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DIMERS ON RAIL YARD GRAPHS

CÉDRIC BOUTILLIER, JÉRÉMIE BOUTTIER, GUILLAUME CHAPUY,
SYLVIE CORTEEL, AND SANJAY RAMASSAMY

Abstract. We introduce a general model of dimer coverings of certain plane
bipartite graphs, which we call rail yard graphs (RYG). The transfer matrices

used to compute the partition function are shown to be isomorphic to certain

operators arising in the so-called boson-fermion correspondence. This allows
to reformulate the RYG dimer model as a Schur process, i.e. as a random

sequence of integer partitions subject to some interlacing conditions.

Beyond the computation of the partition function, we provide an explicit
expression for all correlation functions or, equivalently, for the inverse Kaste-

leyn matrix of the RYG dimer model. This expression, which is amenable to

asymptotic analysis, follows from an exact combinatorial description of the op-
erators localizing dimers in the transfer-matrix formalism, and then a suitable

application of Wick’s theorem.

Plane partitions, domino tilings of the Aztec diamond, pyramid partitions,
and steep tilings arise as particular cases of the RYG dimer model. For the

Aztec diamond, we provide new derivations of the edge-probability generating

function, of the biased creation rate, of the inverse Kasteleyn matrix and of
the arctic circle theorem.

1. Introduction

The two-dimensional dimer model is arguably the most studied exactly solvable
model in statistical mechanics (note that it encompasses, in a sense, the equally well-
known two-dimensional Ising model), see for instance [28, Chapter 5] for a review
of the seminal works of Kasteleyn, Temperley and Fisher, and the introduction of
[2] for a nice survey of the more recent literature. Dimer configurations are also
known as perfect matchings in combinatorics and theoretical computer science.
Actually, perhaps the oldest exact solution of a 2D dimer model is MacMahon’s
enumeration of plane partitions [32], as these were later identified with lozenge
tilings, or alternatively dimer configurations on the hexagonal lattice.

Kasteleyn’s method allows to reduce the problem of computing the partition
function (and the correlation functions) of the dimer model on any finite weighted
planar graph (assuming that the dimers interact only through their hard-core re-
pulsion) to the evaluation of a determinant (or Pfaffian) whose size is linear in the
number of vertices of the graph. Under the usual assumption that the graph is
periodic in two directions, one can then evaluate this determinant and take the
thermodynamic limit to obtain the free energy, study phase transitions, etc. In
this paper, we consider a dimer model on a new family of graphs, called rail yard
graphs, which are periodic in one direction but not in the other.
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One of our motivations is that the rail yard graph dimer model encompasses
both the plane partitions mentioned above and another celebrated model, namely
domino tilings of the Aztec diamond [18, 19] (corresponding to, roughly speaking,
dimer configurations on the portion of the square lattice fitting into a large square
tilted by 45◦). What relates these two models is that they can be seen as Schur
processes [38], that is to say random sequences of integer partitions whose transition
probabilities are given by Schur functions. If the relation between plane partitions
and Schur processes was explicited by Okounkov and Reshetikhin, the case of the
Aztec diamond appears implicitly in [23] and has, to the best of our knowledge,
remained in such implicit form until [12], of which this paper is a continuation
(see below). The interest of making the connection between dimer models and
Schur processes explicit is that it allows to use an operator formalism coming from
the boson-fermion correspondence (see the references given at the beginning of
Section 3) which is both powerful and intuitive, as the operators are nothing but
transfer matrices or observables satisfying some particularly simple commutation
relations. Furthermore it allows us to say that the RYG dimer model forms another
situation, besides the 2D Ising model [17], where “bosonization” works at an exact
discrete level. The rail yard graph dimer model corresponds essentially to the most
general Schur process with nonnegative transition probabilities.

Before describing our work in more detail, let us further discuss some history and
background behind it. Bender and Knuth [4] made the link between plane parti-
tions and the Robinson-Schensted-Knuth correspondence, see also [44, Chapter 7].
Okounkov [35, 36] used the boson-fermion correspondence to define the so-called
Schur measure over integer partitions, and study its correlation functions. The
Schur process [38, 37] is a time-dependent version of this measure, that can also
be viewed as a system of particles with certain dynamics. It contains as a special
case a generalization of plane partitions, namely plane partitions with an evolving
“back wall”. Numerous papers followed on this subject [6, ?, 7, 11, 5, ?] and on its
extension to the Hall-Littlewood and Macdonald cases [46, 20, 47, 34, 15, 8].

In [12], three authors of the present paper introduced a general class of domino
tilings called steep tilings, encompassing both tilings of the Aztec diamond and
the so-called pyramid partitions [30, 48]. It was shown in [12] that steep tilings
also correspond to Schur processes and, using the vertex operator formalism, their
partition functions (of the “hook formula” type) were computed for a variety of
boundary conditions. Since both (generalized) plane partitions and steep tilings
are special instances of the Schur process, it is then natural to ask if there is a more
general model of tilings or dimer coverings that would reformulate the Schur process
in full generality, at least when the number of underlying parameters is finite. Such
a model was sketched in [12, Section 7], that can be viewed as a preliminary attempt
at what we reach in the present paper.

The rail yard graphs (RYG) that we introduce here are infinite bipartite plane
graphs, obtained by the “concatenation” of column-shaped elementary graphs, and
come with a family of admissible dimer coverings. The RYG dimer model is then
a probability measure over such coverings. The elementary graphs can be of four
types that correspond to the four possible types of “atomic” transitions in the
Schur process. For the special families of RYG that correspond to the special
families of Schur processes considered in [38, 12], we recover generalized plane
partitions and steep tilings, respectively. As we hope will be apparent in this
paper, RYG provide a nice and natural formulation of the Schur process in terms
of dimers, in a well-adapted system of coordinates, much simpler than the one
from [12, Section 7]. Having shown the correspondence between rail yard graphs
and Schur process, we can then apply the same classical tools as in [38] to get
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explicitly the partition functions in a nice (hook-type) product form. Even more,
we can interpret these partition functions in terms of a combinatorial parameter
related to the flip operation on coverings.

Beyond the partition function, we compute all the dimer correlation functions,
which requires the introduction of suitably defined observables (or constrained
transfer matrices) that enable us to localize, in the algebraic setting, a given set of
dimers. To prevent any confusion, let us note that the particle correlations com-
puted in [38] for the Schur process, when translated in terms of RYG, give only a
special case of this result. Indeed, as we will see, there are three kinds of dimers
in a RYG, and particles correspond to one of the three kinds (so in our setting
the correlations results of [38] only describe correlations between dimers of the first
kind). Once the observables are constructed, we use classical fermionic tools such
as Wick’s formula to evaluate the correlation functions in an explicit determinan-
tal form. We also make the connection with the general Kasteleyn theory: it is
a general fact that correlations between dimers on plane bipartite graphs have a
determinantal form, underlaid by an inverse of the so-called Kasteleyn matrix of
the model. For RYG, we show that the determinantal form we obtain by our ap-
proach indeed gives an inverse Kasteleyn matrix, as was remarked in [37] for the
case of skew plane partitions, see also [?, Section 5]. Our approach generalizes
both this case and that of the Aztec diamond (for the so-called qvol weighting),
treated previously in [13] by a very tricky and somehow mysterious calculation.
As further applications concerning the Aztec diamond, we rederive the so-called
edge-probability generating function and biased creation rate, and the arctic circle
theorem using the general saddle-point techniques of [38].

We now present the structure of the paper. Section 2 is devoted to the basic def-
initions (rail yard graphs in Subsection 2.1, their dimer coverings in Subsection 2.2,
flips in Subsection 2.3) and to the statement of our main results, namely the ex-
pression for the partition function (Subsection 2.4) and for the dimer correlation
functions (Subsection 2.5). Section 3 introduces bosonic operators (Subsection 3.1)
that act as transfer matrices in the RYG dimer model (Subsection 3.2), allowing
to compute efficiently the partition function (Subsection 3.3). Section 4 consid-
ers fermionic operators (Subsection 4.1) that play the role of observables in the
RYG dimer model (Subsection 4.2). Rewriting the correlation functions in the
“Heisenberg picture” (Subsection 4.3), we derive their expression in the form of
a determinant (Subsection 4.4), before making the connection with Kasteleyn’s
theory (Subsection 4.5). Section 5 discusses the previously known cases: plane
partitions and lozenge tilings (Subsection 5.1) and steep domino tilings (Subsec-
tion 5.2). In Section 6 we address the specific case of the Aztec diamond, for which
we provide new derivations of the edge-probability generating function and biased
creation rate (Subsection 6.1), of the inverse Kasteleyn matrix (Subsection 6.2) and
of the arctic circle theorem (Subsection 6.3). Concluding remarks are gathered in
Section 7. Some auxiliary material is given in the appendix: a combinatorial proof
of the bosonic-fermionic commutation relations (Appendix A) and a rederivation
of Wick’s formula (Appendix B).

After the completion of this work, Alexei Borodin and Senya Shlosman informed
us (by private communication) that graphs similar to those described in Section 2.1
were suggested to them by Richard Kenyon, providing a dimer interpretation of the
αβ-paths considered in [10].
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2. Basic definitions and main results

2.1. Rail yard graphs. We start by defining the underlying graph of our dimer
model. We fix two integers `, r such that ` ≤ r, and denote by [`..r] the set of
integers between ` and r. We then consider two binary sequences indexed by the
elements of [`..r]:

• the LR sequence a = (a`, a`+1, . . . , ar) ∈ {L,R}[`..r],
• the sign sequence b = (b`, b`+1, . . . , br) ∈ {+,−}[`..r].

The rail yard graph associated with the integers ` and r, the LR sequence a and the
sign sequence b, and denoted by RYG(`, r, a, b), is the bipartite plane graph defined
as follows. Its vertex set is [2` − 1..2r + 1] × (Z + 1/2), and we say that a vertex
is even (resp. odd) if its abscissa is an even (resp. odd) integer. Each even vertex
(2m, y), m ∈ [`..r], is then incident to three edges: two horizontal edges connecting
it to the odd vertices (2m−1, y) and (2m+1, y), and one diagonal edge connecting
it to

• the odd vertex (2m− 1, y + 1) if am = L and bm = +,
• the odd vertex (2m− 1, y − 1) if am = L and bm = −,
• the odd vertex (2m+ 1, y + 1) if am = R and bm = +,
• the odd vertex (2m+ 1, y − 1) if am = R and bm = −.

Hopefully, this explains our motivations for using the symbols L,R and +,−. Draw-
ing the edges straight, the graph is indeed bipartite and plane by construction. For
e an edge, we write e = (α, β) to mean that α is the even endpoint of e, and β
its odd endpoint. For v a vertex, we will denote by vx ∈ Z its abscissa, and by
vy ∈ Z + 1/2 its ordinate.

2`− 1 2r+1

odd vertex

even vertex

... ...

...... R+ L+ R− R+ L− R−
... ... ... ... ...

... ... ... ... ...

......

Figure 1. The rail yard graph associated with the LR sequence
RLRRLR and the sign sequence + +−+−− (with ` = 1, r = 6).
It is infinite and periodic in the vertical direction, but finite in the
horizontal direction.

Figure 1 displays the rail yard graph associated with the LR sequence RLRRLL
and the sign sequence + + − + −− (with ` = 1, r = 6). Observe that a rail
yard graph is infinite and 1-periodic in the vertical direction. When ` = r, the LR



DIMERS ON RAIL YARD GRAPHS 5

and sign sequences both consist of a single element, and the corresponding rail yard
graph, which is said elementary, is of one of four possible types, see Figure 2. Given
two rail yard graphs RYG(`, r, a, b) and RYG(`′, r′, a′, b′) such that `′ = r + 1, we
define their concatenation by taking the union of their vertex and edge sets. It is
nothing but the rail yard graph RYG(`, r′, aa′, bb′) where aa′ and bb′ denote the
concatenations of the LR and sign sequences. Clearly, a general rail yard graph is
obtained by concatenating elementary ones.

...

... R+

...

... ...

... R−
...

... ...

... L+

...

... ...

... L−
...

...

Figure 2. The four elementary rail yard graphs L+, L−, R+,
and R− (up to horizontal translation)

The left boundary (resp. right boundary) of a rail yard graph consists of all odd
vertices with abscissa 2` − 1 (resp. 2r + 1). Vertices which do not belong to the
boundaries are said inner. When drawn in the plane, the graph delimits some faces,
and the bounded ones are called inner faces. Note that inner faces may be incident
to 4, 6 or 8 edges. Finally, observe that our definition works equally well if we take
` = −∞ and/or r = +∞, thus considering infinite LR and sign sequences. In that
case, the rail yard graph “fills” either the whole plane or a half-plane, boundaries
being sent to infinity.

2.2. Admissible and pure dimer coverings. We now turn to the characteriza-
tion of the configurations of our dimer model. Given a rail yard graph RYG(`, r, a, b)
with `, r finite, an admissible dimer covering is a partial matching of this graph such
that:

• each inner vertex is covered (i.e. matched),
• there exists an integer N ≥ 0 such that: any left boundary vertex (2`−1, y)

is covered for y > N and uncovered for y < −N , any right boundary vertex
(2r + 1, y) is covered for y < −N and uncovered for y > N ,
• only a finite number of diagonal edges are covered.

A pure dimer covering is an admissible dimer covering for which the second property
above holds for N = 0: in other words the uncovered vertices are precisely the left
boundary vertices with negative ordinate and the right boundary vertices with
positive ordinate (see Figure 4). The fundamental dimer covering is the pure dimer
covering where no diagonal edge is covered (it is not difficult to check its existence
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and uniqueness e.g. by induction on r − `). Observe that any admissible dimer
covering coincides with the fundamental dimer covering outside a finite region. An
elementary dimer covering is an admissible dimer covering of an elementary rail
yard graph (see Figure 3).

... R+

...

... ...

... R−
...

... ...

... L+

...

... ...

... L−
...

......

... R+

...

...

Figure 3. Some elementary dimer coverings. The underlying el-
ementary rail yard graph has type R+ in the first two cases, and
R−, L+, and L−, in the three others, from left to right. Outside
of the displayed region, the configuration is identical towards the
top (resp. bottom) on each horizontal level to what it is on the
topmost (resp. bottommost) displayed level.

Similarly to rail yard graphs, admissible dimer coverings behave nicely with
respect to concatenation. More precisely, consider two rail yard graphs G =
RYG(`, r, a, b) and G′ = RYG(`′, r′, a′, b′) which are concatenable (i.e. `′ = r + 1)
and let GG′ be their concatenation. Let C and C ′ be admissible dimer coverings of
respectively G and G′: we say that C and C ′ are compatible if, for each y ∈ Z+1/2,
the vertex (2r + 1, y) = (2`′ − 1, y) is covered in C if and only if it is not covered
in C ′. In that case, by taking the union of C and C ′, we obtain an admissible
dimer covering of GG′, which we denote by CC ′. Conversely, any admissible dimer
covering can be decomposed as the concatenation of elementary dimer coverings
which are sequentially compatible.

It is also interesting to consider the limiting cases ` = −∞ and/or r = +∞,
which requires a slight adaptation of our definitions. An admissible (resp. a pure,
resp. the fundamental) dimer covering is then a matching such that each inner
vertex is covered, and such that there exists finite integers `′, r′ such that :

• inside the strip [2`′ − 1, 2r′ + 1] × R, we see an admissible (resp. a pure,
resp. the fundamental) dimer covering in the previous sense,

• outside this strip, all covered edges are horizontal.

(Note that this definition works in all situations: it coincides with the previous one
when `, r are both finite.)

Our motivation for considering pure dimer coverings of rail yard graphs is that
we recover several well-known dimer models as specializations. For instance, taking
r−` = 2n, a LR sequence of the form LRLRLR · · · and a sign sequence of the form
+−+−+− · · · , the corresponding pure dimer configurations are in bijection with
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...

y = 0

} all
covered

} none
covered

}
all

covered }
none

covered

y = 0

2`− 1 2r+1

...

...... R+ L+ R− R+ L− R−
... ... ... ... ...

... ... ... ... ...

......

Figure 4. A pure dimer covering of the rail yard graph of Figure 1.

domino tilings of the Aztec diamond of size n. We also recover plane partitions and
so-called pyramid partitions, which requires taking ` = −∞ and r = +∞: plane
partitions are obtained by taking a constant LR sequence and a sign sequence of
the form · · ·+ + + +−−−− · · · , while pyramid partitions are obtained by taking
an alternating LR sequence (· · ·LRLRLRLR · · · ) and the same sign sequence. We
will discuss these specializations in greater detail in Section 5.

2.3. Flips. We now define a local transformation on admissible coverings called
the flip. Let G be a rail yard graph, C be an admissible covering of G, and let f
be an inner face of G. If exactly half of the edges bordering f belong to C, then
removing these edges from C and replacing them by the other edges bordering f
gives another admissible covering C ′ of G. The operation that replaces C by C ′ is
called the flip of the face f , see Figure 5.

Figure 5. Examples of flips. All these flips are positive when the
transformation is made from left to right.

We say that the flip of an inner face f is positive if after performing the flip,
the edges of f that belong to the covering are oriented from odd to even vertices in
counterclockwise direction around f . The flip is negative otherwise. For example,
each flip displayed on Figure 5 is positive when performed from left to right. It
follows from [42, Theorem 2] that the positive flip relation endows the set of all
pure coverings of a given rail yard graph with a distributive lattice structure. In
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particular, each rail yard graph has a unique minimal pure covering from which all
other ones can be reached using positive flips only. The minimal covering is the
only pure covering on which no negative flip is possible. Using this criterion one
easily checks that the minimal covering coincides with the fundamental covering
defined above. The flip distance between two coverings is the minimal number of
flips needed to go from one to the other. When one of the two coverings is the
fundamental one, the flip distance is realized by a sequence that uses positive flips
only.

2.4. Enumeration. Our main enumerative result is an expression for the partition
function of the RYG dimer model, which we now define. Consider a rail yard graph
G = RYG(`, r, a, b), and a sequence of formal variables x = (x`, x`+1, . . . , xr), where
possibly ` = −∞ or r = +∞. The weight of an admissible dimer covering C of G
is then defined as

(1) w(C) =

r∏

i=`

x
di(C)
i

where di(C) is the number of diagonal dimers in column i (i.e. the number of covered
diagonal edges incident to an even vertex with abscissa 2i). This weight is well-
defined since

∑
di(C) is finite by the definition of an admissible dimer covering.

The partition function of the multivariate RYG dimer model, denoted Z(G;x), is
then the sum of the weights of all pure dimer coverings of G.

Theorem 1. The partition function of the multivariate RYG dimer model reads

(2) Z(G;x) =
∏

`≤i<j≤r
bi=+,bj=−

zij

where

(3) zij =

{
1 + xixj if ai 6= aj,

(1− xixj)−1 if ai = aj.

Remark 2. The partition function is always a well-defined power series in the xi’s:
indeed, all but finitely many factors contribute a factor 1 to the coefficient of a
given monomial in (2).

An interesting specialization is the q-RYG dimer model : given a formal variable
q, we attach to each configuration a weight qd with d its flip distance to the funda-
mental one. As explained in Section 3.3 below, this can be achieved by taking, for
all i ∈ [`..r], xi = qi if bi = −, and xi = 1/qi if bi = +, with q an indeterminate.
A caveat is that, when ` or r is infinite, this specialization may be ill-defined since
an infinite number of monomials in the xi’s might specialize to the same monomial
qd. A sufficient condition for the specialization to be well-defined is the following
finiteness condition on the sign sequence:

• if ` = −∞, then there exists `′ finite such that bi = + for all i < `′,
• if r = +∞, then there exists r′ finite such that bi = − for all i > r′.

(This condition is essentially necessary, because any initial run of − or final run
of + in the sign sequence does not contribute to the partition function, and can
be removed without loss of generality: any pure dimer covering coincides with the
fundamental dimer covering in the corresponding regions.)
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Theorem 3. Assuming that the finiteness condition holds, the partition function
of the q-RYG dimer model is

(4) Z(G; q) =
∏

`≤i<j≤r
bi=+,bj=−

zij

(5) zij =

{
1 + qj−i if ai 6= aj,

(1− qj−i)−1 if ai = aj.

The proofs of Theorems 1 and 3 are given in Section 3.3.

Remark 4. The product form (4) is strongly reminiscent of a hook-length formula,
upon interpreting the sign sequence as describing the shape of a (possibly infinite)
Young diagram, see Figure 6. The finiteness condition ensures that there are finitely
many “hooks” of a given length, and hence that (4) is a well-defined formal power
series in q.

bi = +

bj = −

ai 6= aj: zij = (1+ qj−i)

ai = aj: zij =
1

1− qj−i

h = 5

Figure 6. The interpretation of Theorem 3 as a hook-length for-
mula. Displaying the sign sequence b as a lattice path whose hor-
izontal (resp. vertical) steps correspond to + (resp. to −), one
obtains a Young diagram whose boxes are indexed by pairs (i, j)
such that i < j, bi = +, bj = −. The quantity h = j − i is the
“hook-length” of the box. In (4), each box gives rise to a multi-
plicative factor zi,j whose value 1 + qh or (1− qh)−1 is determined
by comparing the two terms ai and aj of the LR sequence a.

2.5. Correlations. So far we have introduced the partition function of the RYG
dimer model, which depends on a sequence of formal variables x in general and on
a single variable q in the flip specialization. For a probabilistic or statistical physics
interpretation, one shall rather consider the xi’s or q as nonnegative real numbers
such that the sum Z(G;x) of the weights w(C) over all pure dimer coverings C is
convergent. As apparent from Theorem 1, this is the case if and only if

(6) xixj < 1 for all i < j such that ai = aj , bi = + and bj = −
and, when ` or r is infinite,

(7)
∑

`≤i<j≤r
bi=+,bj=−

xixj <∞.

In the q-RYG dimer model, (6) is satisfied whenever q < 1, and (7) amounts to the
finiteness condition defined before.

Assuming that the RYG dimer model is well-defined, that is to say (6) and (7)
are satisfied, we may interpret w(C)/Z(G;x) as the probability of the pure dimer
covering C. For a finite set E of edges, we denote by PG;x(E) the probability
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that all the edges of E are covered by a dimer. Our main probabilistic result is
an explicit determinantal expression for PG;x(E), which requires to introduce some
notations. For k, k′ two integers, we set

(8) Fk(z) =

∏

i:(ai,bi)=(R,+)
2i<k

(1 + xiz)
∏

j:(aj ,bj)=(L,−)
2j>k

(
1− xj

z

)

∏

i:(ai,bi)=(L,+)
2i≤k

(1− xiz)
∏

j:(aj ,bj)=(R,−)
2j≥k

(
1 +

xj
z

) .

and

(9) Gk,k′(z, w) =
Fk(z)

Fk′(w)

√
zw

z − w.

Note that all the products in (8) are convergent by (7), hence Fk(z) is a meromor-
phic function on the whole complex plane, whose all zeros and poles are on the real
axis.

For α, β two vertices of G such that αx is even and βx is odd, we set

(10) Cα,β =
1

(2iπ)
2

˛
Cz

˛
Cw

Gαx,βx(z, w)
wβ

y

zαy

dz

z

dw

w

where the contours must satisfy the following conditions: (i) Cz should encircle
0 and all the negative poles of Fαx(z), but not the positive ones; (ii) Cw should
encircle 0 and all the positive zeros of Fβx(w), but not the negative ones; (iii) Cz
and Cw should not intersect, and Cz should surround Cw if and only if αx < βx. We
shall check in Section 4.4 that the assumptions (6) and (7) imply that such contours
always exist but, at this stage, let us mention their intuitive interpretation: Cα,β
is obtained by extracting the coefficient of zα

y

w−β
y

in Gαx,βx(z, w), when we treat
each factor (1− xiz)−1 as a power series in z, each factor (1 + xj/z)

−1 as a power
series in z−1, each factor (1+xiw)−1 as a power series in w, each factor (1−xj/w)−1

as a power series in w−1, and finally we expand
√
zw/(z − w) =

∑
k∈N+1/2(w/z)k

if αx < βx, or
√
zw/(z − w) =

∑
k∈N+1/2(w/z)−k if αx > βx.

We are now ready to state our theorem. Recall that, for an edge e = (α, β), α
and β are assumed to be respectively the even and the odd endpoint of e.

Theorem 5 (Dimer correlations). Let E = {e1, . . . , es} be a finite set of edges of
RYG(`, r, a, b), with ei = (αi, βi). Then, we have

(11) PG;x(E) = (−1)H(E)xn det
1≤i,j≤s

(Cαi,βj
),

with H(E) the number of horizontal edges in E whose right endpoint is at an even
abscissa, xn = xn`

` · · ·xnr
r with nk the number of diagonal edges in E in column k,

and C defined as in (10).

The proof of Theorem 5 is given in Section 4, where we also prove that the infinite
matrix C, with rows indexed by even vertices α and columns by odd vertices β, is
an inverse of the Kasteleyn matrix of the rail yard graph for a suitable Kasteleyn
orientation (see Theorem 17). Applications will be discussed in Section 5.

3. Bosonic operators

The purpose of this section is to establish Theorems 1 and 3. This is done
naturally by the transfer-matrix method, which here consists in decomposing the
pure dimer coverings we want to enumerate into a sequence of compatible elemen-
tary dimer coverings. It turns out that the transfer matrices are isomorphic to
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certain operators arising in the so-called boson-fermion correspondence. For more
details on this latter subject, we refer the reader to one of the many references
available in the mathematical physics literature, for instance [26, Chapter 14], [33],
[35, Appendix A], [37], [45] and [1].

We start by giving the necessary reminders in Section 3.1, then make the con-
nection with rail yard graphs in Section 3.2, and finally complete the proofs of
Theorems 1 and 3 in Section 3.3.

3.1. Reminders. An integer partition, or partition for short, is a nonincreasing
sequence λ = (λi)i≥1 of integers which vanishes eventually. The size of a partition
λ is |λ| = ∑i≥1 λi. We say that two partitions λ and µ are interlaced, and we write
λ � µ or µ ≺ λ, if we have

(12) λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ λ3 ≥ · · ·
In the well-known pictorial representation in terms of Young diagrams, this means
that the skew shape λ/µ is a horizontal strip, see e.g. [44, Chap. 7] for more
precise definitions. To a partition λ we may associate its conjugate λ′, whose
Young diagram is the image of that of λ by a reflection along the main diagonal. In
more explicit terms, we have λ′i = #{j ≥ 0, λj ≥ i}. Note that the relation λ � µ
amounts to

(13) λ′i − µ′i ∈ {0, 1} for all i ≥ 1.

The bosonic Fock space, denoted B, is the infinite dimensional Hilbert space
spanned by orthonormal basis vectors |λ〉 where λ runs over the set of integer
partitions. Here we will use the bra-ket notation so that 〈λ| denotes the dual
basis vector. For x a formal or complex variable, we introduce the operators
ΓL+(x),ΓL−(x),ΓR+(x),ΓR−(x) whose action on basis vectors reads

ΓL+(x)|λ〉 =
∑

µ:µ≺λ

x|λ|−|µ||µ〉, ΓR+(x)|λ〉 =
∑

µ:µ′≺λ′
x|λ|−|µ||µ〉,

ΓL−(x)|λ〉 =
∑

µ:µ�λ

x|µ|−|λ||µ〉, ΓR−(x)|λ〉 =
∑

µ:µ′�λ′
x|µ|−|λ||µ〉.

(14)

These operators are sometimes called (half-)vertex operators. Let us mention that,
in the literature, ΓL±(x) is often denoted Γ±(x), see e.g. [35], while ΓR±(x) is
sometimes denoted Γ′±(x) [49, 12]. Observe that we have

(15) ΓL+(x)|∅〉 = ΓR+(x)|∅〉 = |∅〉, 〈∅|ΓL−(x) = 〈∅|ΓR−(x) = 〈∅|
where ∅ denotes the empty partition. Note also that ΓL− (resp. ΓR−) is the dual
of ΓL+ (resp. ΓR+), and that ΓR+ (resp. ΓR−) is conjugated to ΓL+ (resp. ΓL−)
via the involution ω of B sending |λ〉 to |λ′〉.
Remark 6. For a1, a2 ∈ {L,R}, the product Γa1−(x1)Γa2+(x2) is clearly well-
defined, because its coefficient between two states 〈λ| and |µ〉 involves only a finite
sum. The same is true for Γa1+(x1)Γa2−(x2) when a1 6= a2 (observe that the “in-
termediate” partitions cannot get too large). Infinite sums arise when considering
Γa1+(x1)Γa2−(x2) with a1 = a2, but its coefficients are power series in x1 and x2,
which are convergent for |x1x2| < 1 as apparent from the following proposition.

Proposition 7 (Commutation relations). For a1, a2 ∈ {L,R}, we have

(16) Γa1+(x1)Γa2−(x2) =

{
(1− x1x2)−1 Γa2−(x2)Γa1+(x1) if a1 = a2,

(1 + x1x2) Γa2−(x2)Γa1+(x1) if a1 6= a2,

while Γa1+(x1) commutes with Γa2+(x2), and Γa1−(x1) commutes with Γa2−(x2).
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Proof. See for instance [49, Lemma 3.3] for an algebraic proof, and [5, Section 3] for
a bijective proof of (16). The celebrated Bender-Knuth involution [4, pp. 46-47] im-
plies that Γa±(x1) commutes with Γa±(x2) for a = L or R. That ΓL±(x1) commutes
with ΓR±(x2) is also well-known, but for completeness let us here sketch a short
proof: for two partitions λ, µ, one sees easily that the two sets {ν : µ ≺ ν, ν′ ≺ λ′}
and {ν : µ′ ≺ ν′, ν ≺ λ} are nonempty if and only if λ/µ is a skew shape containing
no 2 × 2 square. In that case, both sets have the same cardinality 2C , where C is
the number of connected components of λ/µ, and one easily constructs a bijection
between them proving the wanted commutation relation. Another byproduct of
this bijection is that

�(17) ΓL±(x)ΓR±(−x) = ΓR±(−x)ΓL±(x) = 1.

Given two symbols • and ◦ (called respectively black and white marbles), a Maya
diagram [33] is an element m of {•, ◦}Z+1/2 such that mk is eventually equal to •
for k → −∞ and to ◦ for k → +∞. It then not difficult to check that the quantity

(18) c = #{k > 0,mk = •} −#{k < 0,mk = ◦}
is a finite integer, and we call it the charge of m. Let k1 > k2 > · · · be the
positions of • in m enumerated in decreasing order, and let λi = ki − c + i − 1/2:
it is easily seen that λ is a partition and that the correspondence m 7→ (λ, c) is
one-to-one, the pair (λ, c) being called a charged partition. Observe that we may
extend the involution ω to charged partitions by setting ω(λ, c) = (λ′,−c), and this
corresponds on Maya diagrams to performing a reflection across 0 and exchanging
• and ◦: in other words, m is sent to m′ such that {mk,m

′
−k} = {•, ◦} for all

k ∈ Z + 1/2. By a slight abuse, we still denote by ∅ the Maya diagram of charge 0
corresponding to the empty partition.

The fermionic Fock space, denoted F , is the infinite dimensional Hilbert space
spanned by orthonormal basis vectors |m〉 where m runs over the set of all Maya
diagrams. For c ∈ Z, let Fc ⊂ F denote the subspace spanned by Maya diagrams
of charge c, so that F = ⊕c∈ZFc. By the bijection between Maya diagrams and
charged partitions, each Fc may be canonically identified with B. This defines
the action of the bosonic operators ΓL± and ΓR± on F , leaving each subspace Fc
invariant (by a slight abuse we keep the same notations for the operators acting on
this larger space, and note that the commutations relations of Proposition 7 remain
valid). We now end this section devoted to reminders, leaving the discussion of
fermionic operators to Section 4.1.

3.2. Interpretation as transfer matrices for RYGs. The purpose of this sec-
tion is to explain how the operators ΓL±/ΓR± may be identified with dimer transfer
matrices. The key observation is that Maya diagrams describe the boundary states
in our model. More precisely, let us consider an admissible dimer covering C of
G = RYG(`, r, a, b). We define the left boundary state l(C) of C by setting, for all
k ∈ Z + 1/2,

(19) l(C)k =

{
◦ if (2`− 1, k) is covered by a dimer,

• otherwise.

It is a Maya diagram by the definition of an admissible dimer covering. Similarly,
the right boundary state r(C) of C is the Maya diagram defined by

(20) r(C)k =

{
• if (2`+ 1, k) is covered by a dimer,

◦ otherwise.

for all k ∈ Z + 1/2. See Figure 7(a). A pure dimer covering has both boundary
states equal to ∅. Note that, if G′ is a rail yard graph which is concatenable after
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G, and if C ′ is an admissible dimer covering of G′, then C and C ′ are compatible
if and only if r(C) = l(C ′). We may now state the main result of this section.

Proposition 8 (Transfer matrix decomposition). Given a rail yard graph G =
RYG(`, r, a, b) with `, r finite, and two Maya diagrams l and r, the sum of the
weights (1) of all admissible dimer coverings of G with left boundary state l and
right boundary state r is given by

(21) Z(G, l, r;x) = 〈l|Γa`b`(x`)Γa`+1b`+1
(x`+1) · · ·Γarbr (xr)|r〉.

In particular, the partition function reads

(22) Z(G;x) = 〈∅|Γa`b`(x`)Γa`+1b`+1
(x`+1) · · ·Γarbr (xr)|∅〉.

Proof. Note that (22) follows from (21) by taking l = r = ∅, which amounts to
considering pure dimer coverings.

We first verify (21) for ` = r, i.e. when G is an elementary rail yard graph. Let
us here treat the case a` = L, b` = + (displayed third on Figure 2(c)) and leave the
other cases to the reader. Let s1 < s2 < · · · (resp. t1 < t2 < · · · ) be the positions
of ◦ in l (resp. r) enumerated in increasing order. Then, we claim that both sides

of (21) are equal to x
∑

(si−ti)
` if the two conditions

si − ti ∈ {0, 1} for all i ≥ 1(23)
∑

i≥1

(si − ti) <∞(24)

hold, and that both sides vanish otherwise. Indeed, on the one hand, it is not
difficult to check (see Figure 7) that there is at most one elementary dimer config-
uration with prescribed boundary states l and r, and that there is exactly one such
configuration (containing

∑
(si − ti) diagonal dimers) if and only if (23) and (24)

hold. On the other hand, let λ and µ be the integer partitions associated with the

Maya diagrams l and r: the quantity 〈l|ΓL+(x`)|r〉 is equal to x
|µ|−|λ|
` if the two

conditions

λ ≺ µ(25)

l and r have the same charge c(26)

hold, and it vanishes otherwise. But we have λ′i = c + i − 1/2 − si and µ′i =
c + i − 1/2 − ti for all i ≥ 1 hence, in view of (13), we find that the conditions
(23)-(24) amount to (25)-(26), and then that |µ| − |λ| = ∑(si − ti) as wanted.

It remains to verify (21) for ` < r, which may be easily done by induction: it
suffices to observe that, if G′ is the rail yard graph obtained by removing the last
“strip” of G, then any admissible dimer covering C of G with boundary states l, r
is uniquely decomposed into a pair formed by an admissible dimer covering C ′ of
G′ with boundary states l,m, for some Maya diagram m, and an elementary dimer
covering E with boundary states m, r, such that w(C) = w(C ′)w(E). �

3.3. Proof of enumeration results and computation of the partition func-
tion. We are now ready to prove Theorems 1 and 3. The first one is a direct
consequence of the formalism developed above, whereas the second deserves an
inspection of the different types of flips in rail yard graphs.

Proof of Theorem 1. We simply have to evaluate the right-hand side of (22), which
can be done as in in [37, Section 4.1], [49, Section 4] or [12, Section 5.1]: first
observe that, by (15), for any k,m, any (c1, c2, . . . ck+m) ∈ {L,R}k+m, one has:

(27) 〈∅|
k∏

i=1

Γci−(zi)

k+m∏

i=k+1

Γci+(zi)|∅〉 = 1,
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...

... ...

...

(b) (c)

l(C)

(a)

covered

covered

uncovered

uncovered

r(C)

C

... ...

s1

s2

s3

s4

s5

s6

t1

t2

t3

t4

t5

t6

si ti

ti

...

... ...

...

(d)

si

Figure 7. (a) The rules (19)-(20) that define the two Maya di-
agrams l(C) and r(C). (b) An admissible dimer covering of the
elementary rail yard graph L+. White marbles are numbered as
in the proof of Proposition 8. (c) If the left boundary vertex at
ordinate si is covered by a horizontal (resp. diagonal) dimer, then
the right boundary vertex at ordinate si (resp. si−1) is necessarily
uncovered. Therefore there is a white marble at this ordinate on
the right boundary, and induction implies that it is the i-th white
marble on the right boundary. This proves that si − ti ∈ {0, 1}
and that

∑
i(si − ti) is equal to the number of diagonal dimers.

Moreover, since dimers incident to the left boundary can be recov-
ered from the knowledge of the sequences (si) and (ti), it is clear
that there is at most one dimer configuration with given boundary
states l and r, and that there is one if and only if (23) and (24)
hold. (d) Condition (23) can be interpreted by saying that white
marbles are “jumping downwards” by 0 or 1. The cases of the
elementary graphs L−, R+, and R− have similar interpretation,
respectively with white marbles jumping upwards, black marbles
jumping upwards, and black marbles jumping downwards, in all
cases by 0 or 1.

the zi being formal variables.
Now, by applying successively the commutation relations of Proposition 7, one

can transform (22) into a scalar product of this form, up to a multiplicative prefac-
tor, by moving to the left all the operators Γajbj (xj) such that bj = −. In order to
do that, we have, for each ` ≤ i < j ≤ r such that bi = + and bj = −, to transform
the product of operators Γai+(xi)Γbj−(xj) into the product Γbj−(xj)Γai+(xi). For
each such transformation, we obtain a multiplicative contribution given by (16),
and the result follows. �

Proof of Theorem 3. As explained before the statement of Theorem 3, we have to
prove that, specializing for i ∈ [l..r] the weights (1) to xi = qi if bi = − and
xi = 1/qi if bi = + amounts to attaching to each configuration a weight qd, where
d is the flip distance to the fundamental configuration.
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First, this is true for the fundamental configuration that receives a weight 1 in
both cases. Second, since by Propp’s theory (recalled in Section 2.3) each shortest
path from the fundamental state to any configuration is realized using positive flips
only, it is enough to check that, in this specialization, each positive flip increases
the weight of a configuration by a factor of q.

R+

L+

L−

R−

R+

L+

L−

R−

(a) (b) (c)
column i column i+ 1 column i column i+ 1 column i column i+ 1

Figure 8. (a) The 16 possible face types of rail yard graphs are
obtained by matching one of the half-face types on the left with
one on the right. (b-c) The dimer configuration around half-faces
before (b) and after (c) a positive flip.

Consider an inner face f in a rail yard graph. Then f is made by the union of
two half-faces as shown on Figure 8(a). Each of these two half-faces is incident to a
diagonal edge, one in column i, and one in column i+ 1, in the sense of Section 2.4,
for some i ∈ [l..r − 1]. Then, a case inspection (see Figure 8(b-c)) shows that the
following is true: when performing a positive flip on f , the number of diagonal
dimers on column i increases (resp. decreases) by 1 if bi = + (resp. bi = −), and
the number of diagonal dimers on column i + 1 decreases (resp. increases) by 1 if
bi+1 = + (resp. bi+1 = −).

Therefore this flip multiplies the weight (1) of the configuration by a factor of:

xbii /x
bi+1

i+1 ,(28)

where we identified +,− with +1,−1 respectively. But, in the specialization we are

considering, we have x
bj
j = q−j for all j ∈ [l..r], so (28) is equal to q and the proof

is complete. �

4. Fermionic operators

The purpose of this section is to establish Theorem 5. We start in Section 4.1 by
recalling the definitions and basic properties of fermionic operators. In Section 4.2,
we show that these operators can be used to construct constrained transfer matri-
ces, that is transfer matrices enumerating dimer configurations containing a given
subset of edges. We rewrite the product of constrained transfer matrices in another
convenient form in Section 4.3, and complete the proof of Theorem 5 in Section 4.4.
Finally, we elucidate the connection with Kasteleyn’s theory in Section 4.5.

4.1. Reminders. Recall that the fermionic Fock space F , introduced at the end
of Section 3.1, is the infinite dimensional Hilbert space spanned by orthonormal
basis vectors |m〉 where m runs over the set of all Maya diagrams. For k ∈ Z+1/2,
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we define the fermionic operators ψk and ψ∗k (also called creation/annihilation
operators) through their action on a basis vector |m〉 by

ψk|m〉 =

{
(−1)#{j>k,mj=•}|m(k)〉 if mk = ◦,
0 otherwise,

ψ∗k|m〉 =

{
(−1)#{j>k,mj=•}|m(k)〉 if mk = •,
0 otherwise,

(29)

where m(k) is the Maya diagram obtained from m by inverting the color of the
marble on site k. Observe that the operators ψk and ψ∗k are adjoint to one another.
In particular, ψkψ

∗
k (resp. ψ∗kψk) is the orthogonal projector on the space spanned

by Maya diagrams m with mk = • (resp. mk = ◦). Fermionic operators obey the
following well-known canonical anticommutation relations:

Proposition 9. For any k and k′ in Z + 1/2, we have

(30) {ψk, ψk′} = 0, {ψ∗k, ψ∗k′} = 0, {ψk, ψ∗k′} = δk,k′ .

Here {a, b} denotes the anticommutator of a and b : {a, b} = ab+ ba.

Proof. Easy. �

Define the fermionic generating functions

(31) ψ(z) =
∑

k∈Z+ 1
2

zkψk, ψ∗(z) =
∑

k∈Z+ 1
2

z−kψ∗k.

Proposition 9 translates into

(32) {ψ(z), ψ(w)} = 0, {ψ∗(z), ψ∗(w)} = 0, {ψ(z), ψ∗(w)} = δ(z, w)

where δ(z, w) =
∑
k∈Z+ 1

2
(z/w)k is the formal Dirac delta function. It is straight-

forward to check that

〈∅|ψ(z)ψ∗(w)|∅〉 =
∑

k∈Z+1/2
k<0

(
z

w

)k
=

√
zw

z − w for |z| > |w|,

〈∅|ψ∗(w)ψ(z)|∅〉 =
∑

k∈Z+1/2
k>0

(
z

w

)k
= −

√
zw

z − w for |w| > |z|.
(33)

Here the leftmost equal signs correspond to formal identities, but the rightmost
equal signs require to treat z and w as complex variables. Let us also mention a
lesser-known fact about the action of the involution ω on the fermionic operators
(recall that ω is the involution that maps a charged partition (λ, c) to (λ′,−c),
hence can be seen as acting on F).

Proposition 10. For k ∈ Z + 1/2, we have

(34) ωψ∗kω = (−1)C+k+1/2ψ−k, i.e. ωψ∗(z)ω = (−1)C+1/2ψ(−z)
where C is the charge operator (acting on Fc as the multiplication by c).

Proof. Follows from the fact that, for any integer k′ and any Maya diagram m of
charge c, we have

�(35) #{j > k′,mj = •} −#{j < k′,mj = ◦} = c− k′.

Last but not least, we have the following commutation relations between bosonic
and fermionic operators.
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Proposition 11. Given two formal variables x, z we have

ΓL+(x)ψ(z) =
1

1− xzψ(z)ΓL+(x)(36)

ΓR+(x)ψ(z) = (1 + xz)ψ(z)ΓR+(x)(37)

ΓL+(x)ψ∗(z) = (1− xz)ψ∗(z)ΓL+(x)(38)

ΓR+(x)ψ∗(z) =
1

1 + xz
ψ∗(z)ΓR+(x)(39)

ψ(z)ΓL−(x) = (1− x/z)ΓL−(x)ψ(z)(40)

ψ(z)ΓR−(x) =
1

1 + x/z
ΓR−(x)ψ(z)(41)

ψ∗(z)ΓL−(x) =
1

1− x/zΓL−(x)ψ∗(z)(42)

ψ∗(z)ΓR−(x) = (1 + x/z)ΓR−(x)ψ∗(z)(43)

The first four (resp. last four) formal identities correspond to actual converging
series when |z| < x−1 (resp. |z| > x).

We give in Appendix A a combinatorial proof of these identities (note that it is
sufficient to establish only one of them, the others follow by taking duals, inverses
and conjugates by ω). For algebraic derivations, see for instance the references
given at the beginning of Section 3.

4.2. Constrained transfer matrices. The fermionic operators can be used to
enumerate constrained dimer configurations. A first natural idea, already used in
[38], consists in inserting some orthogonal projectors ψkψ

∗
k or ψ∗kψk (with various

k’s) within the product of bosonic operators (22) forming the partition function,
which has the effect of forcing black or white marbles to be present at given po-
sitions. However, this does not fully determine the positions of the dimers (there
are ambiguities for the columns containing both horizontal and diagonal edges).
Remarkably, for an arbitrary rail yard graph and an arbitrary finite set E of edges,
there is a suitable way of inserting fermionic operators which precisely forces each
edge of E to be covered by a dimer.

We first introduce convenient notations. Recall that writing (α, β) for an edge
implies that its endpoints α and β are such that αx is even and βx is odd. Any
finite set E of edges of a rail yard graph can be decomposed “column by column”,
hence written in the form

(44) E =
⋃

i∈Z
{(αi,1, βi,1), . . . , (αi,mi

, βi,mi
), (γi,1, δi,1), . . . , (γi,m′i , δi,m′i)}

where αx
i,j = γx

i,j = 2i, βx
i,j = 2i − 1 and δx

i,j = 2i + 1. Here mi (resp. m′i) is the
number of edges of E connecting vertices with abscissas 2i− 1 and 2i (resp. 2i and
2i+ 1), and is zero except for finitely many i.

Theorem 12 (Constrained transfer matrix decomposition). Let E be an arbitrary
finite subset of edges of the graph G = RYG(`, r, a, b), which we decompose as in
(44), and let ni (i = `..r) be the number of diagonal edges of E with an endpoint of
abscissa 2i. The sum of the weights (1) of all pure dimer configurations containing
E reads

(45) W (G;x,E) = 〈∅|T`T`+1 · · ·Tr|∅〉
where, for all i ∈ [`..r], the constrained transfer matrix Ti is given by

(46) Ti = (−1)kixni
i



mi∏

j=1

ψ∗βy
i,j





mi∏

j=1

ψαy
i,j





m′i∏

j=1

ψγy
i,j


ΓR,bi(xi)



m′i∏

j=1

ψ∗δyi,j
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with ki = mi(mi − 1)/2 +m′i(m
′
i − 1)/2 if ai = R, and

(47) Ti = (−1)kixni
i



mi∏

j=1

ψ∗βy
i,j


ΓL,bi(xi)



mi∏

j=1

ψαy
i,j





m′i∏

j=1

ψγy
i,j





m′i∏

j=1

ψ∗δyi,j




with ki = mi(mi − 1)/2 + m′i(m
′
i − 1)/2 + ni if ai = L. More generally, the sum

of the weights of all admissible dimer coverings with left boundary state l and right
boundary state r containing E reads

(48) W (G, l, r;x,E) = 〈l|T`T`+1 · · ·Tr|r〉.
Observe that we recover (22) and (21) when E is empty. The order in which we

take the products of fermionic operators in (46) and (47) is irrelevant, as long as
we take the same order for both products from 1 to mi, and for both products from
1 to m′i (otherwise, we might get a wrong sign).

Proof of Theorem 12. It is sufficient to prove (48) in the case of an elementary RYG,
i.e. to prove that Ti is indeed the wanted constrained transfer matrix. The general
case immediately follows by concatenation (i.e. by the transfer matrix method), as
done in the proof of Proposition 8.

Let G = RYG(i, i, ai, bi) be an elementary RYG, l, r two boundary states, and
E a finite subset of edges of G. The general decomposition (44) reads here simply

(49) E = {(α1, β1), . . . , (αm, βm), (γ1, δ1), . . . , (γm′ , δm′)}.
Let us first assume that ai = R, we then need to check that

(50) W (G, l, r;xi, E) = 〈l|Ti|r〉.
with Ti given by (46). This is immediate in the case m′ = 0: indeed the presence
of a dimer on the edge (αj , βj) (which is necessarily horizontal) is tantamount to
having a white marble ◦ at position αy

j = βy
j in l, see Figure 9(A). This can be

achieved at the level of transfer matrices by multiplying the unconstrained transfer
matrix Γai,bi(xi) on the left by the projectors ψ∗kψk with k = βy

j , j = 1..m, and we

get (46) upon anticommuting all ψ∗’s to the left.
The casem′ 6= 0 is slightly more involved and requires the introduction of suitable

“particle hopping” operators. Recall that the notation m(k) denotes the Maya
diagram obtained from m by inverting the color of the marble on site k. Let us
consider an edge ej = (γj , δj): having this edge covered by a dimer implies that
lγy

j
= rδyj = •, but the converse is not true. However there is a bijection between, on

the one hand, admissible dimer configurations with boundary states l, r containing
ej and, on the other hand, admissible dimer configurations with boundary states

l(γ
y
j ), r(δyj ), that necessarily contain the edge e′j on the left of γj , see Figure 9(B-

C). We deduce that, at the transfer matrix level, we can force the presence of ej
by multiplying the unconstrained transfer matrix Γai,bi(xi) by ψγy

j
on the left and

by ψ∗
δyj

on the right (if l or r do not have black marbles at the required positions

then 〈l| or |r〉 will be killed by this ψ or ψ∗, as it should be). More generally, the
product 〈l|ψγy

1
· · ·ψγy

m′
Γai,bi(xi)ψ

∗
δy
m′
· · ·ψ∗

δy1
|r〉 is nonzero if and only if there is a

dimer configuration with boundary states l, r containing all the ej , j = 1..m′. In
that case this configuration is unique and the product is equal to xni , with n the
number of dimers on diagonal edges other than the ej (it is easily seen that the signs
induced by the ψ/ψ∗ all cancel out). Upon reordering the ψ∗’s in reverse order,
multiplying by xni

i (to account for the weight of the dimers on diagonal edges in
ej , j = 1..m′) and multiplying by projectors on the left, we conclude that (50) is
true with Ti given by (46).
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(C)

Figure 9. Localization of dimers in the case of the elementary
graph or type R− (the case of R+ is similar). Marbles (resp.
edges) whose status is not fixed by the discussion are represented
with question marks (resp. dotted lines). (A) There is a horizon-
tal dimer in the left column if and only if the left odd vertex is
occupied by a white marble. This marble is localized by applying
the operator ψ∗kψk. (B) Configurations with a horizontal dimer in
the right column are such that both marbles on this level are black
(although this condition is not sufficient). They are in bijection
with configurations with a dimer in the left column such that both
marbles on this level are white. The operator ψ∗k (resp. ψk) in-
serted on the right (resp. left) has the double effect of switching
the color of marbles on the k-th level and of forcing the colors of
these marbles. (C) The case of a diagonal dimer.

The case ai = L can be deduced from the discussion of the case ai = R, by
performing a central symmetry and exchanging the colors of the marbles. In other
words, we simply need to take the dual of (46) (vertical symmetry) and conjugate
with the involution ω acting on charged partitions/Maya diagrams (horizontal and
color symmetry). There is a slight subtlety regarding the sign though, which can
be treated using Proposition 10. When taking the dual of (46), the order of the
operators is reversed, ΓR,±(xi) is changed into ΓR,∓(xi) and each ψ is changed into
a ψ∗ (and vice versa). When conjugating by ω, ΓR,∓(xi) is changed into ΓL,∓(xi)
and each ψ∗ is changed back into a ψ (and vice versa), up to a sign. By (34), the
signs cancel out for horizontal edges in E, but combine into a sign −1 for each
diagonal edge in E, which explains why the sign (−1)ki is different in (47). �

Remark 13. Similar bijective arguments are used in Appendix A to prove the
commutation relations between bosonic and fermionic operators stated in Proposi-
tion 11.
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4.3. From the Schrödinger to the Heisenberg picture. Theorem 12 expresses
W (G;x,E) as a product of bosonic and fermionic operators taken between two
vacuum states, which we may rewrite using a strategy coming from [38], similar to
that used in Section 3.3 for the proof of Theorem 1: move all Γ+’s to the right, and
all Γ−’s to the left, so that they are absorbed by the vacuum states at the end. In
this process, we first pick multiplicative factors due to the commutations between
Γ+’s and Γ−’s: those are precisely the same as for the partition function Z(G;x).
Second, the fermionic operators get “conjugated” by the Γ’s crossing them. All this
allows to rewrite

(51) W (G;x,E) = Z(G;x)〈∅|T̃`T̃`+1 · · · T̃r|∅〉
where, for all i ∈ [`..r], we set
(52)

T̃i = (−1)kixni
i



mi∏

j=1

Ψ∗(βi,j)





mi∏

j=1

Ψ(αi,j)





m′i∏

j=1

Ψ(γi,j)





m′i∏

j=1

Ψ∗(δi,j)




with, for β, α respectively odd and even vertices of G,

Ψ∗(β) = Ad




∏

i≤bβx/2c
bi=+

Γai,+(xi)
∏

i≥dβx/2e
bi=−

Γ−1
ai,−(xi)


ψ∗βy ,

Ψ(α) = Ad




∏

i≤αx/2 if ai=L
i<αx/2 if ai=R

bi=+

Γai,+(xi)
∏

i≥αx/2 if ai=R
i>αx/2 if ai=L

bi=−

Γ−1
ai,−(xi)



ψαy .

(53)

Here Ad denotes the adjoint action:

(54) Ad(A)B = ABA−1

with A,B operators acting on F , with A invertible (recall that, by (17), this is the
case for the Γ’s). Two remarks are in order. First, we may put the Γ+’s and the
Γ−’s in any order we want in (53), as this does not change their adjoint action.
Second, by Proposition 11, Ψ∗(β) and Ψ(α) are (formal) linear combinations of
ψ∗’s and ψ’s, respectively.

Remark 14. In physical terms, passing from the ψ∗/ψ’s to the Ψ∗/Ψ’s can indeed
be interpreted as going from the Schrödinger to the Heisenberg picture of quantum
mechanics (the abscissa playing the role of time). It appears from (53) that creation
and annihilation operators are naturally attached to respectively even and odd
sites. An analogous situation appears in the path integral formalism: if K denotes
the Kasteleyn matrix of a finite planar bipartite graph, then the determinant of
K, yielding the dimer partition function, can be written as a Grassmann-Berezin
integral [22]

(55) detK =

ˆ
e
∑

i,j ξiKi,jξ
∗
j

∏

i

dξi
∏

j

dξ∗j

where the ξi’s and ξ∗j are Grassmann variables attached to the even and odd vertices
of the graph, respectively. Furthermore, the contribution of dimer configurations
containing a given collection of edges (i1, j1), . . . , (is, js) is proportional to

(56)

ˆ
ξi1ξ

∗
j1 · · · ξisξ∗jse

∑
i,j ξiKi,jξ

∗
j

∏

i

dξi
∏

j

dξ∗j .
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In other words, dimer correlations are given by the expectation value of a product
of fermionic operators, whose form is reminiscent of (52). Note however that the
approach followed in this paper is more akin to canonical quantization.

4.4. Proof of Theorem 5. By (51) and (52), the ratio

(57) PG;x(E) =
W (G;x,E)

Z(G;x)

is given by a product of fermionic operators taken between two vacuum states. This
can be rewritten as a determinant using Wick’s formula, as follows.

For an even vertex α and an odd vertex β, define the naturally ordered product
(or “time-ordered product”) of Ψ(α) and Ψ∗(β) by

(58) T
(
Ψ(α),Ψ∗(β)

)
=

{
Ψ(α)Ψ∗(β) if αx < βx,

−Ψ∗(β)Ψ(α) if αx > βx.

We may more generally consider the naturally ordered product of more than two Ψ
or Ψ∗, by ordering them according to the abscissa of their argument and multiplying
by the sign of the corresponding permutation (note that operators with the same

abscissa anticommute, hence their order is irrelevant). Observe that T̃`T̃`+1 · · · T̃r
is, up to a factor, the naturally ordered product of the Ψ and Ψ∗ associated with
the endpoints of the edges of E. Denoting now by {e1, . . . , es} the edges of E,
with ei = (αi, βi), and by H(E) the number of horizontal edges in E whose right
endpoint is at an even abscissa, we have

PG;x(E) = (−1)H(E)




r∏

i=`

xni
i


 〈∅|T

(
Ψ(α1),Ψ∗(β1), . . . ,Ψ(αs),Ψ

∗(βs)
)
|∅〉

= (−1)H(E)




r∏

i=`

xni
i


 det

1≤i,j≤s
〈∅|T

(
Ψ(αi),Ψ

∗(βj)
)
|∅〉

(59)

where we apply Wick’s formula to pass from the first to the second line, and where
the sign (−1)H(E) arises from the reordering of the fermionic operators (in partic-
ular, dimers having their right endpoint at an even abscissa appear in the “wrong
order” in the naturally ordered product, but the resulting sign is cancelled in the
case of diagonal dimers by that present in Theorem 12). For completeness, we pro-
vide a detailed derivation of Wick’s formula in Appendix B. To complete the proof
of Theorem 5, it remains to check that

(60) Cα,β = 〈∅|T
(
Ψ(α),Ψ∗(β)

)
|∅〉

has the announced expression (10). At this stage we need to discuss a bit analyticity
conditions (so far all our computations were done by treating the weights xi’s
as formal variables). Recall that we aim at proving Theorem 5 under the mere
assumption that the partition function Z(G;x) is a convergent sum, which boils
down to the conditions (6) and (7) (see again Remark 6).

Let us temporarily strengthen (6) into the condition

(61) xixj < 1 for all i < j such that bi = + and bj = −
(that is, we also impose xixj < 1 when ai 6= aj). We introduce the quantities

(62) ρ+(k) = inf
i:bi=+
2i≤k

(
1

xi

)
, ρ−(k) = sup

j:bj=−
2j≥k

xj ,

which are nonnegative nonincreasing functions of k, such that ρ−(k) < ρ+(k) by
(61) and (7). Recalling the definition (31) of the fermionic generating functions
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ψ(z) and ψ∗(z), the definition (53) of Ψ(α) and Ψ∗(β), and the bosonic-fermionic
commutation relations of Proposition 11, we may write

(63) Ψ(α) =
1

2iπ

˛
Cz

Fαx(z)ψ(z)

zαy

dz

z
, Ψ∗(β) =

1

2iπ

˛
Cw

ψ∗(w)wβ
y

Fβx(w)

dw

w

with Cz (resp. Cw) a circle centered at 0 with radius comprised between ρ−(αx) and
ρ+(αx) (resp. between ρ−(βx) and ρ+(βx)). We deduce that 〈∅|T

(
Ψ(α),Ψ∗(β)

)
|∅〉

is equal to the wanted expression (10) provided that

(64) 〈∅|T
(
ψ(z), ψ∗(w)

)
|∅〉 =

√
zw

z − w.

But this readily follows from the definition (58) of the naturally ordered product
and from the relations (33), provided that we take the radius of Cz to be strictly
larger than that of Cw if αx < βx, and vice versa otherwise. We may now freely
deform the contours Cz and Cw, as long as we hit no pole of the integrand: this
establishes (10) under the conditions (i)-(iii) for the contours, hence Theorem 5
under the assumption (61).

We now explain how to relax this assumption into (6). We proceed by multiplying
each xi by a factor t ∈ [0, 1], and noting that the assumption (61) hence the identity
(11) are satisfied for t small enough. We will show that both sides of (11) have an
analytic continuation in t to a domain containing the closed unit disk. As apparent
from Theorem 1, this is the case for the partition function Z(G; tx) (provided that
(6) is satisfied, of course). The quantity W (G; tx, E), being a sum over a restricted
subset of configurations, is analytic too, hence so does PG;tx(E) which is the left-
hand side of (11). As for the right-hand side, let us show that we may find two

contours Cz and Cw such that C(t)
α,β , as defined by (10) with the xi’s multiplied by

t, is manifestly analytic as t varies over the unit disk. For t = 1, let us introduce
the quantities

ρR+(k) = inf
i:(ai,bi)=(R,+)

2i<k

(
1

xi

)
, ρL−(k) = sup

j:(aj ,bj)=(L,−)
2j>k

xj ,

ρL+(k) = inf
i:(ai,bi)=(L,+)

2i≤k

(
1

xi

)
, ρR−(k) = sup

j:(aj ,bj)=(R,−)
2j≥k

xj ,

(65)

which are refinements of ρ+(k) and ρ−(k). We take Cz to be a circle centered
on the real axis, surrounding the real interval [−ρR−(αx), 0] but not intersecting
[ρL+(αx),+∞[. Similarly, we take Cw to be a circle centered on the real axis,
surrounding the real interval [0, ρL−(βx)] but not intersecting ] − ∞,−ρR+(βx)].
We furthermore want Cz and Cw not to intersect, with Cz surrounding Cw iff
αx < βx: this is possible because the functions ρL± are decreasing with k and
such that ρL−(k) < ρL+(k) for all k hence, for αx < βx, we have ρL−(βx) ≤
ρL−(αx) < ρL+(αx) so that the “window” ]ρL−(βx), ρL+(αx)[ in which both Cz
and Cw must pass is nonempty, see Figure 10 (and the case αx > βx is treated
by a similar reasoning on ρR±). Observe that these contours satisfy precisely the
conditions (i)-(iii) stated below equation (10). Keeping these contours fixed, we

let t vary in the interval [0, 1]: no pole of G
(t)
αx,βx(z, w) ever hits the contours, the

conditions (i)-(iii) remain satisfied, and we conclude that (10) defines the wanted

analytic continuation of C(t)
α,β . �

4.5. Inverse Kasteleyn matrix. Let us now connect Theorem 5 to the general
Kasteleyn theory for the dimer model on planar bipartite graphs. We mention that
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ρL+(α
x)0−ρR−(αx)

−ρR+(βx)

CwCz

ρL−(βx)

Figure 10. The contours Cz and Cw in the case βx > αx. The
upper (resp. lower) dashed regions are the intervals that the con-
tour Cz (resp. Cw) must avoid. On this figure it is assumed that
ρR−(αx) > ρR+(βx) but the converse can also hold.

a similar connection was already observed in [37] for the case of lozenge tilings
corresponding to skew plane partitions, see also [?, Section 5].

Definition 15. Let G = (V,E) be a planar bipartite graph with no multiple edges.
Consider a collection of weights on the edges ω : E → R+.

A Kasteleyn orientation of G is a map η : E → {−1, 1} such that for any face F
the product over the edges surrounding F gives :

(66)
∏

e∈F
η(e) =

{
1 if F is of degree 2 (mod 4)

−1 if F is of degree 0 (mod 4)

The Kasteleyn matrix of G associated to η is the matrix K whose rows (resp.
columns) are indexed by white (resp. black) vertices of G, such that for any couple
(w, b) of a white vertex and a black vertex,

(67) K(w, b) =

{
0 if w not adjacent to b

η(w, b)ω(w, b) if there is an edge (w, b)
.

Local statistics for dimers are known to be given by determinants of submatrices
of the Kasteleyn matrix [27, 40, 29]:

Theorem 16. Let (G,ω) be a finite weighted planar bipartite graph. The probability
that the dimers e1 = (w1, b1), . . . , es = (ws, bs) are present in a random dimer
configuration sampled with a probability proportional to its weight is:

(68) P (e1, . . . , es) =




s∏

i=1

K(wi, bi)


 det

(
K−1(bi, wj)

)
1≤i,j≤s

.

Let us go back to the rail yard graphs. In this case, the black (resp. white)
vertices are the even (resp. odd) vertices. Recall that in pure dimer coverings of
a rail yard graph G , all the odd vertices with negative (resp. positive) ordinate
on the left (resp. right) boundary are unmatched. These pure dimer coverings on
G correspond to classical dimer coverings with finitely many diagonal edges on
the graph G̃, where those unmatched vertices and the edges attached to them are
removed. Compare Figure 11 and Figure 4.

Let us denote by M the set of matched odd vertices of G. Define η : E → {−1, 1}
by

(69) η(e) =

{
−1 if e is a horizontal edge whose right end is an even vertex,

1 otherwise.
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......

...... R+ L+ R− R+ L− R−
... ... ... ... ...

... ... ... ... ...

......

Figure 11. The perfect matching of the modified rail graph cor-
responding to the pure dimer covering of Figure 4.

It is easy to check that η is a Kasteleyn orientation on G̃ (here the faces have degree
4, 6 or 8). Construct the infinite Kasteleyn matrix K on that graph as in (67). The

restriction K̃ of K to rows indexed by M is a Kasteleyn matrix for G̃. We now
relate our correlation kernel C to the infinite Kasteleyn matrix K:

Theorem 17. Let G = RYG(`, r, a, b) be a rail yard graph and K be its Kasteleyn
matrix for the previously defined orientation. Then if C is the matrix defined in
Theorem 5, we have:

(1) for any α, α′ even vertices, (CK)α,α′ = δα,α′ ;
(2) for any β, β′ odd vertices in M, (KC)β,β′ = δβ,β′ .

We state a lemma that will be useful to prove the theorem. Recall that we
have a bosonic operator ΓR±(xm) (resp. ΓL±(xm)) at position (2m+ 1/2, 0) (resp.
(2m − 1/2, 0)) when am = R (resp. am = L). To simplify notations, we will also
place a bosonic operator Id at every position (2m − 1/2, 0) (resp. (2m + 1/2, 0))
when am = R (resp. am = L). This does not change the naturally ordered product
of operators, and now we have one bosonic operator at each half-integer abscissa in
[2` − 1, . . . , 2r + 1]. Let B− (resp. B+) be the bosonic operator at abscissa i − 1

2

(resp. i + 1
2 ). Denote by x ∼ y the fact that two vertices x and y are adjacent in

G.

Lemma 18. We have the following properties:

(1) Let α be an even vertex at position (i, k). Then
∑

β∼α
βx<i

K(β, α)ψ∗βyB− = −B−ψ∗k;(70)

∑

β∼α
βx>i

K(β, α)B+ψ∗βy = ψ∗kB
+.(71)
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(2) Let β be an odd vertex at position (i, k). Then
∑

α∼β
αx<i

K(β, α)ψαyB− = B−ψk;(72)

∑

α∼β
αx>i

K(β, α)B+ψαy = −ψkB+.(73)

Proof. We will prove only identity (70). The other identities can be proved in a
similar way. We distinguish three cases :

Case 1: B− = Id. To its left, α has only one neighbour β, which is at height k.
We conclude from the fact that K(β, α) = −1.

Case 2 : B− = ΓL−(x). To its left, α has one neighbour β1 at height k and one
neighbour β2 at height k − 1. We compute

∑

β∼α
βx<i

K(β, α)ψ∗βyΓL−(x) = K(β1, α)ψ∗kΓL−(x) +K(β2, α)ψ∗k−1ΓL−(x)

= −ψ∗kΓL−(x) + xψ∗k−1ΓL−(x)

= −
[
z−k

]
ψ∗(z)ΓL−(x) +

[
z−k+1

]
xψ∗(z)ΓL−(x)

= −
[
z−k

]
ψ∗(z)ΓL−(x) +

[
z−k

] x
z
ψ∗(z)ΓL−(x)

= −
[
z−k

](
1− x

z

)
ψ∗(z)ΓL−(x)

= −
[
z−k

]
ΓL−(x)ψ∗(z)

= −ΓL−(x)ψ∗k,

where we used proposition 11 to switch ψ∗(z) and ΓL−(x).

Case 3 : B− = ΓL+(x). In the proof of case 2, replace ΓL−(x) by ΓL+(x), k− 1
by k + 1 and x

z by xz. �

We can now prove Theorem 17.

Proof of Theorem 17. In this proof, to make notations lighter, Z(G;x) will be ab-
breviated as Z. Let us prove the first part of the theorem. Fix two even vertices α
at position (i, k) and α′ at position (i′, k′). Then :

(74) (CK)(α′, α) =
∑

β∼α

C(α′, β)K(β, α).

This sum has at most three nonzero terms, corresponding to the three odd neigh-
bours of α, at the abscissas i − 1 and i + 1. We now distinguish according to the
position of i′ relatively to i.

Case 1 : i′ < i.
If β ∼ α is at abscissa i− 1, C(α′, β) can be written in the following form :

(75) C(α′, β) =
1

Z
〈∅|Γ(1)ψk′Γ

(2)ψ∗βyB−B+Γ(3)|∅〉,
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where Γ(1),Γ(2) and Γ(3) are the products of the bosonic operators located respec-
tively before the abscissa i′, between the abscissas i′ and i−1 and after the abscissa
i+ 1.

Similarly, if β ∼ α is at abscissa i + 1, C(α′, β) can be written in the following
form:

(76) C(α′, β) =
1

Z
〈∅|Γ(1)ψk′Γ

(2)B−B+ψ∗βyΓ(3)|∅〉.

For each β ∼ α appearing in the sum of equation (74), we are going to move the
ψ∗βy between B− and B+. We separate the cases βx < i and βx > i to apply part 1
of the lemma:

(CK)(α′, α) =
∑

β∼α

K(β, α)C(α′, β)

=
∑

β∼α
βx<i

K(β, α)C(α′, β) +
∑

β∼α
βx>i

K(β, α)C(α′, β)

= − 1

Z
〈∅|Γ(1)ψk′Γ

(2)B−ψ∗kB
+Γ(3)|∅〉+

1

Z
〈∅|Γ(1)ψk′Γ

(2)B−ψ∗kB
+Γ(3)|∅〉

= 0.

Case 2 : i′ > i.
Here ψk′ is to the left of any ψ∗βy , so each C(α′, β) comes with a minus sign.

Using here again part 1 of the lemma to move ψ∗βy between B− and B+ for all

three terms, we get similarly that (CK)(α′, α) = 0 in this case.

Case 3 : i′ = i.
If β is at abscissa i− 1, then C(α′, β) can be written in the following form:

(77) C(α′, β) = − 1

Z
〈∅|Γ(1)ψ∗βyB−ψk′B

+Γ(2)|∅〉,

where the minus sign comes from the fact that ψ∗βy appears before ψk′ .
If β ∼ α is at abscissa i+ 1, we have:

(78) C(α′, β) =
1

Z
〈∅|Γ(1)B−ψk′B

+ψ∗βyΓ(2)|∅〉.

Applying again part 1 of the lemma, we get:

(CK)(α′, α) =
∑

β∼α

K(β, α)C(α′, β)

=
∑

β∼α
βx<i

K(β, α)C(α′, β) +
∑

β∼α
βx>i

K(β, α)C(α′, β)

=
1

Z
〈∅|Γ(1)Γ(2)B−ψ∗kψk′B

+Γ(3)|∅〉+
1

Z
〈∅|Γ(1)Γ(2)B−ψk′ψ

∗
kB

+Γ(3)|∅〉.

Using that ψ∗kψk′ + ψk′ψ
∗
k = δk,k′ (Proposition 9) and that

(79) Z = 〈∅|Γ(1)Γ(2)B−B+Γ(3)|∅〉,
We conclude that in this third case, (CK)(α′, α) = δk,k′ . This concludes the

proof of part 1 of the theorem : we have shown that for any even vertices α and
α′, (CK)(α′, α) = δα′,α.

To prove part 2 of the theorem, note that if β and β′ are two odd vertices in M,
then

(80) (KC)(β, β′) =
∑

α∼β

K(β, α)C(α, β′).
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We will only treat the case when β is on the left boundary. The case when β
is on the right boundary is similar to this one. The case when β is in the bulk is
similar to the proof of part 1 of the theorem, by making use this time of part 2 of
the lemma. Let (2` − 1, k) be the coordinates of β and (i′, k′) be the coordinates
of β′. Since β ∈ M, we have k > 0. Note that β has neighbours only to its right.
Again we distinguish according to the position of β′.

Case 1 : i′ > 2`− 1.
If α ∼ β, C(α, β′) can be written in the following form :

(81) C(α, β′) =
1

Z
〈∅|B+ψαyΓ(1)ψ∗k′Γ

(2)|∅〉.

Using the second equation of part 2 of the lemma, we obtain:

(KC)(β, β′) =
∑

α∼β

K(β, α)C(α, β′)

=
∑

α∼β
αx>2`−1

K(β, α)C(α, β′)

= − 1

Z
〈∅|ψkB+Γ(1)ψ∗k′Γ

(2)|∅〉.

Since k > 0, we have 〈∅|ψk = 0. So in this case, (KC)(β, β′) = 0.

Case 2 : i′ = 2`− 1.
If α ∼ β, C(α, β′) can be written in the following form :

(82) C(α, β′) = − 1

Z
〈∅|ψ∗k′B+ψαyΓ(1)|∅〉.

Using the second equation of part 2 of the lemma, we obtain :

(83) (KC)(β, β′) = +
1

Z
〈∅|ψ∗k′ψkB+Γ(1)|∅〉.

Using Proposition 9, we get :

(KC)(β, β′) = − 1

Z
〈∅|ψkψ∗k′B+Γ(1)|∅〉+ δk,k′

1

Z
〈∅|B+Γ(1)|∅〉

= 0 + δk,k′
1

Z
Z = δk,k′ .

To sum up, if β is an odd vertex in M on the left boundary and β′ is any other
odd vertex in M, (KC)(β,β′) = δβ,β′ . �

Remark 19. If C̃ (resp. K̃) is the restriction of C (resp. K) to columns (resp. rows)

indexed by the set M of matched odd vertices, then C̃ is a left and right inverse of
K̃. Indeed, the extra terms coming from vertices not in M vanish when evaluated
against left and right vacuums.

5. Lozenge and domino tilings

In this section we discuss how the RYG dimer model gives rise, upon taking a
constant or an alternating LR-sequence and performing a simple change of coordi-
nates, to a class of lozenge or domino tilings of the plane, respectively. The class of
lozenge tilings, discussed in Section 5.1, contains in particular plane partitions and
was already studied in [38, 37]. The class of domino tilings, discussed in Section 5.2,
is that of steep tilings [12], and contains tilings of the Aztec diamond and pyramid
partitions as special cases.
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5.1. Lozenge tilings. In this section we consider the case where the LR-sequence a
is constant. We assume that a = Lr−`+1 (it is easy to check that taking a = Rr−`+1

gives rise to the same model up to a vertical reflection and an inversion of the sign
sequence). In this case the only two elementary RYG involved are of type L+
and L−. According to the discussion of Section 3, the transfer matrix operators
corresponding to these two graphs can be interpreted as the operators ΓL+ and
ΓL−, whose action on the Bosonic Fock space interlaces a partition “upwards”
or “downwards” respectively, see (14). It follows that, for each sign sequence
b ∈ {+,−}r−`+1, admissible dimer coverings of RYG(`, r, a, b) are in bijection with
sequences (λ(i))`≤i≤r+1 of integer partitions such that λ(i)≺

�λ
(i+1) where the inter-

lacing relation is ≺ or � if bi = + or bi = −, respectively. The correspondence goes
via Maya diagrams and is the one described in Section 3. It is well-known that such
sequences are in bijection with certain lozenge tilings of the plane, see e.g. [38], so
the reader may be in familiar ground. In the rest of Section 5.1, we will just sketch
how to recover those lozenge tilings from the rail yard graphs.

We first apply the following coordinate transformation to each vertex of the rail
yard graph RYG(`, r, a, b):

(2`− 1 + x, y) 7−→


2`− 1 +

1

2
dx/2e+

√
5

4
bx/2c, y − 1

2

dx/2e∑

i=1

(−1)bi


 .(84)

Figure 13 displays the effect of this transformation on the elementary graphs of
type L+ and L−. The transformation is designed in such a way that after the
transformation all angles between incident edges are equal to 2π

3 , and that all edges

have equal length (equal to
√

5
4 ). Therefore the concatenation of these graphs

generate a portion of the regular hexagonal lattice, see Figure 14–Left. Since the
planar dual of the hexagonal lattice is a triangular lattice, any dimer covering of
the hexagonal lattice induces a covering of this triangular lattice by lozenges (each
dimer connects two vertices in the primal, that correspond to two triangles in the
dual, and the union of these two triangles forms a lozenge). See Figure 14–Right.
We thus recover the promised class of lozenge tilings of the plane.

Note that the fundamental covering of RYG(`, r, a, b) projects (via the coordinate
transformation (84) and the dualization to lozenges) to a lozenge tiling in which
all lozenges under a certain separating path are of “horizontal” type, while all
lozenges above this path are of one of the two “vertical” types, see Figure 15. This
separating path is the image under the transformation (84) of the horizontal axis in
the original embedding of RYG(`, r, a, b). Equivalently, this path is a lattice path
taking up (+) or down (-) steps, encoded by the sequence b. This path and its
image are represented by red dotted paths on the figures of this section.

Finally, note that Figure 15 can naturally be seen as a 3-dimensional picture,
namely as a portion of the boundary of the region (R2

+ \ λ) × R+, where λ is the
shape of an integer partition. Here the contour of the shape λ coincides with the
separating path just mentioned, i.e. the partition λ is encoded in Russian notation
by the sequence b, see Figure 15 again. Note also that all the lozenge tilings
corresponding to pure dimer coverings of RYG(`, r, a, b) are obtained by “adding
cubes” to this 3-dimensional diagram in such a way that the heights of cubes stay
nonincreasing on horizontal coordinates, going away from the axes. In particular
the case b = +n−n corresponds to plane partitions of half-width at most n. This
3-dimensional interpretation is well known and is the one already considered in [38].

5.2. Domino tilings. We now consider the case where the sequence a has even
length and is an alternation of L and R. Up to an elementary symmetry we can
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y = 0

L+ L−
... ...

... ...

...
L+

...

...

L+

...

...

L−
...

...

L−
...

...

Figure 12. A rail yard graph with a constant LR sequence a = L6

and sign sequence b = ++−+−−, equipped with a pure covering.

L+ L−

Figure 13. Deformations of the elementary RYG of type L+ and
L− that generate a “honeycomb” lattice by concatenation.

assume that a = (LR)k, where r− `+1 = 2k, and we fix an arbitrary sign sequence
b ∈ {+,−}2k. It follows from a simple inspection of the face types of elementary
rail yard graphs (Figure 8(a)) that all the inner faces of the graph RYG(`, r, a, b)
have degree 4 or 8. Moreover, for 0 ≤ i < k, odd vertices located at the abscissa
x = −2` − 1 + 4i + 2 all have degree 2 (since they lie at the interface between an
L-type and R-type elementary graphs, from left to right). These degree 2 vertices
are bounded by faces of degree 8 on their two sides. See Figure 16 for an example.
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Figure 14. Left: The dimer covering of Figure 12 as a covering
of the honeycomb lattice, via the transformations of Figure 13.
Right: The same objects displayed as a “lozenge tiling” of the
plane.

Figure 15. The fundamental lozenge tiling corresponding to the
case a = L6 and b = + +−+−−.
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We now let R̃(`, r, a, b) be the graph obtained by contracting all the edges incident
to these inner vertices of degree 2: in this graph all inner vertices of degree 2 have
disappeared, and all the non-boundary faces have degree 4, see Figure 17–Left for
an example. Moreover, it is easy to see that each dimer covering of RYG(`, r, a, b)

induces a dimer covering of R̃(`, r, a, b), with the same boundary conditions (just
forget dimers on contracted edges and leave the other dimers as they were). The
coordinate transformation on non deleted vertices that goes from RYG(`, r, a, b) to

R̃(`, r, a, b) is given by:

(−2`− 1 + x, y) 7−→
(
−2`− 1 + x− 2

⌊
x+ 2

4

⌋
, y

)
.(85)

Since all the inner vertices and faces in this new graph have degree 4, this new
graph is isomorphic to a portion of the square lattice. We let the reader check that
this isomorphism can be made explicit by composing (85) with the transformation:

(−2`− 1 + x, y) 7−→ (−2`− 1 + x+ y −Kx, y −Kx) ,(86)

where Kx =
∑x
i=1(−1)i+bi . See Figure 17 for an explicit example. The image of

R̃(`, r, a, b) via these transformations is a portion of the square lattice lying in the
oblique strip {(X,Y ) : |Y −X + 2`+ 1| ≤ 2k}, see again Figure 17.

Similarly as in Section 5.1, we can dualize this picture to switch between a
description in terms of dimers to one in terms of tilings. The dual of the square
lattice is again the square lattice, and any dimer in the primal induces a domino
(the union of two adjacent squares) in the dual. We thus recover a model of tilings
of the oblique strip by dominos, which are exactly the steep tilings introduced
in [12]. We invite the reader to consult this reference for a thorough discussion on
steep tilings, their link with height functions, their encoding in terms of partitions,
etc. Here we just mention again that, not only do we recover here the enumerative
results already proved in [12], but we obtain the inverse Kasteleyn matrix and dimer
correlations for these models, up to the changes of coordinates described above.

Two particular subclasses of steep tilings had been considered previously. The
first one is the class of domino tilings of the Aztec diamond, which corresponds to
the case where the sequence b is also alternating. As far as we know, this is the only
case for which the inverse Kasteleyn matrix has been computed before [?, 13]. The
other one is given by pyramid partitions [48], that correspond to the case where
b = +∞−∞. See [12, Section 4.2] for their connection with steep tilings. We leave
as an exercise the task of making fully explicit the changes of coordinates and the
calculations for pyramid partitions, similarly as we will do for the Aztec diamond
in the next section.

Remark 20. Going from rail yard graphs to steep tilings induces, in a sense, no
loss of generality. Indeed, by forbidding diagonal dimers in the column i of a rail
yard graph (by taking their weight xi to be zero), this column becomes trivial
in the sense that its two boundary states are necessarily equal, and hence it can
be contracted in the graph (i.e. we can drop the corresponding elements from the
LR and sign sequences). Starting from an infinite alternating LR sequence, it is
possible to produce any LR sequence by performing such contractions, and hence
to obtain any RYG. The coordinates of rail yard graphs however allow to express
the dimer correlations in a more compact form, which is one of our motivations for
introducing them.

6. The Aztec diamond revisited

In order to illustrate Theorem 5 on a concrete example, we concentrate in this
section on the particular case of domino tilings of the Aztec diamond of size n [18,
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L+ R−
... ...

... ...

L+ R−
... ...

... ...

L+ R−
... ...

... ...

L+ R−
... ...

... ...

y = 0y = 0

x = 0

Figure 16. A rail yard graph with LR sequence a = (LR)n and
sign sequence b = (+−)n for n = 4, equipped with its fundamental
dimer covering.

(
x

y

)
7−→

(
x + y

y

)

Figure 17. Left: The graph obtained by contracting all the ver-
tices of degree 2 in the RYG of Figure 16, that is, all the vertices
of abscissa congruent to 2 mod 4. Right: the image of the graph
on the left by the linear transformation

(
x
y

)
7→
(
x+y
y

)
. The graph

is a portion of a square lattice of mesh 1. On both sides, the
region of the graph where a covering may differ from the funda-
mental one is represented in red. One recognizes the shape of the
Aztec diamond of size n = 4. Note that the coordinate transfor-
mation on uncontracted vertices to go directly from the graph of

Figure 16 to the graph on the right is given by
(
x
y

)
7→
(
φ(x)+y

y

)

where φ(x) = x− 2bx+2
4 c if x ≥ 0 and φ(−x) = −φ(x).

19], which can be obtained as a rail yard graph associated with the sequences
a = (LR)n and b = (+−)n, see Figures 16 and 17. We will suppose that ` = 0 and
r = 2n−1, and denote by Gn the corresponding rail yard graph. Note that, though
Gn is an infinite graph, its admits only a finite number (2n(n+1)/2) of pure dimer
coverings. Those pure dimer coverings coincide with the fundamental covering
outside a finite region which is isomorphic to the Aztec diamond graph of size n,
see [12, Section 4.1] for a discussion of this phenomenon in the language of steep
tilings. The Aztec diamonds are essentially the only RYGs having a finite number
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of pure dimer configurations (this can be seen from the enumerative results of
Section 2.4 and Remark 20).

Let us now discuss the probability distributions over domino tilings of the Aztec
diamond that we are considering. Recall the definition (1) of the weight of a config-
uration in the multivariate RYG dimer model. For a generic sequence x0, . . . , x2n−1,
we obtain the so-called Stanley weighting scheme [43, ?], see also [12, Remark 2].
The partition function reads

(87) Z(Gn, x) =
∏

0≤i<j≤2n−1
i even, j odd

(1 + xixj)

which is a polynomial in the x’s. By specialization we obtain the following distri-
butions considered originally in [18]:

• the uniform distribution, obtained by taking xi = 1 for all i,
• the biased distribution, obtained by taking xi = 1 for i even and xi = λ > 0

for i odd (or equivalently xi =
√
λ for all i): this corresponds to attaching

a weight λ to each pair of diagonal dimers (which become vertical dominos
in the Aztec diamond picture),
• the so-called qvol distribution, obtained by taking xi = qi for i odd and
xi = q−i for i even (which is the q-RYG specialization), and more generally
the biased qvol distribution, obtained by taking xi = λqi for i odd and
xi = q−i for i even.

Let us mention that our present approach does not seem to apply to the two-
periodic weighting considered in [13, Section 6], nor to the weightings considered
in [?].

The study of correlations in domino tilings of the Aztec diamond has been a
popular topic (especially among the members of the “domino forum”) and there are
many previously known results, published or unpublished. In the rest of this section,
we rederive several of these results as consequences of our general Theorem 5.

6.1. The biased creation rate and edge-probability generating function.
Let us consider the Aztec diamond of size n in the natural coordinates with the
origin at the center. We are interested in the probability to find a domino of a
given type at a given position, under the biased distribution. Recall that we may
distinguish four types of dominos: north-, south-, west- and east-going [14]. By
symmetry it is enough to consider only one type of domino, and we denote by
Pλ(x, y, n) the probability that (x− 1/2, y) is the center of a west-going domino in
a biased random tiling of the Aztec diamond of size n. Due to parity constraints,
this probability vanishes unless x and y are integers such that x + y + n is odd.
As apparent from Figures 16 and 17, west-going dominos correspond in the RYG
setting to diagonal dimers in columns of type L+ (which makes them easier than
north-going dominos to deal with, since there can be no spurrious diagonal dimers
outside the “interesting” region).

Getting an expression for Pλ(x, y, n) (or its analogues for other domino orien-
tations) ameneable to asymptotic analysis has been of interest to several people,
for instance it is used in [14] as a way to proving the arctic circle theorem and its
generalization to arbitrary λ. However, this paper states the required expressions
without proofs, and refers instead to a preprint by Gessel, Ionescu and Propp that
has not appeared so far. The proof for λ = 1 (uniform distribution) can be found in
Helfgott’s senior thesis [?]. More recently, an expression for the related generating
function (still for λ = 1 only) was proved by two methods in Du’s master thesis [16],
and was used in [3] as yet another route to the arctic circle theorem (we note that
those two references mention another lost “DGIP” preprint). At the suggestion of
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James Propp, which we thank for pointing out this gap in the literature, we will ex-
plain how expressions for Pλ(x, y, n) (for general λ) can be obtained as applications
of our Theorem 5.

The first step consists in going from dominos to dimers on RYGs. Using the iden-
tification discussed above, a west-going domino centered on (x−1/2, y) corresponds
to a dimer on the edge (α, β) with

(88) α = (2m, y−1/2), β = (2m−1, y+1/2), m =
n+ x− y + 1

2
∈ [1..n].

By Theorem 5 we immediately deduce the expression

(89) Pλ(x, y, n) =

1

(2iπ)2

˛
Cz

˛
Cw

(
1− w
1− z

)m(
1 + λ/w

1 + λ/z

)n+1−m
(w/z)y

(z − w)(1− w)
dzdw

where Cz is a positively oriented contour containing 0 and −λ in its interior, but
not 1, and Cw is a positively oriented contour containing Cz in its interior. Simpler
expressions can be obtained for two related quantities: the so-called biased creation
rate

(90) Crλ(x, y, n) =
λ+ 1

λ

(
Pλ(x, y, n)− Pλ(x+ 1, y, n− 1)

)

and the edge-probability generating function

(91) Πλ(u, v, t) =
∑

x,y,n

Pλ(x, y, n)uxvytn.

Note that, in [14], the bias p is related to our λ by p = 1/(1 + λ), and the bi-
ased creation rate is expressed in terms of north-going dominos hence the present
definition is adapted to the case of west-going dominos.

Let us first consider the biased creation rate. Taking the difference Pλ(x, y, n)−
Pλ(x+1, y, n−1) in the double contour integral (89), the integrand is multiplied by

a factor 1− 1+λ/z
1+λ/w = λ(z−w)

z(w+λ) , leading to a cancellation of the denominator (z−w),

hence to the factorization

Crλ(x, y, n) =(1 + λ)

(˛
Cz

(1− z)−m (z + λ)
−(n+1−m)

zn+1−m−y dz

2iπz

)

×
(˛

Cw

(1− w)
m−1

(w + λ)
n−m

wy+m−n dw

2iπw

)
.

(92)

Note that, by Cauchy’s residue formula, the second integral is equal to the coefficient
of wn−m−y in (1−w)m−1(w+λ)n−m, which is a Krawtchouk polynomial. The first
integral is of a similar nature, except that the role of the zeros {1,−λ} and of the
poles {0,∞} in the integrand are exchanged. This suggests to perform the change
of variables z = 1−u

1+λ−1u which transforms the first integral in (92) into:

(93) (1 + λ)−nλm−1

˛
Cu

u1−m(1 + λ−1u)m+y−1(1− u)n−m−y
−du
2iπu

,

where Cu is a small negatively oriented contour encircling u = 0 (note that the
image of the negatively oriented contour Cu under the change of variable z = 1−u

1+λ−1u

is a negatively oriented contour encircling z = 1, which is homotopic in C ∪ {∞} \
{1,−λ} to the positively oriented contour Cz). Using Cauchy’s residue formula, the
second integral is equal to the coefficient of um−1 in (1+λ−1u)m+y−1(1−u)n−m−y.
Redistributing powers of λ we finally obtain:
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Proposition 21. The biased creation rate reads

(94) Crλ(x, y, n) =

(
λ

1 + λ

)n−1

cλ(A,B, n− 1)cλ(B,A, n− 1)

where A = n −m − y = (n − 1 − x − y)/2, B = m − 1 = (n − 1 + x − y)/2 and
cλ(A,B, n) is the coefficient of zA in (1− z)B(1 + λ−1z)n−B.

Note that λ
1+λ = (p−1) and λ−1 = p

1−p , so we recover [14, Proposition 23], up to

the exchange p 7→ 1−p and the antidiagonal reflection (x+y, x−y) 7→ (−x−y, x−y)
that correspond to the fact that we consider west-going rather than north-going
dominos. [14, Proposition 2] also follows, by taking λ = 1, i.e. p = 1/2.

We now turn to the edge-probability generating function. We need to multiply
(89) by uxvytn = (tu)m(t/u)n+1−m(uv)y/t and sum over all n ≥ 0, m ∈ [1..n] and
y ∈ Z. Assuming that λ < 1, Cz and Cw can be taken as circles with center 0 and
radiuses between λ and 1. For t small enough and u, v of modulus close to 1, it is
possible to interchange the double sum over n,m and the double contour integral
to yield

(95) Πλ(u, v, t) =
∑

y∈Z

1

(2iπ)2

˛
Cz

˛
Cw

φ(z, w)(uvw/z)y
dz

z

dw

w

where

(96) φ(z, w) =

tu(1−w)
1−z

1− tu(1−w)
1−z

·
t(1+λ/w)
u(1+λ/z)

1− t(1+λ/w)
u(1+λ/z)

· zw

t(z − w)(1− w)
.

The sum over all y allows to get rid of one integral. More precisely, assuming
|uv| < 1 and |w| fixed, we take two different contours Cz depending on the sign
of y, namely a circle C+

z (resp. C−z ) of radius slightly larger (resp. smaller) than
|uvw| if y ≥ 0 (resp. y < 0). Splitting the sum over y in two accordingly, we may
interchange each sum with the integral, resulting in

Πλ(u, v, t) =
1

(2iπ)2

˛
Cw



(˛

C+
z

−
˛
C−z

)
φ(z, w)

z − uvwdz


 dw

w

=
1

2iπ

˛
Cw

φ(uvw,w)
dw

w
.

(97)

In the latter integral, the integrand has two poles, but only one of them falls within
Cw for t small and |uv| close to 1, and we end up with:

Proposition 22. The biased edge-probability generating function reads

(98) Πλ(u, v, t) =
λt

(1− t/u)
(
(1 + λ)(1 + t2)− t(u+ u−1)− λt(v + v−1)

) .

For λ = 1, we recover the expression given in [16, 3] (again up to the change of
variables needed to pass from west-going to north-going dominos).

Remark 23. The generating function associated with the biased creation rate takes
a much more symmetric form, namely

∑

x,y,n

Crλ(x, y, n)uxvytn =
λ+ 1

λ
(1− t/u)Πλ(u, v, t)

=
(λ+ 1)t(

(1 + λ)(1 + t2)− t(u+ u−1)− λt(v + v−1)
) ,

(99)

and it remains the same for other types of dominos. The combinatorial explanation
of this phenomenon (and of the meaning of the term “creation rate”) comes from the
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domino shuffling algorithm [19], which implies that Crλ(x, y, n) is the probability
that, in a biased random tiling of the Aztec diamond of size n, the 2 × 2 square
centered at (x, y) is covered by exactly two dominos (regardless of their orientation).

6.2. The inverse Kasteleyn matrix. Chhita and Young gave in [13, Section 5]
a formula for the inverse Kasteleyn matrix of the Aztec diamond of size n, for
the biased qvol distribution (whose definition is recalled on page 33). Under this
distribution the probability for a tiling is proportional to q to the number of flips
from the fundamental configuration times

√
λ to the number of vertical dominos.

We now explain how to relate their formula with the entries Cα,β .
Let α = (αx, αy) be an even vertex and β = (βx, βy) an odd vertex, which have

survived the contraction of edges. The coordinates we will use are those of the
contracted graph, so αx ∈ [0..2n− 2] and βx ∈ [−1..2n− 1].

In this particular case, for k ∈ [−1..2n−1], the function Fk(z) from Equation (8)
becomes:

(100) Fk(z) =
1

∏bk/2c
j=0 (1−

√
λq−2jz)

∏n−1
j=b(k+1)/2c(1 +

√
λq2j+1/z)

.

Chhita and Young use coordinates (x1, x2) (resp. (y1, y2)) to localize odd (resp. even)
vertices. In their terminology, they are white and black respectively. These coordi-
nates correspond to axes that are along the diagonals of Figure 17 on the right.

The correspondence between the two systems of coordinates is

(101)

{
x1 = 1 + βx + 2βy

x2 = 1 + βx
,

{
y1 = 1 + αx + 2αy

y2 = 1 + αx
.

Performing the change of variable

(102) ζ = −q
y2−2

w
, θ = −q

y2−2

z
,

in the integral defining K−1
col in [13, Theorem 5.1] in the case when x2 ≤ y2, one

recovers the same factors for the rational fraction in ζ and θ as for Gα,β(ζ, θ),
up to possibly numerical multiplicative constants. One has just to check that
the contours enclose the same sets of poles. Under the change of variables, the
contour Γ1,q becomes a contour for ζ enclosing −

√
λqy2 ,−

√
λqy2+2, . . . ,−

√
λq2n−1

(and which may or may not enclose zero, since the original rational fraction in w is
regular at infinity), and the contour Γ0 is mapped to a large contour for θ containing
separating infinity from a domain containing all the poles and the contour for θ.
This contour can be deformed freely as long as it does not cross the one for ζ or
infinity, because 1/Fk(θ) is a polynomial, and thus has no poles.

In the case when x2 > y2, the extra term in [13] comes from the residue at
w = z, which can be integrated to the double integral, at the cost of interchanging
the nesting of the contours.

6.3. The arctic circle theorem. Under the uniform measure, domino tilings of
a large Aztec diamond exhibit a spatial phase transition, known as the arctic circle
phenomenon [25, 24]. Outside the inscribed circle, with probability exponentially
close to 1, all dominos are arranged in a brickwall fashion. This is called the frozen
region. Inside the circle, the probability of each orientation is non degenerate and
does not go to 0 or 1. We now explain how to recover this phenomenon from our
formalism. The parameters q and λ are now set to 1.

Let α = (αx, αy) = (2m, y − 1
2 ) be an even vertex. The probability ρα that a

dimer connects α with β = (βx, βy) = (2m− 1, y + 1
2 ) is given by (89) with λ = 1.
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In the scaling limit n→∞, m/n→ τ , y/n→ χ, this probability becomes

(103) ρα =

˛
Cz

˛
Cw

exp(n(S(z, τ, χ)− S(w, τ, χ) + o(1)))
dzdw

(z − w)(2iπ)2

where

(104) S(z, τ, χ) = −τ log(1− z)− (1− z) log(1 + 1/z)− χ log(z).

We now proceed as in [38] to obtain the asymptotics of this probability. For
fixed (τ, χ), the function z 7→ S(z, τ, χ) has two critical points.

• If the two critical points are real, the integral goes to 0 or 1 exponentially
fast with n by the saddle point method. The point (τ, χ) is in the frozen
region.

• If the two critical points are complex conjugate, one can move the contours
so that they cross transversally at the complex critical points to apply
again the saddle point method. By doing so, we pick the contribution of
the residue at z = w, which gives the main contribution of the integral,
giving a result strictly between 0 and 1.

The transition between those two regimes correspond to the value of (τ, χ) for which
the two critical points merge. This happens when the discriminant of the numerator
of ∂S(z, τ, χ)/∂z is equal to zero. This gives

(105) (2τ − 1)2 − 4(τ + χ)(1− χ− τ) = 0,

which under the change of variables

(106)

{
u = 2τ + χ
v = χ

corresponds to the circle 2(u− 1)2 + 2v2 = 1 inscribed in the limiting square of the
Aztec diamond, given by |u− 1|+ |v| ≤ 1.

7. Conclusion

We have introduced the rail yard graph dimer model, and computed its partition
function and correlation functions. We point out that it corresponds essentially to
the most general Schur process with nonnegative transition probabilities, see the
discussion in [7, Sections 1 and 2]: we handle an arbitrary finite number of “α” and
“β” specializations, and any other specialization can be obtained by taking suitable
limits (in particular, to get the Poissonized Plancherel measure, one shall consider
the “dilute” limit of RYGs, namely take a sign sequence of the form +n−n, an
arbitrary LR sequence, and a constant weight sequence z/n, then let n→∞).

Many directions can be explored from here. By applying the random generation
algorithms of [5], we may generate large RYG dimer configurations, which allows
to observe limit shape phenomena as in the cases of (skew) plane partitions [38, 37]
and of the Aztec diamond, discussed above. RYG seem to allow for an even larger
variety of singular points on limit shapes, and of corresponding limiting processes,
which are currently under investigation.

The appearance of the rational edge-probability generating function (98) in the
context of the Aztec diamond (when summing over diamonds of all sizes) raises
the question whether such rationality phenomenon may subsist for other types of
RYGs. A natural idea is to consider RYGs with periodic LR, sign and weight
sequences. Preliminary research indicates the rationality phenomenon occurs only
in another case, namely skew plane partitions of “staircase” shape. In other cases,
we obtain an algebraic, but not rational, generating function (algebraicity being
expected from the very nature of our computations).
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In this paper we have obtained the correlations for pure RYG dimer configu-
rations (by computing vacuum-to-vacuum expectation values of fermionic opera-
tors). Other types of boundary conditions can be considered, as in [12] where the
corresponding partition functions were computed (and the extension to RYGs is
straightforward). However, adapting the computation of correlation functions done
in the present paper is not so easy, since it requires an adaptation of Wick’s for-
mula. For arbitrary but fixed boundary conditions, we know from general facts,
namely the generalized Wick theorem [1] or the Eynard-Mehta theorem [9], that
correlations will still be of determinantal form, however it is not clear how to com-
pute explicitly the propagator/determinantal kernel. Such computation could be
done by Petrov [41] for some lozenge tilings, and we are looking for other tractable
cases. Also of interest is the case of free boundary conditions (that is, we sum
over all possible boundary states). When only one of the boundaries of the RYG
is free (corresponding to symmetric RYG dimer configurations), the correlations
are known to be Pfaffian [9], and we have found an adaptation of Wick’s formula
which would allow for a computation similar to that done in the present paper,
bypassing the use of the (Pfaffian analogue of) Eynard-Mehta’s theorem. Details
should appear in a subsequent publication, see also [?, ?, 39] for related results.
When the two boundaries of the RYG are free, the nature of the correlations is
unknown, even though the partition function can be computed following the lines
of [12]. We believe they should be the Pfaffian analogues of correlations for RYGs
with periodic boundary conditions, related to the periodic Schur process of [6].

Finally, a tantalizing question is whether it is possible to consider “interacting”
deformations of our dimer models. Besides the directions mentioned in the con-
clusion of [12], let us mention that fermionic techniques have been recently used,
together with methods from constructive field theory, to prove rigorous results
about interacting dimer models, see e.g. [21] and references therein. Another in-
triguing fact is that identities arising from z-measures (which are instances of Schur
measures) have found applications in the context of quantum integrable systems
[31].
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Appendix A. Commutation of bosonic and fermionic operators

In this section, we give a self-contained combinatorial proof of the commutation
relations between the bosonic and the fermionic operators stated in Proposition 11.

Proof. Let us first prove (37). It is equivalent to prove that for any k and for any
λ,

(107) ΓR+(x)ψk|λ〉 = (ψk + xψk−1) ΓR+(x)|λ〉.
Define

(108) nk = #{j > k, λj = •}.
Case 1 : λ has a white marble in position k.
ΓR+(x)ψk|λ〉 enumerates the admissible dimer covers of an elementary rail yard

graph of type (R,+) and with right boundary equal to ψk|λ〉. Each dimer cover is
specified by the value µ of the left boundary. Here,

(109) ψk|λ〉 = (−1)nk |λ(k)〉,
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so the vertex in position k on the right boundary has to be incident to a certain
edge ek in the dimer cover. Thus ΓR+(x)ψk|λ〉 is a sum of two types of terms, the
first (resp. second) type corresponds to ek horizontal (resp. diagonal).

By the same argument as for the localization of horizontal dimers on a “double”
column, dimer covers of the first type are in bijection with (and have the same
weight as) dimer covers with right boundary λ and with left boundary µ(k). Such
covers are enumerated by ΓR+(x)|λ〉. To obtain the original left boundary, µ, from
this new cover, we need to apply ψk to ΓR+(x)|λ〉. The sign appearing is again
(−1)nk , because the number of black marbles above position k is the same in µ(k)

as in λ. So the first term in the sum is equal to

(110) ψkΓR+(x)|λ〉.
By using the bijection used to localize diagonal dimers, and observing that the

weights differ by a factor x, we obtain that the second term of the sum is equal to

(111) xψk−1ΓR+(x)|λ〉.
Note that the signs cancel out correctly because the number of black marbles

above position k − 1 on the left boundary is equal to the number of black marbles
above position k on the right boundary.

Thus we conclude in case 1.
Case 2 : λ has a black marble in position k.
Here, ψk|λ〉 = 0, so the left-hand side of (107) vanishes.
ΓR+(x)|λ〉 enumerates the admissible dimer covers of an elementary rail yard

graph of type (R,+) and with right boundary equal to λ. Each dimer cover is
specified by the value µ of the left boundary. The vertex in position k on the
right boundary has to be incident to a certain edge ek in the dimer cover. Thus
ΓR+(x)ψk|λ〉 is a sum of two types of terms, the first (resp. second) type corre-
sponds to ek horizontal (resp. diagonal).

If µ is a term of the first type, µ has a black marble in position k, thus ψk +
xψk−1|µ〉 = xψk−1|µ〉 and

(112) xψk−1|µ〉 =

{
x(−1)nk+1µ(k−1) if µ has a white marble in position k − 1

0 otherwise.

The sign is due to the fact that the number of black marbles in µ above the
position k − 1 is equal to the number of black marbles in λ above the position k,
to which we must add the black marble in λ in position k.

If µ is a term of the second type, µ has a black marble in position k − 1, thus
ψk + xψk−1|µ〉 = ψk|µ〉 and

(113) ψk|µ〉 =

{
(−1)nkµ(k) if µ has a white marble in position k

0 otherwise.

So all the nonzero terms of (ψk + xψk−1) ΓR+(x)|λ〉 have black marbles in posi-
tions k − 1 and k, and each term appears twice, with the same weight (because if
µ is a term of the second type in ΓR+(x)|λ〉, it already carries a factor x coming
from the diagonal dimer ek) and with opposite sign.

Thus the right-hand side of (107) also vanishes.
This concludes the proof of (37). Formula (41) is proved similarly, replacing

ψk−1 by ψk+1 and z by 1
z .

We noted that ΓR+(x) was conjugated to ΓL+(x) via ω. Observe now that ψ∗l
is conjugated to ψl via ω, up to a sign (−1)sl verifying (−1)sl+1 = −(−1)sl (sl is
defined by an equation analogous to (35)). This enables us to deduce formulas (38)
and (42).
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Using that ΓR+(x), ΓL+(x) and ψ(z) are respectively adjoint of ΓR−(x), ΓL−(x)
and ψ(1/z), we deduce the last four formulas.

�

Appendix B. Wick’s formula

In this section, we provide a proof of the identity

(114) 〈∅|T
(
Ψ(α1),Ψ∗(β1), . . . ,Ψ(αs),Ψ

∗(βs)
)
|∅〉 =

det
1≤i,j≤s

〈∅|T
(
Ψ(αi),Ψ

∗(βj)
)
|∅〉

used in (59).
Let Π be the set of partitions of {1, . . . , 2s} into unordered pairs. An element

τ ∈ Π can be canonically written τ = {{i1, j1}, . . . , {is, js}} with i1 < i2 < · · · < is
and it < jt for all t, and viewed as a permutation

(115) τ =

(
1 2 · · · 2s− 1 2s
i1 j1 · · · is js

)
,

which allows to define its sign ε(τ). Recall that the Pfaffian of a 2s× 2s antisym-
metric matrix A = (Aij)1≤i,j≤2s is defined as

(116) Pf(A) =
∑

τ∈Π

ε(τ)

s∏

t=1

Aτ(2t−1),τ(2t).

Let F be the space of (countably infinite) linear combinations of ψk’s and ψ∗k’s.

Proposition 24 (Wick’s formula). For X1, . . . , X2s elements of F , we have

(117) 〈∅|X1 · · ·X2s|∅〉 = Pf(A)

where A is the 2s× 2s antisymmetric matrix such that Aij = 〈∅|XiXj |∅〉 for i < j.

Proof. Let F+ (resp. F−) be the vector space spanned by the ψk with k > 0 and
the ψ∗k with k < 0 (resp. the ψk with k < 0 and the ψ∗k with k > 0), so that
F = F+ ⊕ F−. For X ∈ F , we denote by X+ and X− its projections on these two
subspaces: observe that 〈∅|X+ = 0 and X−|∅〉 = 0.

Let X1, . . . , X2s be elements of F . Observe that, by proposition 9, {X−i , X+
j } is

a scalar for any i < j, and

〈∅|XiXj |∅〉 = 〈∅|X+
i X

+
j +X+

i X
−
j +X−i X

−
j +X−i X

+
j |∅〉

= 〈∅|X+
i X

+
j +X+

i X
−
j +X−i X

−
j + {X−i , X+

j } −X+
j X

−
i |∅〉

= {X−i , X+
j }.

(118)

We proceed similarly to compute the left-hand side of (117): we write each of the
Xi as Xi = X+

i + X−i , expand the product and get a sum of 22s terms. In each
of these terms, we move all the X−i to the right. To get a nonzero contribution,
we must pair up each X−i with one X+

j such that i < j, and multiply all the
anticommutators obtained in this fashion. So each nonzero contribution is equal,
up to a sign, to

(119)

s∏

t=1

{X−τ(2t−1), X
+
τ(2t)}

where τ ∈ Π is some partition into pairs of {1, . . . , 2s}. Furthermore, the sign of
this contribution corresponds to the number of swaps needed to bring each X−τ(2t−1)

exactly to the left of X+
τ(2t), i.e. it is the signature of τ . This yields exactly the

right-hand side of (116) with Aij = {X−i , X+
j } = 〈∅|XiXj |∅〉. �
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To prove the wanted identity (114), we set Y2t−1 = Ψ(αt) and Y2t = Ψ∗(βt),
t = 1, . . . , s. By the definition of natural ordering, there is a permutation σ such
that

(120) T (Y1, . . . , Y2s) = ε(σ)Yσ(1) · · ·Yσ(2s).

By Proposition 24 and since Yσ(i)Yσ(j) = T (Yσ(i), Yσ(j)) for any i < j, we have

〈∅|T (Y1, . . . , Y2s) |∅〉 = ε(σ) Pf1≤i,j≤2s〈∅|T (Yσ(i), Yσ(j))|∅〉
= Pf1≤i,j≤2s〈∅|T (Yi, Yj)|∅〉

(121)

(when we simultaneously permute the rows and columns of an antisymmetric ma-
trix, the Pfaffian is multiplied by the sign of the permutation). Finally, we observe
that 〈∅|T (Yi, Yj)|∅〉 is nonzero if and only if i, j have different parities, which allows
to rewrite the Pfaffian as the wanted determinant without sign.
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