loss force due to frictions.

Usually, it is approximated with a viscous friction and a dry friction:

( )

f V C Coff = - - - ɺ ɺ τ F q F sign q F (5)
where F V is the (nxn) diagonal matrix of viscous parameters, F C is the (nxn) diagonal matrix of dry friction parameters, and sign(.) denotes the sign function, F Coff is a (nx1) vector of asymmetrical Coulomb friction force between positive and negative velocities. This friction model is linear to F V and F C (Fig. 1.a).

• ext τ is the (nx1) external forces vector in the joint space.

Thus (1) becomes:

( ) ( ) ( )

0 dyn ext f f V C Coff f f out V C off - = - - - + ⇔ = - - - ɺ ɺ ɺ ɺ τ τ g v F q F sign q F g v τ τ F q F sign q τ (6)
where out dyn ext = τ τ τ is the output force (the load force) of the drive chain,

0 off Coff f f = + τ F g v is an offset force that
regroups the amplifier offset and the asymmetrical Coulomb friction coefficient.

f f = τ g v (7)
is the motor force, without offset, and defined by v f which is the current reference calculated by the numerical control and stored for the identification. Then (1) can be rewritten as the inverse dynamic model (IDM) which calculates the motor torque vector τ as a function of the generalized coordinates:

( ) ( ) ( ) ( ) ( ) C V off ext out C V off , = + + + + + - = + + + ɺɺ ɺ ɺ ɺ ɺ ɺ ɺ
τ M q q C q q q Q q F sign q F q τ τ τ F sign q F q τ (8)

B. Identification

The choice of the modified Denavit and Hartenberg frames attached to each link allows to obtain a dynamic model linear in relation to a set of standard dynamic parameters St χ [START_REF] Gautier | Identification of robot dynamics[END_REF], [START_REF] Khalil | Modeling, identification and control of robots[END_REF]:

( ) St St , , = ɺ ɺɺ τ D q q q χ (9)
where ( )

St

, , ɺ ɺɺ D q q q is the regressor and St χ is the vector of the standard parameters which are the coefficients XX j , XY j , XZ j , YY j , YZ j , ZZ j of the inertia tensor of link j denoted j J j , the mass of the link j called m j , the first moments vector of link j around the origin of frame j denoted j M j = [MX j MY j MZ j ] T , the friction coefficients F Vj , F Cj , the actuator inertia called Ia j , and the offset τ off j . The velocities and accelerations are calculated using well tuned band pass filtering of the joint position [START_REF] Gautier | Dynamic identification of robots with power model[END_REF].

The base parameters are the minimum number of parameters from which the dynamic model can be calculated. They are obtained by eliminating and by regrouping some standard inertial parameters [START_REF] Gautier | Direct calculation of minimum set of inertial parameters of serial robots[END_REF], [START_REF] Gautier | Numerical calculation of the base inertial parameters[END_REF]. The minimal inverse dynamic model can be written as: (

) , , = ɺ ɺɺ τ D q q q χ [START_REF] Kawasaki | Terminal-link parameter estimation and trajectory control of robotic manipulators[END_REF] where ( ) , , ɺ ɺɺ D q q q is the minimal regressor and χ is the vector of the base parameters.

The inverse dynamic model ( 10) is sampled while the robot is tracking a trajectory to get an over-determined linear system such that [START_REF] Gautier | Identification of robot dynamics[END_REF]: [START_REF] Khalil | Modeling, identification and control of robots[END_REF] with Y(τ) the measurements vector, W the observation matrix and ρ the vector of errors.

( ) ( ) , , = + ɺ ɺɺ Y τ W q q q χ ρ
The LS solution χ minimizes the 2-norm of the vector of errors ρ. W is a (r×b) full rank and well conditioned matrix where e r N x n = , with N e the number of samples on the trajectories. The LS solution χ is given by:

( )

1 T T ˆ- + = = χ W W W Y W Y (12)
It is calculated using the QR factorization of W. Standard deviations i χ σ are estimated using classical and simple results from statistics. The matrix W is supposed to be deterministic, and ρ, a zero-mean additive independent noise, with a standard deviation such as:

( ) T E 2 r ρρ ρ σ = = C ρρ I ( 13 
)
where E is the expectation operator and I r , the (r×r) identity matrix. An unbiased estimation of σ ρ is:

( ) 2 2 ˆr b ρ σ = - - Y Wχ ( 14 
)
The covariance matrix of the standard deviation is calculated as follows:

T 2 T 1 χχ ρ E ( )( ) σ ( ) ˆˆˆˆ-  = - - =   C χ χ χ χ W W ( 15 
) i 2 ˆˆˆii C χ χχ σ = is the i th diagonal coefficient of ˆχχ C . The relative standard deviation ri % χ
σ is given by:

ri i ˆˆi % 100 χ χ σ σ χ = (16) 
However, experimental data are corrupted by noise and error modeling and W is not deterministic. This problem can be solved by filtering the measurement vector Y and the columns of the observation matrix W as described in [START_REF] Gautier | Dynamic identification of robots with power model[END_REF], [START_REF] Gautier | Extended Kalman filtering and weighted least squares dynamic identification of robot[END_REF].

III. NEW DRY FRICTION MODEL AND IDENTIFICATION

In this section, we introduce a dry friction model dependent on the load, that is out τ , and on the velocity ɺ q .

A. Load-Dependent Friction Model

The Coulomb friction is still written ( ) C sign ɺ F q , with F C a (nxn) diagonal matrix. But here, for each link j,

( ) C j , j

F

(the (j,j) th element of the matrix C F ) depends linearly on the absolute value of the load of joint j which is out j τ (Fig. 1.b), [START_REF] Gogoussis | Coulomb friction effects on the dynamics of bearings and transmissions in precision robot mechanisms[END_REF]- [START_REF] Garrec | ABLE, an Innovative Transparent Exoskeleton for the Upper-Limb[END_REF]. As one can see in II.B, out j τ is a function of , , ɺ ɺɺ q q q and is linear in relation to base parameters.

Then the inverse dynamic model for each link j becomes:

( ) ( ) ( ) j out j j out j j j V j , j j off j sign q q τ τ α τ β τ = + + + + ɺ ɺ F ( 17 
)
where j α and j β are parameters to be identified. These new parameters depend on the mechanical structure of the reducers used to actuate the robot.

For ease of understanding, the subscript j is omitted for all variables in the following to simplify the notation. The inverse dynamic model can be written as follows:

( ) ( ) out out V off sign q sign q F q τ τ α τ β τ = + + + + ɺ ɺ ɺ (18) 
And with ( )

out out out sign τ τ τ = and ( ) ( ) ( ) ( ) out out out sign sign q sign q sign P τ τ = = ɺ ɺ , one obtains: ( ) ( ) out out out V off sign P sign q F q τ τ ατ β τ = + + + + ɺ ɺ (19) 
Thus, the IDM depends on the signs of the output power out out P q τ = ɺ . One defines 4 quadrants in the frame ( ) out q,τ ɺ , which can be grouped two by two (Fig. 2.a). In the quadrants 1 and 3, out P is positive and the actuator has a motor behavior. In the quadrants 2 and 4, out P is negative and the actuator has a generator behavior which may save the power to the power supply, assuming a 4 quadrants amplifier.

B. Dry Friction Model Depending on the Power Sign

In the model [START_REF] Garrec | ABLE, an Innovative Transparent Exoskeleton for the Upper-Limb[END_REF] 

out m out m V off out g out g V off P 0 1 sign q F q P 0 1 sign q F q τ α τ β τ τ α τ β τ > ⇒ = + + + +    < ⇒ = - + + +   ɺ ɺ ɺ ɺ (20) 
The model ( 20) is illustrated in Fig. 2.b for a constant velocity 0 q ɺ . This model is not valid anymore for very low forces in the stiction area ( q 0 = ɺ ): one approximates the friction as the limit of model [START_REF] Olsson | Friction Models and Friction Compensation[END_REF] in the rectangle ( ) b) Asymmetrical friction for a given velocity 0 q ɺ and the stiction area.

; ( ) ( ) m V 0 off g V 0 off g F q F q 1 β τ β τ α + + + - - ɺ ɺ .

C. Dry Friction Model Depending on the Velocity

For a robot moving at low velocities, one observes a dry friction variation, functions of the velocity, which is similar to the Stribeck model (Fig. 1.c), [START_REF] Olsson | Friction Models and Friction Compensation[END_REF], [START_REF] Armstrong-Hélouvry | Control of machines with friction[END_REF], [START_REF] Swevers | An Integrated Friction Model Structure with Improved Presliding Behavior for Accurate Friction Compensation[END_REF].

if and ( ) if and ( ) if

out st out st out out st q 0 F F F sign q 0 F F q q 0 τ τ τ τ = <   = = ≥   ≠  ɺ ɺ ɺ ɺ (21) with: 
( )

( ) ( ) ( ) s q / q sl st sl F q F F F e sign q - = + - ɺ ɺ ɺ ɺ ( 22 
)
where S q ɺ is a velocity constant, st F is the dry friction in stiction and sl F is the dry friction in sliding mode.

To combine the variation due to the load [START_REF] Pelchen | Modeling and simulation the efficiency of gearboxes and of planetary gearboxes[END_REF] with the one due to velocity [START_REF] Swevers | An Integrated Friction Model Structure with Improved Presliding Behavior for Accurate Friction Compensation[END_REF], one takes: 

0 q 0 < ɺ 0 q 0 < ɺ 0 q 0 > ɺ 0 q0 > ɺ b) q ɺ β -β out τ increases a) q ɺ Fc -Fc f Coff ( F ) τ - + c) q ɺ out τ increases f Coff ( F ) τ - + f Coff ( F ) τ - + ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) S S S
q q out out out q q q q out out F q e sign q e sign P e sign q α τ β γ τ δ α τ β = -, the inverse dynamic model becomes:

( ) ( ) ( ) ( ) S S
S S out q q q q m out m out m m V off out q q q q g out g out g g V off P 0 a b e c sign q d e sign q F q P 0 a b e c sign q d e sign q F q τ τ τ τ

τ τ τ τ - - - - > ⇒   = + + + + +   < ⇒   = - + + + +  ɺ ɺ ɺ ɺ ɺ ɺ ɺ ɺ i ɺ ɺ ɺ i ɺ ɺ ɺ (25) 

D. Friction Identification Method

In order to keep a IDM linear in relation to the parameters, one decides on an a priori value of S q ɺ . This constant represents the exponential transitional behavior between stiction and sliding, that is about 3 S q * ɺ , more or less 5%.

Measurements show that the amplitude of this transitional behavior is close to 10% of the nominal velocity 1.2 rad/s, that is 0.04 rad/s S q = ɺ . A final adjustment to 0.03 rad/s S q = ɺ at the moment of the identification gives a minimal residual ρ a little lower. This value for S q ɺ is close to the value given in [START_REF] Swevers | An Integrated Friction Model Structure with Improved Presliding Behavior for Accurate Friction Compensation[END_REF] for a Kuka IR 161 robot. Furthermore, the model (25) depends on the sign of out P which is unknown. To overcome this problem, the samples of τ measurements are selected outside of the stiction area ( q 0 = ɺ -Fig. 2.b) in order to get the same sign for out τ and τ . This allows to get the sign of out P with:

( ) ( ) ( ) ( )
out out sign P sign q sign q sign P τ τ

= = = ɺ ɺ (26) 
One can then write the IDM linear in relation to parameters and use the LS technique. To have only one expression instead of two in (25), 3 variables are introduced, P + , P -, and E xp , defined by: ( )

1 sign P P 2 + + = , 0 1 P P + > ⇔ = , 0 0 P P + < ⇔ = (27) ( ) 1 sign P P P 2 - + - = = (28) S q q xp E e - = ɺ ɺ (29) 
The inverse dynamic model is then written:

( ) ( ) ( ) ( ) ( ) ( ) m m xp out g g xp out m m xp g g xp V off P a b E P a b E ... ... P c d E sign q P c d E sign q F q τ τ τ τ + - + - = + + - + + + + + + ɺ ɺ ɺ (30)
As out τ is linear in relation to parameters, so is τ .

IV. EXPERIMENTAL SETUP AND IDENTIFICATION

A. Study case: Stäubli RX130L Robot

The Stäubli RX130L robot is an industrial robot with 6 rotational joints. The joint 3 has been chosen for this study because unlike the joint 1, it has large gravity variation, and no compensation gravity spring contrary to the joint 2. The links 1 and 2 are lined up and locked in a vertical position. The arm 3 is composed of the links 4, 5 and 6 brought into line with the link 3 and locked (Fig. 3), with a total mass of about 30 kg and a length of 1.33 m. The maximum velocity is 1.2 rad/s and the maximum acceptable load at the extremity is 10 kg.

The inverse dynamic model of joint 3 is written:

( ) ( ) ( ) 3 3 3 3 3 3 3 C3 3 V3 3 off 3
J q MX gcos q MY gsin q F sign q F q τ τ

= + + + + + ɺɺ ɺ ɺ (31) 
where:

• 3 3 3 J Ia ZZ = +
is the inertia moment 3 Ia of the drive chain plus the inertia moment ZZ 3 of the arm,

• 2 m/s g 9.81 = is the gravity acceleration.

All variables and parameters are given in SI units on the joint space. In the following, the subscript 3 is omitted to simplify the notation. 

B. Data Acquisition

The identification of dynamic parameters is carried out with and without payloads: two different additional masses can be fixed to the arm extremity. To excite properly the friction parameters to be identified, sinusoidal and trapezoidal velocities trajectories were used.

The estimation of q ɺ and q ɺɺ are carried out with pass band filtering of q consisting of a low pass Butterworth filter and a central derivative algorithm. The Matlab function filtfilt can be used [23]. The motor torque is calculated using the current reference [START_REF] Gautier | Dynamic identification of robots with power model[END_REF]. In order to cancel high frequency ripple in τ , the vector Y and the columns of the observation matrix W are both low pass filtered and decimated. This parallel filtering procedure is carried out with the Matlab decimate function [START_REF] Swevers | Optimal Robot excitation and Identification[END_REF], [START_REF] Kawasaki | Terminal-link parameter estimation and trajectory control of robotic manipulators[END_REF].

C. Identification

To identify the load-dependent friction, measurements with known payloads are used. Gravity and inertial forces due to the additional mass fixed to the robot extremity have to be added in the IDM. Let R m be the frame set at the center of gravity G m of the additional masse M a , and parallel to the frame ( )

3 3 3 3 R x , y ,z
linked to the arm (Fig. 3). One gives the inertia matrix I Ga of the additional mass which is a disk with a radius r and a thickness l:

( ) ( ) ( ) m m 2 a 2 2 Ga a 2 2 a G ,R M r 2 0 0 I 0 M r 4 l 12 0 0 0 M r 4 l 12     = +     +   (32) 
The vector of translation between R 3 and R m is

T a T L 0 0 =   
 and as the 2 frames are parallel, one can apply the Huygens theorem:

( ) ( ) 2 a 2 2 a a 2 2 2 a a a M r 2 0 0 J 0 M r 4 l 12 0 0 0 M r 4 l 12 M L     = +     + +   (33) 
As the terms r² and e² are negligible, compared with

2 a
L , one keeps only the term 2 a a M L q ɺɺ . For the gravity, considering the vector of translation T, one has:

( )

a a M L g cos q .
Thus, for the samples ( ) k τ with an additional mass

( ) a k M , (31) becomes: ( ) ( ) ( ) ( ) ( ) ( ) ( ) 
2 k a k a a k a C V off
Jq MXg cos q MYg sin q M L q ... ...M L g cos q F sign q F q

τ τ = + + + + + + + ɺɺ ɺɺ ɺ ɺ (34) 
where:

• ( ) a k M
is one of the additional masses, fixed to robot extremity, with accurate weighed values: 0 kg, 3.4584 kg and 6.970 kg,

• a L is the length from the joint 3 to the additional mass position (measured distance): 1.277 m At a first step, to identify the usual model with all samples, one distinguishes the weighed mass aw M and the mass ae M estimated by the identification. Thus, the usual model is:

( ) ( ) ( ) ( ) ( ) ( ) ( ( )) ( ) k ae k aw k a a C V off aw k
Jq MXg cos q MYg sin q ... M ... M L L q g cos q F sign q F q M τ τ

= + + + + + + + ɺɺ ɺɺ ɺ ɺ (35) 
Then, the sampled measurements, for k from 1 to 3, are concatenated using the ( ) aw k M corresponding to each experiment (k), to get the linear system:

usual usual usual usual = + Y W χ ρ ( 36 
)
with the measurements vector, the observation matrix, and the vector of base parameters below:

T T T T usual (1) (2) (3) 
  = =   Y τ τ τ τ (37) ( ) ( ) ( ( )) ( ) usual aw a a sign = +     ɺɺ ɺɺ ɺ ɺ W
q gcos q gsin q M L Lq gcos q q q 1 (38)

T ae usual C V off aw M J MX MY F F M τ   =     χ ( 39 
)
At a second step, the proposed model is identified with:

new new new new = + Y W χ ρ ( 40 
)
with the measurements vector, the observation matrix, and the vector of base parameters defined as follows: 

new usual = = Y Y τ ( 41) ( ) ( ) ( ) ( ) ( ( )) ( ( )) ( ) ( ) ( ) ( 
+ + + + + + + + - - - - - - -  =  + - - -
ɺɺ ɺɺ ɺɺ ɺɺ ɺɺ ɺɺ W P q P E q P gcos q P E gcos q P gsin q P E gsin q P M L L q gcos q P E M L L q+ gcos q P q P E q P gcos q P E gcos q P gsin q P E gsin q P M L ( L q gcos q P E M L L q gcos q P sign q P E sign q P sign q P E sign q q 1 ( Jq MXgcos q MYgsin q M L L q M gcos q

τ = + + + + ɺɺ ɺɺ
in the inverse dynamic model (30).

Here + P , - P , and xp E are diagonal matrices, with:

( ) ( ) ( ) i S q q i i i ,i i ,i xp i ,i 1 sign 1 sign , , e 2 2 - + - + - = = = ɺ ɺ P P P P Ε ( 44 
)
The two models are compared using exactly the same identification method with the same measurements.

D. Results

The significant values identified with usual IDM and OLS regressions are given in Table I and those with the new IDM in Table II (the parameters with a large relative deviation are not significant and have been eliminated). For each model, Fig. 4 and Fig. 5 present a direct validation comparing the actual τ with its predicted value Ŵ χ . Moreover, Table III presents the relative norm of errors ρ Y for the two models and for several sets of experiments: all measurements (all velocities), with low velocities (0 to 10% of the maximum velocity) or high velocities (35% to 100% of the maximum velocity). Finally, Table IV compares the relative norms of errors for the two models, with two different identifications: the first one is carried out with all measurements, that is with variation of the payload fixed to arm extremity, and the second one is carried out with only the samples obtained without payload.

As one can see in all figures and tables, the new dynamic model improves the residual. 

V. DISCUSSION

The parameters of the new model are identifiable (low standard deviation) and so significant. The identification process does not change as the new model is still linear in relation to the parameters. The originality is that the global identification groups all measurements, with all payloads, in only one LS process. The main difficulty is to distinguish the different behaviours, motor and generator, but a solution has been proposed along this paper. One can also note that the measurements have to be more exciting than usual: each test has to be done with different loads and low velocities to highlight the effect on the friction variations. So, this identification protocol is more time-consuming and the setting up must be adapted for the measurements with additional masses.

The figures of direct validation show an improvement of the estimated torque by the new model, which is confirmed by the Table III. Indeed, one observes a decrease of 34% in the relative norm of errors. The improvement is mostly important for the low velocities where the errors are divided by two, thanks to the new model (decrease of 46%). At high velocity, the friction term with the exponential function approaches zero, and the new model is equivalent to the usual.

Moreover, the Table IV shows that the model is especially interesting for robots carrying some payloads. However, for a robot without payload but with high gravity variation, as the third joint of the RX130L, one obtains still a decrease of 19% of the errors.

Finally, this new model can be easily applied to a multi dof robot, using (30) for each joint j. This model is important for example in teleoperation, where the robots work at reduced velocity and can carry payloads or perform tasks with the effector subjected to external forces.

VI. CONCLUSION

This paper has presented a new dry friction model, with load-and velocity-dependency, and its identification method. The inverse dynamic model and the identification of its parameters have been successfully validated on a rotational joint of an industrial robot. As a result, one observes a significant improvement comparing to the usual model, for joints with large load variations, and especially at low velocity. Robots carrying important masses or with large inertial or gravity variations are concerned. In addition, this technique can be applied to multi dof robots.

Future works concern the application of this model to the multi dof robot and for different types of transmission. Then, the model will be used for torques monitoring and collision detection.
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 1 Fig. 1. a) Usual friction model with constant dry friction + viscous friction. b) Model with load-dependent dry friction + viscous friction. c) Model with load-and velocity-dependent dry friction + viscous friction.
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 2 Fig. 2. a) Four quadrants frame ( ) out q,τ ɺ for motor or generator behavior.
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 3 Fig. 3. RX130L drawing: joints 1, 2, 4, 5 and 6 locked in position.
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 45 Fig. 4. Direct validation performed with usual IDM.
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  , α and β do not depend on the output power sign. But, generally they take different values: m
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TABLE IV RELATIVE

 IV NORM OF ERRORS FOR 2 IDENTIFICATIONS

				500				
				400				
				300				
				200				
			τ (N.m)	100				
			Input torque	-200 -100 0				
				-300				
				-400	Measurement Estimation		
				-500	Error			
				0	2	4	6	8	10	12	14
								Samples	x 10 4
	Identification carried out	Usual model New model					
	With payload variations	0.0733	0.0484					
	Without payload	0.0742	0.0598					
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