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Abstract. The efficiency of a thermal engine working in linear response regime in a multi-
terminal configuration is discussed. For the generic three-terminal case, we provide a general
definition of local and non-local transport coefficients: electrical and thermal conductances,
and thermoelectric powers. Within the Onsager formalism, we derive analytical expressions for
the efficiency at maximum power, which can be written in terms of generalized figures of merit.
Furthermore, using two examples, we investigate numerically how a third terminal could improve
the performance of a quantum system, and under which conditions non-local thermoelectric
effects can be observed.
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Figure 1. Three-terminal thermal machine. A scattering region is connected to 3 different
fermionic reservoirs, each of these is able to exchange heat and particles with the system.
Reservoir 3 is taken as the reference for measuring temperature and energy: T3 ≡ T ; µ3 = µ.
The reservoirs 1 and 2 have small variations in temperature and chemical potential: (Ti, µi) =
(T +∆Ti, µ+∆µi), i ∈ (1, 2). With S we denote a generic coherent scattering region.

1. Introduction

Thermoelectricity has recently received enormous attention due to the constant demand for new
and powerful ways of energy conversion. Increasing the efficiency of thermoelectric materials, in the
whole range spanning from macro- to nano-scales, is one of the main challenges, of great importance
for several different technological applications [1, 2, 3, 4, 5, 6]. Progress in understanding
thermoelectricity at the nanoscale will have important applications for ultra-sensitive all-electric
heat and energy transport detectors, energy transduction, heat rectifiers and refrigerators, just to
mention a few examples. The search for optimisation of nano-scale heat engines and refrigerators
has hence stimulated a large body of activity, recently reviewed by Benenti et al. [7].

While most of the investigations have been carried out in two-terminal setups, thermoelectric
transport in multi-terminal devices just begun to be investigated [8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22] since these more complex designs may offer additional advantages. An interesting
perspective, for instance, is the possibility to exploit a third terminal to “decouple” the energy
and charge flows and improve thermoelectric efficiency [9, 10, 11, 12, 16, 17, 18, 19]. Furthermore,
fundamental questions concerning thermodynamic bounds on the efficiency of these setups has
been investigated[13, 14, 15, 20, 21], also accounting for the effects of a magnetic field breaking
the time-reversal symmetry[23]. In most of the cases studied so far, however, all but two-terminal
were considered as mere probes; i.e. no net flow of energy and charge through them was allowed.
In other works a purely bosonic reservoir has been used, only exchanging energy (and not charge)
current with the system [9, 10, 11, 12].

A genuine multi-terminal device will however offer enhanced flexibility and therefore it might
be useful to improve thermoelectric efficiency. A full characterization of these systems is still
lacking and motivates us to tackle this problem. Here we focus on the simplest instance of three
reservoirs, which can exchange both charge and energy current with the system. A sketch of
the thermal machine is shown in Fig.1, where three-terminal are kept at different temperatures
and chemical potentials connected through a scattering region. Our aim is to provide a general
treatment of the linear response thermoelectric transport for this case, and for this purpose we
will discuss local and non-local transport coefficients. Note that non-local transport coefficients
are naturally requested in a multi-terminal setup, since they connect temperature or voltage biases
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introduced between two-terminal to heat and charge transport among the remaining terminals. We
will then show that the third terminal could be exploited to improve thermoelectric performance
with respect to the two-terminal case. We will focus our investigations on the efficiency at
maximum power [24, 25, 26, 27, 28, 29, 30, 31, 32, 33], i.e. of a heat engine operating under
conditions where the output power is maximized. Such quantity, central in the field of finite-time
thermodynamics [34], is of great fundamental and practical relevance to understand which systems
offer the best trade-off between thermoelectric power and efficiency.

The paper is organized as follows. In Section 2 we briefly review the linear response, Onsager
formalism for a generic three-terminal setup. We will discuss the maximum output power and trace
a derivation of all the local and non-local transport coefficients. In Section 3 we extend the concept
of Carnot bound at the maximum efficiency to the three-terminal setup and we derive analytical
formulas of the efficiency at maximum power in various cases, depending on the flow of the heat
currents. These expressions are written in terms of generalized dimensionless figures of merit. Note
that the expressions derived in Section 2 and 3 are based on the properties of the Onsager matrix
and on the positivity of the entropy production. Therefore they hold for non-interacting as well
as interacting systems. This framework will then be applied in Section 4 to specific examples of
non-interacting systems in order to illustrate the salient physical picture. Namely, we will consider
a single quantum dot and two dots in series coupled to the three-terminal. Finally Section 5 is
devoted to the conclusions.

2. Linear response for 3-terminal systems

The system depicted in Fig. 1 is characterized by three energy and three particle currents (JU
i=1,2,3

and JN
i=1,2,3, respectively) flowing from the corresponding reservoirs, which have to fulfill the

constraints:
3

∑

i=1

JU
i = 0 (Energy conservation) ,

3
∑

i=1

JN
i = 0 (Particle conservation) , (1)

(positive values being associated with flows from the reservoir to the system). In what follows we
will assume the reservoir 3 as a reference and the system to be operating in the linear response
regime, i.e. set (T3, µ3) ≡ (T, µ) and write (Tj , µj) = (T +∆Tj , µ+∆µj) with |∆µj |/kBT ≪ 1 and
|∆Tj |/T ≪ 1 for j = 1, 2, and kB is the Boltzmann constant. Under these assumptions the relation
between currents and biases can then be expressed through the Onsager matrix L of elements Lij

via the identity:








JN
1

JQ
1

JN
2

JQ
2









=









L11 L12 L13 L14

L21 L22 L23 L24

L31 L32 L33 L34

L41 L42 L43 L44

















Xµ
1

XT
1

Xµ
2

XT
2









, (2)

where Xµ
1,2 = ∆µ1,2/T and XT

1,2 = ∆T1,2/T
2 are the generalized forces, and where JQ

1,2 =

JU
1,2 − µ1,2J

N
1,2 are the heat currents of the system, the corresponding currents to reservoir 3 being

determined from JN
1,2 and JQ

1,2 via the conservation laws of Eq. (1). In our analysis we take L to be
symmetric (i.e. Lij = Lji) by enforcing time reversal symmetry in the problem. We also remind
that, due to the positivity of the entropy production rate, such matrix has to be semi-positive
definite (i.e. L ≥ 0) and that it can be used to describe a two-terminal model connecting (say)
reservoir 1 to reservoir 3 by setting Lj3 = Lj4 = L3j = L4j = 0 for all j.
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2.1. Transport coefficients

For a two-terminal model the elements of the Onsager matrix L can be related to four quantities
which gauge the transport properties of the system under certain constraints. Specifically these are
the electrical conductance G and the Peltier coefficient Π (evaluated under the assumption that
both reservoirs have the same temperature), and the thermal conductance K and the thermopower
(or Seebeck coefficient) S (evaluated when no net charge current is flowing through the leads).
When generalized to the multi-terminal model these quantities yield to the introduction of non-
local coefficients, which describe how transport in a reservoir is influenced by a bias set between
two other reservoirs.

2.1.1. Thermopower For a two-terminal configuration the thermopower relates the voltage ∆V
that develops between the reservoirs to their temperature difference ∆T under the assumption
that no net charge current is flowing in the system, i.e. S = −

(

∆V
∆T

)

JN=0
. A generalization of this

quantity to the multi-terminal scenario can be obtained by introducing the matrix of elements

Sij = −
( ∆µi

e∆Tj

)

JN
k

= 0 ∀k,

∆Tk = 0 ∀k 6= j

, (3)

with local (i = j) and non-local (i 6= j) coefficients, e being the electron charge. In this definition,
which does not require the control of the heat currents, we have imposed that the particle currents in
all the leads are zero (the voltages are measured at open circuits) and that all but one temperature
differences are zero (of course this last condition is not required in a two-terminal model). It is
worth observing that Eq. (3) differs from other definitions proposed in the literature. For example
in Ref. [35] a generalization of the two-terminal thermopower to a three-terminal system, was
proposed by setting to zero one voltage instead of the corresponding particle current. While
operationally well defined, this choice does not allow one to easily recover the thermopower of the
two-terminal case (in our approach instead this is rather natural, see below). Finally in the probe
approach presented in Refs. [8, 13, 14, 15, 20, 21] it was possible to study a multi-terminal device
by using an effective two-terminal system only, because the heat and particle currents of the probe
terminals are set to vanish by definition. Therefore, within this approach, there are no chances of
having non-local transport coefficients.

In the three-terminal scenario we can use Eq. (2) to rewrite the elements of the matrix (3).
In particular introducing the quantities

L
(2)
ij;kl = LikLlj − LilLkj , (4)

we get (see Appendix A for details)

S11 =
1

eT

L
(2)
13;32

L
(2)
13;31

, S22 =
1

eT

L
(2)
14;31

L
(2)
13;31

, (5)

S12 =
1

eT

L
(2)
13;34

L
(2)
13;31

, S21 =
1

eT

L
(2)
13;21

L
(2)
13;31

, (6)

which yields, correctly, S11 = 1
eT

L12

L11
as the only non-zero element, by taking the two-terminal

limits detailed at the end of the previous section.

2.1.2. Electrical conductance In a two-terminal configuration the electric conductance describes
how the electric current depends upon the bias voltage between the two-terminal under isothermal
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conditions, i.e. G =
(

eJN

∆V

)

∆T=0
. The generalization to many-terminal systems is provided by the

following matrix:

Gij =
(e2JN

i

∆µj

)

∆Tk = 0 ∀k,

∆µk = 0 ∀k 6= j

. (7)

Using the three-terminal Onsager matrix (2) we find

(

G11 G12

G21 G22

)

=
e2

T

(

L11 L13

L13 L33

)

, (8)

which, in the two-terminal limit where reservoir 2 is disconnected from the rest, gives G11 = e2

T
L11

as the only non-zero element.

2.1.3. Thermal conductance The thermal conductance for a two-terminal is the coefficient which
describes how the heat current depends upon the temperature imbalance ∆T under the assumption

that no net charge current is flying through the system, i.e. K =
(

JQ

∆T

)

JN=0
. In the multi-terminal

scenario this generalizes to

Kij =
( JQ

i

∆Tj

)

JN
k

= 0 ∀k,

∆Tk = 0 ∀k 6= j

, (9)

where one imposes the same constraints as those used for the thermopower matrix (3), i.e. no
currents and ∆Tk = 0 for all terminals but the j-th. For a three-terminal case, using Eq. (4) this
gives

K11 =
1

T 2

L13L
(2)
12;32 − L12L

(2)
13;32 − L11L

(2)
23;23

L
(2)
13;31

, (10)

K22 =
1

T 2

L14L
(2)
13;43 − L13L

(2)
14;43 − L11L

(2)
34;34

L
(2)
13;31

, (11)

and

K12 = K21 =
1

T 2

L24L
(2)
13;31 + L14L

(2)
13;23 + L34L

(2)
13;12

L
(2)
13;31

. (12)

Once more, in the two-terminal limit where the reservoir 2 is disconnected from the rest, the only

non-zero element is K11 = 1
T 2

L
(2)
12;12

L11
.

2.1.4. Peltier coefficient In a two-terminal configuration the Peltier coefficient relates the heat

current to the charge current under isothermal condition, i.e. Π =
(

JQ

eJN

)

∆T=0
. For multi-terminal

systems this generalizes to the matrix

Πij =
( JQ

i

eJN
j

)

∆Tk = 0 ∀k,

∆µk = 0 ∀k 6= j

, (13)

which can be shown to be related to the thermopower matrix (3), through the Onsager reciprocity
equations, i.e. Πij(B) = TSji(−B) (B being the magnetic field on the system),[36, 37] from which,
using Eqs. (5) and (6), one can easily derive for the three-terminal case the dependence upon the
Onsager matrix L.
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3. Efficiency for 3-terminal systems

In order to characterize the properties of a multi-terminal system as a heat engine we shall now
analyze its efficiency. Generalizing the definition for the efficiency of a two-terminal machine [7, 36],
we define the steady state heat to work conversion efficiency η, for a three-terminal machine, as the
power Ẇ generated by the machine (which equals to the sum of all the heat currents exchanged
between the system and the reservoirs), divided by the sum of the heat currents absorbed by the
system, i.e.

η =
Ẇ

∑

i+
JQ
i

=

∑3
i=1 J

Q
i

∑

i+
JQ
i

=
−
∑2

i=1 ∆µiJ
N
i

∑

i+
JQ
i

, (14)

where the symbol
∑

i+
in the denominator indicates that the sum is restricted to positive heat

currents only, and where in the last expression we used Eq. (1) to express JQ
3 in terms of the other

two independent currents[41].
The definition (14) applies only to the case in which Ẇ is positive. Since the signs of the

heat currents JQ
i are not known a priori (they actually depend on the details of the system), the

expression of the efficiency depends on which heat currents are positive. For the three-terminal
system depicted in Fig. 1 we set for simplicity T3 < T2 < T1 and focus on those situations where
JQ
3 is negative (positive values of JQ

3 being associated with regimes where the machine effectively
works as a refrigerator which extract heat from the coldest reservoir of the system). Under these
conditions the efficiency is equal to

η12 =
Ẇ

JQ
1 + JQ

2

, (15)

when both JQ
1 and JQ

2 are positive, or

ηi =
Ẇ

JQ
i

, (16)

when for i = 1 or 2 only JQ
i is positive.

3.1. Carnot efficiency

The Carnot efficiency represents an upper bound for the efficiency and is obtained for an infinite-
time (Carnot) cycle. For a two-terminal thermal machine the Carnot efficiency is obtained by

simply imposing the condition of zero entropy production, namely Ṡ =
∑

i J
Q
i /Ti = 0. If the two

reservoirs are kept at temperatures T1 and T3 (with T3 < T1), from the definition of the efficiency,
Eq. (14), one gets the two-terminal Carnot efficiency ηIIC = 1− T3/T1. The Carnot efficiency for a
three-terminal thermal machine is obtained analogously by imposing the condition of zero entropy
production, when a reservoir at an intermediate temperature T2 is added. If JQ

1 only is positive as
in Eq. (16), one obtains

ηC,1 = 1−
T3

T1
+

JQ
2

JQ
1

(1− ζ32) = ηIIC +
JQ
2

JQ
1

(1− ζ32), (17)

where ζij ≡ Ti/Tj. Note that Eq. (17) is the sum of the two-terminal Carnot efficiency ηIIC and a

term whose sign is determined by (1 − ζ32). Since JQ
1 > 0, JQ

2 < 0 and ζ32 < 1, it follows that

ηC,1 is always reduced with respect to its two-terminal counterpart ηIIC . Analogously if only JQ
2 is

positive, one obtains

ηC,2 = ηIIC −
T3

T1

[

JQ
1

JQ
2

(1− ζ13)− (1 − ζ12)

]

, (18)
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which again can be shown to be reduced with respect to ηIIC , since JQ
1 < 0, JQ

2 > 0, ζ12 > 1, and
ζ13 > 1. We notice that this is a hybrid configuration (not a heat engine, neither a refrigerator):
the hottest reservoir absorbs heat, while the intermediate-temperature reservoir releases heat.
However, the heat to work conversion efficiency is legitimately defined since generation of power
(Ẇ > 0) can occur in this situation. Finally, if both JQ

1 and JQ
2 are positive as in Eq. (15) one

obtains

ηC,12 = 1−
T3

T1






1 +

ζ12 − 1

1 +
J

Q
1

J
Q
2






= ηIIC −

T3

T1

ζ12 − 1

1 +
J

Q
1

J
Q
2

. (19)

Since T3 < T2 < T1, the term that multiplies T3/T1 is positive so that ηC,12 is reduced with respect
to the two-terminal case.

It is worth noticing that, in contrast to the two-terminal case, the Carnot efficiency cannot be
written in terms of the temperatures only, but it depends on the details of the system. Moreover,
note that the Carnot efficiency is unchanged with respect of the two-terminal case if T2 = T3 in
(17) or if T2 = T1 in (19). Indeed, in this situation the quantities ζij are equal to one, making the
extra terms in Eqs. (17) or (19) to vanish.

The above results for the Carnot efficiency could be generalized to many-terminal systems.
In particular, we conjecture that, given a system that works between T1 and T3 (with T3 < T1)
and adding an arbitrary number of terminals at intermediate temperatures will in general lead
to Carnot bounds smaller than ηIIC . On the other hand, adding terminals at higher (or colder)
temperatures than T1 and T3 will make ηC increase.

Notice that within linear response and via Eq. (2) we can express the Carnot efficiencies
(17)-(19) in terms of the generalized forces Xµ

1,2.

3.2. Efficiency at Maximum Power

The efficiency at maximum power is the value of the efficiency evaluated at the values of chemical
potentials that maximize the output power Ẇ of the engine. In the two-terminal case the efficiency
at maximum power can be expressed as [28]

ηII(Ẇmax) =
ηIIC
2

ZT

ZT + 2
, (20)

where ZT = GS2

K
T is a dimensionless figure of merit which depends upon the transfer coefficient

of the system. The positivity of the entropy production imposes that such quantity should be
non-negative (i.e. ZT ≥ 0), therefore ηII(Ẇmax) is bounded to reach its maximum value ηIIC /2
only in the asymptotic limit of ZT → ∞ (Curzon-Ahlborn limit [24, 25, 26, 27] within linear
response [28]).

For the three-terminal configuration the output power is a function of the four generalized
forces (Xµ

1 , X
T
1 , X

µ
2 , X

T
2 ) introduced in Eq. (2), i.e.

Ẇ = −T (JN
1 Xµ

1 + JN
2 Xµ

2 ) . (21)

In the linear regime this is a quadratic function which can be maximized with respect to Xµ
1 and

Xµ
2 while keeping XT

1 and XT
2 constant (the existence of a maximum being guaranteed by the the

positivity of the entropy production). The resulting expression is

Ẇmax =
T 4

4
(XT

1 , X
T
2 ) M

(

XT
1

XT
2

)

, (22)
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where M =

[

c a
a b

]

is a positive semi-definite matrix, see Appendix B, whose elements depends

on the Onsager coefficients via the identities

a = G12S12S21 +G12S11S22 +G22S21S22

+G11S11S12 ,

b = G11S
2
12 + 2G12S12S22 +G22S

2
22 ,

c = G11S
2
11 + 2G12S21S11 +G22S

2
21 . (23)

Indicating with α > β ≥ 0 the eigenvalues of M we can then further simplify Eq. (22) by writing
it as

Ẇmax = (α cos2 θ + β sin2 θ)X2T 4/4 , (24)

where X =
√

(XT
1 )

2 + (XT
2 )

2 is the geometric average of system temperatures, while the angle
θ identify the rotation in the XT

1 , X
T
2 plane which defines the eigenvectors of M . We call the

parameter
P = α cos2 θ + β sin2 θ (25)

three-terminal power factor. It relates the maximum power to the temperature difference: by
construction it fulfills the inequality β ≤ P ≤ α, the maximum being achieved for θ = 0 (i.e. by
ensuring that (XT

1 , X
T
2 ) coincides with the eigenvector of M associated with its largest eigenvalue

α). Note that in the two-terminal limit we have β → 0, α → G11S
2
11, cos

2 θ → 1, so that the usual
two-terminal power factor G11S

2
11 is recovered.

Exploiting Eq. (24) we can now write the efficiency at maximum power for the three cases
detailed in Eqs. (15) and (16). Specifically we have

η1(Ẇmax) =
1

2T

∆T1Z
c
11T +∆T2(δ

−1Zb
11T + 2Za

11T )

δ−1(2ỹ + Za
11T ) + Zc

11T + 2
, (26)

η2(Ẇmax) =
1

2T

∆T2Z
b
22T +∆T1(δZ

c
22T + 2Za

22T )

δ(2y + Za
22T ) + Zb

22T + 2
, (27)

and

η12(Ẇmax) =
1

2T

∆T1Z
c
12T +∆T2(2Z

a
12T + δ−1Zb

12T )

δ−1(2(1 + y−1) + Za
12T + Zb

12T ) + 2(1 + ỹ−1) + Za
12T + Zc

12T
, (28)

where we have defined the parameters δ = XT
1 /X

T
2 = ∆T1/∆T2, y = K12/K22 and ỹ = K12/K11

and introduced the following generalized ZT coefficients:

Za
ijT =

aT

Kij

, Zb
ijT =

bT

Kij

, Zc
ijT =

cT

Kij

. (29)

The efficiencies (26), (27) and (28) can also be expressed in terms of the corresponding Carnot
efficiencies given in Eqs. (17), (18) and (19), obtaining the following equations which mimic Eq. (20)
of the two-terminal case:

η1(Ẇmax) =
ηC,1

2

Zb
11T + 2δZa

11T + δ2Zc
11T

2ỹ/y + 4δỹ + 2δ2 + Zb
11T + 2δZa

11T + δ2Zc
11T

=
ηC,1

2

Z11T

C1 + Z11T
, (30)

η2(Ẇmax) =
ηC,2

2

Zb
22T + 2δZa

22T + δ2Zc
22T

2δ2y/ỹ + 4δy + 2 + Zb
22T + 2δZa

22T + δ2Zc
22T

=
ηC,2

2

Z22T

C2 + Z22T
, (31)
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η12(Ẇmax) =
ηC,12

2

Zb
12T + 2δZa

12T + δ2Zc
12T + o(∆Ti)

2y−1 + 4δ + 2δ2ỹ−1 + Zb
12T + 2δZa

12T + δ2Zc
12T + o(∆Ti)

≃
ηC,12

2

Z12T

C12 + Z12T
,

(32)
where we have introduced the constants

C1 = 2ỹ/y + 4δỹ + 2δ2, (33)

C2 = 2δ2y/ỹ + 4δy + 2, (34)

C12 = ỹ−1 + δ2y−1 + 2δ, (35)

and the combinations of figures of merit

ZijT = (Zb
ij + 2δZa

ij + δ2Zc
ij)T . (36)

Notice also that in writing Eq. (32) we retained only the leading order neglecting contributions of
order ∆Ti or higher.

The above expressions can be used to provide a generalization of the Curzon-Ahlborn limit
efficiency for a multi-terminal quantum thermal device. Indeed using the Cholesky decompositions
on the Onsager matrix, we can prove that the constants C1, C2 defined in Eqs. (33), (34) are
positive, see Appendix B for details. This fact together with the positivity of the quantities ZiiT ,
that we have checked numerically, implies that the efficiencies ηi(Ẇmax) are always upper bounded
by half of the associated Carnot efficiencies, i.e.

ηi(Ẇmax) ≤ ηC,i/2 , (37)

the inequality being saturated when the generalized ZT coefficients (29) diverge. An analogous
conclusion can be reached also for (32), yielding

η12(Ẇmax) ≤ ηC,12/2 . (38)

In this case C12 is no longer guaranteed to be positive due to the presence of K12. Still the
inequality (38) can be derived by observing that the quantities C12 and Z12T entering in the rhs
of Eq. (32) have always the same sign.

4. Examples

In this Section we shall apply the theoretical framework developed so far to two specific non-
interacting systems attached to three terminals. Namely, we will discuss the case of a single dot
and the case of two coupled dots, in the absence of electron-electron interaction (which cannot
be dealt within the Landauer-Büttiker formalism). Our aim is to show that one can easily find
situations where the efficiency and output power are enhanced with respect to the two-terminal
case. Furthermore, through the example of the single dot, we find the conditions that guarantee
the non-local thermopowers to vanish.

The coherent flow of particles and heat through a non-interacting conductor can be described
by means of the Landauer-Büttiker formalism. Under the assumption that all dissipative and phase-
breaking processes take place in the reservoirs, the electric and thermal currents are expressed in
terms of the scattering properties of the system [38, 39, 40]. For instance, in a generic multi-
terminal configuration the currents flowing into the system from the i-th reservoir are:

JN
i =

1

h

∑

j 6=i

∫ ∞

−∞

dE Tij(E) [fi(E)− fj(E)], (39)

JQ
i =

1

h

∑

j 6=i

∫ ∞

−∞

dE (E − µi) Tij(E) [fi(E)− fj(E)], (40)
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Figure 2. (Color online) Sketch of the single dot model used in the numerical simulations: a
quantum dot with a single energy level Ed is connected to three fermionic reservoirs 1, 2, and 3.
The chemical potential and temperature of the reservoir 3 are assumed as the reference values
µ and T . The constants γ and γ2 represent the coupling between the system and the various
reservoirs (see Appendix C.1 for details). A zero value of γ2 corresponds to disconnecting the
reservoir 2 from the system: in this regime the model describes a two-terminal device where
reservoirs 1 and 3 are connected through the single dot.

where the sum over j is intended over all but the i-th reservoir, h is the Planck’s constant, Tij(E) is
the transmission probability for a particle with energy E to transit from the reservoir j to reservoir
i, and where finally fi(E) = {exp[(E − µi)/kBTi] + 1}−1 is the Fermi distribution of the particles
injected from reservoir i (notice also that we are considering currents of spinless particles). In what
follows we will use the above expressions in the linear response regime where |∆µ|/kBT ≪ 1 and
|∆T |/T ≪ 1, and compute the associated Onsager coefficients (2), see Appendix C.

4.1. Single dot

In this section we study numerically a simple model consisting of a quantum dot with a single energy
level Ed, coupled to three fermionic reservoirs, labeled 1, 2, and 3, see Fig. 2. For simplicity, the
coupling strength to electrodes 1 and 3 are taken equal to γ, while the coupling strength to electrode
2 is denoted by γ2. In particular we want to investigate how the efficiencies, output powers and
transport coefficients evolve when the system is driven from a two-terminal to a three-terminal
configuration, that is by varying the ratio γ2/γ. The two-terminal configuration corresponds
to γ2 = 0 and the third terminal is gradually switched on by increasing γ2/γ. As detailed in
Appendix C, the transmission amplitudes between each pair of terminals can be used to evaluate
the Onsager coefficients Lij – the resulting expression being provided in Eqs. (C.4). Once the
matrix Lij is known, all the currents flowing through the system, efficiencies, output powers and
transport coefficients can be calculated within the framework developed in the previous Sections.

4.1.1. Efficiencies and maximum power In Fig. 3 we show how the Carnot efficiency ηC depends
on the temperature differences ∆T1 and ∆T2, when the chemical potentials are chosen to guarantee
maximum output power, i.e., fixing the generalized forces Xµ

1,2 in order to maximize Ẇ . As we can
see, ηC increases linearly along any “radial” direction defined by a relation ∆T2 = k∆T1, where k
is a constant. In particular, the dashed lines corresponding to k = 0.5, k = 2, and k = −1 separate
the different regimes discussed in Sec. 3.1: for −1 < k < 0.5 the system absorbs heat only from
reservoir 1 (if ∆T1 > 0) or from 2 and 3 (if ∆T1 < 0); for 0.5 < k < 2.0 the system absorbs heat



Thermoelectric efficiency of three-terminal quantum thermal machines 11

-2e-03 -1e-03 0e+00 1e-03 2e-03
∆T1/T

-1e-03

0e+00

1e-03

2e-03

∆
T
2
/
T

0e+00

1,22

2, 3

3
1, 3

1

1.0e-03

2.0e-03

3.0e-03

4.0e-03

Figure 3. (Color online) Carnot efficiency ηC (density plot) of the three-terminal system
depicted in Fig. 2, as a function of the gradients of temperature in reservoirs 1 and 2 (the
chemical potentials µ1 and µ2 being chosen to guarantee maximum output power Ẇ ). The
coupling with the reservoirs have been set to have a symmetric configuration with respect to
1 and 2 (i.e. γ2 = γ). Note that ηC increases linearly along any radial direction defined by a
relation ∆T2 = k∆T1, where k is a constant. In particular, the dashed lines corresponding to
k = 0.5, k = 2 and k = −1 separate different regimes discussed in Sec. 3.1. The numbers in each
region identify the reservoirs from which the heat is absorbed. Parameter values: γ = 0.2 kBT ,
Ed − µ = 2.0 kBT .

from reservoirs from 1 and 2 (if ∆T1 > 0) or from 3 only (if ∆T1 < 0); finally, for k > 2 and k < −1
the system absorbs heat only from reservoir 2 (if ∆T2 > 0) or from 1 and 3 (if ∆T2 < 0). In the
case when only one heat flux is absorbed the Carnot efficiency is given by Eq. (17) or Eq. (18),
while it is given by Eq. (19) if two heat fluxes are absorbed.

In Figs. 4 and 5, we show how the efficiency Eq. (14), the output power Eq. (21), the efficiency
at maximum output power Eqs. (26)-(28) and the maximum output power Eq. (22), vary when
the system is driven from a two-terminal to a three-terminal configuration, i. e. by varying the
ratio γ2/γ. We set opposite signs for ∆µ1 and ∆µ2, so that the system absorbs heat only from the
hottest reservoir 1, and ∆T2 = 0, in such a way that the Carnot efficiency ηC coincides with that
of a two-terminal configuration, namely ηC = 1 − T/T1. Interestingly, we proved that increasing
the coupling γ2 to the reservoir 2 may lead to an improvement of the performance of the system.
In particular, as shown in Fig. 6, the efficiency and the output power can be enhanced at the same

time at small couplings γ2, exhibiting a maximum around γ2 ∼ 0.3γ and γ2 ∼ 0.6γ, respectively.
In Fig. 5 we show results for the same quantities but at the maximum output power [η(Ẇmax)

and Ẇmax]. In this case, while Ẇmax still increases with γ2, the corresponding efficiency decreases
approximately linearly.

In Figs. 6 and 7 we show the same quantities as in Figs. 4 and 5, but as a function of the
coupling γ for two values of γ2 (γ2 = 0 and γ2 = 0.5γ). From Fig. 6 we can see that at small γ
the coupling to a third terminal can enhance both the efficiency (for γ . 0.8kBT ) and the power
(for γ . kBT ). In Fig. 7 we note that, both for the two- and the three-terminal system, the
efficiency at maximum power tends to η/ηC = 0.5 in the limit γ → 0, while the output power
vanishes. For two-terminal the result is well known, since a delta-shaped transmission function
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Figure 4. (Color online) Left panel: Efficiency η, normalized over the associated Carnot limit
computed as in Sec. 3.1, as a function of the coupling to the reservoir 2. Note that as γ2/γ is
switched on, the efficiency increases until it reaches a maximum around γ2 ∼ 0.3γ, and then it
decreases. Right panel: Output power Ẇ extracted from the system, as a function of the coupling
to the reservoir 2. Parameters: γ = 0.1 kBT , Ed−µ = 2.0 kBT , ∆µ1 = −∆µ2 = −5×10−4 kBT ,
∆T1 = 10−3 T , and ∆T2 = 0.
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Figure 5. (Color online) Left panel: Efficiency at maximum power η(Ẇmax), normalized over
the Carnot limit, as a function of the coupling to the reservoir 2. Right panel: Maximum
output power Ẇmax extracted from the system, as a function of the coupling to the reservoir 2.
Parameters: γ = 0.1 kBT , Ed − µ = 2.0 kBT , ∆T1 = 10−3 T , and ∆T2 = 0.

leads to the divergence of the figure of merit ZT [42, 43, 44]. Correspondingly, the efficiency
at maximum power saturates the Curzon-Ahlborn bound η/ηC = 0.5. The same two-terminal
energy-filtering argument explains the three-terminal result. Indeed, we found numerically that
for γ → 0 the chemical potentials optimizing the output power are such that µ2 = µ3. Since also
the temperatures are chosen so that T2 = T3, we can conclude that terminals 2 and 3 can be seen
as a single terminal.

4.1.2. Thermopowers In this section we show analytically that the non-local thermopowers are
always zero in this model, while the local ones are equal. We consider a general situation, with
three different coupling parameters: γ1 = γ, γ2 = c γ and γ3 = d γ, with c 6= d. Under these
assumptions, the transmissions are given at the end of Appendix C. Substituting these expressions
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Figure 6. (Color online) Left panel: Efficiency η, normalized over the Carnot limit, as a
function of the coupling energy γ. Right panel: Output power Ẇ extracted from the system,
as a function of the coupling energy γ. In both cases, the full red curves correspond to a three-
terminal configuration with γ2 = 0.5γ, while the dashed blue curve refer to the two-terminal
case (γ2 = 0). Parameters: Ed − µ = 2.0 kBT , ∆µ1 = −∆µ2 = −10−4 kBT , ∆T1 = 10−3 T ,
and ∆T2 = 0.
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Figure 7. (Color online) Left panel: Efficiency at maximum power η(Ẇmax), normalized over
the Carnot limit, as a function of the coupling energy γ. Right panel: Maximum output power
Ẇmax extracted from the system, as a function of the coupling energy γ. In both cases, the full
red curves correspond to a three-terminal configuration with γ2 = 0.5γ, while the dashed blue
curves refer to the two-terminal case (γ2 = 0). Parameters: Ed − µ = 2.0 kBT , ∆T1 = 10−3 T ,
and ∆T2 = 0.

in Eqs. (5) and (6), we find:

S11 = S22 =
1

eT

L1

L0
,

S21 = S12 = 0 . (41)

This result is a direct consequence of the factorization of the energy dependence of the transmission
probabilities, which are all proportional to the same function T , as shown in Eq. (C.3). Such
factorization allows us to rewrite the Onsager’s coefficients as in Eq. (C.4) and derive Eq. (41).
The fact that the non-local thermopowers, for example S12, are zero can be understood as follows.
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Consider first the case in which T1 = T2 = T3 and terminal 2 behaves as a voltage probe. If so,
from the condition JN

2 = L31X
µ
1 + L33X

µ
2 = 0 we derive ∆µ2 = −(L31/L33)∆µ1. Due to the

factorization of the energy dependence in the transmissions we obtain ∆µ2 = (γ1/(γ1 + γ3))∆µ1.
Hence, ∆µ1 does not depend on the coupling γ2. If in particular we consider γ2 = γ, because of the
symmetry of the system under exchange of the terminal 1 and 3 we have µ1 = µ3. We can therefore
conclude that, independently of the coupling γ2, the probe voltage condition for terminal 2 implies
∆µ1 = 0. It can be shown that such result remains valid even when ∆T1 = 0 but ∆T2 6= 0, as
requested in the calculation of the thermopower S12. As a result, S12 = 0. The same argument can
be repeated for the current JN

1 with the terminal 1 acting as a voltage probe, leading to S21 = 0.

4.2. Double Dot

Let us now consider a system made of two quantum dots in series, each with a single energy level,
coupled to three fermionic reservoirs. This system is described by the Hamiltonian:

H =

[

EL −t
−t ER

]

. (42)

We call t the hopping energy between the dots, and we assume that dot L is coupled to the left
lead (1), dot R is coupled to the right lead (3) and that both are coupled to a third lead (2) (see
Fig.8). The self energies describing these couplings are:

Σ1 =

[

σ1 0
0 0

]

, Σ2 =

[

σ2 0
0 σ2

]

, Σ3 =

[

0 0
0 σ3

]

. (43)

In the wide-band approximation, we assume that these quantities are energy-independent and they
can be written as purely imaginary numbers σi = −i γi/2. The self energies thus become:

Σ1 =

[

−iγ1

2 0
0 0

]

, Σ2 =

[

−iγ2

2 0
0 −iγ2

2

]

, Σ3 =

[

0 0
0 −iγ3

2

]

. (44)

The retarded Green’s function of the system is then:

G = [EI−H − Σ]−1 =

[

E − EL − σ1 − σ2 t
t E − ER − σ3 − σ2

]−1

=

=
1

det[G]

[

E − ER + iγ3+γ2

2 −t
−t E − EL + iγ1+γ2

2

]

, (45)

with

det[G] =
(

E − EL + i
γ1 + γ2

2

)(

E − ER + i
γ3 + γ2

2

)

− t2. (46)

Let us now define the broadening matrices as Γi = i(Σi − Σ†
i ):

Γ1 =

[

γ1 0
0 0

]

, Γ2 =

[

γ2 0
0 γ2

]

, Γ3 =

[

0 0
0 γ3

]

. (47)

The matrix of transmission probability Tij between each pair of reservoirs is then given by the
Fisher-Lee formula [39, 46]

Tij = Tr
[

Γi G Γj G
†
]

. (48)



Thermoelectric efficiency of three-terminal quantum thermal machines 15

Figure 8. (Color online) Sketch of the double dot model used in the numerical simulations:
two quantum dots with a single energy level are connected in series to three fermionic reservoirs
1, 2 and 3. The chemical potential and temperature of reservoir 3 are assumed as the reference
values µ and T . A two-terminal configuration is obtained in the case in which the coupling to
reservoir 2 (equal for both the dots) vanishes (γ2 = 0).

For the system under consideration we obtain

T13 =
γ1γ3

| det[G]|2
t2, (49)

T12 =
γ1γ2

| det[G]|2

[

(E − ER)
2 +

(

γ3 + γ2
2

)2

+ t2

]

, (50)

T32 =
γ3γ2

| det[G]|2

[

(E − EL)
2 +

(

γ1 + γ2
2

)2

+ t2

]

. (51)

At this point, it is clear that the energy dependence of the transmission matrix cannot be factorized
as for the single dot case. This model is hence the simplest in which we can observe finite non-local
thermopowers and an increase of both the power and the efficiency of the corresponding thermal
machine. We find that the behavior of such quantities as functions of the various parameters is
qualitatively very similar to the case of the single dot, thus confirming that a third terminal could
improve the performance of a quantum machine.

Since in this system all the transport coefficients are different from zero, it is instructive to
study the behavior of the generalized figures of merit defined in Eq. (29). In Fig. 9 we show, in

the configuration with only one positive heat flux (JQ
1 > 0), Za

11T (dotted line), Zb
11T (dashed

line) and Zc
11T (full line). We investigate their behavior as a function of the coupling γ2 and of

the total coupling γ. Note that in the two-terminal limit (γ2 → 0) Zc
11T reduces to the standard

thermoelectric figure of merit ZT , while Za
11T and Zb

11T tend to zero. When we turn on the
interaction with the reservoir 2 (left panel), we notice that the figure of merit Zc

11T decreases,
while the figures of merit Zb

11T and Za
11T increase their absolute values. From the behavior as

a function of the total coupling γ we can see that in the limit of δ-shaped transmission function
(γ → 0), the figures of merit diverge, leading to the Carnot efficiency, while in the limit of broad
transmission window (γ → ∞), all the figures of merit go to zero and we recover the case of zero
efficiency.

4.2.1. Thermopowers As mentioned before, the fact that the energy-dependence of the
transmission matrix for the double dot cannot be factorized is sufficient to guarantee finite non-
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total coupling γ (right panel). Parameter values: EL − µ = −2 kBT , ER − µ = −20 kBT ,
γ = 0.1 kBT (left panel) and γ2 = 0.5 kBT (right panel).
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Figure 10. (Left panel) Non local thermopowers as a function of the coupling γ2 to lead 2.
The full red line corresponds to S12 = −∆µ1/∆T2, while the dashed (blue) line corresponds to
S21 = −∆µ2/∆T1. (Right panel) Local thermopowers as a function of the coupling γ2 to lead 2.
The full (red) line corresponds to S11 = −∆µ1/∆T1, while the dashed (blue) line corresponds
to S22 = −∆µ2/∆T2. Parameter values as in Fig. 9.

local thermopowers, as shown in the left panel of Fig. 10. As a function of γ2, S12 starts from zero,
while S21 starts from a finite value. This different behavior for the two non-local thermopowers
is due to the different role played by γ2 in the two cases. As far as S12 is concerned, when we
set a temperature difference ∆T2 in lead 2, a chemical potential difference ∆µ1 develops in lead
1 to annihilate the current that flows out of the lead 2. When the coupling γ2 goes to zero, that
current goes to zero and so does the chemical potential difference ∆µ1. This argument does not
hold for S21, because the temperature difference ∆T1 is set in lead 1, and γ2 does not control the
current anymore. Therefore when the coupling γ2 approaches zero the current still have a finite
value, and so the chemical potential difference ∆µ2 needed to annihilate it. Furthermore, the local
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thermopowers are no more equal, as shown in the right panel of Fig. 10.

5. Conclusions

In this paper we have developed a general formalism for linear-response multi-terminal
thermoelectric transport. In particular, we have worked out analytical expressions for the efficiency
at maximum power in the three-terminal case. By means of two simple non-interacting models
(single- and double-dot), we have shown that a third terminal can be useful to improve the
thermoelectric performance of a system with respect to the two-terminal case. Moreover, we
have discussed conditions under which non-local thermopowers could be observed. Our analysis
could be extended also to cases in which time-reversal symmetry is broken by a magnetic field or
including bosonic or superconducting terminals. It is an interesting open problem to understand
in such instances both thermoelectric performance in realistic systems and fundamental bounds on
efficiency for power generation and cooling.
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Appendix A. Calculation of the transport coefficients and thermopowers

To compute the multi-terminal thermopowers defined in Eqs. (5) and (6) we have to express one
of the temperatures as a function of a thermal current. For example let us start from the inversion
between XT

1 and JQ
1 . In the Onsager’s formalism this can be expressed as:

0 = −









JN
1

XT
1

JN
2

JQ
2









+ L









Xµ
1

JQ
1

Xµ
2

XT
2









=
(

L −I
)

AA−1

(

X

J

)

, (A.1)

where A is a permutation matrix that switches XT
1 and JQ

1 , X and J are column vectors with

components (Xµ
1 , X

T
1 , X

µ
2 , X

T
2 ) and (JN

1 , JQ
1 , JN

2 , JQ
2 ), respectively, and I is the 4 × 4 identity

matrix. Then we obtain:

0 =
(

L −I
)

AA−1

(

X

J

)

=
(

L −I
)

A

(

X∗

J∗

)

=

= BX∗ + CJ∗,

(A.2)

where X∗ and J∗ are the vectors X and J after the action of A−1, that is, with XT
1 ↔ JQ

1 ; B and
C are the matrices determined by the product

(

L −I
)

A. We can now define the thermopower
from the following equations:

X∗ = −B−1 CJ∗ ⇒









Xµ
1

JQ
1

Xµ
2

XT
2









= L−1









JN
1 = 0

XT
1 = 0

JN
2 = 0

JQ
2









. (A.3)
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For this choice of the parameters we have inverted, two different thermopowers can be defined, the
non local S12:

S12 = −
∆µ1

e∆T2
= −

1

eT

Xµ
1

XT
2

=
1

eT

L
(2)
13;34

L
(2)
13;31

, (A.4)

and the local S22:

S22 = −
∆µ2

e∆T2
= −

1

eT

Xµ
2

XT
2

=
1

eT

L
(2)
14;31

L
(2)
13;31

. (A.5)

The two-terminal limit in which reservoirs 2 and 3 only are connected is obtained after setting in
the Onsager matrix Lij = 0 if i = 1, 2 or j = 1, 2. In this limit, the previous expressions reduce to:

S12 → 0,

S22 →
1

eT

L34

L33
.

(A.6)

The non-local term goes to zero, while the local one goes to the correct value of the 2-terminal
system. The two other terms of these generalized thermopowers are obtained with the inversion
of XT

2 and JQ
2 . Then we can define S21 as the non local quantity, and S11 as the local one:

S21 = −
1

eT

Xµ
2

XT
1

=
1

eT

L
(2)
13;21

L
(2)
13;31

,

S11 = −
1

eT

Xµ
1

XT
1

=
1

eT

L
(2)
13;32

L
(2)
13;31

.

(A.7)

In a similar way all the other transport coefficients can be defined, by inverting a generalized force
with a current.

Appendix B. Cholesky Decomposition of the three-terminal Onsager matrix

In linear algebra, the Cholesky decomposition [45] is a tool which allows to write a Hermitian,
positive-definite (or semipositive-definite) matrix L as a product of a lower triangular matrix D
and its conjugate transpose D†:

L = DD†, (B.1)

(in particular, if L is real, D† is simply the transpose of D). It turns out that the sign of some
quantities defined throughout this work as combinations of products of Onsager coefficients Lij can
be easily studied by using the Cholesky decomposition on the Onsager matrix L. As an example,
by writing

D =









ρ11 0 0 0
ρ12 ρ22 0 0
ρ13 ρ23 ρ33 0
ρ14 ρ24 ρ34 ρ44









, (B.2)

it can be shown that the coefficient b and c defined in Eq. (23) are equal to

b =
ρ214(ρ

2
23 + ρ233) + (ρ23ρ24 + ρ33ρ34)

2

T 3(ρ223 + ρ233)
,

c =
ρ222ρ

2
23 + ρ212(ρ

2
23 + ρ233)

T 3(ρ223 + ρ233)
, (B.3)
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and therefore are non-negative. The coefficient

a =
ρ12ρ14(ρ

2
23 + ρ233) + ρ22ρ23(ρ23ρ24 + ρ33ρ34)

T 3(ρ223 + ρ233)

instead has undefined sign. Still one can prove that it is such that the determinant of the matrix
M which appears in Eq. (22) is non-negative. Indeed we have

det(M) =
(−ρ14ρ22ρ23 + ρ12ρ23ρ24 + ρ12ρ33ρ34)

2

T 6(ρ223 + ρ233)
, (B.4)

which, together with the positivity of b and c entails that M is semi-positive definite.
The same procedure can be used to study the sign of the constants C1, C2 and C12 defined

in Eqs. (33), (34), and (35), respectively. As it is shown here below, C1 and C2 are always non-
negative, while C12 has undefined sign:

C1 =
2[(δρ22ρ33 + ρ24ρ33 − ρ23ρ34)

2 + (ρ223 + ρ233)ρ
2
44]

ρ222ρ
2
33

,

C2 =
2[(δρ22ρ33 + ρ24ρ33 − ρ23ρ34)

2 + (ρ223 + ρ233)ρ
2
44]

(ρ24ρ33 − ρ23ρ34)2 + (ρ223 + ρ233)ρ
2
44

,

C12 =
(ρ22ρ33 + δρ24ρ33 − δρ23ρ34)

2 + δ2(ρ223 + ρ233)ρ
2
44

ρ22ρ33(ρ24ρ33 − ρ23ρ34)
.

(B.5)

Appendix C. Scattering approach in linear response: the Onsager coefficients

For a three-terminal configuration, as in the previous sections, we choose the right reservoir 3 as
the reference (µ3 = µ = 0, T3 = T ), and characterize the problem in terms of the particle/heat
currents flowing in linear response between the system and leads 1 (held at µ1 = µ + ∆µ1 and
T1 = T +∆T1) and 2 (held at µ2 = µ +∆µ2 and T2 = T +∆T2). The Onsager’s coefficients are

obtained from the linear expansion of the currents JN
i and JQ

i (i = 1, 2) given by Eqs. (39) and
(40). They can be written in terms of the transmission probabilities Tij , i, j ∈ {1, 2, 3} as:

L11 =
T

h

∫

dE (−∂Ef) (T12 + T13),

L12 =
T

h

∫

dE (−∂Ef) (E − µ)(T12 + T13) = L21,

L13 =
T

h

∫

dE (−∂Ef) (−T12) = L31,

L14 =
T

h

∫

dE (−∂Ef) (−(E − µ)T12) = L41,

L22 =
T

h

∫

dE (−∂Ef) (E − µ)2(T12 + T13),

L23 =
T

h

∫

dE (−∂Ef) (−(E − µ)T12) = L32,

L24 =
T

h

∫

dE (−∂Ef) (−(E − µ)2T12) = L42,

L33 =
T

h

∫

dE (−∂Ef) (T12 + T23),
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L34 =
T

h

∫

dE (−∂Ef) (E − µ)(T12 + T23) = L43,

L44 =
T

h

∫

dE (−∂Ef) (E − µ)2(T12 + T23), (C.1)

where T is the temperature, f denotes the Fermi-Dirac distribution at µ, and ∂E is the partial
derivative with respect to the energy.

Appendix C.1. Transmission function of a single-level dot

For a scattering region consisting of a quantum dot with a single energy level, connected to three-
terminal, we can express the transmission function as [38]

Tij =
ΓiΓj

(E − Ed)2 +
(

Γ
2

)2 , (i 6= j), (C.2)

where Γi is the contribution to the broadening due to the coupling to lead i, defined by
Γi = i(Σi − Σ†

i ), Σi being the self-energy of lead i. In the wide-band limit approximation, we
set Σi = −i γi/2, where γi does not depend on the energy. Note that this choice leads to the
identification Γi = γi. Furthermore, at the denominator, Γ = Γ1 +Γ2 +Γ3 is the total broadening
due to the coupling to all leads. If we denote γ1 = γ, γ2 = cγ, and γ3 = dγ the couplings to the
three leads, we obtain for the transmissions the values

T12 =
cγ2

(E − Ed)2 +
(1+c+d)2

4 γ2
≡ cT ,

T13 =
d γ2

(E − Ed)2 +
(1+c+d)2

4 γ2
≡ d T ,

T23 =
cd γ2

(E − Ed)2 +
(1+c+d)2

4 γ2
≡ cd T .

(C.3)

The Onsager coefficients then read as follows:

L11 = L0 (c+ d),

L12 = L1 (c+ d),

L13 = −c L0,

L14 = −c L1,

L22 = L2 (c+ d),

L23 = −c L1,

L24 = −c L2,

L33 = c L0 (1 + d),

L34 = c L1 (1 + d),

L44 = c L2 (1 + d), (C.4)

with Ln = T
h

∫

dE (−∂Ef) (E − µ)nT .
The numerical data shown in Sec. 4.1 are obtained for d = 1, i.e. for γ1 = γ3 = γ. The

two-terminal configuration corresponds to c = 0 (γ2 = 0), while the coupling to terminal 2 is
switched on progressively by increasing c.
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[16] R. Sánchez and M. Büttiker, Phys. Rev. B 83, 085428 (2011).
[17] D. Sánchez and L. Serra, Phys. Rev. B, 84, 201307(R) (2011).
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