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Abstract—We consider the problem of partially recovering
hidden binary variables from the observation of (few) censored
edge weights, a problem with applications in community detec-
tion, correlation clustering and synchronization. We describe two
spectral algorithms for this task based on the non-backtracking
and the Bethe Hessian operators. These algorithms are shown
to be asymptotically optimal for the partial recovery problem, in
that they detect the hidden assignment as soon as it is information
theoretically possible to do so.

A. Introduction

In many inference problems, the available data can be
represented on a weighted graph. Given the knowledge of
the edge weights, the task is to infer latent variables carried
by the nodes. Here, we shall consider the problem of recov-
ering binary node labels from censored edge measurements
[1], [2]. Specifically, given an Erdős-Rényi random graph
G = (V,E) ∈ G(n, α/n) with n nodes carrying latent
variables σi = ±1, 1 ≤ i ≤ n, we draw the edge labels
Jij=±1, (ij) ∈ E from the following distribution:

P (Jij |σi, σj)=(1−ε)1(Jij = σiσj)+ε1(Jij = −σiσj) , (1)

where ε is a noise parameter. In the noiseless case ε=0, we
have σiσj = Jij and one can easily recover the communities
in each connected component along a spanning tree. When
ε = 1/2, on the other hand, the graph doesn’t contain any
information about the latent variables σi, and recovery is
impossible. What happens in between? The problem of exactly
recovering the latent variables σi has been studied in [1].
It turns out that, asymptotically in the large n limit, exact
recovery is shown to be possible if and only if

α > αexact =
2 log n

(1− 2ε)2
, (2)

where α is the average degree of the graph. Note that the
variable of an isolated vertex cannot be recovered so that the
average degree has to grow at least like log n, as in the Coupon
collector’s problem, to ensure that the graph is connected.

We consider in this paper the case where the average degree
α will remain fixed as n tends to infinity. In this setting, we
cannot ask for exact recovery and we consider here a different
question: is it possible to infer an assignment σ̂i of the latent
variables that is positively correlated with the planted variables

σi? We call positively correlated an assignment σ̂i such that
the following quantity, called overlap, is strictly positive:

2

[
max

(
1

n

n∑
i=1

1(σ̂i = σi),
1

n

n∑
i=1

1(σ̂i = −σi)

)
− 1

2

]
. (3)

In the limit n → ∞, this overlap vanishes for a random
guess σ̂i, and is equal to unity if the recovery is exact. We will
refer to the task of finding a positively correlated assignment
σ̂i as partial recovery. This task has been shown [3], [4] to be
possible only if

α > αdetect =
1

(1− 2ε)2
. (4)

To the best of our knowledge, there is no rigorous proof
that this bound is also sufficient. In [3], the same authors
also showed that belief propagation (BP) allows to saturate
this bound. However, there is no rigorous analysis of BP for
this problem and the fact that condition (4) is necessary and
sufficient was left as a conjecture in [3] and only the necessary
part was proved in [4]. Moreover, from a practical point of
view, BP requires the knowledge of the noise parameter ε.

In this contribution, we describe two simple spectral al-
gorithms and we show rigorously that they are optimal, in
the sense that they can perform partial recovery as soon as
α > αdetect. Additionally, the output of these algorithms is
shown numerically to have an overlap similar to that of BP,
without requiring the knowledge of the noise parameter ε.
This closes the gap from [3], [4], where spectral methods are
introduced that succeed only if the connectivity is significantly
larger than the threshold (4). The resulting algorithms are thus
fast, trivial to implement, and asymptotically optimal.

B. Motivation and Related work

There are various interpretations and models that connect
to this problem such as i) Community detection [2]: we try
to recover the community membership of the nodes based on
noisy (or censored) observations about their relationship; ii)
Correlation clustering [5]: we try to cluster the graph G by
minimizing the number of “disagreeing edges” (Jij = −1) in
each cluster. These examples, and others such as synchronisa-
tion, are discussed in details in [1].

The inspiration for the present contribution comes from
recent developments in the problem of detecting communities
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in the (sparse) stochastic block model. The threshold for partial
recovery in the stochastic block model was conjectured in [6]
and proved in [7]–[9]. Optimal spectral methods, based on
the same operators as the algorithms introduced here, were
proposed in [10], [11]. These operators were in particular
shown to be much better suited to very sparse graphs than
the traditional adjacency or Laplacian operators.

Interestingly, this problem first appeared in statistical
physics. Indeed, the posterior distribution corresponding to eq.
(1) reads, using β0 = 1

2 log
1−ε
ε

P (σ|J) = e
β0

∑
(ij)∈E

Jijσiσj

ZJ
. (5)

This is nothing but the spin glass [12] problem where the
couplings Jij are correlated with the ”planted” configura-
tion σi [2], [13]. Such problems can also be shown to be
equivalent to spin glasses on the so-called Nishimori line
[14], [15]. With these notations, the detection condition (4)
corresponds to the well-known spin glass transition [16], [17]
at
√
αdetect tanhβ0 = 1. In this spin glass context, [18]

already conjectured that a spectral algorithm based on the non-
backtracking operator (see sec. I-A) was optimal.

C. Outline and main results

In section I, we describe two spectral algorithms that
achieve the threshold (4). These algorithms are based on two
linear operators: the non-backtracking operator introduced in
[10], and the Bethe Hessian introduced in [11]. We further
illustrate their properties by showing the results of numerical
experiments. In section II, we list the spectral properties of
the non-backtracking operator that are relevant to the present
context. Finally, we discuss the properties of the Bethe Hessian
and its relation with the non-backtracking operator in section
III and discuss its connection with the Bethe free energy.

I. SPECTRAL ALGORITHMS

A. The non-backtracking operator

The non-backtracking operator acts on the directed edges
i→ j of the graph as

Bi→j,k→` = Jk`1(j = k)1(i 6= `) . (6)

It is therefore represented by a 2m× 2m matrix, where m is
the number of edges in the graph. As discussed in [10], [18]
the motivation for using this operator is that it corresponds to
the linear approximation of belief propagation for this problem
around the so-called uninformative fixed point of BP.

Similarly to [10], one can show (see Sec. III for details)
that the eigenvalues of B that are different from ±1 form the
spectrum of the simpler 2n× 2n matrix

B′ =

(
0 D − 1
−1 J

)
, (7)

where 1 is the n×n identity matrix, D is the diagonal matrix
defined by Dii = di, where di is the degree of node i, and
J has entries equal to the edge weights Jij . Furthermore, if

(λ 6= ±1, v ∈ R2m) is an eigenpair of B, then (λ, v′ ∈ R2n)
is an eigenpair of B′ if

v′n+i =
∑
j∈∂i

vj→i, ∀1 ≤ i ≤ n, (8)

λv′i = (di − 1)v′n+i , (9)

where ∂i and di are the set of neighbors and the degree of
node i. We will therefore favor using B′. The algorithm is
then as follows: given a graph with edge weights Jij ,

Algorithm 1

1) build the matrix B′

2) compute its leading eigenvalue λ1 (with largest mag-
nitude), and its corresponding eigenvector v′ = {v′i}.

3) if λ1 ∈ R and λ1 >
√
α, where α is the average

degree of the graph, set x̂i = sign(v′n+i). Otherwise,
raise an error.

Theorem 1 ensures that whenever (4) holds, this algorithm
outputs an assignment x̂i that is positively correlated with the
planted latent variables xi.

B. The Bethe Hessian

Another operator closely related to the non-backtracking
operator was introduced in [11]. This operator, called the Bethe
Hessian, is an n× n real and symmetric matrix defined as

H = (α− 1)1−
√
αJ +D , (10)

where D is the diagonal matrix of vertex degrees. Based on this
operator, we propose the following algorithm: given a graph
with edge weights Jij ,

Algorithm 2

1) build the Bethe Hessian H
2) compute its (algebraically) smallest eigenvalue λ, and

its corresponding eigenvector v.
3) if λ < 0, set x̂i = sign(vi). Otherwise, raise an error.

Justifications for this second algorithm, and its relation with the
first one, will be provided in section III. Compared to the first
algorithm, this second one is based on a smaller, symmetric
matrix, which leads to improved numerical performance and
stability. Additionally, in the case of more general edge weights
Jij 6= ±1, the reduction of B to a smaller matrix B′ fails, and
one has to work with a 2m×2m matrix. The Bethe Hessian, on
the other hand, generalizes easily to arbitrary weights without
any loss in scalability [11].

C. Numerical results

Before turning to proofs, we show on figure 1 the numerical
performance of our two algorithms, and compare them with the
performance of belief propagation ( [3], [19]) which is believed
to be optimal on such locally tree-like graphs in the sense
that it gives, arguably, the Bayes optimal value of the overlap
asymptotically. As shown in section II, both algorithms 1 and
2 are able to achieve partial recovery as soon as α > αdetect,
and their overlap is similar to that of BP, though of course
strictly smaller. Note again that BP requires the knowledge of
ε while the two spectral algorithms described here do not, are



Fig. 1. Overlap as a function of α: comparison between algorithm 1 (based
on the non-backtracking operator B), algorithm 2 (based on the Bethe Hessian
H), and belief propagation (BP). The noise parameter ε is fixed to 0.25
(corresponding to αdetect = 4), and we vary α. The overlap for B and H is
averaged over 20 graphs of size n = 105. The overlap for BP is estimated
asymptotically using the standard method of population dynamics (see for
instance [20]), with a population of size 104. All three methods output a
positively correlated assignment as soon as α > αdetect. Spectral algorithms
1 and 2 have an overlap similar to that of BP, with the same phase transition,
while being simpler and not requiring the knowledge of the parameter ε.

trivial to implement, run faster, and avoid the potential non-
convergence problem of belief propagation while remaining
asymptotically optimal in detecting the hidden assignment. We
also observe, empirically, that the overlap given by the Bethe
Hessian seems to be always superior to the one provided by
the non-backtracking operator.

II. SPECTRAL PROPERTIES OF THE NON-BACKTRACKING
OPERATOR

In this section, we state results concerning the spectrum of
B and show that algorithm 1 outputs an assignment σ̂i that is
positively correlated with the planted one, whenever (4) holds.

As already noticed in previous work for the case of an
unweighted random graph [10], [21], the superior performance
of the non-backtracking operator B is due to the particular
shape of its spectrum. In the case of the stochastic block model
[22], it decomposes into a bulk of uninformative eigenvalues
contained in a disk of radius

√
α in the complex plane, and

a few real and informative eigenvalues outside of the disk.
This observation was recently proven in [23], in the case of 2
communities.

The following theorem generalizes this previous result to
the present setting and is the main result of this paper.

Theorem 1: Given an Erdős-Rényi random graph with
average degree α, variables assigned to vertices σi = ±1
uniformly at random independently from the graph and where
the edges carry weights sampled from (1), we denote by B
the non-backtracking operator defined by (6). and by |λ1| ≥
|λ2| ≥ · · · ≥ |λ2m| the eigenvalues of B in order of decreasing

magnitude. Then, with probability tending to 1 as n→∞, we
have:

(i) if α < αdetect then |λ1| ≤
√
α+ o(1).

(ii) if α > αdetect, then λ1 ∈ R, λ1 = α(1−2ε)+o(1) >√
α, and |λ2| ≤

√
α + o(1). Additionally, denoting

v the eigenvector associated with λ1, the following
assignment is positively correlated with the planted
variables σi:

σ̂i = sign

∑
j∈∂i

vj→i

 .

This theorem is illustrated on Fig. 2.

It is then straightforward to show the following:

Corollary 1: The assignment output by Algo. 1 is posi-
tively correlated with the planted variables σi if and only if

α > αdetect . (11)

We now give a brief sketch of proof for our Theorem 1. The
proof relies heavily on the techniques developed in [23]. We
try to use notation consistent with [23]: ~E is the set of oriented
edges and for any e = u → v = (u, v) ∈ ~E, we set e1 = u,
e2 = v and e−1 = (v, u). For a matrice M , its transpose is
denoted by M∗. We start with a simple observation: if t is
the vector in R~E defined by te = σe2 and � is the Hadamard
product, i.e. (t� x)e = σe2xe, then we have

Bx = λx⇔ B̃(t� x) = λ(t� x), (12)

with B̃ defined by B̃ef = Befσf1σf2 . In particular, B an B̃ have
the same spectrum and there is a trivial relation between their
eigenvectors. It will be easier to work with B̃ so to lighten the
notation, we will denote (in this section):

Bef = 1(e2 = f1)1(e1 6= f2)Pf ,

where Pf = σf1Jfσf2 . Note that the random variables Pf are
now i.i.d. with P(Pf = 1) = 1−P(Pf = −1) = 1− ε. With
this formulation, the problem is said in statistical physics to
be ”on the Nishimori line” [14], [15].

For the case (1 − 2ε)2α < 1, the proof is relatively easy.
Indeed, from [4], we know that our setting is contiguous to the
setting with ε = 1/2. In this case, the random variable Pi,j
are centered and a version of the trace method will allow to
upper bound the spectral radius of B. Note however, that one
needs to condition on the graph to be `-tangle-free, i.e. such
that every neighborhood of radius ` contains at most one cycle
in order to apply the first moment method.

We now consider the case (1 − 2ε)2α> 1 and denote by
P the linear mapping on R~E defined by (Px)e = Pexe−1

(i.e. the matrix associated to P is Pef = Pe1(f = e−1)).
Note that P ∗ = P and since P 2

e = 1, P is an involution so
that P is an orthogonal matrix. A simple computation shows
that BkP = PB∗k, hence BkP is a symmetric matrix. This
symmetry corresponds to the oriented path symmetry in [23]
and will be crucial to our analysis.

We also define α̃ = (1 − 2ε)α and χ ∈ R~E with χe = 1
for all e ∈ ~E. The proof strategy is then similar to Section



5 in [23]. Consider a sequence ` ∼ κ logα̃ n for some small
positive κ. Let

ϕ =
B`χ

‖B`χ‖
, θ = ‖B`Pϕ‖, ζ =

B`Pϕ

θ
.

If R = B` − θζPϕ∗ and we can prove that ‖R‖ is small in
comparison with θ, then we can use a theorem on perturbation
of eigenvalues and eigenvectors adapted from the Bauer-Fike
theorem (see Section 4 in [23]) saying that B` should have an
eigenvalue close to θ.

More precisely, for y ∈ R~E with ‖y‖ = 1, write y =
sPϕ+ x with x ∈ (Pϕ)⊥ and s ∈ R. Then, we find

‖Ry‖ = ‖B`x+ s(B`Pϕ− θζ)‖ ≤ sup
x:〈x,Pϕ〉=0,‖x‖=1

‖B`x‖ .

This last quantity can be shown to be upper bounded by
(log n)cα`/2 similarly as in Proposition 12 in [23]. Moreover,
we can also show that w.h.p.

〈ζ, Pϕ〉 ≥ c0, c0α̃
` ≤ θ ≤ c1α̃`. (13)

These bounds allow to show that B has an eigenvalue |λ1 −
α̃| = O(1/`) and that |λ2| ≤

√
α+ o(1).

Note that θ = ‖B`B∗`Pχ‖
‖B`χ‖ , so that we need to compute

quantities of the type ‖B`χ‖. We now explain the main ideas
to compute these quantities. First note that, (B`χ)e depends
only on the ball of radius ` around the edge e. For ` not too
large, this neighborhood can be coupled with a Galton-Watson
branching process with offspring distribution Poi(α). It is
then natural to consider this Poisson Galton-Watson branching
process with i.i.d. weights Pu,v ∈ {±1} on its edges with
mean 1−2ε. For u in the tree, we denote by |u| its generation
and by Y (u) =

∏t
s=1 Pγs,γs+1

where γ = (γ1, . . . , γt) is the
unique path between the root o = γ1 and u = γt. Then (B`χ)e
is well approximated by:

Z` =
∑
|u|=`

Y (u).

It is easy to see that Xt =
Zt

α̃t is a martingale (with respect
to the natural filtration) with zero mean. Moreover we have

E
[
Z2
t

]
= E

 ∑
u,v:|u|=|v|=t

Y (u)Y (v)


=

t∑
i=0

αt−i(1− 2ε)2iα2i = O
(
α̃2t
)
,

where the last equality is valid only if (1 − 2ε)2α > 1. So
in this case, we have E

[
X2
t

]
= O(1) and the martingale

Xt converges a.s. and in L2 to a limiting random variable
X(∞) with mean one. Following the argument as in [23], this
reasoning leads to (13).

We now consider the eigenvector associated with λ1. It
follows from Bauer-Fike theorem (see Section 4 in [23]) that
the eigenvector x associated to λ1 is asymptotically aligned
with B`B∗`Pχ

‖B`B∗`Pχ‖ . Thanks to the coupling with the branching

Fig. 2. Spectrum of the non-backtracking matrix in the complex plane for a
problem generated with ε = 0.25, n = 2000. We used α = 3 (left side) and
α = 8 (right side), to be compared with αdetect = 4. Each point represents
an eigenvalue. In both cases, the bulk of the spectrum is confined in a circle
of radius

√
α. However, when α > αdetect, a single isolated eigenvalue

appears out of the bulk at (1− 2ε)α (see the arrow on the right plot) and the
corresponding eigenvector is correlated with the planted assignement.

process, we can prove that ‖B`B∗`Pχ‖ ≈ α̃2` and moreover,
we have for e ∈ ~E,

(B`B∗`Pχ)e
α̃2`

≈ α̃

α(1− 2ε)2 − 1
X(∞), (14)

where X(∞) is the limit of the martingale defined above
and has mean one. We can now translate this result to the
eigenvector of the original non-backtracking operator thanks
to (12): ve = σe2xe where xe is approximated by (14). In
particular, we see that

∑
e,e2=v

ve is correlated with σv .

III. FROM THE NON-BACKTRACKING OPERATOR TO THE
BETHE HESSIAN

In this section, we relate the spectra of H, B and B′ by
generalizing some properties discussed in [10], [11]. (λ 6=
±1, v ∈ R2m) being an eigenpair of B, we define

vi =
∑
j∈∂i

vj→i, ∀1 ≤ i ≤ n . (15)

Since λvi→j =
∑
k∈∂i\j Jkivk→i it follows that λvi→j = vi−

Jijvj→i. Closing the equation on the single site elements vi
thus leads to

vi

(
1 +

∑
k∈∂i

J2
ij

λ− J2
ij

)
− λ

∑
k∈∂i

Jij
λ− J2

ij

vk = 0 . (16)

For convenience, we now define the matrix:

H(X) = (X2 − 1)1−XJ +D (17)

Note in particular that the Bethe Hessian reads H = H(
√
α).

Given that the values of Jij are ±1, all eigenvalues of B dif-
ferent from ±1 thus must satisfies the following generalization
of the Ihara-Bass formula [24] :

det
[
(λ2 − 1)1− λJ +D

]
= detH(λ) = 0 . (18)

To solve (16) one needs to find an eigenvector v of H(λ) with
a zero eigenvalue. This is a quadratic eigenproblem, which
can be turned into a linear one by introducing the matrix B′

of Algo. 1. Indeed, if λ ∈ R is an eigenvalue of B′ with



eigenvector v′, then it follows that v := {v′i}n+1≤i≤2n is
an eigenvector of H(λ) with eigenvalue 0, so that λ is an
eigenvalue of B as well (at least if λ 6= ±1), justifying eq.
(8,9). Note that since we are interested in values of λ > 1
(since λ > α and we need α > 1 from (4)), the limitation of
looking at λ 6= ±1 is irrelevant.

Finally, following [11], we can relate the spectra of B and
H by the following argument. For X large enough, H(X)
is positive definite. Then as X decreases, H(X) will gain a
new negative eigenvalue whenever X becomes equal to an
eigenvalue of B. This justifies the following corollary:

Corollary 2: if the conditions of Theorem 1 apply, then
H = H(

√
α) has a unique negative eigenvalue if α > αdetect,

and none otherwise.

Strictly speaking, if we denote by λ1 the leading eigenvalue
of B, we have only shown that the eigenvector with eigenvalue
0 of H(λ1) is positively correlated with the planted variables
if α > αdetect. However, we observe numerically (see figure
1) that the eigenvector with negative eigenvalue of H is also
positively correlated, and in fact gives a slightly better overlap.
This point will have to be clarified in future work.

It is worth noting the Bethe Hessian is also related to
the belief propagation algorithm. [25] showed that the fixed
points of the BP recursion are stationary points of the so-
called Bethe free energy. Direct optimization of the Bethe free
energy has then been proposed as an alternative to BP [26].
In this context, [11] showed that the so-called paramagnetic
fixed point (corresponding to an uninformative assignment) is
a local minimum of the Bethe free energy if and only if H is
positive definite. Algo. 2 can therefore be seen as a spectral
relaxation of the direct optimization of the Bethe free energy.
In the end, both approaches are indeed deeply related to BP.

IV. CONCLUSION

We have considered the problem of partially recovering bi-
nary variables from the observation of censored edge weights,
and described two optimal spectral algorithms for this task
that can provably perform partial recovery as soon as it is
information theoretically possible to do so. Remarkably, these
algorithms do not require the knowledge of the noise parameter
ε and perform almost as well as belief propagation, which is
expected (but not proved) to be Bayes optimal for this problem.
This allows to close the gap from previous works, both
algorithmically, by providing optimal spectral algorithms, and
theoretically, by proving that the transition (4) is a necessary
and sufficient condition for partial recovery.
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