
Real-Time Power-Efficient Integration of Multi-Sensor Occupancy Grid
on Many-Core

Tiana Rakotovao1,2, Julien Mottin1, Diego Puschini1, Christian Laugier2

Abstract— Safe Autonomous Vehicles (AVs) will emerge when
comprehensive perception systems will be successfully inte-
grated into vehicles. Advanced perception algorithms, estimat-
ing the position and speed of every obstacle in the environment
by using data fusion from multiple sensors, were developed for
AV prototypes. Computational requirements of such applica-
tion prevent their integration into AVs on current low-power
embedded hardware. However, recent emerging many-core
architectures offer opportunities to fulfill the automotive market
constraints and efficiently support advanced perception appli-
cations. This paper, explores the integration of the occupancy
grid multi-sensor fusion algorithm into low power many-core
architectures. The parallel properties of this function are used
to achieve real-time performance at low-power consumption.
The proposed implementation achieves an execution time of
6.26ms, 6× faster than typical sensor output rates and 9×
faster than previous embedded prototypes.

I. INTRODUCTION

During the last decades, a high interest on the development
of Autonomous Vehicles (AVs) have been noticed in the
field of research and industries [1], [2], [3]. Autonomous
navigation is ensured by several critical subsystems fulfilling
different required functionalities (obstacle detection, obstacle
avoidance, adaptive cruise control, etc). A major subsys-
tem on which rely the other components of AVs is the
environment perception module which models the traffic
scenario in a mathematical representation that a computer
can understand and interpret to make further decision. Future
perception module will require not only to detect the location
of obstacles, but also predict and anticipate their movements,
even when temporarily occluded by another object or in blind
spots.

One of the common computational frameworks for build-
ing perception modules for AVs is the Occupancy Grid (OG).
An OG maps the external environment of AVs into a grid
composed of several cells as shown in Figure 1. Several
sensors (lidar, camera, radar, sonar, etc.) are mounted on
board in order to observe the surrounding of the vehicle.
Each sensor has a probabilistic model, called Sensor Model
(SM) that reflects its observation and measurement errors
(noise, failures, physical limitation, etc) [4]. Based on sensor
models, an OG algorithm performs a fusion of all the
observations of on board sensors in order to computes the
probability that each grid cell is occupied by an obstacle (see
figure 1(b)).

Several perception algorithms based on OGs were devel-
oped in the literature. The notion of OG was first introduced

1CEA-LETI MINATEC Campus, 17 rue des Martyrs, 38000 Grenoble
2INRIA Grenoble Rhône-Alpes, 655 avenue de l’Europe, 38334 Saint

Ismier cedex

in [5]. The author also presents the bayesian filter which is a
probabilistic mechanism that allows to update OG computed
at time tn−1 with OG produced by sensor observations at
time tn. In [6], [7], the Bayesian Occupancy Filter (BOF)
and the Hybrid Sampling Bayesian Occupancy Filter (HS-
BOF) utilize OGs for monitoring dynamic environments and
tracking mobile objects. Besides perception, OGs are also
used for other functionalities such as road boundary detec-
tion [1], pedestrian detection and tracking [8], simultaneous
localization and mapping (SLAM) [4].

OGs constitute a dominant paradigm for environment
perception because of their ability to take into account
measurement uncertainties and errors, and their possibility
to efficiency support multiple sensors to get a more accurate
estimation of obstacle position. However, OG algorithms
suffer from the amount of computational operations they
require to map a large surrounding area. Increasing the size
of the grid leads to adding more cells, unless augmenting
the cell size which prompts to a loss of precision. A high
number of cells induces high amount of computation. OG
algorithms are then often implemented on powerful highly
parallel hardware like Graphics Processing Units (GPUs)
[1], [9] to perform computations in real-time, ensuring that
OGs are produced at the same rate as sensors measurements.
However, GPU platforms do not meet AVs requirements in
terms of power consumption, size and cost. To overcome this
limitation, a first implementation of OG-based perception
algorithm on an embedded many-core is presented in [10].
While the implementation is power-efficient, OGs are still
not produced in real-time.

In this paper, we present a real-time and power-efficient
computation scheme for occupancy grids on many-core, by
fusing observations from multiple lidar sensors. This scheme
relies on a method for implementing OG computation, based
on the fact that lidar sensors are composed by several beams
that can be processed independently. Experiments show that
with the proposed approach, OGs can be computed within
less than 7ms on an embedded many-core consuming at most
1W of electrical power.

The paper is organized as follows. Section II presents
an overview of the OG algorithm and its main steps. Its
integration on many-core is detailed in Section III. After
that, experimental results are presented in Section IV. Finally,
Section V concludes the paper.

II. OCCUPANCY GRID ALGORITHM

Occupancy Grid (OG) computation is based on probabilis-
tic calculus and Bayes’ rule on conditional probability. The

(a)

Occupancy Probability: p→0 p→1p∼0.5

(b)

Fig. 1. Occupancy Grid Principle. (a) Scenario and sensor. (b) Occupancy
Grid modeling the scene.

main steps for building OGs from multi-lidar observation
are detailed in this section. No notion of grid filtering is
presented, that is, the occupancy grid OGt at time t is
built only from currently available sensor measurements zt.
Previous occupancy grid OGk with k < t are not taken into
account.

A. Algorithm Overview

As shown in Figure 1, occupancy grid maps the environ-
ment into a spatial grid with regular cells. The probability
of each cell for being occupied is then computed according
to available sensor measurements.

In the context of AV perception, the occupancy grid is
mainly used for updating a local map of a restricted region in
the surrounding of the ego-vehicle. For instance, in [6], [7],
a map of 30m×50m in the front of the vehicle is monitored.
This approach is different of a Simultaneous Localization and
Mapping (SLAM) problem where the vehicle simultaneously
builds a global map of the environment (eg: a complete map
of a city) and simultaneously tries to localize itself relative
to the map [4].

In the case of the AV perception, let G be the virtual spatial
grid placed in the front of the ego-vehicle, formally defined
by:

G = {(i, j) , i ∈ {1, · · · , I} , j ∈ {1, · · · , J}} (1)

The couple (i, j) denotes a cell in the grid, I and J design
the number of rows and columns of the grid. Let c be a
function which makes the correspondence of a cell (i, j) to
a binary state: occupied o or free o. Equation 2 gives a formal
definition of c.

c : G 7→ {o, o}
(i, j) 7→ c(i, j) (2)

For the sake of simplification , let us define:

ci,j ≡ (c(i, j) = o)
ci,j ≡ (c(i, j) = o)

Begin

n 1

n+1n n>N
?

For all cells (i,j)
SM: p(ci,j | zn)

No

End

For all cells (i,j)
MSF: p(ci,j | z1,...,zN)

Yes

Fig. 2. Overview of Occupancy Grid Algorithm

The occupancy grid OG is then defined by the following
function:

OG : G 7→ [0, 1]
(i, j) 7→ p(ci,j |z1, · · · , zN) (3)

where z1, · · · , zN denote the measurements from sensor 1
to sensor N .

For simplifying the computation of the probability distri-
bution in equation 3, the following hypothesis are considered:

1) the state of a cell is independent of the state of any
neighboring cell,

2) sensor measurements are independent one from an-
other, that is, a measurement from one sensor does
not impact the observation from another sensor.

The two hypothesis allow to simplify the distribution
p(ci,j |z1, · · · , zN) of equation 3 as a function of distributions
p(ci,j |zn), n ∈ {1, · · · , N}. Given a unique sensor n,
p(ci,j |zn) describes the state of the cell (i, j) according to
measurement from that sensor. This distribution is called
Sensor Model (SM) of sensor n. It models the measurement
errors, the measurement noise and the physical limitation
of the sensor into a probabilistic distribution. Once all SMs
from all sensor observations are computed, they are fused
into a unique distribution per cell p(ci,j |z1, · · · , zN) which
expresses the occupancy probability of each cell. This last
process is called Multi-Sensor Fusion (MSF).

Figure 2 shows a general overview of occupancy grid algo-
rithms. It is divided into two parts. First, the SMs p(ci,j |zn),
n ∈ {1, · · · , N} regarding all sensors are computed on each
cell. Then, the SMs are fused through the MSF to get the
final occupancy probability p(ci,j |z1, · · · , zN) per cell.

B. Sensor Model (SM)

Sensors constitute a fundamental element for perception
systems. They provide physical measurements on the real
scenario on the surrounding of the vehicle. However, sensor
measurements are not exact. Measurement incertitude should
be taken into account when modeling the observation into a
computational map such as OGs. SM allows to express mea-
surement incertitude of a sensor into occupancy probability.

The present work focus on lidar sensors. They are com-
posed of several beams that operate independently. Formally,
a lidar measurement is actually a set zn = {z1

n, · · · , zB
n } of

B independent measurements, where B is the number of
beam within the sensor. For simplifying the notation in the
following paragraphs, we denote by z the measurement from
a single beam.

Lidar sensors emit beams and record their time-of-flight.
For each beam, the time-of-flight serves to compute the
distance z, also called range, to the obstacle hit by the beam.
The range is assumed to be close to the true position z∗

of the obstacle [11], [1], but uncertainty still persists due
to measurement noises, the physical nature of the obstacle
that might badly reflect the light of the beam, the incidence
angle of the beam on the surface of the obstacle or any other
uncertainty.

A beam is emitted in a linear fashion towards a given
direction in the physical world. Its SM is presented in
equation 4.

p(od|z) =
{
max(p(d, z), g(d, z)) if d ≤ z
max(0.5, g(d, z)) if z < d

(4)

where

g(d, z) = λ(d)exp
[
− 1

2
(d− z)2

σ2
d

]
g(d, z) is a Gaussian which describes the range measurement
uncertainties. The SM p(od|z) evaluates the probability that
an obstacle exists at a distance d from the source of the beam
[12]. Figure 3 gives an idea of the curve of equation 4 as
a function of distance d from the origin of the beam, in the
case where the first hit obstacle is located at z = 6m from
the source of the beam.

Figure 3 shows that the probability that there is actually
no obstacle before the range is not null. This probability is
called as the free distribution. It is evaluated by p(d, z) =
p(od|z) , d < z in equation 4. The free distribution can be
defined as a function of d to show that the beam hardly miss
nearer obstacles than further.

In the Gaussian function g(d, z), λ(d) represents the
amplitude. It evaluates the confidence given to the Gaussian
regarding the distance d from the source of the beam. One
can also notice that the standard deviation σd of the Gaussian
is a function of d. The sensor might be more precise at near
distances while less accurate at far distances. Finally, the
second line of equation 4 shows that the beam does not
provide any information about the occupancy behind the hit
distance. The SM returns 0.5 from a certain distance behind
the range (see figure 3) which means that it does not give
any idea of the existence or not of any obstacles from that
distance.

C. Multi-Sensor Fusion (MSF)

The MSF equation is proposed by [5], albeit several
approaches exist in the literature [4], [12]. MSF fuses two
occupancy probabilities on the same spatial location, re-
garding measurements from two sensors. The sensors are

z=6m

0.5

Fig. 3. Beam Sensor Model p(od|z) for z = 6m, σ = 0.5

assumed to operate separately. In the case of a 2-dimensional
environment, the formulation of MSF is given as follows:

p(ox,y|z1, z2) =
p1p2

p1p2 + (1− p1)(1− p2)
(5)

where (x, y) are the coordinates of a spatial point, and pn =
p(ox,y|zn) is the SM regarding sensor n.

Equations 4 and 5 are defined over continuous physical
space. Occupancy grids are only a simple manner to discrete
that space. Spatial coordinates or distance are transformed to
cell location. The next section explains how to implement the
occupancy grid algorithm on an embedded hardware based
on many-core architecture.

III. OCCUPANCY GRID INTEGRATION ON MANY-CORE

Due to the independence hypothesis of cells and of sensor
measurements, the for loops in occupancy grid algorithm on
figure 2 can be implemented in a parallel fashion. In order
to embed the algorithm into an autonomous vehicle, it has
to be integrated into a low-power embedded system. Such
hardware must offer enough computing power for processing
occupancy grid computation in real-time: at least, occupancy
grid output rate is equal to sensor measurement output rate.
Many-core hardware accelerators are good candidates for
satisfying such requirements [10]. Their main characteristics
consist on a low power consumption while providing a
relatively high peak computing performance [13].

A. Hardware Architecture

Figure 4 shows the generic template of a computing
hardware with a many-core accelerator. It is divided into two
main parts:
• the CPU host is generally a general purpose CPU

dedicated for running an operating system and common
sequential applications, and for communicating to the
external world through different input/output interfaces
(UART, Ethernet, GPIO, USB, etc.)

• the many-core is a hardware accelerator composed of
dozens of computing cores called Processing Elements
(PE). A PE generally disposes less advanced features
than the host (control unit, cache management, instruc-
tion set, etc.). PEs can run programs in a Multiple
Program Multiple Data (MPMD) fashion.

L2
HOST
CPU

M
A
N
Y
C
O
R
E

Main Mem.

Embedded Mem.

D
M
A

c c c c
c c c c
c c c c
c c c c

Fig. 4. Generic Architecture of Many-core

While each PE can have its own set of registers, the many-
core also disposes an embedded on-chip fast memory, shared
by all PEs. Due to the limit of the memory space available
on the embedded memory (generally less than 1MByte), the
PEs can also access to an external main memory which is
shared by the many-core and the host. However, such access
is slow and time consuming. DMA blocks are then used for
accelerating data transfer between the two memory regions
(see figure 4).

While each PE can execute its own program indepen-
dently, some software and hardware features allow efficient
communication, synchronization and data sharing between
cores [13]. Consequently, many-core can be programmed
to compute data parallel or task parallel problems. For a
data parallel problem, the data is split into several sub-
data that should match the number of available PEs. Each
sub-data is then processed by one PE, independently of the
other PEs or in synchronization with them if necessary. On
the programming side, many-core can support well known
parallel programming standard such as MCAPI, OpenCL
[14], OpenMP [13], lightweight POSIX threads [15].

B. Computing Occupancy Grids on Many-core

The algorithm on figure 2 is divided into two main loops:
the computation of sensor models for all cells, and the multi-
sensor fusion per cell. These loops can be implemented in
a parallel fashion separately. Both of them can be expressed
as a data parallel problem where instead of having a single
processor looping on all cells, each cell is computed by a
specific core on a parallel architecture.

However, the definition of MSF in equation 5 allows to in-
crementally fuse SMs. That means, p(ci,j |z1) and p(ci,j |z2)
are first computed. Then they are immediately fused to
get p(ci,j |z1, z2). After that, p(ci,j |z1, z2) and p(ci,j |z3) are
fused to get p(ci,j |z1, z2, z3) and so on. Such approach is
detailed in the following paragraph.

1) Cell-by-Cell (CBC) Approach: Measurements from
multiple lidar sensors are used for building occupancy grids.
A lidar disposes several beams. Beams are emitted in several
directions separated by a constant angular step. Lidar mea-
surement zn represents the set of ranges returned by beams.
Denote by zb

n the range measured by the b-th beam.
Figure 5(a) presents the cell-by-cell approach for im-

plementing the occupancy grid computation on many-core.
It resumes the algorithmic steps for only one cell. A PE
selects first a cell (i, j) which occupancy probability is to
be computed. After that, for a lidar sensor n, the ordinal
number b of the first beam which direction passes through

the cell is calculated. Then, the SM and MSF equations are
applied to the cell given the range of the found beam. The
cartesian distance between the origin of the lidar sensor and
the center of the cell is used for computing the sensor model
distribution. Next, the same set of operations are repeated for
all lidar sensors.

The advantage of such implementation is that cells are
processed independently and no synchronization is needed.
However, the number of PEs on many-core is typically much
lower than the number of cells. Thus, the computations of
occupancy probabilities of several cells are aggregated and
executed by one PE. If x number of PEs are used, the grid
is then divided into x sub-grids and each PE processes all
cells within one specific sub-grid.

However, despite the aggregation, the number of cells to
be processed by one PE remains high. This is a drawback
for an implementation on many-core because when the
amount of memory occupied by the grid cannot fit into the
embedded on-chip memories (and it is often the case in
practice), the occupancy probabilities and other additional
data have to be stored in the main memory. Because the
access time to the main memory from PEs is slow, the latency
is reduced by the use of DMA blocks and by applying more
advanced programming techniques such as double buffering
[10]. However, the latency is not completely removed despite
of DMA and increases with the number of cells.

Moreover, by using equation 5 to fuse p1 = 0.5 and p2 =
p, being p any probability p ∈ [0, 1], we notice that:

p(ox,y|z1, z2) =
0.5 · p

0.5 · p+ 0.5 · (1− p)
= p (6)

Equation 4 and figure 3 show that behind a certain distance
from the range returned by a beam, the output of the SM
is 0.5. Thus, performing the MSF is not necessary anymore
due to equation 6. It will not change the numerical value of
the occupancy probability.

2) Beam-by-Beam (BBB) Approach: To overcome the
drawbacks of CBC implementation of OG algorithm on
many-core, another method called Beam-by-Beam (BBB)
approach is explored. The main difference between the two
approaches resides in the data granularity of the paralleliza-
tion. For the BBB approach, the least data granularity is a
beam, while it is a cell for the CBC method. This means that
in an ideal case where the many-core disposes a big number
of cores, a PE would process a cell for CBC, while it would
process a beam for BBB.

Providing that the number of beams traversing a cell is
not uniform for all cells, we define the field-of-view of a
beam b as the area delimited by the bisector of beams b− 1
and b, and the bisector of beams b and b+ 1 (see figure 6).
Consequently, the field-of-views of two beams of the same
lidar sensor never overlap each other. To seek the beam which
direction traverses a given cell, we assume that the cell is
passed only by one beam per sensor: the beam which field-
of-view contains the center of the cell.

Figure 5(b) depicts the main steps of computation for one
beam. N is the number of lidar sensors. We assume that the

(a) (b)

Fig. 5. Occupancy Grid Implementations: (a) cell-by-cell. (b) beam-by-
beam.

Fig. 6. Field of view of a beam

number B of beams per sensor is constant. First, each PE
begins computations by selecting an ordinal number b of a
beam among all B beams. Then, for a sensor n, the b-th
beam is selected and a distance d is added from the origin
to the direction of the beam. Next, the PE finds all cells
(i, j) within the field-of-view of the beam, located at distance
d. As shown on figure 6, the number of cells within the
field-of-view increases with d. The occupancy probabilities
of these cells are then updated through the SM and the MSF
equations.

After that, a ray-casting in the direction of the beam is
performed. The distance d is increased by δd which is chosen
so that the next value of d will be located at cells in the

direction of the beam, but which occupancy probabilities are
not yet updated. The calculation of a beam stops as soon
as the value of d becomes more than a certain distance ∆z
behind the range zb

n returned by the beam. The PE processes
then the next sensor and repeat the same steps above for the
b-th beam of that sensor.

Because the number of PEs on many-core is less than
the number of beams in a lidar sensor, the computation is
still aggregated. The beams in a lidar sensor are divided
into sub-groups so that a PE processes one sub-group. The
intuition behind the beam-by-beam approach is driven by
the fact that the number of beam is much lower than the
number of cells. Consequently, the number of cells in a sub-
grid processed by one PE is much higher than the number
of beams in a sub-group. Then, aggregating beams matches
better the number of computing resources available on many-
core. Moreover, the BBB approach also takes advantage of
equation 6. The number of operations is significantly reduced
by stopping computations once the beam casting surpasses
a certain distance from the range returned by the beam.

The BBB implementation on many-core presents a draw-
back. The occupancy grid is stored in the main memory
in a row-major order or a column-major order. Because
accessing directly the main memory from a PE is slow, one
can use DMA transfers for reducing latency. However, the
ray-casting-like algorithm access the memory not in row or
column order, but in the direction of beams. Consequently,
PEs do not necessarily access contiguous memory when
performing ray-casting. This introduces a complication in
DMA transfer management because DMA blocks outper-
forms better for contiguous block. A possible solution is to
use 2-dimensional DMA transfer,where a small rectangular
2-d block of memory is simultaneously transfered between
the main memory and the embedded memory. However, such
approach also introduces an additional overhead because not
all cells within the 2-d block are traversed by the beam.
A cell outside the field-of-view of beam b but traversed by
beam b+1 might be included within the 2-d block transfered
by the PE processing the beam b. Consequently, if beam b
and beam b+ 1 are processed by two different PEs, further
synchronization between PEs is needed.

IV. EXPERIENCES

A. Experimental Setup

For experimental purposes, data collected by two IBEO
Lux lidar sensors placed in the front left and front right of an
ego-vehicle are used for testing the implementation of CBC
and BBB approaches on many-core. Each sensor provides
four independent layers of up to 200 beams each. The angular
resolution of layers is 0.5◦. Beams can reach ranges up to
200m. A lidar sensor produces four scans (one per layer)
within a period of 40ms. More details on the experimental
platform (lidars and vehicle) can be found in [9].

The hardware test architecture comprises an embedded
host CPU composed of dual ARM Cortex A9 @800MHz,
and a low-power many-core accelerator with 64 cores and
2MBytes of on-chip embedded memory [13]. The cores are

(a) (b)

Fig. 7. Experience on a parking: (a) scenario (Photo courtesy of INRIA.).
(b) Occupancy grid.

grouped into 4 clusters of 16 cores. Each cluster features
a dual channel DMA unit for transfers between main and
embedded memory.

B. Execution Time and Power Consumption

Figure 7 shows an occupancy grid with the corresponding
real scenario on a parking. Figure 7(a) is obtained from
a camera mounted on the windshield of the ego-vehicle
while figure 7(b) is produced by the execution of the beam-
by-beam approach on the many-core hardware. A grid of
50m × 30m with cells of 0.1m × 0.1m is tested. The grid
contains 150000 cells. Table I resumes the execution time
and the power consumption for the implementations of the
two approaches.

Concerning the execution time, with the BBB method,
the many-core produces an occupancy grid with a period
of 6.26ms which is about 6× faster than the period of the
lidar sensors. The occupancy grids are then computed in real-
time compared to sensor output rates. Moreover, a remaining
duration of 33ms can still be exploited to perform additional
computations such as filters with still keeping the real-time
constraint.

Approach Execution Time(ms) Power Consumption (W)
BBB 6.26 0.61
CBC 57.82 0.98

TABLE I
EXECUTION TIME AND POWER CONSUMPTION

In addition to being executed 9× faster than CBC,
the beam-by-beam approach consumes 1.6× less electrical
power. For a comparison with the state of the art, a grid
with the same size but with cells of 0.2m × 0.2m is also
tested. The many-core performs the beam-by-beam approach

at 3.5ms. However, with the same parameters, an implemen-
tation of the cell-by-cell approach on a NVIDIA GPGPU
GeForce GTX 480 lasts 8ms in average [9]. While the two
experiments are not based on the same set of data, one can
notice that the minimum recommended system power for
the GPU is about 550W [16] however the maximum power
consumption of the experimental many-core hardware is 1W
[13].

V. CONCLUSION

This paper, has explored the integration of the Occu-
pancy Grid (OG) Multi-Sensor Fusion (MSF) algorithm
into low power many-core architectures. Two different ap-
proaches have been evaluated regarding parallel computing.
The achieved execution time, 6.26ms, were 6× faster than
used lidar output rate and 9× faster than previous embedded
prototypes, leaving enough free time for the other function
required for AV. The power consumed by the many-core
implementation remained less than 1W , hundreds of times
less consumption than a powerful GPGPU for a comparable
execution speed. This implementation proves that real-time
low-power multi-sensor fusion for occupancy grid is possible
when many-core architectures are considered.

REFERENCES

[1] F. Homm et al., “Efficient occupancy grid computation on the gpu
with lidar and radar for road boundary detection,” 2010.

[2] A. Broggi et al., “Extensive tests of autonomous driving technologies,”
Intelligent Transportation Systems, IEEE Transactions on, 2013.

[3] M. Birdsall, “Google and ite : the road ahead for self-driving cars,”
ITE Journal (Institute of Transportation Engineers), 2014.

[4] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press, 2005.

[5] A. Elfes, “Using occupancy grids for mobile robot perception and
navigation,” Computer, 1989.

[6] C. Coué, C. Pradalier, C. Laugier, T. Fraichard, and P. Bessiere,
“Bayesian Occupancy Filtering for Multitarget Tracking: an Automo-
tive Application,” International Journal of Robotics Research, 2006.

[7] A. Negre, L. Rummelhard, and C. Laugier, “Hybrid sampling bayesian
occupancy filter,” in Intelligent Vehicles Symposium Proceedings, 2014
IEEE.

[8] S. Sato et al., “Multilayer lidar-based pedestrian tracking in urban
environments,” in Intelligent Vehicles Symposium (IV), 2010 IEEE,
2010.

[9] Q. Baig, M. Perrollaz, and C. Laugier, “A robust motion detection
technique for dynamic environment monitoring: A framework for grid-
based monitoring of the dynamic environment,” Robotics Automation
Magazine, IEEE, 2014.

[10] T. A. Rakotovao, D. P. Puschini, J. Mottin, L. Rummelhard, A. Negre,
and C. Laugier, “Intelligent vehicle perception: Toward the integration
on embedded many-core,” in Proceedings of PARMA-DITAM ’15,
2015.

[11] K. Konolige, “Improved occupancy grids for map building,” Au-
tonomous Robots, 1997.

[12] J. D. Adarve, M. Perrollaz, A. Makris, and C. Laugier, “Computing
Occupancy Grids from Multiple Sensors using Linear Opinion Pools,”
in IEEE ICRA, 2012.

[13] D. Melpignano et al., “Platform 2012, a many-core computing accel-
erator for embedded socs: Performance evaluation of visual analytics
applications,” in Proceedings of the 49th Annual Design Automation
Conference, 2012.

[14] “Parallella,” www.parallella.org.
[15] B. de Dinechin et al., “A clustered manycore processor architecture

for embedded and accelerated applications,” in HPEC, 2013 IEEE.
[16] “Nvidia,” www.nvidia.fr.

