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Abstract — This paper presents an innovative 3-joints 
structure designed as the forearm-wrist of a force controlled 
exoskeleton. It is composed of an open parallel mechanism 
both fitting the human forearm and able to rotate on its 
longitudinal joint (prono-supination), in a similar manner of 
the ulna-radius movement. This structure advantageously 
replaces circular guidings in terms of mass, volume and 
friction and can be freely scaled. A lightweight 3 dof 
forearm-wrist mechanism is proposed as an integral rotation 
module for the general-purpose arm exoskeleton ABLE 7 D. 

I. INTRODUCTION

HIS document presents the design of the forearm-
wrist module [9], with a focus on the cable 

transmission of the Screw-Cable-System [2] driving the 
prono-supination movement. Exact modeling and 
computing of the driving pulley is presented. The two 
complementary joints of the wrist, also actuated by SCS, 
are briefly presented. 

II. FOREARM WITH PRONO-SUPINATION

A. Articulated structure 
A scheme of the forearm mechanism is given Fig. 1.
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Fig. 1. Left, Forearm parallel mechanism with prono-supination and decoupled bending moments / shear forces ; Right, its basic geometrical model 

It combines a parallel structure made of at least 3 rods, 
connecting a mobile arch to a fixed arch thanks to ball-
joints, and a fixed cantilever mast ensuring the circular 
motion of the mobile arch thanks to a set of 3 rollers. Such 
an articulated structure is achieving both a structural 
function and a circular guide function (axial rotation or 
prono-supination). Incidentally, this movement evokes 
those of the radius-ulna bones. Shear forces are balanced 
by the fixed cantilever mast whereas bending moments are 
balanced by traction/compression forces in the rods. Such 
a decoupling effect allows making an optimal use of each 
mechanical component: miniature bearings can easily 
sustain the desired shear forces (about 50 N) whereas 
lightweight rods/ball-joints can easily transmit the 
required traction/compression forces (about 150 N). For 

all these reasons, compared to an existing industrial 
product such as THK HCR circular bearing or previous 
published designs [1],[4],[5],[8], such a mechanism offers 
a better compromise between volume, weight/inertia and 
friction and it can be more easily scaled to the person. It 
also preserves the openness of a circular bearing, a 
favorable factor for safety and acceptability. 

The displacement law as a function of the prono-
supination angle is given by (1). 
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The rotation travel is limited either by interferences 
between the rods and the fixed parts or by the axial 
translation of the mobile arch. An order of magnitude of 
this translation for a pronation/supination of 60° is given 
in TABLE I. 

TABLE I 
Estimated translation for a human forearm 

Angular travel 120°
Pronation / Supination Φmax 60°
Fixed arch radius R 60mm
Mobile arch radius r 60mm
Nominal distance between arches h0 250mm
Rod length l 250mm
Maximum translation yC max -7mm

In comparison with the flexibility of the skin and 
muscle, such a perturbation is relatively small (< 3%) and 

is expected to be not detected by the user. A second cause 
of perturbation is the offset of the center C of the mobile 
arch (fabrication incertitude, play, elastic deflection under 
the load) which will induce an oscillation of its plane. In 
our current design Fig. 4, this amplitude is estimated at 
less than 1° which is virtually undetectable. 

B. Actuator 
The translation of the arch represents an obvious 

challenge for the design of the drive. Because tests with 
gears did not provide a smooth torque transmission, we 
opted again for a SCS actuator. Its design had to be 
adapted to fit the geometrical constraints of the mast. The 
rotation of the screw is locked using a miniature ball-
spline also used as a structural part of the mast. A flexible 
coupling connects its nut to an extremity of the screw. The 
screw delivers enough force to provide the required torque 
(approx. 2 Nm) without any gear reducer (Fig 2). 
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Fig 2. Prono-supination SCS actuator with details of the cable routing 



Design of the driving pulley

Its rotation combined with a variable translation velocity 

leads to a specific shape of the grooves. On the scheme 
Fig. 3, the spatial problem is transformed in a planar 
problem for simplicity (unfolded). 
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Fig. 3. Geometry of cable distribution on the driving pulley 

The cable is deviated by the pulley ( ),P p q and contacts 

the driving pulley in points , ', "T T T  (tangential line at 
the intersection of the deviating pulley plane and the 
driving pulley cylinder). There is a fixed frame ( ), ,O x y , 

with x representing the arc RΦ and y , the translation of 

the mobile arch associated with the frame ( ), ,I u v . The 

origin of the groove I is such that for 0Φ = , I is 
confused with T where we also impose 0θ = , leading to 
the following initial conditions: 

( ) ( )' 0 0 0v v= =

The radius of the driving pulley is noted 0R and the 
distance between the deviating pulley center and the 
tangential line is noted 0L . For 0Φ > , the cable is 
wrapped on the blue portion of the groove and on the red 
portion for 0Φ < . Since the cable must ideally remain 

constantly tangent to the groove at contact points 
, ', "T T T , the groove presents different curvatures for 

both portions. On the alternate branch of the cable, the 
cable is wrapped on opposite portions of the second 
groove, due to the symmetry of the problem. By writing 
that the segment TS is the common tangent to the driving 
pulley and the deviating pulley, we obtain the following 
relations: 
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By using the trigonometric transformations: 
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we can eliminateθ  and finally obtain the non-linear 
differential equation (3) where ( )v Φ is the unknown 

function. 
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We solved it numerically by programming an Excel 
sheet, sampling the groove in 100 points. The computed 
results are presented below on Fig. 4 (coordinates 

expressed in mm). 
This study has been achieved within the frame of the 

French ANR (Agence Nationale de la Recherche) - 



BRAHMA project which goal is to develop an upper limb 
exoskeleton for rehabilitation and assistance [6]. The 
grooves are milled with a 5 axis machine-tool using the 

above computed data. Fig. 6 shows a CAD view and a 
picture of the prototype, equipped with adjustment 
devices. 

φ 60°
R 62 mm
r 63 mm

R0 29 mm
h0 251 mm
l 253 mm

L0 30 mm
p 16,3 mm
q -6,0 mm
ρ 6,0 mm
β0 -27°
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Fig. 4. Computation of the grooves (top) ; Views of the forearm prototype (bottom) 

As a consequence, the reduction ratio varies asymmetrically apart the prono-supination origine (Fig. 5). 
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Fig. 5. Left, Reduction ratio law as a function of the prono-supination angle ; Right, provisional performances of the forerarm 

Fig. 6 shows the forearm module integrated as the fifth 
joint of the ABLE arm exoskeleton [3],[7] to provide a 
cost-effective rehabilitation system whenever the medical 
benefits of a prono-supination movement are significant 
enough. 

�
Fig. 6. CAD view of ABLE 5D arm exoskeleton 



III. FOREARM - WRIST STRUCTURE

The wrist is classically formed of two serial transversal 
and perpendicular axis (U-joint) attached to the mobile 
arch. Two SCS actuators are mounted on a structure that 
replaces one of the 3 rods (Fig 7). To ensure a proper 
routing of the cables, the attachment on the mobile arch is 

achieved by two orthogonal articulations, each equipped 
with ad hoc deviation pulleys. The heterogeneous linkages 
on the mobile arch (two ball-joints and two orthogonal 
axis) causes some specific angular perturbations but of a 
low magnitude (below 1° for our design), a value 
compatible with the use of cable transmission for the 
prono-supination. 
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Fig 7. Wrist U-joint and its two SCS drives replacing one of the 3 rods of the forearm structure 

 There is a main linear coupling effect (red on blue) and 
complementary non-linear couplings of a low magnitude 
due to the variable inclination of the rods compared to the 
mobile arch. The alignment of the SCS actuators leads to a 
streamline shape and their reflected inertia around the 
prono-supination axis is even reduced because the velocity 

decreases towards the fixed arch. Assembling the two 
preceding structures leads to a forearm-wrist module 
providing the required 3 orthogonal concurrent rotations. 
Fig 8 shows the end result and its integration in ABLE 7D 
arm exoskeleton. 

�� �
Fig 8. Right, Forearm - wrist 3 axis structure actuated by 3 SCS ; Left, Integration in ABLE 7D 

�
This exoskeleton, is planned to be functional by the end 

of 2010 for the benefits of the ANR-SCALE 1 project
which goal is to develop a full-size haptics system for the 
industry and for teleoperation. 

IV. CONCLUSION

A forearm-wrist module has been designed to present 
both a low friction/high efficiency and a particularly low 
inertia and total mass estimated of 2 kg. These unique 
characteristics open a broad field of applications where 

force control is involved, including haptics. More work is 
still required to fully identify the non-linear models and 
control the performances to confirm the effectiveness of 
the design. 
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