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Abstract

Approximate Message Passing (AMP) has been
shown to be a superior method for inference
problems, such as the recovery of signals from
sets of noisy, lower-dimensionality measure-
ments, both in terms of reconstruction accuracy
and in computational efficiency. However, AMP
suffers from serious convergence issues in con-
texts that do not exactly match its assumptions.
We propose a new approach to stabilizing AMP
in these contexts by applying AMP updates to in-
dividual coefficients rather than in parallel. Our
results show that this change to the AMP iter-
ation can provide expected, but hitherto unob-
tainable, performance for problems on which the
standard AMP iteration diverges. Additionally,
we find that the computational costs of this swept
coefficient update scheme is not unduly burden-
some, allowing it to be applied efficiently to sig-
nals of large dimensionality.

1. Introduction

Belief Propagation (BP) is a powerful iterative mes-
sage passing algorithm for graphical models (Pearl, 1988;
Mézard & Montanari, 2009; Opper & Saad, 2001). How-
ever, it presents two main drawbacks when applied to
highly connected continuous variable problems: first, the
need to work with continuous probability distributions; and
second, the necessity to iterate over one such probability
distribution for each pair of variables.
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The first problem can be addressed by projecting the distri-
butions onto a finite number of moments (Sudderth et al.,
2010) and the second by utilizing the Thouless-Andreson-
Palmer (TAP) approach (Mézard & Montanari, 2009; Op-
per & Saad, 2001) where only single variable marginals are
required. Approximate message passing (AMP), first intro-
duced in (Donoho et al., 2009), is one such relaxation of
BP that utilizes both of the aforementioned approximations
in order to solve sparse estimation problems. In AMP’s
more general setting, as is considered in Generalized AMP
(GAMP) (Rangan, 2011a), the goal of the algorithm is the
reconstruction of an /N-dimensional sparse vector x given
the knowledge of an M -dimensional vector y obtained via
a possibly non-linear and/or probabilistic output function
h(z) performed on a set of linear projections. Specifically,

N
Yy = h(z,), where z,= Z(I)m’xi' ()]

i=1

For example, if h(z) = z + £ where & is a zero-mean
i.i.d. Gaussian random variable, then h(z) represents an ad-
ditive white Gaussian noise (AWGN) channel. With this
output function, in the setting M < N, (1) is simply
the application of Compressed Sensing (CS) (Candes &
Romberg, 2005) under noise. AMP is currently acknowl-
edged as one of the foremost algorithms for such prob-
lems in terms of both its computational efficiency and in
the number of measurements required for exact reconstruc-
tion of x. In fact, with properly chosen measurement ma-
trices (Krzakala et al., 2012b;a; Donoho et al., 2012), one

'In the present work, we use subscript notation to denote the
individual coefficients of vectors, i.e. y,, refers to the u'" coef-
ficient of y where pu € {1,2,..., M}, and the double-subscript
notation to refer to individual matrix elements in row-column or-
der.
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can achieve information-theoretically optimal reconstruc-
tion performance for CS, a hitherto unachievable bound
with standard convex optimization approaches.

Just as with any iterative algorithm, the convergence prop-
erties of AMP are of chief analytical concern. Many rigor-
ous results have been obtained on the performance of AMP
in the case of i.i.d. and block i.i.d. matrices (Bayati & Mon-
tanari, 2011; Donoho et al., 2012). Unfortunately, while
AMP performs well for zero-mean i.i.d. projections, per-
formance tends to drastically decline if one moves away
from these simple scenarios. In fact, even for i.i.d. matri-
ces with a small positive mean, the algorithm may violently
diverge, leading to poor reconstruction results (Caltagirone
et al., 2014). This instability to slight variations from these
strict assumptions on the projections is a serious problem
for many practical applications of AMP.

The main theoretical reason for these convergence issues
has been identified in (Caltagirone et al., 2014) using a rig-
orous tool called State Evolution. The issue stems from
AMP’s use of a parallel update, instead of a sequential one,
on the BP variables at each iteration. This result motivates
the present work.

Three strategies have been proposed in recent literature to
avoid this problem. First, one can highly damp the AMP
iterations, as in (Krzakala et al., 2012b; Vila & Schniter,
2012). However, this often requires a damping factor so
large that the cost, in terms of the number of iterations until
convergence, is prohibitive. Additionally, it is not entirely
clear how to determine an optimal damping factor to ensure
convergence in general.

Second, one can modify the problem a posteriori in order
to come back to a more favorable situation. For instance,
one might remove the mean of the matrix and of the mea-
surements (Caltagirone et al., 2014), or one might modify
the algorithm according to the theoretical spectrum of the
operator ® (Rangan et al., 2014; Cakmak et al., 2014), if it
is known. This knowledge about the operator may be pro-
hibitive and could therefore present a strong limitation in
practice. This procedure may work for non-zero mean pro-
jectors, but for more complicated operators it is not clear
what one should do.

A third solution was proposed in (Caltagirone et al., 2014)
where it was shown that one can take one step backward
in approximation from AMP to a come back to a BP-style
iteration (Caltagirone et al., 2014), using BP with a sequen-
tial update rather than the parallel one. It is indeed rather
natural when using BP to work with a sequential update,
sweeping through all variables, and this usually gives better
convergence performance empircally. Going back to BP,
however, amounts to a huge cost in terms of both memory
and computational efficiency as there are O(N?) variables

to update per-iteration with BP as opposed to the the O(N)
utilized in AMP.

In this contribution, we solve these problems by deriv-
ing a slightly modified and efficient AMP algorithm with
greatly improved convergence properties while preserving
the O(N) iteration and memory cost of AMP. We accom-
plish this by a careful analysis of the relaxation leading
from BP to AMP where we preserve the sequential, or
swept, variable update pattern of BP in our AMP approach,
and by paying great attention to the “time indices”. This
leads to a subtly modified set of update rules for the AMP
and GAMP algorithms without affecting the fixed point
in any way. The resulting algorithm, which we denote
as Swept AMP (SWAMP), possesses impressive empirical
convergence properties.

2. Belief-Propagation for Signal Recovery
2.1. Signal Recovery as Statistical Estimation

To describe AMP, we focus on the CS signal recovery prob-
lem with real valued signals in terms of statistical infer-
ence. Given an unknown signal x € R”, a linear pro-
jection ® € RM*N and a set of observations y € RM
generated from x and ®, we write the posterior distribution
for the unknown signal according to Bayes’ rule,

P(x|®,y) o P(y |®,x) Fy(x), 2

where we write o< as we neglect the normalization constant.
The likelihood P(y |®,x) is determined according to the
constraints one wishes to enforce, which we consider to be
of form y = h(® x), with & being, in general, any stochas-
tic function. We consider & to be an AWGN channel 2,

w=h(®,x) =@, x+N(0,A), 3)

where A is the variance of the AWGN and @, is the uth
row-vector of ®. Hence,

(Yo — 2 (I)uixi)Q
2A

M
P(y|®,x) = H

exp | —
VorA p[

4)

The prior Py(x) is determined from the information we
have on the structure of x. For CS, we are concerned with
the recovery of sparse signals, i.e. ones with few non-zero
values. Unstructured sparse signals can be modeled well

2One can generalize h to be a more complicated output func-
tion. This generalization constitutes the change of AMP to GAMP
(Rangan, 2011a). For example, we examine the case of 1-bit CS
in Sec. 4.3 where h is a non-linear sign function.
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by an i.i.d. Bernoulli sparse prior,

N
Py(x) o [[ Pol:), where (5)
Po(zi) = pp(zi) + (1 = p)d(z:), (6)

where ¢ (z;) can be any distribution, e.g. ¥(z;) =
N (x;;%,0?), §(x;) is the Dirac delta function and the de-
gree of sparsity is controlled by the value p € [0, 1]. Notice
that, in this usual setting, both distributions are factorized,
that is, the likelihood is in M terms relative to the constraint
over each y,,, and the prior is in IV terms relative to what is
expected of each x;. Factorized distributions such as these
are well represented by graphical models (Wainwright &
Jordan, 2008) , specifically, bipartite graphs in which the
M + N factors are represented by one type of node and the
N variables x; by another. Once the posterior distribution
is written down, the estimate X may be assigned in different
ways, according to what loss function one wishes to mini-
mize. In this work, we are chiefly concerned with the min-
imum mean-squared error (MMSE) estimate, which can be
shown to be the average of x; with respect to the poste-
rior P(x |®,y); if one were able to compute the posterior’s
marginals, the MMSE estimate would read

FIMSE _ / dv; 2 P(wi|®,y), Vi ()

The strategy employed by AMP is to infer the marginals
of the posterior by using a relaxed version of the BP algo-
rithm (Pearl, 1988; Mézard & Montanari, 2009) , and thus
to arrive at the MMSE estimate of the unknown signal x.

2.2. Relaxed Belief-Propagation

BP implements a message-passing scheme between nodes
in a graphical model, ultimately allowing one to com-
pute approximations of the posterior marginals. Messages
m;_,,, are sent from the variables nodes to the factor nodes
and subsequent messages m,,_,; are sent from factor nodes
back to variable nodes that corresponds to algorithm’s cur-
rent “beliefs” about the probabilistic distribution of the
variables x;. Since these distributions are continuous, the
first relaxation step is to move to a projected version of
these distributions, as described in (Rangan, 2011a; Krza-
kala et al., 2012a) . Here, we shall follow the notation of
reference and use the following parametrization

A
ai%u:/dmi i mi (@), ®)
A 2 2
UH,F/dmi x mis(®) —ai,,, )
22
My—i(2) e~ 2 AumitBusimi (10)

This leads (see (Krzakala et al., 2012a)) to the following
closed recursion sometimes called relaxed BP (r-BP),

o2
Apsi = = . (11D
P A Yk Bt
B = Dpi (Y = 22525 Puj@ion) 7 (12)

A+ PhVion
1 ZV#M Bl/—>i)
Ai—p = fl ( ; 3 (13)
Zu;ﬁu Ay ZV#M

1 ZV#M Bu—n’
(% = f ) ) (14)
o ? (Zu;ﬁﬂ Au—m‘ Zy?éu v—>i

S

v—1

B

where the functions f are defined by the following prior-
dependent integrals

9 N 1 _(e=—R)?
(2%, R)= dchPo(x)mZe =2 (15)
and
2 A 2 1 _a=m)? 2 /v 2
(55 ,R)= [ dzx Po(x)mze 2 — (X R)
d
:22d—~2(22,3). (16)

After convergence, the single point marginals are given by

_ 1 Zu BV~>7L
4= fl (ZV Auﬁi’ Zu AU*}’L) ' (17)

o 1 ZV BV—)i
v = f2 (Zu A0S AV%) : (18)

We intentionally write r-BP without specifying time indices
since the updates can be performed in one of two ways. The
first approach is to update in parallel, where all variables
are updated at time ¢ given the state at time ¢ — 1. The
second is the random sequential update where one picks a
single index ¢ and updates all messages corresponding to it.
A time-step is completed once all indices have been visited
and updated once.

2.3. The AMP algorithm

We consider the AMP algorithm in the form that was de-
rived in (Donoho et al., 2010; Rangan, 2011b; Krzakala
et al.,, 2012a). The main steps are a) going from belief
propagation (BP) to a relaxed BP (r-BP) where only the
two first moments of all messages are kept and b) using N
sites marginals instead of N x M messages and adding the
compensating Onsager terms (Thouless et al., 1977). Fi-
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nally, AMP reads

Z@W vl (19)
wffl = Zfbm a;

t+1 _
Vi

A+Vt Z‘% vi, (0)

-1
2
D7

S = 1> | @1
ZH: A+ Vit

(yu ‘*’f)

Z (I)uziéﬂ
R =af+ = (22)

2o AV

altt = fi ((ZFH2 R, (23)
ot = fo (B2 RIFY) (24)

where fi(X2, R), here and in what follows, are the k-th
connected cumulants w.r.t. the probability measure

_(z=-R)?2
1 e 252

7R Y e

with Z(%?, R) as the normalization constant.

Q) =

(25)

The variables a; and v; are the AMP estimators for the
mean and variance of the component ¢ of the signal. The
quality of the reconstruction can be evaluated by comput-
ing the mean squared error (MSE) and the average variance

E' = %Z(Sz —ah)?, Vi= %Zuf (26)

where s; is the original signal component. When v = 0,
the performance of the AMP algorithm was analyzed rig-
orously in the limit of large system size via the state evo-
lution (E'TL Vi+l) = G(E!, V), where G is a func-
tion specified in (Bayati & Montanari, 2011; Donoho et al.,
2010; Rangan, 2011b; Krzakala et al., 2012a). An impor-
tant property of the Bayes optimal inference (i.e. when the
signal was indeed generated from the assumed prior dis-
tribution) is that the two paramaters are equal in the large
size limit, £ = V!, and the state evolution hence reduces
to an iterative equation of a single real number, which is
amenable to rigorous analysis (Bayati & Montanari, 2011).
In statistical physics E* =V is called the Nishimori con-
dition and is discussed in the context of compressed sens-
ing in detail in (Krzakala et al., 2012a). In general, when
v =0 we observed by analyzing the state evolution equa-
tions that even when at initial times E*=° # V*=Y the equal-
ity E* = V? is restored after a sufficient number of itera-
tions.

3. Swept Approximate Message Passing
3.1. Rederiving the Time Indices

In the message-passing described in the previous section,
2(M x N) messages are sent, one between each variable
component and each measurement at each iteration. This
creates a very large computational and memory burden for
applications with large N, M. It is possible to rewrite the
BP equations in terms of only NV + M messages by making
the assumption that ® is dense and that its elements are of
magnitude O(1/v/N). In statistical physics, this assump-
tion leads to the TAP equations (Thouless et al., 1977) used
in the study of spin glasses. For graphical models, such
strategies have been discussed in (Opper & Saad, 2001).
The use of TAP with r-BP provides the standard AMP iter-
ation. Now let us investigate the expansion of the factor w,,
from Eq. (20) of the AMP iteartion as we include the time,
or iteration, indices t. First one has

CLff+1 _ 1 E BV—H /L—}'I
B Z Al/—n ,u—n Z Ay—m ;L—m

(N
1 £

=t B O () Ry,

— gttt Bttt 27)

u—ili

making the expansion for w,,

1 t+1 y,t t+1
t+ Z(I);“CLJ'_ A —I—Vt Zq);tt z+

w,,)
= Z CI)maH'l hthrl (28)

which allows us to close the equations on the set of
a,v, R,3,V and w. Iterating all relations in parallel (i.e.
updating all R,¥’s, then a,v’s and then the w, V’s) pro-
vides the AMP iteration.

The implementation of the sequential update is not a
straightforward task as many otherwise intuitive attempts
lead to non-convergent algorithms. The key observation
in the derivation of SWAMP is that (28) mixes different
time indices: while the “a” and “V” are the “new ones”,
the expression in the fraction is the “old” one, i.e. the
one before the last iteration. The implication of this is
that while ZZ ®,;a; and V), should be recalculated as
the updates sweep over ¢ at a single time-step, the term
(Y — wu)/(Au + V,,) (which we denote as g, later on)
should not. A corresponding bookkeeping then leads to
the SWAMP algorithm for the evolution of w,,, E?, V. and
R; described in Alg. 1. At this point, the difference be-
tween AMP and SWAMP appears minimal, but, as we shall
see, the differences in convergence properties turn out to be
spectacular.
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Algorithm 1 Swept AMP
Input: y, ©, A, Oprior, tmaxs €
t+0
Initialize {a(®), v(O}, {w(ON+1), V(O NFDY
while ¢ <t and |2ttt —a® | > ¢ do
for = 1to M do

(1) yumw T

9u A—&-V(t NTD
(t+1;1) (t)

Vi —> <I>m i 4
£t+1 D 5, (I)magt) _ Vﬂ(tﬂ’ l)th)

end for
S « Permute([1,2,...,N])
for k =1to N do

i%—Sk
—1
(t+1) %
57 A {Z# Wmm}
(t+1) 0 (t+1) Yu—wy T
R; a;’ + 33 o (I)‘“W
a(t+1) f ( t+1) 22(t+1) eprlor)

Z(t+1 <—f( t+1) Z2(t+1) epnor)

foru=1m do
1:k 1 1; k 1
VM(H— s k+1) « Vu(t+ )+ (I);Qu‘ (v§t+ ) (t))
- w}(f—i—l;k) 4o, (a§t+1) (t))
1; k+1 1; k
g;(f) (VLEH +1) V#(t+ ))
end for
end for
t+—t+1
end while

(t+1; k+1)
Wi

3.2. Generalized Swept AMP

We note that this procedure can also be generalized, a
la GAMP, for output channels other than the AWGN.
The required change is minimal (Rangan, 2011a): one
should replace the term (y, — w,)/(A, + V,) in the
R; and w,, updates with gou (wy, V,,), a generic function
which depends on the channel. Specifically, gou(w, V) =

z—w)?
[dzP(y|z)e e (554).
term in the X7 update should be replaced by — . Notice
that all AWGN specific terms are recovered for P (y|z)

(y—2)2
e 2Aa

Additionally, the ﬁ
WtV
8gom

4. Numerical Results

Here, we present a range of numerical results demonstrat-
ing the effectiveness of the SWAMP algorithm for prob-
lems on which both standard AMP and ¢; minimization via
convex optimization fail to provide desirable reconstruction
performance. All experiments were conducted on a com-
puter with an 17-3930K processor and run via Matlab. We
have provided demonstrations of the SWAMP code on-line

3. For calculating ¢, recoveries, we utilize an implemen-
tation of the SPGL1 (van den Berg & Friedlander, 2008)
algorithm.

4.1. Compressed Sensing with Troublesome Projections

As discussed earlier, using projections of non-zero mean
to sample x is one of the simplest cases for which AMP
can fail to converge. However, by using the proposed
SwAMP approach, accurate estimates of x can be obtained
even when the mean of the projections is non-negligible.
While it may be possible to use mean subtraction, our
proposed approach does not require such preprocessing.
Additionally, as we will show later, not all problems are
amenable to such mean subtraction. To evaluate the effec-
tiveness of SWAMP as compared to the standard parallel-
update AMP iteration, we draw i.i.d. projections according

to )

By~ N (; N) , (29)
where the magnitude of the projector mean is controlled
by the term ~. For a given signal x and noise variance
A, as « increases from 0, we expect to see AMP failing
to converge. This behavior can be observed in the numeri-
cal experiments presented in Fig. 1. Here, we observe that
SwAMP is robust to values of « over an order of magni-
tude larger than the standard AMP, converging to a low-
MSE solution even for v ~ 140 while AMP fails already
at v = 2. Additionally, for the tested parameters, ¢; min-
imization fails to provide a meaningful reconstruction for
any value of .

We also consider an even more troublesome case, namely,
strongly correlated projections. Such problems are of inter-
est as they arise naturally in machine learning and biomed-
ical applications, where the practitioner does not design
the projections for optimal signal recovery, but rather the
projections represent sampled observations from which the
practitioner desires to predict some response variables by
finding an interpretable, i.e. sparse, set of regression co-
efficients. Such observations can be highly correlated and
thus represent a significant impediment to the use of paral-
lel AMP for regression tasks.

For these tests, we draw

1
= NPQ’ where Pk, Qri ~ N(0,1) (30)

with P € RM*E (O ¢ REXN and R £ nN. That is,
® is rank-deficient for n < «, where @ = % In our

experiments, we use 7 to denote the level of independence
of the rows of ®, with lower values of 7 representing a
more difficult problem. We observe that the elements of

*https://github.com/eric—tramel/
SwAMP-Demo
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® are neither normal nor i.i.d. for these experiments. In
Fig. 2 we see that SWAMP is robust to even these extremely
troublesome projections while AMP fails to converge.

As we cannot guarantee that SWAMP provides Bayes opti-
mal estimation for problems exhibiting strong correlations
in ®, we provide a comparison to other well-known ap-
proaches in Fig. 2. Here, we compare the recovery per-
formance of SWAMP to adaptive Lasso (Zou, 2006), basis
pursuit denoising (BPDN) (Chen et al., 2001), as well as
the £, generalization of Lasso (Tibshirani, 1996) for the
non-convex case p < 1 (Chartrand, 2007). In order to ad-
dress the free-parameter of the regularization strength in
both ¢, and adaptive Lasso, we compute the entire solu-
tion path and report only the most accurate solution, pro-
viding best-case oracle results for these approaches. Addi-
tionally, for adaptive Lasso we choose a weight exponent of
0.1. The tests are conducted over 500 independent realiza-
tions of the sparse reconstruction problem for N = 1024,
« = 0.6, and p = 0.2 with a noise variance A = 10~8. We
assume that the value of A is known to all the tested ap-
proaches a posteriori. For the implemenation of the ¢, re-
gression we utilized the SparseReg Matlab toolbox (Zhou,
2013), while we use the SpaSM Matlab toolbox (Sjostrand
et al., 2012) for the implementation of adaptive Lasso.

We can see that SWAMP provides more accurate estimates
across all n while also possessing a more robust transi-
tion between successful and unsuccessful reconstructions
in terms of 7. Over the tested 1, SWAMP averaged 2 sec-
onds of computation time, BPDN averaged 8 seconds, and
¢, and adaptive Lasso required on average 40 and 14.88
seconds of compute time respectively. We point out these
run times to demonstrate that despite the potential com-
plexity of the SWAMP fixed-point iteration, its computa-
tional burden is on par with, or an improvement on, other
well known techniques.

These two experiments demonstrate how the proposed
SwAMP iteration allows for AMP-like performance while
remaining robust to conditions outside of the TAP assump-
tions about the projector.

4.2. Group Testing

Group testing, also known as pooling in molecular biol-
ogy, is an approach to designing experiments so as to re-
duce the number of tests required to identify rare events
or faulty items. In the most naive approach to this prob-
lem, the number of tests is equal to the number of items,
as each item is tested individually. However, since only a
small fraction of the items may be faulty, the number of
tests can be significantly reduced via pooling, i.e. testing
many items simultaneously and allowing items to be in-
cluded within multiple different tests. The nature of this
linear combination of tests allows for a CS-type approach

0.15 0.15

—A— y=18 \7 —a— =10
5 0.10 =200 g0 = =3
L o— 4 =24 : o— 4 =50
© \
8 0.05 pF 0.05 L\g\
s
h\-«u,f %\OD
0.00 TS taasasnd  0.00 22800004
0 5 0 15 0 5 0 15
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1
10 © o—o—o—o—of0 U N
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w10 3l
n
s
51070
£
1077
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P
1079 - :
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Figure 1. AMP, SWAMP, and ¢ solvers compared for CS signal
reconstruction for sensing matrices with positive mean on sparse
signals of size N = 10 and sparsity p = 0.2 with noise variance
A = 1078, The projections for have been created following (29)
using M = N measurements with o = 0.5. Finally, a compar-
ison between the reconstruction error obtained by SwWAMP and
£1-minimization is given at the bottom for the same experimental
settings.

to faulty item detection, but with a few important caveats.
First, the operator is extremely sparse since the number of
pools, and the number of items in them, may be limited due
to physical testing constraints. Second, the elements of this
operator are commonly 0/1. Group testing is therefore a
very challenging application for AMP since the properties
of the group testing operator do not match AMP’s assump-
tions.

In one recent work (Zhang et al., 2013), the authors
use both BP and AMP for group testing and found that
while basic AMP would not converge, very good results—
optimal ones, in fact—could be obtained by using a BP
approach. This came at a large computational cost, how-
ever. Here, we have repeated the experiment of (Zhang
et al., 2013) using the SWAMP approach instead of AMP
and BP. In fact, for SWAMP, a sparse operator is a very ad-
vantageous situation in terms of computational efficiency.
Since the projector is extremely sparse by construction, we
may explicitly ignore operations involving null elements,
thus considerably improving the algorithm’s speed, as seen
in Fig. 3(b). Here, we also see that SWAMP’s computa-
tional complexity is on the order of O(N?), as is AMP’s.
Group testing experiments are shown in Fig. 3(a) where we
use random 0/1 projections, under the constraint that each
projection should sum to 7, to sample sparse 0/1 signals
with K < N non-zero elements, where N is the signal
dimensionality. While AMP diverges when attempting to
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Figure 2. At the top, convergence behavior of AMP and
SwAMP are compared for CS signal reconstruction for corre-
lated sensing matrices on sparse signals of size N = 10% and
sparsity p = 0.2 with noise variance A = 1078, The projec-
tors have been created according to (30) and are rank-deficient
for n < a = 0.6. At the bottom, a comparison between log-
scale average reconstruction MSE obtained by SWAMP , BPDN,
adaptive Lasso, and ¢, regularization is given for signals of size
N =1024for A =10"%, p=0.2,and a = 0.6.

recover these signals, SWAMP converges to the correct so-
lution in few iterations. Additionally, SwWAMP very closely
matches the BP transition, thus providing recovery perfor-
mance better than convex optimization, just as BP does, but
with much less computational complexity.

4.3. 1-bit Compressed Sensing

One of the confounding factors regarding the practical im-
plementation of CS in hardware devices is the treatment of
measurement quantization. The original CS analysis pro-
vides recovery bounds based upon the assumption of real-
valued measurements. However, in practice, hardware de-
vices cannot capture such values with infinite precision,
and so some kind of quantization on the measurements
must be implemented. Specifically, if Q(-) is a uniform
scalar quantizer, theny = Q(® x, B), where B is the num-
ber of bits used to represent the measurement. If signal re-
coverability is significantly impacted by small B, then the
dimensionality reduction provided by CS may be lost by
the requirement for many bits to encode each measurement.

Thankfully, recent works have shown CS recovery to be ro-
bust to quantization and the non-linear error it introduces.
In fact, CS has been shown (Boufounos & Baraniuk, 2008;
Jacques et al., 2012) to be robust even in the extreme case
B = 1 known as 1-bit CS. In this case, the quantized mea-
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Figure 3. (a) Group testing phase transition diagram between suc-
cessful and unsuccessful signal recovery over M, the number of
pools, and K, the number of non-zero signal elements. Successful
recovery means the correct identification of all signal elements.
The top-left of the diagram represents the easiest problems while
the bottom-right the most difficult. The transition lines are drawn
along the contour of 50% of recoveries succeeding for many tri-
als. (b) Execution times for both SWAMP and AMP using a sparse
matrix with 25% of its elements having non-zero value. The re-
ported times are measured for 500 iterations of the algorithms for
each value of NV for the parameters p = 0.25 and o = 0.75.

surements are given by
y = sign(® x). @31

The non-linearity and severity of 1-bit CS requires special
treatment from the CS recovery procedure. In (Boufounos
& Baraniuk, 2008), a renormalized fixed-point continua-
tion (RFPC) algorithm was proposed. Later, (Jacques et al.,
2012) analyzed the sensitivity of 1-bit CS to sign flips and
proposed a noise-robust recovery algorithm, binary itera-
tive hard thresholding (BIHT).

Recognizing the capability of GAMP to handle non-linear
output channels, (Kamilov et al., 2012) proposed the use
of GAMP for signal recovery from quantized CS measure-
ments. Further analysis of message-passing approaches to
the 1-bit CS problem from the perspective of statistical me-
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chanics was given in (Xu & Kabashima, 2013) where a
modified fixed-point iteration was derived via the cavity
method which provided both improved recovery accuracy
and reconstruction time as compared to the RFPC. Addi-
tionally, the authors used replica analysis to estimate the
optimal MSE performance of ¢;-minimization based 1-bit
CS reconstruction. Finally, this analysis is extended in (Xu
etal., 2014) to include the theoretical Bayesian optimal per-
formance, which we will use as a baseline of comparison
in Fig. 4(a).

Both methods (Kamilov et al., 2012) and (Xu &
Kabashima, 2013) show the effectiveness of algorithms
grounded in statistical mechanics for quantized CS recon-
struction. However, both assume an amenable set of projec-
tions. Even projections possessing small mean can cause
large degradations in performance. While mean removal is
occasionally effective in the usual CS setting, it cannot be
used for 1-bit CS due to the nature of the sign operation in
(31). An algorithm that can handle troublesome projectors
can therefore be of great use. In Sec. 2.3, we show how the
SwAMP can be modified to the general-channel setting, as
was done in GAMP. This generalization allows for 1-bit CS
recovery with SWAMP under much more relaxed require-
ments for ®.

In Fig. 4(a), we see Generalized SWAMP (G-SwAMP)
results for ®,; ~ N (Z,4). We observe that G-
SwAMP performs admirably even for this non-neglible
mean on the projectors. In terms of recovery performance,
it does not quite meet the theoretical Bayes optimal per-
formance (Xu et al., 2014), however, this is expected as
the Bayes optimal performance is calculated for v = 0.
Additionally, we see that even for this non-zero mean, G-
SwAMP outperforms both the BIHT’s empirical perfor-
mance for the same mean, as well as the best-case theo-
retical ¢; performance for zero mean (Xu & Kabashima,
2013). Finally, in Fig. 4(b), we see that GAMP fails to pro-
vide any meaningful signal recovery for v small, while G-
SwAMP continues to converge to low-MSE even for large
values of .

5. Conclusion

While the AMP algorithm has been shown to be a very de-
sirable approach for signal recovery and statistical infer-
ence problems in terms of both computational efficiency
and accuracy, it is also very sensitive to problems which
deviate from its fundamental assumptions. In this work,
we propose the SWAMP algorithm which matches AMP’s
accuracy while remaining robust to such variations, all
without unduly increasing computation or memory require-
ments. We also demonstrate how SwWAMP can be used to
solve practical problems for which AMP and GAMP can-
not be applied, namely, group testing and 1-bit CS with
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Figure 4. Results for 1-bit CS. (a) Top: Comparison between the
Bayes optimal MSE for zero-mean projectors (Xu et al., 2014)
(dashed lines) and that obtained by SWAMP for projectors with
v = 20 (markers) for three different levels of signal sparsity. The
reported empirical results were obtained by averaging over 200
instances of size N = 512. Bottom: Comparison of SWAMP and
BIHT for p = 1/8 for experiment conditions identical to the fig-
ure above; theoretical results for zero-mean projectors are also
presented for completeness, including theoretical #; performance
(Xu & Kabashima, 2013). (b) Single instance comparison be-
tween GAMP and G-SwAMP for 1-bit CS with N = 2048,
p=1/8 and o = 3.

troublesome projections. In all cases, SWAMP provides
superior accuracy as compared to /- minimization, as well
as convergence properties superior to AMP and GAMP, and
all with less computational and memory burden than BP or
r-BP.

Exact analysis of the asymptotic state evolution of SWAMP,
as well as a thorough analytical proof of its convergence,
remains a challenging open problem for future work. How-
ever, the results are promising for many difficult applica-
tions such as sparse logistic regression for identifying sig-
nificant biological markers from among many thousands of
potential features when very few test samples are available.
Such applications would be impossible for GAMP due to
the sensitivity of its convergence, but are a quite natural
application for G-SwWAMP.
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