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Fast Digital Filtering of Spectrometric Data for
Pile-up Correction

T. Trigano, Member, IEEE, E. Barat, T. Dautremer and T. Montagu

Abstract—This paper considers a problem stemming from the
analysis of spectrometric data. When performing experiments
on highly radioactive matter, electrical pulses recorded by the
spectrometer tend to overlap, thus yielding severe distortions
when computing the histogram of the pulses’ energies. In this
paper, we propose a fast recursive algorithm which estimates
efficiently this histogram from measurements of the duration
and energies of overlapping pulses. Its good performances are
shown both on simulations and real data. Furthermore, its
lower algorithmic complexity makes it more fitting for real-time
implementation.

Index Terms—Nonlinear inverse problem, digital signal pro-
cessing, signal restoration and enhancement, pile-up correction

I. INTRODUCTION

THE main objectives of γ spectrometry are the identifica-
tion of unknown radioactive sources and the estimation

of their activities, determined by the information stemming
from photons emitted at random times. A digital spectrometry
apparatus converts the energy of a photon impinging on
a detector into a electrical pulse of finite duration, whose
associated energy (in that case, the sum of all samples of
the pulse) is quantized and recorded. At the end of the
experiment, the energy distribution is estimated by means of a
histogram, which is called the energy spectrum and provides
information on the emitting source. It is therefore relevant in
that framework to consider an energy spectrum as a discrete
probability distribution to be estimated in a nonparametric
setting.

In practice, the inter-arrival times between photons can
be shorter than the durations of generated electrical pulses
after amplification, thus creating clusters of pulses, known as
pile-ups. An example of pile-ups occurring on a real signal
is presented in Figure 1a. This also causes a distortion of
the energy spectrum that becomes more severe as the activ-
ity increases. More specifically, standard spectrum analyzers
consider pile-ups as single electrical pulses, and record the
sum of the pulses’ individual energies instead of each energy
separately. Therefore, fake sum peaks in the energy spectrum
and a distortion of its continuous part, called the Compton
continuum, can be observed. Both distortions make the final
identification of the source more difficult for the practitioner.
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Figure 1b illustrates such distortion for a simple radioactive
element, Cesium 137.

Recent pile-up correction techniques include DSP real time
compensation [2] and phase correlation coupled with max-
imum likelihood estimation [3]. These methods are based
on assumptions regarding the pulse shape, and perform well
under good signal to noise ratios. Also recently, the authors
presented in [4] an adaptation of the formula appearing in [1],
and derived from it an algorithm based on the numerical
inversion of a non-linear equation. Unfortunately, the method
presented in [4] has high algorithmic complexity, which makes
it unsuitable for real-time implementation.

The aim of this paper is to propose a fast algorithm for
pile-up correction, based on the inversion formula given in
[4]. We first recall the mathematical model used as well as
the inversion formula used in this framework. We then detail
a fast algorithm to derive an estimate of the corrected energy
spectrum. Eventually, we discuss the performances of the
detailed approach, both on simulations and real data.

II. ALGORITHM FOR DIGITAL PILE-UP CORRECTION

We recall in this section the mathematical model used and
the inversion formula appearing in [4]. This pile-up correction
formula can be seen as an adaptation of [5] to the discrete
case, and will be the basis of a new estimator of the energy
distribution for discrete and quantified signals. In order to
avoid cumbersome notations, we assume that the sampling
and quantization periods are equal to 1.

A. Mathematical model and discrete pile-up correction for-
mula

The observed discrete-time signal is modeled as

s[n] =

+∞∑
k=1

Φk [n− dTke] , (1)

where {Tk, k ≥ 1} is the ordered sequence of the points
of a homogeneous Poisson process with known intensity λ,
Φk is the k-th recorded electrical pulse with duration Xk

and energy Yk. Note that the term energy in this framework
must be understood as the sum of the samples, that is Yk is
the sum of the samples s[n] between dTke and dTke + Xk.
We assume that {(Xk, Yk), k ≥ 1} is a sequence of in-
dependent and identically distributed integer-valued discrete
random variables, independent of {Tk, k ≥ 1}, with finite
expectation and common probability mass function pX,Y . We
also denote by pY the marginal distribution of the Yk’s, which
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Fig. 1: Influence of the pile-up effect on a real signal from an high purity Germanium detector, with high signal-noise ratio.
T (a) time domain, the pile-ups are displayed in red.; (b) Theoretical probability density function of the energy (black) and
observed piled-up histogram at a counting rate λ = 106 photons per second (blue line). We observe fake sum pikes at multiples
of 667 keV and a distortion of the Compton continuum. (Taken from [1]).

corresponds in practice to the ideal energy spectrum that we
would estimate if we disposed of direct observations of Yk.
In practice, however, the shapes Φk are unknown, and neither
Xk nor Yk can be observed directly. Instead, the spectrometer
device [6] derives the arrival times of the detector’s busy
periods T ′k, their durations X ′k and their energies Y ′k from
s[n]:

T ′k = min
m≥T ′k−1

{s[m] = 0, s[m+ 1] > 0} ,

X ′k = min
m≥T ′k

{s[m] > 0, s[m+ 1] = 0} , Y ′k =

T ′k+X
′
k∑

m=T ′k

s[m].

It can be shown (see e.g. [5]), that the random variables
{(X ′k, Y ′k), k ≥ 1} are also independent and identically
distributed. The physical significance of T ′k, X

′
k, Y

′
k is sum-

marized in Figure 2. We also denote by pX′,Y ′ the common
probability mass distribution of the {(X ′k, Y ′k), k ≥ 1} ,
and by PX′,Y ′(z1, z2)

def
=
∑
m≥0

∑
n≥0 pX′,Y ′ [n,m] zn1 z

m
2 its

moment-generating function.
The problem to address in practice is to estimate pY given

a sample of observed durations and energies of busy periods
(X ′k, Y

′
k), k = 1 . . . N . The cornerstone of this estimation will

be based on the following result:
Theorem 1 (pile-up correction formula [7], [5] ): Define

k[n,m]
def
=

n∑
j=0

n−j∑
i=0

pX,Y [i,m], that is the doubly cumulative

sum with respect to the first component of pX,Y . Under the
previous assumptions, we have for all |z1| ≤ 1, |z2| ≤ 1:∑

n≥0

(
exp
(
−λn+ λ

∑
m≥0

k[n,m]zm2
))
zn1

=
1

1− (e−λz1 + (1− e−λ)z1PX′,Y ′(z1, z2))
. (2)

Due to the definition of k[n,m], we find that

(k[n,m]−k[n−1,m])−(k[n−1,m]−k[n−2,m]) = pX,Y [n,m].

X′n

Y ′n =

T ′n+X
′
n∑

k=T ′n

s[k]

T ′n
Y ′n+1 =

T ′n+1+X
′
n+1∑

k=T ′n+1

s[k]

X′
n+1

T ′
n+1

Fig. 2: Summary of the notations on a real signal s[n] (the
sampling points are circled). In this example, the first busy
period is actually a single pulse, whereas the second is a pile-
up of three pulses.

and since k[0,m] = k[−1,m] = k[−2,m] = 0:

pY [m] =
∑
n≥0

pX,Y [n,m] = lim
n→∞

(k[n,m]− k[n− 1,m]).

Thus, (2) states that a nonlinear relation exists between a
functional of pY , from which we have no direct observations
but wish to estimate, and a functional of pX′,Y ′ from which
observations can be obtained experimentally. Therefore, it is
possible to estimate pY by direct numerical inversion of (2), as
in [7]. Though this method provides acceptable results, it may
be noticed that the problem can be addressed more elegantly
in the time domain, without explicit inversion.

B. Fast estimation of the energy spectrum

We now present a fast algorithm to obtain an estimate
of pY . Denote by Y (z1, z2) the Right Hand Side (RHS)
of (2); since Y (z1, z2) is analytic, we denote by y[n,m]
the terms of its power series expansion, that is Y (z1, z2) =
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∑
n≥0

∑
m≥0 y[n,m]zn1 z

m
2 . Comparing Y (z1, z2) to the Left

Hand Side (LHS) of (2) yields

exp
(
−λn+ λ

∑
m≥0

k[n,m]zm2

)
=
∑
m≥0

y[n,m]zm2 , (3)

or equivalently by taking the log-derivative in (3) with respect
to z2:∑

m≥0

λ k[n,m+ 1] (m+ 1) zm2

=

∑
m≥0(m+ 1) y[n,m+ 1] zm2∑

m≥0 y[n,m] zm2
. (4)

Rewriting (4) using a Cauchy product, we obtain∑
m≥0

(m+ 1) y[n,m+ 1] zm2

=
∑
m≥0

( m∑
k=0

y[n, k]λ k[n,m− k + 1] (m− k + 1)
)
zm2 .

Equating the terms of the powers series leads to

(m+ 1)y[n,m+ 1] = λ(m+ 1)y[n, 0]k[n,m+ 1]

+

m∑
k=1

y[n, k]λ k[n,m− k + 1] (m− k + 1),

which provides the recursive computation of k[n,m] as a
function of y[n,m]:

k[n,m] =
y[n,m]

λy[n, 0]

− 1

m

m−1∑
k=1

(m− k)
y[n, k]

y[n, 0]
k[n,m− k] . (5)

On the other hand, by expanding the RHS of (2) into power
series, we obtain an explicit recursive computation of y.
Specifically, since

Y (z1, z2)− e−λz1Y (z1, z2)

− (1− e−λ)z1PX′,Y ′(z1, z2)Y (z1, z2) = 1,

for all positive integers n and m, this yields

y[n,m] = δ[n,m] + e−λy[n− 1,m]

+ (1− e−λ)

n−1∑
k=0

m∑
l=0

y[n− 1− k, l]pX′,Y ′ [k,m− l], (6)

where δ[n,m] = 1 when n = 0,m = 0 and δ[n,m] = 0
otherwise. Therefore, a direct pile-up correction procedure in
the discrete case can be implemented as follows:

1) Compute a bi-dimensional histogram on J0, n0K×J0,m0K
from {(X ′k, Y ′k), k = 1 . . . N}, as an estimate of pX′,Y ′

2) Compute recursively the terms y[n,m] by means of (6),
3) Find the values of k[n,m] by (5),
4) Compute an estimate of the energy distribution, p̂Y , as

p̂Y (m) = k[n0,m]− k[n0 − 1,m], (7)

where n0 denotes the greatest bin of the histogram
computed in the first step.

We emphasize that the presented algorithm has in common
with the one presented in [4] the development of y[n,m] by
means of (6). However, there is a major difference between
the two on the second step of the computation. Indeed, the
algorithm presented in [4] computes multiple convolutions
to compute k[n,m], which increases the global complexity
of the algorithm. On the other hand, the recursion in (5)
reduces the computational load. This gain is crucial in practice,
since the algorithm in [4] can be only used off-line, whereas
our method can be theoretically implemented on real time
apparatus. Moreover, the algorithm presented in [4] involves
an expansion of the LHS of (3) in power series and its
truncation up to an order fixed by the user. This yields an
additional approximation error, which does not exist in the
proposed approach. Eventually, when compared to [1], it can
be noted that the presented approach does not include any
numerical inversion of moment generating functions, since all
the computations are performed in the time domain, making
it less sensitive to numerical instability.

III. APPLICATIONS

We present results on simulations and real data. The pile-up
durations and energies are obtained from the ADONIS digital
instrumentation detailed in [6], [8].

A. Results based on simulations

In our experiments, we consider bi-dimensional histograms
made with 16 bins for the durations and 256 bins for the ener-
gies. The durations of individual pulses are drawn according
to a discretized Gamma distribution with a shape parameter of
4 and a scale parameter of 1. The energies of individual pulses
are drawn according to a discretized mixture of 6 normal
distributions (representing the energy spectrum spikes) and a
translated gamma density function (simulating the Compton
continuum), more precisely fY ∝ 0.5g + 10N (40, 1) +
10N (112, 1)+N (50, 2)+N (63, 1)+2N (140, 1)+N (200, 1),

where g(x)
def
= (0.5 + x/200)e−(0.5+x/200) and N (x, y) is

the Gaussian density function with mean x and variance
y. We compare the presented method with the algorithm
developed in [4].Table I summaries the execution times for a
given identical approximation error, and the integrated squared
error (ISE) for similar execution times. Numerical experiments
were performed on an HP workstation with 2 GHz Pentium
processor, and the algorithms were coded in C language.

The results obtained by the proposed pile-up correction
method are presented in Figure 3.

B. Results on real data

We now present an application of the pile-up correction
algorithm on a more complex source, namely a mixture of
Americium 241 and Europium 152. The main peak locations in
the energy spectra of these radionuclides are given in Table II
. The combination of both elements results in closely piled-
up and real peaks (e.g. the piled-up peak at 119.08 keV of
Americium and the real peak at 121.78 keV of Europium),
illustrating the difficulty of the pile-up correction task. Results
are shown in Figure 4.
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Proposed algorithm Algorithm from [4]

Histogram number of bins (duration × energy) Elapsed time ISE Elapsed time ISE

16× 256 0.031 0.1163941 0.265 0.1163942
16× 1024 0.75 0.0926780 5.532 0.0926783
16× 4096 11.498 0.0828218 93.75 0.0828220
16× 16384 196.5 0.0815275 1586.73 0.0815278
32× 1024 2.982 0.0814096 30.625 0.0814098
64× 1024 2.9 0.0814335 70.327 0.0814338

TABLE I: Comparison of discrete time pile-up correction techniques execution times and ISE.

0 50 100 150 200 250
Energies (keV)

10-3

10-2

10-1

Oc
cu

rre
nc

e p
ro

ba
bil

itie
s

Actual energy spectrum
Energy spectrum before pileup correction
Energy spectrum after pileup correction

Fig. 3: Simulation results. The ideal and estimated energy
spectra are almost superimposed.

Americium 241 Europium 152

Energies (keV) Intensity (%) Energies (keV) Intensity (%)
26.34 2.31 121.78 28.41
33.20 0.12 244.70 7.55
59.54 35.92 295.94 0.44

102.98 0.0195 329.43 0.13
344.28 26.59
367.79 0.86

TABLE II: Main peaks in the gamma energy spectra of
Americium 241 and Europium 152 between 0 and 400 keV.
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Fig. 4: pile-up correction on a complex mixture, with total
activity λ = 280000 photons per second (zoom from 0 to 400
keV).

C. Discussion

As seen in the results of the simulations, the pile-up effect
on simulations is perfectly corrected: all the fake spikes

caused by pulse overlapping are discarded, and the obtained
estimation of the energy spectrum almost perfectly matches
the objective density. It is even more remarkable to observe
that the Gamma function representing the Compton diffusion
effect is also well corrected. This is done with a valuable
gain in terms of calculation times, as expected. The gain of
precision is more marginal, however a slight improvement
can be observed for all the cases. Note that even this slight
improvement is important in practice, since in our applications
the energy spectra are commonly displayed in logarithmic
scale. As shown, the presented method is close to ten times
faster than [4], without sacrificing precision.

The results displayed in Figure 4 are interesting to detail in
light of Table II. We can see that the Compton background is
well corrected, and that numerous fake peaks are discarded,
even when they are located close to actual peaks. For example,
the Compton background is corrected in [100 keV-150 keV]
and [200 keV-250 keV] regions while preserving the 244.7
keV Europium peak and revealing the peak at 121.8 keV. The
discontinuities obtained are due to the fact that no positivity
constraint is assumed on the resulting histogram coefficients,
so that the logarithmic value cannot always be computed. We
also remark that the correction of the Compton continuum
makes some actual, but less significant, peaks appear more
clearly, e.g. Europium peaks at 212 keV and 285 keV.

In Figure 4, we observe that our pile-up correction method,
though efficient, is not as efficient as expected from the simu-
lated data in Figure 3. Indeed, one can see small deformations
of the Compton continuum located at peaks positions, and
we can notice that some fake peaks (e.g. at 119.08 keV)
are only partially corrected, and that an artifact peak with
lesser variance remains. This behavior is explained by the
fact that observed busy discrete energies Y ′n are corrupted
by an additive noise due to the instrumental system, which
is absent from the model. Neglecting the additive remains
plausible in the case of detectors with high signal-noise ratio,
such as high purity Germanium detectors. Nevertheless, further
investigations must be done in order to adapt this approach to
a wider class of detectors.

IV. CONCLUSION

We presented an adaptation of the pile-up correction for-
mula, fitted for digital instrumentation and digital spectromet-
ric signals. This led to a fast algorithm for pile-up correction.
Results on simulations and real data show that the proposed
method corrects efficiently the distortion in energy spectra
caused by the pile-up effect.
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APPENDIX

PROOF OF (2)
This section describes the proof of Equation (2). We assume

that λ is known. The proof is close to the continuous case,
described in [5]. We introduce a similar auxiliary function,
based upon the probability that we are standing in an idle
period at time m, and that the total accumulated energy before
this time is equal to n:

ρ[m,n]
def
= P

s[m] = 0 ∩
m−1∑
j=1

s[j] = n

 , (m,n) ∈ N2 .

We also define

R(s, p)
def
=
∑
m≥0

∑
n≥0

ρ[m,n]smpn

as the moment generating function associated to ρ. The follows
proposition computes R using the properties of homogeneous
Poisson processes.

Proposition A.1: Under previous assumptions, for any
(s, p) ∈ C2 belonging to the definition domain of R,

R(z1, z2) =
∑
n≥0

(
exp

(
λn− λ

+∞∑
m=0

k[n,m]zm2

))
zn1

− 1

1− e−λz1
.

Proof: Denote by {Nt, t ≥ 0} the counting process associ-
ated to the homogeneous Poisson process {Tk, k ≥ 0} of the
arrivals, more explicitly Nt =

∑∞
n=1 1{Tn ≤ t}. We obtain

by conditioning that:

ρ[m,n] = e−λm +
∑
k≥1

P(Nm = k)

× P

(
{Ti +Xi ≤ m}ni=1 ,

k∑
l=1

Yl = n

∣∣∣∣∣Nm = k

)
. (8)

The conditional distribution of the arrival times (T1, . . . , Tk)
given {Nm = k} is equal to the distribution of the order
statistics of n independent and identically distributed uni-
form random variables on [0,m]; hence, for any n-tuple
(m1, . . . ,mk) of positive real numbers,

P(T1 ≤ m1, . . . , Tk ≤ mk | Nm = k)

= P(U(1) ≤ m1, . . . , U(k) ≤ mk) , (9)

where {Ul}kl=1 are independent and identically distributed
random variables uniformly distributed on [0,m] and U(1) ≤
· · · ≤ U(k) are the order statistics of this sample. Therefore,
(8) and (9) imply that

A
def
= P

(
{Ti +Xi ≤ m}ki=1,

k∑
l=1

Yl = n

∣∣∣∣∣Nm = k

)

=
1

mk

∫
· · ·
∫ k∏

l=1

1{ul + xl ≤ m}1

{
k∑
l=1

yl = n

}
k∏
l=1

pX,Y (dxl, dyl)dul ,

Using Fubini’s theorem, we find that

A =
1

mk

∫
· · ·
∫

1

{
k∑
l=1

yl = n

}
k∏
l=1

κ(m, yl) ,

where κ(m,n) is the probability kernel defined by

κ(m,n)
def
=
∑
k≥0

(m− k)1{k ≤ m}pX,Y (k, n) . (10)

Eventually, computing the moment generating function leads
to

R(z1, z2)
def
=
∑
m≥0

∑
n≥0

ρ[m,n]zm1 z
n
2

=
∑
m≥0

∑
n≥0

ρ[m,n]zn2

 zm1

=
∑
m≥0

∑
n≥1

λn

n!
e−λm

∑
j≥1

k[m, j]zj2

n zm1

=
∑
m≥0

(
e−λm+λ

∑
j≥1 k[m,j]z

j
2 − e−λm

)
zm1

=
∑
m≥0

(
e−λm+λ

∑
j≥1 k[m,j]z

j
2

)
zm1 −

1

1− e−λz1
, (11)

which completes the proof.
On the other hand, the moment generating function of ρ can

also be computed using the fact that the observed process is
a marked renewal process, with renewal distribution pX′ ∗ g,
where pX′ is the distribution of X ′, and g is the geometric
distribution with parameter e−λ. Therefore, the following
proposition holds:

Proposition A.2: Under the same assumptions and notations,
we have its definition domain:

(1−e−λ)sR(z1, z2) =
(1− e−λ)z1

1− z1e−λ − (1− e−λ)z1PX′,Y ′(z1, z2)

− (1− e−λ)z1
1− z1e−λ

. (12)
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Proof: The proof is based on classical renewal arguments
and the fact that for all integer k, the idle period Zk

def
=

#
{
T ′k−1 ≤ m ≤ T ′k; s[m] = 0

}
is distributed according to a

geometric distribution with parameter e−λ. Observe that for all
m ≥ 2 and for all integer n, the event {s[m− 1] = 0, s[m] >
0,
∑m−1
k=1 s[k] = n} can be decomposed as follows:{
s[m− 1] = 0, s[m] > 0,

m−1∑
k=1

s[k] = n

}

=
⋃
l≥2

{
T ′l = m,

l−1∑
k=1

Y ′k = n

}

=
⋃
l≥2

{
l−1∑
k=1

(Zk +X ′k) + Zl = m,

l−1∑
k=1

Y ′k = n

}
. (13)

Since P(s[m − 1] = 0, s[m] > 0,
∑m−1
k=1 s[k] = n) = (1 −

e−λ)ρ[m− 1, n], equation (13) leads to

(1− e−λ)ρ[m− 1, n]

=
∑
l≥2

P

(
l−1∑
k=1

(Zk +X ′k) + Zl = m,

l−1∑
k=1

Y ′k = n

)
.

Due to independence of Zl with {X ′k + Zk, k = 1 . . . l − 1}
and of {X ′k, k ≥ 1} with {Zk, k ≥ 1}, taking the moment
generating function of the latter equation yields to

(1− e−λ)z1R(z1, z2) = G(z1)
∑
l≥1

(G(z1)PX′,Y ′(z1, z2))l ,

(14)
where G(z1) is the moment generating function of a geometric
distribution, that is:

G(z1)
def
=

(1− e−λ)z1
1− e−λz1

.

Thus, we get from (14) that

(1− e−λ)z1R(z1, z2)

=
(1− e−λ)z1
1− e−λz1

×

(
1

1− (1−e−λ)z1
1−e−λz1 PX

′,Y ′(z1, z2)
− 1

)

=
(1− e−λ)z1

1− z1e−λ − (1− e−λ)z1PX′,Y ′(z1, z2)
− (1− e−λ)z1

1− z1e−λ
,

which ends the proof.
Equation (2) is therefore a straightforward consequence of

Propositions A.1 and A.2.
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