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A. Introduction

In many inference problems, the available data can be represented on a weighted graph. Given the knowledge of the edge weights, the task is to infer latent variables carried by the nodes. Here, we shall consider the problem of recovering binary node labels from censored edge measurements [START_REF] Abbe | Decoding binary node labels from censored edge measurements: Phase transition and efficient recovery[END_REF], [START_REF] Abbe | Conditional random fields, planted constraint satisfaction and entropy concentration[END_REF]. Specifically, given an Erdős-Rényi random graph G = (V, E) ∈ G(n, α/n) with n nodes carrying latent variables σ i = ±1, 1 ≤ i ≤ n, we draw the edge labels J ij = ±1, (ij) ∈ E from the following distribution:

P (J ij |σ i , σ j ) = (1-)1(J ij = σ i σ j )+ 1(J ij = -σ i σ j ) , (1) 
where is a noise parameter. In the noiseless case = 0, we have σ i σ j = J ij and one can easily recover the communities in each connected component along a spanning tree. When = 1/2, on the other hand, the graph doesn't contain any information about the latent variables σ i , and recovery is impossible. What happens in between? The problem of exactly recovering the latent variables σ i has been studied in [START_REF] Abbe | Decoding binary node labels from censored edge measurements: Phase transition and efficient recovery[END_REF]. It turns out that, asymptotically in the large n limit, exact recovery is shown to be possible if and only if

α > α exact = 2 log n (1 -2 ) 2 , ( 2 
)
where α is the average degree of the graph. Note that the variable of an isolated vertex cannot be recovered so that the average degree has to grow at least like log n, as in the Coupon collector's problem, to ensure that the graph is connected.

We consider in this paper the case where the average degree α will remain fixed as n tends to infinity. In this setting, we cannot ask for exact recovery and we consider here a different question: is it possible to infer an assignment σi of the latent variables that is positively correlated with the planted variables σ i ? We call positively correlated an assignment σi such that the following quantity, called overlap, is strictly positive:

2 max 1 n n i=1 1(σ i = σ i ), 1 n n i=1 1(σ i = -σ i ) - 1 2 . (3) 
In the limit n → ∞, this overlap vanishes for a random guess σi , and is equal to unity if the recovery is exact. We will refer to the task of finding a positively correlated assignment σi as partial recovery. This task has been shown [START_REF] Heimlicher | Community detection in the labelled stochastic block model[END_REF], [START_REF] Lelarge | Reconstruction in the labeled stochastic block model[END_REF] to be possible only if

α > α detect = 1 (1 -2 ) 2 . (4) 
To the best of our knowledge, there is no rigorous proof that this bound is also sufficient. In [START_REF] Heimlicher | Community detection in the labelled stochastic block model[END_REF], the same authors also showed that belief propagation (BP) allows to saturate this bound. However, there is no rigorous analysis of BP for this problem and the fact that condition (4) is necessary and sufficient was left as a conjecture in [START_REF] Heimlicher | Community detection in the labelled stochastic block model[END_REF] and only the necessary part was proved in [START_REF] Lelarge | Reconstruction in the labeled stochastic block model[END_REF]. Moreover, from a practical point of view, BP requires the knowledge of the noise parameter .

In this contribution, we describe two simple spectral algorithms and we show rigorously that they are optimal, in the sense that they can perform partial recovery as soon as α > α detect . Additionally, the output of these algorithms is shown numerically to have an overlap similar to that of BP, without requiring the knowledge of the noise parameter . This closes the gap from [START_REF] Heimlicher | Community detection in the labelled stochastic block model[END_REF], [START_REF] Lelarge | Reconstruction in the labeled stochastic block model[END_REF], where spectral methods are introduced that succeed only if the connectivity is significantly larger than the threshold (4). The resulting algorithms are thus fast, trivial to implement, and asymptotically optimal.

B. Motivation and Related work

There are various interpretations and models that connect to this problem such as i) Community detection [START_REF] Abbe | Conditional random fields, planted constraint satisfaction and entropy concentration[END_REF]: we try to recover the community membership of the nodes based on noisy (or censored) observations about their relationship; ii) Correlation clustering [START_REF] Bansal | Correlation clustering[END_REF]: we try to cluster the graph G by minimizing the number of "disagreeing edges" (J ij = -1) in each cluster. These examples, and others such as synchronisation, are discussed in details in [START_REF] Abbe | Decoding binary node labels from censored edge measurements: Phase transition and efficient recovery[END_REF].

The inspiration for the present contribution comes from recent developments in the problem of detecting communities arXiv:1502.00163v2 [cs.SI] 10 Jun 2015 in the (sparse) stochastic block model. The threshold for partial recovery in the stochastic block model was conjectured in [START_REF] Decelle | Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications[END_REF] and proved in [START_REF] Mossel | Stochastic block models and reconstruction[END_REF]- [START_REF] Mossel | A proof of the block model threshold conjecture[END_REF]. Optimal spectral methods, based on the same operators as the algorithms introduced here, were proposed in [START_REF] Krzakala | Spectral redemption in clustering sparse networks[END_REF], [START_REF] Saade | Spectral clustering of graphs with the bethe hessian[END_REF]. These operators were in particular shown to be much better suited to very sparse graphs than the traditional adjacency or Laplacian operators.

Interestingly, this problem first appeared in statistical physics. Indeed, the posterior distribution corresponding to eq. (1) reads, using β 0 = 1 2 log 1-

P (σ|J) = e β0 (ij)∈E Jij σiσj Z J . (5) 
This is nothing but the spin glass [START_REF] Mézard | Spin glass theory and beyond[END_REF] problem where the couplings J ij are correlated with the "planted" configuration σ i [START_REF] Abbe | Conditional random fields, planted constraint satisfaction and entropy concentration[END_REF], [START_REF] Krzakala | Hiding quiet solutions in random constraint satisfaction problems[END_REF]. Such problems can also be shown to be equivalent to spin glasses on the so-called Nishimori line [START_REF] Krzakala | Statistical physics of inference problems[END_REF], [START_REF] Nishimori | Internal energy, specific heat and correlation function of the bond-random ising model[END_REF]. With these notations, the detection condition (4) corresponds to the well-known spin glass transition [START_REF] Viana | Phase diagrams for dilute spin glasses[END_REF], [START_REF] Guerra | The high temperature region of the vianabray diluted spin glass model[END_REF] at √ α detect tanh β 0 = 1. In this spin glass context, [START_REF] Zhang | Non-backtracking operator for ising model and its application in attractor neural networks[END_REF] already conjectured that a spectral algorithm based on the nonbacktracking operator (see sec. I-A) was optimal.

C. Outline and main results

In section I, we describe two spectral algorithms that achieve the threshold (4). These algorithms are based on two linear operators: the non-backtracking operator introduced in [START_REF] Krzakala | Spectral redemption in clustering sparse networks[END_REF], and the Bethe Hessian introduced in [START_REF] Saade | Spectral clustering of graphs with the bethe hessian[END_REF]. We further illustrate their properties by showing the results of numerical experiments. In section II, we list the spectral properties of the non-backtracking operator that are relevant to the present context. Finally, we discuss the properties of the Bethe Hessian and its relation with the non-backtracking operator in section III and discuss its connection with the Bethe free energy.

I. SPECTRAL ALGORITHMS

A. The non-backtracking operator

The non-backtracking operator acts on the directed edges i → j of the graph as

B i→j,k→ = J k 1(j = k)1(i = ) . (6) 
It is therefore represented by a 2m × 2m matrix, where m is the number of edges in the graph. As discussed in [START_REF] Krzakala | Spectral redemption in clustering sparse networks[END_REF], [START_REF] Zhang | Non-backtracking operator for ising model and its application in attractor neural networks[END_REF] the motivation for using this operator is that it corresponds to the linear approximation of belief propagation for this problem around the so-called uninformative fixed point of BP.

Similarly to [START_REF] Krzakala | Spectral redemption in clustering sparse networks[END_REF], one can show (see Sec. III for details) that the eigenvalues of B that are different from ±1 form the spectrum of the simpler 2n × 2n matrix

B = 0 D -1 -1 J , ( 7 
)
where 1 is the n × n identity matrix, D is the diagonal matrix defined by D ii = d i , where d i is the degree of node i, and J has entries equal to the edge weights J ij . Furthermore, if

(λ = ±1, v ∈ R 2m ) is an eigenpair of B, then (λ, v ∈ R 2n ) is an eigenpair of B if v n+i = j∈∂i v j→i , ∀1 ≤ i ≤ n, (8) 
λv i = (d i -1)v n+i , (9) 
where ∂i and d i are the set of neighbors and the degree of node i. We will therefore favor using B . The algorithm is then as follows: given a graph with edge weights

J ij , Algorithm 1 
1) build the matrix B 2) compute its leading eigenvalue λ 1 (with largest magnitude), and its corresponding eigenvector v = {v i }.

3) if λ 1 ∈ R and λ 1 > √ α
, where α is the average degree of the graph, set xi = sign(v n+i ). Otherwise, raise an error.

Theorem 1 ensures that whenever (4) holds, this algorithm outputs an assignment xi that is positively correlated with the planted latent variables x i .

B. The Bethe Hessian

Another operator closely related to the non-backtracking operator was introduced in [START_REF] Saade | Spectral clustering of graphs with the bethe hessian[END_REF]. This operator, called the Bethe Hessian, is an n × n real and symmetric matrix defined as

H = (α -1)1 - √ αJ + D , (10) 
where D is the diagonal matrix of vertex degrees. Based on this operator, we propose the following algorithm: given a graph with edge weights

J ij , Algorithm 2 
1) build the Bethe Hessian H 2) compute its (algebraically) smallest eigenvalue λ, and its corresponding eigenvector v. 3) if λ < 0, set xi = sign(v i ). Otherwise, raise an error.

Justifications for this second algorithm, and its relation with the first one, will be provided in section III. Compared to the first algorithm, this second one is based on a smaller, symmetric matrix, which leads to improved numerical performance and stability. Additionally, in the case of more general edge weights J ij = ±1, the reduction of B to a smaller matrix B fails, and one has to work with a 2m×2m matrix. The Bethe Hessian, on the other hand, generalizes easily to arbitrary weights without any loss in scalability [START_REF] Saade | Spectral clustering of graphs with the bethe hessian[END_REF].

C. Numerical results

Before turning to proofs, we show on figure 1 the numerical performance of our two algorithms, and compare them with the performance of belief propagation ( [3], [START_REF] Pearl | Reverend bayes on inference engines: A distributed hierarchical approach[END_REF]) which is believed to be optimal on such locally tree-like graphs in the sense that it gives, arguably, the Bayes optimal value of the overlap asymptotically. As shown in section II, both algorithms 1 and 2 are able to achieve partial recovery as soon as α > α detect , and their overlap is similar to that of BP, though of course strictly smaller. Note again that BP requires the knowledge of while the two spectral algorithms described here do not, are The overlap for BP is estimated asymptotically using the standard method of population dynamics (see for instance [START_REF] Mezard | Information, physics, and computation[END_REF]), with a population of size 10 4 . All three methods output a positively correlated assignment as soon as α > α detect . Spectral algorithms 1 and 2 have an overlap similar to that of BP, with the same phase transition, while being simpler and not requiring the knowledge of the parameter .

trivial to implement, run faster, and avoid the potential nonconvergence problem of belief propagation while remaining asymptotically optimal in detecting the hidden assignment. We also observe, empirically, that the overlap given by the Bethe Hessian seems to be always superior to the one provided by the non-backtracking operator.

II. SPECTRAL PROPERTIES OF THE NON-BACKTRACKING

OPERATOR

In this section, we state results concerning the spectrum of B and show that algorithm 1 outputs an assignment σi that is positively correlated with the planted one, whenever (4) holds.

As already noticed in previous work for the case of an unweighted random graph [START_REF] Krzakala | Spectral redemption in clustering sparse networks[END_REF], [START_REF] Saade | Spectral density of the non-backtracking operator on random graphs[END_REF], the superior performance of the non-backtracking operator B is due to the particular shape of its spectrum. In the case of the stochastic block model [START_REF] Holland | Stochastic blockmodels: First steps[END_REF], it decomposes into a bulk of uninformative eigenvalues contained in a disk of radius √ α in the complex plane, and a few real and informative eigenvalues outside of the disk. This observation was recently proven in [START_REF] Bordenave | Non-backtracking spectrum of random graphs: community detection and non-regular ramanujan graphs[END_REF], in the case of 2 communities.

The following theorem generalizes this previous result to the present setting and is the main result of this paper.

Theorem 1: Given an Erdős-Rényi random graph with average degree α, variables assigned to vertices σ i = ±1 uniformly at random independently from the graph and where the edges carry weights sampled from (1), we denote by B the non-backtracking operator defined by [START_REF] Decelle | Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications[END_REF]. and by

|λ 1 | ≥ |λ 2 | ≥ • • • ≥ |λ 2m |
the eigenvalues of B in order of decreasing magnitude. Then, with probability tending to 1 as n → ∞, we have:

(i) if α < α detect then |λ 1 | ≤ √ α + o(1). (ii) if α > α detect , then λ 1 ∈ R, λ 1 = α(1-2 )+o(1) > √ α, and |λ 2 | ≤ √ α + o(1).
Additionally, denoting v the eigenvector associated with λ 1 , the following assignment is positively correlated with the planted variables σ i :

σi = sign   j∈∂i v j→i   .
This theorem is illustrated on Fig. 2.

It is then straightforward to show the following:

Corollary 1: The assignment output by Algo. 1 is positively correlated with the planted variables σ i if and only if

α > α detect . ( 11 
)
We now give a brief sketch of proof for our Theorem 1. The proof relies heavily on the techniques developed in [START_REF] Bordenave | Non-backtracking spectrum of random graphs: community detection and non-regular ramanujan graphs[END_REF]. We try to use notation consistent with [START_REF] Bordenave | Non-backtracking spectrum of random graphs: community detection and non-regular ramanujan graphs[END_REF]: E is the set of oriented edges and for any e = u → v = (u, v) ∈ E, we set e 1 = u, e 2 = v and e -1 = (v, u). For a matrice M , its transpose is denoted by M * . We start with a simple observation: if t is the vector in R E defined by t e = σ e2 and is the Hadamard product, i.e. (t x) e = σ e2 x e , then we have

Bx = λx ⇔ B(t x) = λ(t x), (12) 
with B defined by Bef = B ef σ f1 σ f2 . In particular, B an B have the same spectrum and there is a trivial relation between their eigenvectors. It will be easier to work with B so to lighten the notation, we will denote (in this section):

B ef = 1(e 2 = f 1 )1(e 1 = f 2 )P f ,
where P f = σ f1 J f σ f2 . Note that the random variables P f are now i.i.d. with P(P f = 1) = 1 -P(P f = -1) = 1 -. With this formulation, the problem is said in statistical physics to be "on the Nishimori line" [START_REF] Krzakala | Statistical physics of inference problems[END_REF], [START_REF] Nishimori | Internal energy, specific heat and correlation function of the bond-random ising model[END_REF].

For the case (1 -2 ) 2 α < 1, the proof is relatively easy. Indeed, from [START_REF] Lelarge | Reconstruction in the labeled stochastic block model[END_REF], we know that our setting is contiguous to the setting with = 1/2. In this case, the random variable P i,j are centered and a version of the trace method will allow to upper bound the spectral radius of B. Note however, that one needs to condition on the graph to be -tangle-free, i.e. such that every neighborhood of radius contains at most one cycle in order to apply the first moment method.

We now consider the case (1 -2 ) 2 α > 1 and denote by P the linear mapping on R E defined by (P x) e = P e x e -1 (i.e. the matrix associated to P is P ef = P e 1(f = e -1 )). Note that P * = P and since P 2 e = 1, P is an involution so that P is an orthogonal matrix. A simple computation shows that B k P = P B * k , hence B k P is a symmetric matrix. This symmetry corresponds to the oriented path symmetry in [START_REF] Bordenave | Non-backtracking spectrum of random graphs: community detection and non-regular ramanujan graphs[END_REF] and will be crucial to our analysis.

We also define α = (1 -2 )α and χ ∈ R E with χ e = 1 for all e ∈ E. The proof strategy is then similar to Section 5 in [START_REF] Bordenave | Non-backtracking spectrum of random graphs: community detection and non-regular ramanujan graphs[END_REF]. Consider a sequence ∼ κ log α n for some small positive κ. Let

ϕ = B χ B χ , θ = B P ϕ , ζ = B P ϕ θ .
If R = B -θζP ϕ * and we can prove that R is small in comparison with θ, then we can use a theorem on perturbation of eigenvalues and eigenvectors adapted from the Bauer-Fike theorem (see Section 4 in [START_REF] Bordenave | Non-backtracking spectrum of random graphs: community detection and non-regular ramanujan graphs[END_REF]) saying that B should have an eigenvalue close to θ.

More precisely, for y ∈ R E with y = 1, write y = sP ϕ + x with x ∈ (P ϕ) ⊥ and s ∈ R. Then, we find

Ry = B x + s(B P ϕ -θζ) ≤ sup x: x,P ϕ =0, x =1 B x .
This last quantity can be shown to be upper bounded by (log n) c α /2 similarly as in Proposition 12 in [START_REF] Bordenave | Non-backtracking spectrum of random graphs: community detection and non-regular ramanujan graphs[END_REF]. Moreover, we can also show that w.h.p.

ζ, P ϕ ≥ c 0 , c 0 α ≤ θ ≤ c 1 α . (13) 
These bounds allow to show that B has an eigenvalue

|λ 1 - α| = O(1/ ) and that |λ 2 | ≤ √ α + o(1). Note that θ = B B * P χ B χ
, so that we need to compute quantities of the type B χ . We now explain the main ideas to compute these quantities. First note that, (B χ) e depends only on the ball of radius around the edge e. For not too large, this neighborhood can be coupled with a Galton-Watson branching process with offspring distribution Poi(α). It is then natural to consider this Poisson Galton-Watson branching process with i.i.d. weights P u,v ∈ {±1} on its edges with mean 1 -2 . For u in the tree, we denote by |u| its generation and by Y (u) = t s=1 P γs,γs+1 where γ = (γ 1 , . . . , γ ) is the unique path between the root o = γ 1 and u = γ t . Then (B χ) e is well approximated by:

Z = |u|= Y (u).
It is easy to see that X t = Zt αt is a martingale (with respect to the natural filtration) with zero mean. Moreover we have

E Z 2 t = E   u,v:|u|=|v|=t Y (u)Y (v)   = t i=0 α t-i (1 -2 ) 2i α 2i = O α2t ,
where the last equality is valid only if (1 -2 ) 2 α > 1. So in this case, we have E X 2 t = O(1) and the martingale X t converges a.s. and in L 2 to a limiting random variable X(∞) with mean one. Following the argument as in [START_REF] Bordenave | Non-backtracking spectrum of random graphs: community detection and non-regular ramanujan graphs[END_REF], this reasoning leads to [START_REF] Krzakala | Hiding quiet solutions in random constraint satisfaction problems[END_REF].

We now consider the eigenvector associated with λ 1 . It follows from Bauer-Fike theorem (see Section 4 in [START_REF] Bordenave | Non-backtracking spectrum of random graphs: community detection and non-regular ramanujan graphs[END_REF]) that the eigenvector x associated to λ 1 is asymptotically aligned with B B * P χ B B * P χ . Thanks to the coupling with the branching process, we can prove that B B * P χ ≈ α2 and moreover, we have for e ∈ E,

(B B * P χ) e α2 ≈ α α(1 -2 ) 2 -1 X(∞), (14) 
where X(∞) is the limit of the martingale defined above and has mean one. We can now translate this result to the eigenvector of the original non-backtracking operator thanks to [START_REF] Mézard | Spin glass theory and beyond[END_REF]: v e = σ e2 x e where x e is approximated by [START_REF] Krzakala | Statistical physics of inference problems[END_REF]. In particular, we see that e,e2=v v e is correlated with σ v .

III. FROM THE NON-BACKTRACKING OPERATOR TO THE BETHE HESSIAN

In this section, we relate the spectra of H, B and B by generalizing some properties discussed in [START_REF] Krzakala | Spectral redemption in clustering sparse networks[END_REF], [START_REF] Saade | Spectral clustering of graphs with the bethe hessian[END_REF]. (λ = ±1, v ∈ R 2m ) being an eigenpair of B, we define

v i = j∈∂i v j→i , ∀1 ≤ i ≤ n . (15) 
Since λv i→j = k∈∂i\j J ki v k→i it follows that λv i→j = v i -J ij v j→i . Closing the equation on the single site elements v i thus leads to

v i 1 + k∈∂i J 2 ij λ -J 2 ij -λ k∈∂i J ij λ -J 2 ij v k = 0 . (16) 
For convenience, we now define the matrix:

H(X) = (X 2 -1)1 -XJ + D (17) 
Note in particular that the Bethe Hessian reads H = H( √ α). Given that the values of J ij are ±1, all eigenvalues of B different from ±1 thus must satisfies the following generalization of the Ihara-Bass formula [START_REF] Bass | The ihara-selberg zeta function of a tree lattice[END_REF] :

det (λ 2 -1)1 -λJ + D = det H(λ) = 0 . (18) 
To solve [START_REF] Viana | Phase diagrams for dilute spin glasses[END_REF] one needs to find an eigenvector v of H(λ) with a zero eigenvalue. This is a quadratic eigenproblem, which can be turned into a linear one by introducing the matrix B of Algo. 1. Indeed, if λ ∈ R is an eigenvalue of B with eigenvector v , then it follows that v := {v i } n+1≤i≤2n is an eigenvector of H(λ) with eigenvalue 0, so that λ is an eigenvalue of B as well (at least if λ = ±1), justifying eq. [START_REF] Massoulie | Community detection thresholds and the weak ramanujan property[END_REF][START_REF] Mossel | A proof of the block model threshold conjecture[END_REF]. Note that since we are interested in values of λ > 1 (since λ > α and we need α > 1 from (4)), the limitation of looking at λ = ±1 is irrelevant.

Finally, following [START_REF] Saade | Spectral clustering of graphs with the bethe hessian[END_REF], we can relate the spectra of B and H by the following argument. For X large enough, H(X) is positive definite. Then as X decreases, H(X) will gain a new negative eigenvalue whenever X becomes equal to an eigenvalue of B. This justifies the following corollary:

Corollary 2: if the conditions of Theorem 1 apply, then H = H( √ α) has a unique negative eigenvalue if α > α detect , and none otherwise.

Strictly speaking, if we denote by λ 1 the leading eigenvalue of B, we have only shown that the eigenvector with eigenvalue 0 of H(λ 1 ) is positively correlated with the planted variables if α > α detect . However, we observe numerically (see figure 1) that the eigenvector with negative eigenvalue of H is also positively correlated, and in fact gives a slightly better overlap. This point will have to be clarified in future work.

It is worth noting the Bethe Hessian is also related to the belief propagation algorithm. [START_REF] Yedidia | Bethe free energy, kikuchi approximations, and belief propagation algorithms[END_REF] showed that the fixed points of the BP recursion are stationary points of the socalled Bethe free energy. Direct optimization of the Bethe free energy has then been proposed as an alternative to BP [START_REF] Welling | Belief optimization for binary networks: A stable alternative to loopy belief propagation[END_REF]. In this context, [START_REF] Saade | Spectral clustering of graphs with the bethe hessian[END_REF] showed that the so-called paramagnetic fixed point (corresponding to an uninformative assignment) is a local minimum of the Bethe free energy if and only if H is positive definite. Algo. 2 can therefore be seen as a spectral relaxation of the direct optimization of the Bethe free energy. In the end, both approaches are indeed deeply related to BP.

IV. CONCLUSION

We have considered the problem of partially recovering binary variables from the observation of censored edge weights, and described two optimal spectral algorithms for this task that can provably perform partial recovery as soon as it is information theoretically possible to do so. Remarkably, these algorithms do not require the knowledge of the noise parameter and perform almost as well as belief propagation, which is expected (but not proved) to be Bayes optimal for this problem. This allows to close the gap from previous works, both algorithmically, by providing optimal spectral algorithms, and theoretically, by proving that the transition (4) is a necessary and sufficient condition for partial recovery.

Fig. 1 .

 1 Fig.1. Overlap as a function of α: comparison between algorithm 1 (based on the non-backtracking operator B), algorithm 2 (based on the Bethe Hessian H), and belief propagation (BP). The noise parameter is fixed to 0.25 (corresponding to α detect = 4), and we vary α. The overlap for B and H is averaged over 20 graphs of size n = 10 5 . The overlap for BP is estimated asymptotically using the standard method of population dynamics (see for instance[START_REF] Mezard | Information, physics, and computation[END_REF]), with a population of size 10 4 . All three methods output a positively correlated assignment as soon as α > α detect . Spectral algorithms 1 and 2 have an overlap similar to that of BP, with the same phase transition, while being simpler and not requiring the knowledge of the parameter .

Fig. 2 .

 2 Fig.2. Spectrum of the non-backtracking matrix in the complex plane for a problem generated with = 0.25, n = 2000. We used α = 3 (left side) and α = 8 (right side), to be compared with α detect = 4. Each point represents an eigenvalue. In both cases, the bulk of the spectrum is confined in a circle of radius √ α. However, when α > α detect , a single isolated eigenvalue appears out of the bulk at (1 -2 )α (see the arrow on the right plot) and the corresponding eigenvector is correlated with the planted assignement.
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