
HAL Id: cea-01162180
https://cea.hal.science/cea-01162180

Submitted on 9 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Is dynamic compilation possible for embedded systems ?
Henri-Pierre Charles, Victor Lomüller

To cite this version:
Henri-Pierre Charles, Victor Lomüller. Is dynamic compilation possible for embedded systems ?.
SCOPES ’15, June 01 - 0, Jun 2015, Sanckt Goar, Germany. �10.1145/2764967.2782785�. �cea-
01162180�

https://cea.hal.science/cea-01162180
https://hal.archives-ouvertes.fr

Is dynamic compilation possible for embedded systems ?

[Extended Abstract]

Henri-Pierre Charles
Univ. Grenoble Alpes, F-38000 Grenoble, France

CEA, LIST, MINATEC Campus, F-38054
Grenoble, France

Henri-Pierre.Charles@cea.fr

Victor Lomüller
Univ. Grenoble Alpes, F-38000 Grenoble, France

CEA, LIST, MINATEC Campus, F-38054
Grenoble, France

v.lomuller@gmail.com

ABSTRACT
JIT compilation and dynamic compilation are powerful tech-
niques allowing to delay the final code generation to the run-
time. There is many benefits : improved portability, virtual
machine security, etc.

Unforturnately the tools used for JIT compilation and dy-
namic compilation does not met the classical requirement for
embedded platforms: memory size is huge and code genera-
tion has big overheads.

In this paper we show how dynamic code specialization
(JIT) can be used and be beneficial in terms of execution
speed and energy consumption with memory footprint kept
under control. We based our approaches on our tool de-

Goal and on LLVM, that we extended to be able to produce
lightweight runtime specializers from annotated LLVM pro-
grams.

Benchmarks are manipulated and transformed into tem-
plates and a specialization routine is build to instantiate the
routines. Such approach allows to produce efficient special-
izations routines, with a minimal energy consumption and
memory footprint compare to a generic JIT application.

Through some benchmarks, we present its efficiency in
terms of speed, energy and memory footprint. We show
that over static compilation we can achieve a speed-up of
21 % in terms of execution speed but also a 10 % energy
reduction with a moderate memory footprint.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
JIT, Dynamic code generation

Keywords
Dynamic compilation, binary code generation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCOPES-2015 SCOPES ’15, June 01 - 03, 2015, Sankt Goar, Germany
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
Copyright 2015 ACM 978-1-4503-3593-5/15/06
http://dx.doi.org/10.1145/2764967.2782785 ...$15.00.

Figure 1: Multiple compilation time for a static com-
piler

1. INTRODUCTION
The general compiler usage is shown in the figure 1. This

figure show the many steps from an intial idea to the run-
ning code using a data set on an architecture. The main
drawback of this classical scheme is that all important de-
cisions in the compilation process should be taken at static
compile time. Unfortunately on modern processors the per-
formance is mainly driven by data characteristics (data size,
data alignment, data values). JIT compilation is a trial to
delay code generation at run-time.

Just In Time (JIT) compilers’ efficiency dramatically im-
proved over the years. In the embedded domain, the increase
of processor capabilities has enabled the usage of such tech-
nologies. Usually a JIT compiler is used to ensure porta-
bility across platforms, but it can also be used to perform
program specialization in order to improve performance lev-
els (in general, improve execution speed).

An issue raised by the use of such infrastructure is their
resources consumption. By resources, we refer to memory
usage, code generation time and energy consumption.

An alternative to JIT is the use of dedicated program
specialization routines. These routines are dedicated to the
specialization of particular code chunks (basic block, func-
tions). They offer the benefit of performing their task at a
low cost by precomputing some specialization works during
the static compilation stage.

The research in our team focus on tools which help to
improve performance and functionality on embedded plat-
forms. Our final dream is shown in figure 2. In this figure, we
can choose, at static algorithmic time, what optimization to
implement and when the optimizations will take place (when

Figure 2: Multiple compilation time for a dynamic
compiler

the imformation is available).
In this article, we present two tools that are steps in this

final direction : deGoal which help to generate compilettes
and Kahuna to automatically generate such specialization
routines.

2. TOOLS DESCRIPTION
This section will give an bird eye view of the two tools

deGoal and Kahuna.

2.1 deGoal code generator
The deGoal infrastructure [2] integrates a language for

kernel description and a small run-time environment for code
generation. The tools used by the infrastructure are archi-
tecture agnostic, they only require a python interpreter and
an ANSI C compiler.

We use a dedicated language to describe the kernel gener-
ation at runtime. This language is mixed with C code, this
latter allowing to control the code generation performed in
compilettes. This combination of C and deGoal code allows
to efficiently design a code generator able to:

1. inject immediate values into the code being generated,

2. specialize code according to runtime data, e.g. select-
ing instructions,

3. perform classical compilation optimizations such as loop
unrolling or dead code elimination.

deGoal uses a pseudo-assembly language whose instruc-
tions are similar to a neutral RISC-like instruction set.

As a consequence, code generation is:

1. very fast: 10 to 100 times faster than typical JITs or
dynamic compilers which allow to use code generation
inside the application and during the code execution,
not in a virtual machine.

2. lightweight: the typical size of compilettes is only a
few kilobytes which allows its use on constrained mem-
ory micro controllers such as the Texas Instrument
MSP430 which has only 512 bytes of available memory.
Standard code generators, such as LLC of the LLVM
infrastructure, have Mbytes of memory footprint, mak-
ing their use impossible in this context.

3. produce compact code: as we are able to generate only
the needed specialized code and not all variants at the
same time.

4. portable across processor familly: i.e. a compiletteis
portable on RISC platforms or on GPU platforms.

5. able to perform cross-jit applications, i.e. a compilette
can run on one processor model and generate code for
an other processor and download the generated code.

More information can be found in the article [2].

Figure 3: Degoal Compilation flow

The very high flexibility of deGoal has a cost : the pro-
grammer has to developp manually the compilette : which
is a small optimizer embedded into the application. The
next tool Kahuna has tried to remove this constraint.

2.2 Kahuna
Kahuna is a retargetable runtime program specializer gen-

erator independent from any high-level language and that
can target embedded platforms. The purpose is to produce
specialized function following the context at the lowest cost
possible during runtime. It was invented and devolopped by
Victor Lomüller during his PhD [6].

An overview of the approach to produce specializers is
shown in Figure 4 . A creator (point “C”) will annotate a
LLVM program to identify (point 1):

• Values unknown at compile time but constant at run-
time,

• Location in the program that will trigger the special-
ization.

This annotated program goes through the Kahuna com-
pilation chain to produce a low overhead specializer (point
2). To do so, the compilation chain produce templates and
the specializer that will instantiate the function with those
templates. At runtime, when the values are known, the spe-
cializer can be trigger to produce the specialized function.

Kahuna can work in 2 modes: out-of-place and in-place
mode. Like for most runtime program specializer, the out-of-
place mode create a dedicated memory space in which the
specialized code is written. This mode has the advantage
to allow several specialized functions at the same time and
strong runtime optimizations (like dead code elimination,
loop unrolling, strength reduction) but at the expense of
a longer specialization time. The in-place mode modifies
directly the template to create a valid function. This mode
allows less runtime optimizations, but considerably lowers
down the specialization cost.

Figure 4: Kahuna Compilation flow

Figure 5: Code generation speed

3. ACHIEVED RESULTS
In this section we compare the results obtained by our

tools with differents version of LLVM (Static, JITTed, JIT-
Ted with specialization).

We evaluate different approaches against an audio bench-
mark. SOX[1]: we took a kernel from the SOX application:
“lx biquad filter”. This function computes a pass-band filter
using 5 float coefficients over a block of an audio signal (9
000 samples). We also use this kernel to perform a complete
study on execution speed, memory footprint and energy con-
sumption for all approaches described in the previous sec-
tion.

For this application, the data depend optimization plug
the coefficient filter inside the binary code. The advantages
are : avoid to reload the coeffcient filter (reduce memory
pressure), multiplication become multiplication with a con-
stant.

On this benchmark we experiments 5 different code gener-
ation schemes, 3 using LLVM and one using deGoal and the
last one using Kahuna. On these code generation scheme we
have used many metrics.

Due to space constraint, in this article, we only focus on
code generation time (how many time to generate the code)
and overhead recovery (how many time the code should be
executed to amortize the code generation).

3.1 Code Generator Execution Time
There is no big differences in the generated code speed.

The following table give speedup compared to the LLVM
static version. The results are in % compared to the static
version. The LLVM+JIT give no speedup compared to the
static version. Kahuna give a 21% speedup acceleration
thanks to the applied code specialization. LLVM+JIT+Spe
is an implementation where the code specialization is hard-
coded into the application. Not surprisingly, it give the same

speedup than Kahuna, but with a higher cost which will
discussed later. The deGoal version give a higher speedup
(27%) because it contains it’s own code generator.

Scheme Speedup
LLVM+JIT 0

Kahuna 21
LLVM + JIT + Spe 21

deGoal 27
Figure 5 presents the code generation time in cycles took

by the different approaches. It presents both the time took
by code generators and time took per generated instruction.
Note that the LLVM backend has a broader range of run-
time capabilities than Kahuna. The high cost of the LLVM
application is a price to pay for those capabilities.

The specialization of the Kahuna version provide an im-
portant improvement in terms of speed over the regular
LLVM. The Kahuna approach improves its performances by
specializing its back-end. All the optimization is made at
static compile time, leading to restricted but fast code gen-
erator and still provides speed-up for the generated kernel.
In the in-place mode, the code generation is limited to emit
the instruction and store it at the right place, leading to this
very low code generation time. In the out-of-place mode, the
code generator also copies the different basic blocs in the
created memory space. This increasing the code generation
time but its kept negligible compare to LLVM.

The genericity of the LLVM back-end allows efficient code
transformations but at a higher cost. The specialization of
Kahuna allows fast code generation with a resulting code
quality equivalent to LLVM.

More specific results for SOX, the deGoal approach im-
prove performance by specializing the back-end. At runtime,
there is no automatic scheduling and only limited optimiza-
tions, such as instruction selection, simplified register allo-
cation and peephole optimizations. With this tool, most of
low-level optimizations are made manually leading to both a
fast code generator and generated code. The difference be-
tween Kahuna and deGoal comes from the fact that Kahuna
uses the LLVM scheduler (at static compile time), which
leads to the same performances as LLVM & Spe. However,
the followed path in the LLVM back-end is not exactly the
same between the Kahuna and the LLVM & Spe versions.
Kahuna benefits from generic optimizations at static com-
pile time. Unlike LLVM & Spe, Kahuna handles constants
through moves instead of loads.

3.2 Overhead recovery
Another important metric, and one that makes the link

between the two previous ones, is the “overhead recovery”.
In other words, the number of required samples to process
(workload) in order to recover the runtime overhead pro-
duced by the specialization process and surpass the static
version.

Table V presents the overhead recovery (in samples) of the
different specialization techniques. The column “Workload”
represents the workload (number of signal samples) that can
be processed by the static version during the code generation
time. It gives an idea of the specialization weight over the
performance of the static implementation. The “Overhead
Recovery” column shows the required number of samples
required to be faster, in average, than the static version
when we take into account both code generation time and
processing time.

Figure 6: Overhead recovery

Thanks to the specialization of the back-end, the Kahuna
have a small overhead recover or even null one has it requires
only 1 samples. Converted into audio signal length, the
over-head recover is 0.2 ms for the SOX filter in its in-place
mode. Such results would allow efficient specialization in
applications that needs to change values during the process.

For deGoal, the results are similar to Kahuna in its out-
of-place mode with the SOX benchmarks. For the LLVM &
Spe option, as the code generation time is important, the
overhead is as important. Converted to an audio signal, its
represent 90 s of signal.

It is interesting to note that all three specialization schemes
provide similar results in terms of produced code efficiency,
but at a very different cost. The overhead recovery pro-
vides a tangible way to evaluate the cost of specialization.
In terms of speed, this evaluation is classical, we have used
the same metrics for energy and shown that it is harder to
pay off specialization from this point of view.

Regarding the applicative domain, the low overhead pro-
vided by Kahuna mean that a dynamic code generation can
be used in an audio application without noticeable interrup
(The well known “Klic” in audio applications).

4. RELATED WORKS
Java JIT mix interpretation and dynamic compilation for

hostpots. Such techniques usually require large memory to
embed JIT framework, and performance overhead. Some re-
search works have tried to tackle these limitations: memory
footprint can be reduced to a few hundreds of KB , but the
binary code produced often presents a lower performance be-
cause of the smaller amount of optimizing intelligence em-
bedded in the JIT compiler [7]. Java JITs are unable to
directly take data value as parameters. They use indirect
hotspot detection by tracing the application activity at run-
time. In deGoal, the objective is to reduce the cost incurred
by runtime code generation. Our approach allows to gener-
ate code at least 10 times faster than traditional JITs: JITs
hardly go below 1000 cycles per instruction

Fabius [3] specializes ML routines. At compile time , the
system identifies variable to specialize and create templates
to specialize the routine at runtime. DyC [?] offers also low-
overhead runtime specialization mechanism. It starts with
an annotated C program, and similarly to Fabius, it cre-
ates templates that will be instantiated at runtime. Tempo
[?], also starts with C programs, but uses “scenarios” to de-

scribe the specializing process. To our knowledge, Tempo
is the only specialization system described above that has
been used on an embedded platform [2]. Yet, all these spe-
cialization techniques only focused on timing and size per-
formances, the energy performance was not studied. deGoal
uses its own language and emits instruction on a per instruc-
tion basis. Kahuna uses a per block approach like DyC, but
is not tied to any language, leaving the control of the code
generator to the front-end or optimization passes. Finally,
Kahuna and deGoal were developed for embedded system
and are easily retargetable.

We have other results using dynamic compilation that can
be found in the following publications : [5] using NVIDIA
GPU processors, [4] which describe the thechnology more
precisely.

5. CONCLUSION
We have shown in this article that using sophisticated

code generation at run-time is possible on small processors
dedicated to embedded systems.

There is no ideal tool so far, but we have shown that it
is possible to build tools with good compromise between
the code quality produced at high speed and low overhad
recovery.

6. REFERENCES
[1] C. Bagwell, R. Sykes, and P. Giard. SoX - Sound

eXchange - v14.4.1.

[2] H.-P. Charles, D. Couroussé, V. Lomüller, F. A. Endo,
, and R. Gauguey. degoal a tool to embed dynamic
code generators into applications. Jan 2014.

[3] M. Leone and P. Lee. A Declarative Approach to
Run-Time Code Generation. In In Workshop on
Compiler Support for System Software (WCSSS, pages
8–17, 1996.

[4] V. Lomüller and H.-P. Charles. A LLVM Extension for
the Generation of Low Overhead Runtime Program
Specializer. In Proceedings of International Workshop
on Adaptive Self-tuning Computing Systems - ADAPT
’14, pages 14–16, Jan 2014.

[5] V. Lomüller, S. Ledru, and H.-P. Charles. Scilab on a
Hybrid Platform. In Parallel Computing: Accelerating
Computational Science and Engineering (CSE),
Advances in Parallel Computing, pages 743–752. IOS
Press, 2014.

[6] V. Lomüller. Générateur de code multi-temps et

optimisation de code multi- objectifs. PhD thesis, École
Doctorale “Mathématiques, Sciences et Technologies de
l’Information, Informatique” Université de Grenoble, 11
2014.

[7] N. Shaylor. A just-in-time compiler for
memory-constrained low-power devices. In Java Virtual
Machine Research and Technology Symposium, pages
119–126, 2002.

