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Abstract

We report a novel asymptotic (large-order) behavior in an explicit
sequence built out of the Bernoulli numbers and analyzed by a variant
of instanton calculus or Darboux’s theorem.

We will use: B2m : the Bernoulli numbers; γ : Euler’s constant;
k!! = k(k − 2)(k − 4) . . . : double factorial (with 0!! = (−1)!! = 1 as usual).

The real sequence explicitly spelled out for n = 1, 2, . . . as
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can be thus numerically computed (trivially to thousands of terms), and very
early it satisfies (figs.)

un ≈ log n − 1.703 . (2)

This can be validated assuming the Riemann Hypothesis (= RH), as

un ∼ log n + K, K = 1

2
(γ − log(2π2) − 1) ≈ −1.70269564368 . (3)

With RH verified up to an ordinate T0 & 2 · 1012 currently, [5] it is plausible
indeed to witness the behavior (3).
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Figure 1: The coefficients un computed by (1) up to n = 3500, on a logarithmic
n-scale, vs the function (log n + K) of (3) (straight line); the first values are
u1 = log π− 1

2
log 54 ≈ −0.84976213743, u2 = −4

3
log π+ 23

24
log 2+ 55

24
log 3− 35

24
log 5

≈ −0.69148426053, u3 ≈ −0.46222439972 .
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Figure 2: As fig. 1 but for the remainders δun = un−(log n+K), on a very dilated
vertical scale. (The connecting segments between data points are only drawn for
clarity.)
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Now by large-order analysis through exponential asymptotics, [3][1] we
found that if RH is false, un will also admit a clear-cut asymptotic form but
of a wholly different nature, dominated by individual terms Fn(ρ) contributed
by every zero ρ = 1

2
+ t + iT off the critical line with 0 < t (< 1

2
) :

Fn(ρ) ∼ f(ρ)(−1)n (2n)ρ−1/2

log n
for n → ∞, (4)

where f is an explicit function independent of n with the main property

|f(ρ)| ≈ |T |−t−2 for |T | ≫ 1 =⇒ |Fn(ρ)| ≈ |T |−t−2(2n)t/ log n. (5)

Each such Fn(ρ) will ultimately dominate (3) in the n → ∞ limit, but starts
out exceedingly tiny at low n, and does not approach unity until

n & 1

2
|T |1+2/t (at best O(|T |5+ε) for t → 1

2

−

); (6)

yet we think that, with efficient signal-processing, the “signal” Fn(ρ) of ρ
within un ought to be detectable much sooner than at (6) (at n & O(|T |1+1/t)
or even less, but within n ≫ |T |). Still, to seek a violation of RH and verify
the form (4), |T | > T0 is necessary, and T0 & 2 · 1012 implies very large
n-values.

The major issue is then that un is an alternating sum of terms which
turn out to be exponentially larger by an order of (3 + 2

√
2)n. Increasingly

delicate cancellations thus take place, requiring a precision beyond ≈ 0.7656 n
decimal digits to evaluate un by (1). On the other hand, this purely technical
demand seems to be the sole obstacle raised by the use of (1) at unlimited n.

While other sequences sensitive to RH for large n are known, [6][2][7][4]
we are unaware of any previous case combining a fully closed form like (1)
with a practical sensitivity threshold of tempered growth n = O(T ν).

Details and derivations are currently under completion. [8]
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