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Gate-modulated thermopower of disordered nanowires: II.
Variable-Range Hopping Regime

Riccardo Bosisio, Cosimo Gorini, Geneviève Fleury and Jean-Louis
Pichard‡
Service de Physique de l’État Condensé (CNRS URA 2464), IRAMIS/SPEC, CEA Saclay,
91191 Gif-sur-Yvette, France

Abstract. We study the thermopower of a disordered nanowire in the field effect transistor
configuration. After a first paper devoted to the elastic coherent regime (Bosisio R., Fleury G.
and Pichard J.-L. 2014 New J. Phys. 16 035004), we consider here the inelastic activated regime
taking place at higher temperatures. In the case where charge transport is thermally assisted by
phonons (Mott Variable Range Hopping regime), we use the Miller-Abrahams random resistor
network model as recently adapted by Jiang et al. for thermoelectric transport. This approach
previously used to study the bulk of the nanowire impurity band is extended for studying its
edges. In this limit, we show that the typical thermopower is largely enhanced, attaining values
larger that 10 kB/e ∼ 1 mV K−1 and exhibiting a non-trivial behaviour as a function of the
temperature. A percolation theory by Zvyagin extended to disordered nanowires allows us to
account for the main observed edge behaviours of the thermopower.

PACS numbers: 72.20.Ee 72.20.Pa 84.60.Rb 73.23.-b 73.63.Nm

‡ Corresponding author: jean-louis.pichard@cea.fr

ar
X

iv
:1

40
3.

74
75

v2
  [

co
nd

-m
at

.m
es

-h
al

l]
  2

2 
Se

p 
20

14



Gate-modulated thermopower of disordered nanowires: II. Variable-Range Hopping Regime 2

1. Introduction

The conversion of temperature to voltage differences or its inverse, enabling respectively waste heat
recovery or cooling, is the purpose of a thermoelectric device. In linear response the device efficiency
is controlled by its dimensionless figure of merit ZT = S2GT/Ξ, with T the temperature, S the
Seebeck coefficient or thermopower and G,Ξ respectively the electrical and thermal conductances.
As ZT increases, the efficiency moves closer to the Carnot limit. The stronger the particle-hole
asymmetry in a system is, the higher S will be. An ideal thermoelectric device should then exploit to
the maximum such asymmetry, while at the same time ensuring a poor thermal and a good electrical
conductance [1]. Whereas the former requirement is necessary to increase efficiency, the latter is
needed for enough electric (cooling) power to be extracted from a heat engine (Peltier refrigerator).
From this perspective, semiconductor nanowires appear as very promising central building blocks of
flexible, efficient and environmentally friendly thermoelectric converters [2, 3, 4, 5, 6, 7, 8]. Whereas
their thermoelectric properties can be easily tuned by gates [5, 8], the phononic contribution to
thermal transport Ξph is suppressed due to the reduced dimensionality [3, 4], and a good power
output could be achieved by stacking them in parallel [9, 3, 6]. Furthermore Si-based devices,
already under intense investigation [10, 11, 12, 9, 13, 14, 3, 15, 4, 6], exploit an abundant and
non-polluting resource.

Most existing works concentrate either on highly doped samples [10, 12, 9, 3, 7, 6] or on
the thermal conductivity of undoped wires [11, 14, 16, 15, 4]. On the other hand recent studies
by Jiang et al. [17, 18] have rekindled the interest for systems in which electronic transport takes
place via phonon-assisted hopping between localised states, of which disordered nanowires with low
carrier density are a paradigmatic realization. Whereas in our first paper [19] we focused on the
low-temperature coherent regime, in this work we extend the approach reviewed in Refs. [17, 18] in
order to investigate band-edge transport in the (activated) hopping regime. Two simple physical
mechanisms have in this regime a synergy which is ideal for thermoelectric conversion [20, 21]: (i)
a strongly broken particle-hole symmetry due to the Fermi level lying close to the band edge; (ii) a
wide energy window around the Fermi level made available for transport by the phonons. In other
words, the phonons lend the carriers the energy necessary for them to hop through the system,
but of the latter only one species, either electrons or holes, has available states and thus actually
propagates.

The general setup we have in mind is sketched in Fig. 1: A disordered semiconductor nanowire
(green) connected to two metallic contacts (yellow) and deposited on an insulating substrate (blue).
A heater (grey) and an applied bias voltage can induce a temperature and an electrochemical
potential difference between the two contacts. A back gate (dark grey), placed below the substrate,
allows to shift the impurity band of the nanowire by means of a gate voltage. This way, the
transport of charges and heat can be studied when the Fermi potential of the setup probes either
the bulk of the band or its edges. Fig. 1 depicts the more commonly used field effect transistor
(FET) configuration [5]. Another possibility would be to cover only the nanowire with a top gate
(see e.g. Ref. [22]). Putting a back gate is easier, but large gate voltages (a few hundreds volts)
are necessary for shifting the impurity band, while few volts are sufficient if one uses a top gate.
The nanowire itself could be (i) lightly doped, with electrons localised around distant impurity
states, or (ii) highly doped but strongly depleted, or (iii) made of an amorphous semiconductor.
A crucial feature of such wires is that their length L should be much longer than the localisation
length ξ of their electron states, such that their electrical resistance becomes exponentially large
when the temperature is lowered below a few Kelvin degrees. A crude modelling of such setup is
sketched in Fig. 2: A purely 1D disordered chain with L� ξ, connected to two electron reservoirs
and to a phonon bath (represented by the substrate), and coupled to a gate used to modulate its
carrier density. Each site of the chain corresponds to an electronic state localised by disorder or
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Figure 1. Nanowire in the field effect transistor (FET) device configuration: The nanowire
(green) with two metal contacts (yellow) is deposited on an insulating substrate (blue). A heater
(grey) makes the left side of the setup hotter (red) than its right side. A back gate (dark grey)
is put below the substrate.

bound to impurity sites. Though such a model is strictly 1D, it should allow us to describe also
quasi-1D wires [23, 24, 25] as long as their transverse sizes remain negligible compared to the
typical hopping length (which we will define later).

In this work we are primarily interested in the thermopower S of a single nanowire, as studied
in many recent experiments [5, 6, 7, 8]. We start in Sec. 2 by introducing model and methods
employed, moving on to discuss the nanowire electrical conductance in Sec. 3 and its thermopower
in Sec. 4, before concluding in Sec. 5. Various technical details, skimmed over in the main body
for ease of reading, are gathered in the appendices.

2. Model and method

As sketched in Fig. 2, we consider a disordered nanowire of length L in which all available electronic
states are exponentially localised at positions xi, with a localisation length ξi � L. We assume
each state i is either empty, or occupied by a single electron, but cannot be doubly occupied
owing to a strong on-site Coulomb repulsion[26]. The energy levels Ei of the localised states
are distributed within a band of width 2EB and ν(E) denotes their density of states (DOS) per
unit length at energy E. They can be shifted as a whole by an external gate voltage Vg. The
nanowire is attached at its ends to two metallic contacts held at electrochemical potentials µL and
µR and temperatures TL and TR. It is also coupled to a phonon bath at temperature Tph which
provides the energy for electrons to hop between localised states. We focus on the situation in
which the temperature T is the same in all reservoirs (TL = TR = Tph ≡ T ) and consider linear
response, assuming the difference in electrochemical potentials between left and right leads to be
small (µL = µ+ δµ & µR ≡ µ).

2.1. Identification of the different transport mechanisms and of their temperature scales

Transport through the nanowire happens as follows. Since there is a continuum of available states
in the leads, we assume that charge carriers, let us say electrons, enter or leave the nanowire by
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Figure 2. Variable Range Hopping (VRH) transport for a disordered nanowire in a FET
configuration: Two ohmic contacts are connected by a 1D disordered chain of length L where
the electron states are localised. The contacts are thermalised at temperatures TL(TR) with
electrochemical potentials µL(µR) respectively. The electronic states (blue dots of coordinates
(xi, Ei)) are localised in regions of size ξi � L. Their centres xi are taken at random along the
chain, with energies Ei distributed inside an impurity band of width 2EB (shaded light blue
region). A top gate (in grey at the top of the figure) allows to shift the impurity band. The gate
potential Vg sets the center of the band (dashed line). In linear response, the carriers are injected
from the left (right) contacts inside the electronic states localised near the edges of the chain,
in a window of energies of order kBTL(kBTR) around µL(µR). Inside the chain, the carrier
propagation is thermally assisted by phonons (wavy arrows), which allow a carrier to do hops of
variable range between localised states at different energies. The phonon bath at temperature
Tph is represented by the substrate upon which the chain is deposited.

elastic tunneling processes, without absorbing or emitting phonons§. Inside the nanowire they
have the possibility to hop either to localised states at higher energies by absorbing phonons, or to
localised states at lower energies by emitting them. Determining precisely the favoured electronic
paths is a complicated task. The proper way to tackle this issue is to map the hopping model to
an equivalent random resistor network [27] and then to reduce it to a percolation problem [26].
Such microscopic approaches are needed for giving precise quantitative predictions, but Mott’s
original argument [28, 29] gives the main ideas: Assuming the localisation lengths and the density
of states to be constant within a certain window of energies ∆ to be explored (ξi ≈ ξ, ν(E) ≈ ν),
the electron transfer from one localised state to another separated by a distance x and an energy
δE ∝ 1/(νxD) (D = 1 for us) results from a competition between the elastic tunneling probability
∝ exp−(2x/ξ) to do a hop of length x in space and the Boltzmann probability (∝ exp−(δE/kBT ))
to do a hop of δE in energy. Short hops are favoured by the former but are too energy-greedy for
the latter, since localised states close in space are far in energy. This competition gives rise to an
optimal electron hopping length, the Mott hopping length, which reads

LM =

√
ξ

2νkBT
(1)

§ Phonon absorption and emission in the electrodes could be straightforwardly taken into account. However, it
should not add any new physics and we neglect it.
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in one dimension. LM is a decreasing function of the temperature, which allows us to define two
characteristic temperature scales: the activation temperature

kBTx =
ξ

2νL2
(2)

at which LM ' L and the Mott temperature

kBTM =
2

νξ
, (3)

at which LM ' ξ. At low temperatures T < Tx, LM exceeds the system size and transport
through the nanowire occurs via elastic coherent tunneling (see Ref. [19]). Above Tx, transport
becomes inelastic, and remains coherent at scales smaller than LM only. The regime of intermediate
temperature Tx < T < TM is known as the variable-range hopping (VRH) regime. As sketched
in Fig. 2, electronic transport in this regime is achieved via several jumps of length ≈ LM (with
ξ < LM < L). As it can be proven using a microscopic approach based on random resistor networks
and percolation theory [26, 20, 21], the VRH conductance can be simply expressed in terms either
of LM , TM or the hopping energy ∆,

G ∝ exp

{
−2LM

ξ

}
= exp

{
−
√
TM
T

}
= exp

{
− ∆

kBT

}
, (4)

where (it will be of prime importance later on)

∆ = kB
√
TMT (5)

defines the width of the energy interval around µ inside which are located all states contributing
to transport. Let us underline that if Tx < T � TM , ∆ becomes much larger than kBT , the
relevant energy interval for transport in the coherent regime (T < Tx). At large temperatures
T > TM , LM becomes of the order of or even smaller than the localisation length ξ, and one enters
the nearest-neighbour hopping (NNH) regime where transport is simply activated between nearest
neighbour localised states. Actually, in 1D, the crossover from VRH to simply activated transport
is expected to take place at temperatures lower than TM . The reason is the presence of highly
resistive regions in energy-position space, where electrons cannot find empty states at distances
∼ ∆, LM . These regions can be circumvented in 2D or 3D but not in 1D, where they behave as
”breaks” in the percolating path: electrons are topologically constraint to cross them by thermal
activation, making the temperature dependence of the overall resistance simply activated [30, 31].
The critical temperature Ta that marks the onset of this simply activated behaviour is given
implicitly by the relation [32]

L =
ξ

2

√
TM
2Ta

exp

{
TM
2Ta

}
. (6)

Below Ta, the probability of having such breaks in the nanowire can be neglected.

In Fig. 3 the temperatures Tx, TM and Ta are given as a function of the gate voltage Vg, taking
for the disordered nanowire an Anderson model where the L random site potentials are shifted by
Vg‖, the electrochemical potential µ being fixed in the reservoirs.

‖ We assume the gate acting only along the nanowire, which corresponds to using a top gate. A FET configuration
with a back gate should behave similarly, the field effect in the metallic contacts being negligible.
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Figure 3. Gate dependence of the temperature scales separating the different regimes of
electronic transport in a disordered nanowire: Elastic regime (grey), inelastic VRH regime (blue)
and simply activated regime (red)). By varying the gate voltage Vg , one scans the impurity band,
starting from its center (when Vg−µ = 0) towards its edges (approximately for |Vg−µ| = ε̄) and
ending up eventually outside the band (when |Vg − µ| & ε̄). The scales Tx, Ta and TM defined
in Sec. 2.1 have been plotted for the Anderson model introduced in Sec. 2.3, with W = t and
L = 200.

Still following Mott’s approach, we consider ξi ≈ ξ and ν(E) ≈ ν (both evaluated at µ), thus
neglecting their variations within ∆. The shape of the curves is a consequence of the explicite
energy dependence of the localisation length ξ and of the DOS ν, which is detailed in Sec. 2.3.
Approaching an impurity band edge (±EB), both ξ and ν decrease rapidly, inducing a large increase
of TM and Ta that must be eventually cut-off when TM exceeds the bandwidth 2EB . Indeed, when
T → TM = 2EB , ∆ → 2EB and the range of states available for hopping transport reaches its
limit. More explicitly, we estimate this to happen at an energy scale |µ−Vg| ≈ ε̄ ≈ 2.2t for the set
of parameters considered in Fig. 3.

When Eqs. (2), (3), and (6) cease to be valid, we will use a simplified model introduced by
Zvyagin for estimating the temperatures Tx, TM and Ta. In this model, the DOS drops abruptly
from a constant to 0 at ε̄. This yields that, when |µ − Vg| & ε̄, TM and Ta do not vary anymore
and keep their values at ε̄, while the activation temperature Tx gives the energy that electrons
need in order to jump inside the band: kBTx ≈ |µ − Vg| − ε̄. We will show later that the edge
behaviours numerically obtained using the Anderson model are well described by this simplified
model.

As a summary, let us now discuss the regimes of electronic transport corresponding to each
region of the temperature diagram established in Fig. 3. Standard VRH regime takes place in
region (2a), at intermediate temperatures, when µ lies inside the impurity band. According to
Mott law in 1D, the average logarithm of the resistance behaves there as (TM/T )1/2. In Sec. 3, we
will see how this statement has to be revisited in the vicinity of the band edges, and how to take
into account the energy dependency of ξ. At higher temperatures, transport is simply activated
(the temperature dependence of the logarithm of the resistance ∝ T−1). This is due either to
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the presence of a very resistive link in the best conducting path that dominates the resistance
(region (3a)), or simply to the fact that the thermal energy kBT is so high that transport occurs
via hops between nearest neighbour states, no matter how far in energy they are (region (4a)). On
the contrary at lower temperatures, in region (1a), L ≤ LM and transport ceases to be thermally
activated to become elastic and coherent through the whole nanowire. The thermopower in this
regime has been studied in Ref. [19]. If now µ lies outside the impurity band, electrons need to
absorb energy in order to enter the band. In region (1b), kBT is too small for that (the only way
for electrons to cross the nanowire is then to tunnel directly from one reservoir to the other, which
results in a exponentially vanishing conductance). At higher temperatures, in regions (2b), (3b)
and (4b), electrons can be thermally activated. Once they have entered the nanowire, they hop
from site to site according to the mechanism prevailing in regions (2a), (3a) and (4a) respectively.

2.2. Formulation in terms of a random resistor network

We follow the approach used in Refs. [17, 18] for studying thermoelectric transport in the hopping
regime. It consists in solving the Miller-Abrahams resistor network [27] which was first introduced
for describing charge transport in weakly doped crystalline semiconductors and later on extended
to non crystalline Anderson insulators. The nodes are given by the localised states. Each pair
of nodes i, j is connected by an effective resistor, which depends on the transition rates Γij ,Γji
induced by local electron-phonon interactions. In addition, one needs to connect this network to
the leads, if one wants to calculate the charge and heat currents flowing through it. Usually (and
actually, we did not find a reference where this is not the case) one assumes for calculating these
transition rates that ξi = ξ(Ei) ≡ ξ (evaluated at µ) for the localisation lengths of the different
states, which can be done if the variations of the ξi are negligible within ∆. Here we need to
go beyond such an approximation, since we are interested in band edge transport, where those
variations cannot be neglected. The procedure is summarized below.

Let us consider a pair of localized states i and j of energies Ei and Ej . Assuming no correlations
between their occupation numbers, the (time-averaged) transition rate from state i to state j is
given by the Fermi golden rule as [18]

Γij = γij fi (1− fj) [Nij + θ(Ei − Ej)] , (7)

where fi is the average occupation number of state i and Nij = [exp{|Ej −Ei|/kBT}− 1]−1 is the
phonon Bose distribution at energy |Ej −Ei|. The presence of the Heaviside function accounts for
the difference between phonon absorption and emission [26]. γij is the hopping probability i → j
due to the absorption/emission of one phonon when i is occupied and j is empty. Assuming that
the energy dependence of ξ can be neglected, in the limit xij � ξ one obtains

γij ' γep exp(−2xij/ξ) . (8)

Here xij = |xi−xj | is the distance between the states, whereas γep, containing the electron-phonon
matrix element, depends on the electron-phonon coupling strength and the phonon density of states.
Since it is weakly dependent on Ei, Ej and xij compared to the exponential factors, it is assumed
to be constant. Under the widely used approximation [26, 33, 34, 20] |Eij | � kBT , Eq. (7) reduces
to:

Γij ' γep e−2xij/ξ e−(|Ei−µ|+|Ej−µ|+|Ei−Ej |)/2kBT . (9)
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Hereafter, we will go beyond these standard approximations by considering the exact expression (7)
for Γij , and by taking

γij = γep

(
1

ξi
− 1

ξj

)−2
(

exp{−2rij/ξj}
ξ2
i

+
exp{−2rij/ξi}

ξ2
j

− 2 exp{−rij(1/ξi + 1/ξj)}
ξiξj

)
, (10)

for γij . Eq. (10) takes into account the energy dependence of ξ(E) and is derived in Appendix A.
The tunneling transition rates between each state i and the leads α (α = L or R) are written

in a similar way as
Γiα = γiα fi [1− fα(Ei)] (11)

where
γiα ' γe exp(−2xiα/ξi) . (12)

In the above equations fα(E) = [exp{(E − µα)/kBT}+ 1]−1 is lead α’s Fermi-Dirac distribution,
xiα denotes the distance of state i from lead α and γe is a rate quantifying the coupling between
the localized states and the leads (taken constant for the same reason as γep).

Then, the net electric currents flowing between each pair of localized states and between states
and leads are obtained by

Iij = e (Γij − Γji) (13a)

Iiα = e (Γiα − Γαi) α = L,R (13b)

e < 0 being the electron charge. The linear response solution of this random resistor network
problem is reviewed in Ref. [18]. Details of the calculation of the charge currents and heat currents
are summarized in Appendix A for the Peltier configuration we consider, where the temperature is
T everywhere and the reference (equilibrium) electrochemical potential is that of the right reservoir
(µ ≡ µR). In this case the electrical conductance G, Peltier coefficient Π and thermopower S are

determined within the Onsager formalism by the charge (IeL) and heat (IQL ) currents exchanged
with the left reservoir:

G =
IeL
δµ/e

, (14a)

Π =
IQL
IeL
, (14b)

S =
Π

T
=

1

T

IQL
IeL
. (14c)

In the last equation, the Kelvin-Onsager symmetry relation [35] Π = ST has been used for deducing
the thermopower. Notice that a different choice of reference could be adopted (see for instance
Ref. [18]) without affecting the transport coefficients G, Π and S.

2.3. Anderson model for the localised states

The set of energies Ei and localisation lengths ξi are required as input parameters of the random
resistor network problem. To generate them we use the Anderson model. The disordered nanowire
is modeled as a 1D lattice of length L with a lattice spacing a set equal to one, described by a
L× L tight-binding Hamiltonian:

H = −t
L−1∑
i=1

(
c†i ci+1 + h.c.

)
+

L∑
i=1

(εi + Vg)c
†
i ci , (15)
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where c†i and ci are the electron creation and annihilation operators on site i and t is the hopping
energy. In the following all energies will be expressed in units of t. The disorder potentials εi are
(uncorrelated) random numbers uniformly distributed in the interval [−W/2,W/2]. The constant
potential Vg is added to take into account the presence of an external top gate, allowing to shift
the whole nanowire impurity band.

By diagonalizing the Hamiltonian (15), we find the energies Ei of the localised states. They
are distributed with the DOS ν(E) in the interval [Vg −EB , Vg +EB ], ±EB being the band edges
of the model at Vg = 0. In the limit L→∞, EB = 2t+W/2. To generate the localisation lengths
ξi, we neglect sample-to-sample fluctuations and assume that ξi is given by the typical localisation
length ξ(Ei) at energy Ei, characterizing the exponential decay of the average logarithm of the
elastic conductance (lnG ∼ −2L/ξ). The DOS ν(E) and localisation length ξ(E) are shown in
Fig. 4; their energy dependence is analytically known in the large size and small disorder limits,
both in the bulk of the band and close to the edges (see Refs. [36, 19]). Obviously, if µ lies close
to the band edges and/or if the available energy window ∆ around µ is not small compared to t,
the energy dependency of ν(E) and ξ(E) cannot be neglected. This explains why we need to go
beyond the approximation of constant DOS and localisation length when scanning the impurity
band with the gate voltage.

Solving the Anderson model gives us the full set of localised states: their energy levels Ei, their
localisation lengths ξi = ξ(Ei) and their positions along the disordered chain. However, to speed
up the procedure of building a basis of localised states, we simply assign the levels Ei to random
positions xi between 0 and L along the chain (with a uniform distribution). This approximation
is conventional in numerical simulations of VRH transport (see [37, 32, 18] among others) ¶.

Hereafter, we will study disordered chains with a disorder strength W = t, which is sufficiently
small for using weak disorder expansions [19] and sufficiently large for ensuring L� ξi at relatively
small sizes. For Vg = 0 and L ≈ 1000, the spectrum edges of the disordered nanowire are found at
EB ≈ 2.35 t, which is smaller than 2.5 t, the value characterizing the limit L→∞. Such finite size
effects are a consequence of the infinitely small tails of the asymptotic DOS ν(E) shown in Fig. 4:
States of energy close to 2.5 t can only exist in infinitely long chains.

3. Electrical Conductance

3.1. Background

The electrical conductance of one-dimensional conductors in the VRH regime has been much
studied in the literature, both experimentally [38, 39, 40, 41, 42] and theoretically [30, 37, 32, 31,
43, 44]. In particular, the validity of Mott law for the typical conductance in 1D

lnG(T ) ∼ −α
√
TM
T
, (16)

with α ≈ 1, was a subject of controversy for a long time since strictly speaking, Mott’s argument
leading to Eq. (16) does not hold in 1D. It was shown that due to the presence of ”breaks”, the
prefactor α is actually also a function of the temperature and system length [32, 31]. Nevertheless,
the T - and L-dependency of α turns out to be so weak that at low temperatures α is almost

¶ By doing this we lose a feature of Anderson model, namely that states which are close in energy are distant in
space, and as a consequence our model may overestimate the hopping between certain pairs of states. However this
should not play an important role if L is sufficiently large, L� ξ(µ). In this case states which are accidentally taken
close both in space and in energy should be not only rare but, more importantly, can merely be seen – regarding
percolation – as one small localised cluster, i.e. as a single new effective localised state. The reason is that the
optimal percolation path is eventually determined by the most resistive links. Thus, we can always reformulate the
problem in order to end up in a situation in which neighbouring states are far away in energy.



Gate-modulated thermopower of disordered nanowires: II. Variable-Range Hopping Regime 10

0

25

50

75

100

ξ

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
(E-V

g
) / t

0

0.1

0.2

0.3

0.4

0.5

ν
 (

1
/t

)

Figure 4. Density of states per site ν (◦) and localisation length ξ (�), as a function of energy
E for the 1D Anderson model (15) with disorder amplitude W/t = 1. The points correspond
to numerical data (obtained in the large length limit with L = 1600). Analytical expressions
describing ν((E − Vg)/t) and ξ((E − Vg)/t) are given in Ref. [19].

constant and Mott law is recovered. Taking the proper α(L, T ) into account allows an analytical
description of the crossover from Mott law to the activated behaviour, lnG(T ) ∼ T−1, above Ta
(see Sec. 2.1) but the refinement thus introduced is too small to be clearly evidenced by numerical
simulations and even less by experimental measurements.

Another limitation of Mott’s standard argument and of subsequent, more elaborate
percolation-based ones is the initial assumption of a constant DOS and a constant localisation
length around µ. As long as ν(E) is slowly varying in the energy window |E − µ| < ∆ (still
keeping ξ constant), Eq. (16) is expected to hold, but it lacks justification in the case of strongly
varying DOS. In particular, Eq. (16) has to be revised when transport through the system occurs at
energies around the impurity band edges. This question was tackled by Zvyagin in Refs. [20, 21],
by approximating the DOS by a step-like function. If one considers the lower band edge, the
approximated DOS reads

ν(E) ' ν0 θ(E − εc), (17)

where εc plays the role of an effective band edge. Though three-dimensional systems were
considered in Refs. [20, 21], a similar approach can be extended to our 1D model setting εc = Vg− ε̄,
where ε̄ is the 1D effective edge introduced in Sec. 2.1 for Vg = 0. The idea is that when µ lies
outside the impurity band, electrons need an activation energy εc − µ in order to “jump” inside it
to find available states. This entails an extra term in Eq. (16), which in 1D becomes

lnG(T ) ∼ − EA
kBT

− ᾱ
√
TM
T
, (18)

with EA ∼ εc − µ and ᾱ differing from α by some numerical factors [45, 21].
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3.2. Numerical results

We have investigated numerically how the typical conductance of a disordered nanowire depends
on the temperature when the applied gate voltage is varied. For the model described in Sec. 2.3, we
have solved the random resistor network problem and calculated the conductance G via Eq.(14a).
This procedure has been iterated over many random configurations of the energy levels Ei in
order to extrapolate the typical logarithm of the conductance [lnG]0, defined as the median of the
resulting distribution P (lnG)+.

In Fig. 5, [lnG]0(T ) is plotted for two values of Vg, corresponding to the bulk and the lower
edge of the band. In both cases we show that low temperature data exhibit Mott law T−1/2

behaviour (red dashed curve), while at higher temperatures they are well fitted by an activated
T−1 law (green dashed curve). Eq. (18) with adjusted values for EA and ᾱ describes the crossover
between the two regimes (full blue line). More precisely, when µ lies inside the band (Fig. 5(a)),
the validity range of Mott law (kBT/t . 0.05) is consistent with the required hypothesis of weakly
varying DOS. Indeed, below such temperatures, the energy window ∆ = kB

√
TMT of accessible

states around µ is so small (∆ . 0.2 using for TM the value given in Fig. 3) that the DOS can be
considered as weakly energy dependent (∆ ∂E ln ν(E)|µ ≈ 0.3 < 1). This justifies the validity of
Eq. (16) in such a regime. Note that the onset of activated behaviour at kBT ≈ 0.05 t is also in
rough agreement with the predicted value of kBTa ≈ 0.1 t in Fig. 3. On the other hand, when µ lies
in a region where the DOS is exponentially small (Fig. 5(b)), there is no more reason to use Mott
law to describe our data, even if it appears to be well fitted by Eq. (16) at low temperatures. The
point is that other power law formula, [lnG]0 ∼ T β , could be used to fit our data in this narrow
temperature range. Thus, one cannot use the apparent suitability of Eq. (16) to support the validity
of Mott law in this regime. Outside the band the correct framework for analysis is provided by
Eq. (18). The activated contribution to the conductance is always present, which explains why in
Fig. 5(b) the T−1 fit starts to be accurate much below the temperature kBTa/t ≈ 0.95. Finally, at
very high temperatures (typically larger than t), the typical conductance is found in both cases to
decrease with temperature. This is due to the fact that in the limit T →∞, the factors fi(1− fj)
and fj(1 − fi) on one hand, and fi(1 − fα), fα(1 − fi) on the other, converge to the same value.
Hence, the opposite rates Γij , Γji and ΓiL, ΓLi tend to level out, which results in a vanishing net
current and a divergent resistance. An expansion of the Fermi functions to the next order in inverse
temperature yields Iij , Iiα ∼ T−1, which explains the linear decay at high T of [lnG]0 versus lnT
in Fig. 5 (not marked).

4. Thermopower

4.1. Background

The thermopower is a measure of the average energy 〈E − µ〉 transferred by charge carriers from
the left lead to the right one. In the low temperature coherent regime [19], transport takes place
near the Fermi energy. Hence, in linear response with respect to the bias voltage between the
two leads, the thermopower depends on the electron-hole asymmetry at µ. On the contrary, in
the VRH regime, all states in the energy window |E − µ| < ∆ contribute. Since ∆ � kBT when
T � TM , the thermopower benefits from the contribution of states far below and above µ, despite
being in linear response. When the gate voltage is adjusted in order to probe the impurity band
edges, the electron contribution dominates over the hole one (or vice-versa), yielding an enhanced
thermopower.

+ More details concerning the distributions of the logarithm of the conductance for 1D systems in VRH regime can
be found in Refs. [32, 46]
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Figure 5. Typical value of the logarithm of the conductance [lnG]0 as a function of T for
µ = 0 and two values of the gate voltage: (a) Vg = 1.9 t inside the band and (b) Vg = 2.3 t at the
edge of the band. In both cases, at low temperatures, numerical data (points) are well fitted by
a T−1/2 fit (red dashed lines), evolving to a T−1 behaviour as T increases (green dashed lines).
Full blue lines correspond to Eq.(18), which describes the crossover between the two regimes.
Parameters: L = 200, W = t and γe = γep = t.

To study the thermopower in the VRH regime ∗, we use the approach introduced by Zvyagin
in [20, 21]. The starting point is the percolation theory of hopping transport, according to which
transport through the system is achieved via percolation in energy-position space. The average
〈E−µ〉 is calculated by averaging the energy over the sites composing the percolation cluster, and
the thermopower is given by

S =
〈E − µ〉
e T

=
1

e T

∫
dE (E − µ) ν(E) p(E)∫

dE ν(E) p(E)
, (19)

where p(E) is the probability that a state of energy E belongs to the percolation cluster. The
latter quantity is supposed to be proportional to the average number of bonds Nb(E), given by

Nb(E) =

∫
dx

∫
dE′ ν(E′) θ

(√
TM
T
− 2x

ξ
− |E − µ|+ |E

′ − µ|+ |E − E′|
2kBT

)
, (20)

under the assumptions leading to Eq. ((9)) (µ inside the band, low temperature and energy
independent localisation length ξ(E) = ξ(µ)) [26, 21]. The Heaviside function θ accounts for
the existence of a percolating path, and restricts the energy range of integration to the window

∗ We stress that the usual Mott formula for the thermopower, S = (π2k2BT/(3e)) ∂E lnσ|µ (σ being the electrical

conductivity), does not apply in the VRH regime, as pointed out by Mott himself in [29]. Indeed, this formula has
been derived by averaging 〈E−µ〉 within the standard Boltzmann formalism, not suitable in the VRH regime where
∆� kBT .
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[µ−∆, µ+ ∆]. After integrating over the single spatial variable x (in 1D), one gets

p(E) ∝ θ (∆− |E − µ|)×∫ µ+∆

µ−∆

dE′ ν(E′)

(
1− |E − µ|+ |E

′ − µ|+ |E − E′|
2∆

)
θ (∆− |E − E′|) . (21)

Note that if µ lies outside the impurity band, electrons need to jump inside the latter by thermal
activation before accessing the percolation cluster. In that case, Eqs. (20) and (21) have to be
modified accordingly, by replacing µ by the energy εc of the closest band edge and by changing the
energy range of integration to [εc, εc + ∆] (lower band edge) or [εc −∆, εc] (upper band edge).

Eqs. (19) and (21) enable us to calculate the thermopower once the DOS ν(E) is known.
Following Zvyagin’s works [20, 21], we discuss below a few extreme cases where the DOS takes a
simple form. Contrary to those works focused on three-dimensional bulk materials, we derive
expressions for the thermopower of nanowires in the 1D case. Despite the simplicity of our
approach, we will see in the next subsection that it enables us to qualitatively capture the typical
behaviour of the thermopower and the role of the gate (see Sec. 2).

Let us first consider the case where (i) the DOS can be approximated by its first order
expansion ν(E) ≈ ν(µ) + (E−µ) ∂E ln ν(E)|µ in the interval [µ−∆, µ+ ∆], and (ii) ν is expected
to vary slowly at the scale of ∆, i.e. ∆ ∂E ln ν(E)|µ � 1. Using Eqs. (19) and (21), one finds

S ≈ kB
e

(
kBTM

4

)
∂E ln ν(E)|µ . (22)

This shows that the thermopower should be temperature independent when the assumptions above
are fulfilled, which is always the case at very low temperatures (bottom part of region (2a) in
Fig. 3). Note that the same hypothesis for the DOS lead to the standard Mott formula (16) for
the conductance: Eq. (22) describes the thermopower when Eq. (16) holds for the conductance.

Let us now consider the case where the impurity band edges are explored, say the lower one.
In analogy to the previous section, using a rough step-like model for ν(E) provides useful insight.
Using Eq. (17) for the DOS and Eq. (19), one gets for the thermopower

S =
kB
e

(
εc − µ
2kBT

+
∆(T )

2kBT

)
if εc < µ and µ− εc < ∆, (23a)

S =
kB
e

(
εc − µ
kBT

+
∆(T )

2kBT

)
if εc > µ , (23b)

assuming] p(E) = 1 in the energy window |E − µ| < ∆ [0 < E − εc < ∆] and 0 elsewhere.
Similar formulas can be deduced by symmetry if the upper band edge is explored. The resulting
thermopower behaviour as a function of temperature turns out to be rich. Indeed, depending on the
position of µ with respect to the (bottom) edge εc of the DOS, and depending on the magnitude of
∆, the thermopower can be an increasing or decreasing function of T . If µ lies outside the impurity

] We have also calculated the thermopower beyond this approximation, by plugging Eq. (17) for ν(E) into Eq. (21)
for p(E). Instead of Eqs. (23a) and (23b), we find respectively

S =
kB

e

[
5(εc − µ)

8kBT
+

3∆(T )

8kBT
+O

(
εc − µ
kBT

)]
, (24a)

S =
kB

e

[
εc − µ
kBT

+
3∆(T )

8kBT

]
. (24b)

The two sets of equations are obviously very similar. At a qualitative level of analysis, it is meaningless to favour
one over the other.
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band, the thermopower (in unit of kB/e if not otherwise specified) is found to be a monotonically
decreasing function of the temperature (see Eq. (23b)). On the other hand, if µ lies inside the
band, close to the edge εc of the DOS, the thermopower increases with the temperature, reaches a
maximum (at kBT = (εc − µ)2/(16kBTM )) and then starts to decrease (see Eq. (23a)).

Let us finally address the large temperature limit (kBT & 2EB), corresponding to region (4b)
and the upper part of region (4a) in Fig. 3. In that case, all impurity band states are involved
in thermoelectric transport, with p(E) ≈ 1. As a consequence, the thermopower temperature
behaviour is merely S ∼ T−1. Assuming a constant DOS, one gets

S =
kB
e

(
Vg − µ
kBT

)
. (25)

4.2. Numerical results

For the model introduced in Sec. 2.3, we now study the thermopower by solving numerically the
random resistor network (see Appendix A).

Fig. 6(a) gives the distribution P (S) of the thermopower S in the VRH regime, when the
impurity band center (red curve) and lower edge (blue curve) are probed at µ. While the
thermopower distribution is symmetric around a vanishing average value at the band center, it
is shifted away from 0 and gets skewed close to the band edges. Such features can be easily
understood: The level distribution becomes highly asymmetric with respect to µ when one probes
the lower band edge with a positive gate voltage Vg. Consequently, an electron entering the
nanowire from the left lead around µ finds more states above its energy than below. It has therefore
a tendency to absorb energy in order to move to regions of higher DOS, before releasing it at the
right side of the nanowire, as illustrated in Fig. 2. Recalling that S = 〈E − µ〉/(eT ), one can thus
explain why P (S) is shifted and skewed at finite Vg. Let us notice that such a skewness cannot
be seen in the low-temperature coherent regime [19], where transport only involves electrons at
energies very close to µ; In that case, distributions are found to be shifted with Vg but always
symmetric. Another important message of Fig. 6(a) is that for both values of Vg the thermopower
distribution turns out to be independent of the nanowire length L. This is consistent with the
observation that the thermopower is governed by the edges of the nanowire in the hopping regime,
as recently pointed out in Ref. [18].

We then investigate the typical thermopower behaviour as a function of temperature and gate
voltage, by extracting the median S0 of the distribution P (S) for different sets of parameters. The
temperature dependence of S0 is shown in Fig. 6(b) for different values of the gate voltage, which
have been chosen for scanning the vicinity of the lower band edge. The main observation is that
our model predicts a huge enhancement of the thermopower around the band edges. Values larger
that 10 kB/e are obtained by properly tuning the strength of the gate voltage in the VRH regime.
Other features of those curves are worth emphasizing:

(i) S0 is always positive in unit of kB/e, hence negative in V K−1 (since e < 0). This is expected
since transport is due to electrons near the lower band edge, the sign of the thermopower
reflecting the sign of the charge carriers.††

(ii) At low temperatures the typical thermopower can either increase or decrease with the
temperature depending on the gate voltage. Roughly speaking, it increases inside the band
and decreases outside, in agreement with the theoretical predictions (23a) and (23b), obtained
assuming a step-like model for the DOS close to the band edge εc. Moreover, the position

††The occurrence of negative S0 is nevertheless possible not far from the lower band edge, as soon as ∆ is sufficiently
small and the DOS slope at µ becomes strongly negative. In our model, such a negative slope occurs close to the
band edges, as shown in Fig. 4.
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Figure 6. In all panels, unless specified, L = 200, µ = 0, W = t and γe = γep = t.
(a) Thermopower distributions in the VRH regime, when µ lies in the bulk (left red curve,
Vg = 0, W = 4t) or close to the edge (right blue curve, Vg = 2.2t, W = t) of the impurity
band. Data are given for L = 200 (full lines) and L = 400 (circles). The straight dashed
lines underline the exponential behaviour of the tails ∼ exp{−cS} predicted in Ref. [18]. In
both cases, kBT = t. (b) Main panel: Typical thermopower as a function of T around
the (lower) band edge. From the bottom to the top, the various curves correspond to
Vg/t = 1.5 (◦), 1.9 (�), 2.0 (�), 2.1 (4), 2.2 (O) and 2.3 (×). Dotted lines are guides to the eye.
Inset: zoom at very large temperatures kBT & EB . The fits f(Vg)/T (dashed lines) confirm
the expected behaviour S0 ∼ T−1 (Eq. (25)). (c) Typical thermopower as a function of Vg , for
kBT/t = 0.1 (◦), 0.2 (�), 0.5 (�), 1.0 (4), 2.5 (O) and 10.0 (×). At large Vg (when µ lies outside
the band), dashed lines are linear fits with slope t/kBT (Eq. (23b)). Dotted lines are guides
to the eye. (d) Typical thermopower as a function of T , for electron-phonon coupling strength
γep/t = 1 (full line), 0.5 (dashed line), 0.1 (dotted line) and 0.05 (mixed line), at Vg = 1.9t
(black curves, bottom set) and Vg = 2.1t (red curves, top set).
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of the crossover between the two behaviours is found around Vg − µ ≈ 2t, a value consistent
with our previous estimation of the (lower) band edge position of the Anderson model at
εc ≈ Vg − 2.2t (see Sec. 2.1).

(iii) At high temperature (typically larger than the bandwidth), the curves converge to a T−1

behaviour, as shown in the inset of Fig. 6(b). The crude estimation (25) turns out to be
satisfactory in this regime.

(iv) In the low temperature limit and in the case where µ lies inside the band, the typical
thermopower S0 is expected to saturate, according to Eq. (22). Such a saturation is not
observed in Fig. 6(b). Two reasons can be invoked. The first one is that Eq. (22) was actually
derived under the assumption of a constant localisation length ξi ≈ ξ(µ) while the numerical
results reported here were obtained going beyond this approximation, by taking into account
the energy dependency of the different localisation lengths ξi of sites i. In Appendix B, we
show that under the assumption ξi ≈ ξ(µ), S0 indeed saturates at low temperature. The
other possibility is simply that the saturation appears at lower temperatures, which are not
reachable numerically because of round-off errors.

(v) For high values of Vg, the typical thermopower seems to diverge as the temperature is lowered.
It is obvious that the thermopower eventually decreases below a certain temperature, since
all curves in Fig. 6(b) are known to drop down to zero in the zero-temperature limit (linearly
with T and with a positive slope) [19].

In Fig. 6(c), we show how the typical thermopower depends on the gate voltage, for different
values of the temperature. Approaching the edge of the impurity band, we see that S0 increases, the
effect being more pronounced at low temperatures. Outside the band, the behaviour of S0 with Vg
is perfectly well fitted by the formula S0 = (kB/e)[

Vg

kBT
+ f(T )], as illustrated by the straight lines

in Fig. 6(c). This linear enhancement of S0 with Vg, as well as its range of validity, is consistent
with the prediction (23b) and our initial estimation εc ≈ Vg−2.2t for the position of the lower band
edge. Note however that Eq. (23b) does not capture the y-intercept f(T ) ≈ 0.89 − 1.94/(kBT )
of the linear fits. On the other hand the fact that S0 keeps increasing even outside the impurity
band, when the conductance drops exponentially, may seem in contrast with recent experimental
observations [5]. We think the explanation lies in the fact that, when the nanowire is almost
completely depleted by Vg, the probability for an electron at µ to tunnel inside the band becomes
extremely small, and so do the electrical and heat currents; consequently, they may be too hard
to measure. Nonetheless their ratio, which gives the thermopower, remains formally well defined
and finite.

We conclude our analysis by discussing the order of magnitude of our numerical results. In
panels (a), (b) and (c) of Fig. 6, data was obtained taking γe = γep = t as input parameters of the
model. In panel (d) we investigate how the typical thermopower depends on the choice of these
parameters, finding that S0 does not vary by more than 50% when the ratio γe/γep is increased
or decreased by an order of magnitude. Remarkably, at the lowest studied temperatures (in the
VRH regime) and around the band edges, the typical thermopower is found to reach very large
values of the order of 10 (kB/e) ∼ 1 mV K−1. It is worthwhile to note that, despite the simplicity
of the model, the order of magnitude of these results is comparable to recent measurements of
thermopower in semiconducting nanowires [8, 47, 48, 5], showing strong thermoelectric conversion
at the band edges.

5. Discussion and conclusion

We have studied thermoelectric transport in a disordered nanowire in the field effect transistor
configuration, focusing on intermediate to high temperatures. More precisely, T was high enough
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for inelastic processes (phonon-assisted hopping between localised states) to be dominant, but
still such that kBT < 2EB , with 2EB the spread in available nanowire states. Transport in
this regime is typically of variable range hopping type [28, 29]. We have extended the Miller-
Abrahams random resistor network model [27] to deal with band-edge transport, and performed
accurate numerical analysis based on the 1D Anderson model. The thermopower shows remarkable
gate- and temperature-dependent behaviour, whose features can be understood within a suitable
generalization of Zvyagin’s analytical treatment of VRH transport [20, 21]. In particular we have
shown them to be largely independent of fine system details such as electron-phonon interaction
strength or the specific form of the DOS. Our results are in line with numerous experimental
observations [8, 47, 48, 5], confirming the great thermoelectric conversion potential of band-edge
transport. Notice in particular that semi-quantitative agreement with observations was reached,
though we stress that our treatment’s strength lies in its general applicability rather than in its
high precision – the latter being heavily dependent on fine details of each particular setup, such as
materials involved, doping level/type, geometry and so on.

Let us now comment on certain limitations of our work. First, interactions have been neglected,
except for the requirement of single-occupation of any given localised state [26]. Whereas this is
appropriate in some cases, it is by no means a universally valid assumption. Indeed, numerous
delicate issues related to the role of interactions in activated transport are discussed in [34] and
references therein. Secondly, we have ignored phonon-drag effects, which is however a much safer
bet. It is well known that the latter can play a prominent role in standard band transport – i.e.
when electronic states are delocalised – but are irrelevant when transport is due to hopping between
localised states[20, 21]. Finally, we used the Anderson model which is a single band model and
hence neglected the possibility of temperature activated transport via other bands. This amounts
to assuming that kBT < Eact, where Eact is the interband spacing. Eact depends on the considered
material, ranging from tens of Kelvin degrees for weakly doped crystalline materials, to hundreds
of Kelvin degrees in amorphous materials [34].
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Appendix A. Solution of the random resistor network

In linear response we assume that on each localised state the electron occupation is characterized
by a local distribution [34, 18]:

fi = f0
i + δfi, (A.1)

where f0
i is the Fermi distribution at equilibrium (i.e., evaluated at the reference values µ and T ),

and δfi is the correction induced by the (small) applied bias δµ. Linearizing Eqs.(13), and making
use of Eqs. (7), (8), and (11), the hopping currents between each pair of localised states, and the
tunnelling currents from/to the electrodes can be written in terms of “local potentials” Ui’s:

Iij = Gij(Ui − Uj),
IiL(R) = GiL(R)(Ui − UL(R)), (A.2)
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where

Gij =
e2

kBT
γijf

0
i (1− f0

j )(Nij + 1/2∓ 1/2),

GiL(R) =
e2

kBT
γiL(R)f

0
i (1− f0

i ),

Ui =
kBT

e
δfi/[f

0
i (1− f0

i )],

UL(R)(Ei) =
kBT

e
δfL(R)/[f

0
i (1− f0

i )]. (A.3)

In the above expressions, in case of double signs, the upper (lower) sign refers to Ej > Ei (Ej < Ei).
At steady state, according to Kirchoff’s conservation law, the net electric current throughout every
node i must vanish: ∑

j 6=i

Iij

+ IiL + IiR = 0. (A.4)

By plugging Eqs. (A.2), we end up with a set of L equations (one for every node i) to calculate
the L local potentials Ui’s, which can be written conveniently in the matrix form:∑

j

AijUj = zi, (A.5)

where

Aij = −Gij (for i 6= j),

Aii =
∑
k 6=i

Gik +GiL +GiR,

zi = GiL (δµL/e) (A.6)

In writing the expression for zi, we exploited the fact that δµR = δTR = 0, having chosen to set
the right terminal as reference (see Sec. 2).
Once the system is solved and the Ui are known, all the Iij ’s and IiL(R) can be calculated via Eqs.
(A.2). The electric and heat current can be computed by summing the outgoing contributions
from the left (right) lead toward every states in the system:

IeL = −
∑
i

IiL =
∑
i

IiR,

IQL(R) =
∑
i

(
Ei − µL(R)

e

)
IL(R)i. (A.7)

Appendix B. Calculation of the hopping probability

Miller and Abrahams[27, 34] described how to calculate the hopping probability γij between two
donors i and j in a 3D semiconductor, mediated by the absorption or emission of a phonon. When
the distance between the donors is large, they obtain for γij an expression which depends on the
(weak) overlap between the donor wavefunctions and on the mutual electrostatic effect between
them:

γij ∝
∣∣∣∣〈ψi| e2

κ|r − ri|
|ψj〉 − 〈ψi|ψj〉〈ψi|

e2

κ|r − rj |
|ψi〉

∣∣∣∣2 . (B.1)
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Figure B1. Typical logarithm of electrical conductance (left) and typical thermopower (right)
of a disordered nanowire as a function of temperature, and for different values of the applied
gate voltage. Full lines refer to the approximation in which all ξi = ξ(µ), while dashed lines refer
to the improved theory in which the energy dependence of ξi = ξ(Ei) is taken into account for
evaluating the transition rates. In each set, from the top to the bottom (left panel) or reversely
(right panel), the curves correspond to Vg = 1.9t (black), Vg = 2.1t (red) and Vg = 2.2t (blue).
Other parameters: L = 200, W = t, µ = 0, γe = γep = t.

If the donor wavefunctions ψi and ψj are characterized by the same decay length ξ, Eq. (B.1) can
be simplified [27, 34]

γij ∝ exp(−2|ri − rj |/ξ). (B.2)

If the decay lengths of ψi and ψj are different (ξi 6= ξj), a rigourous evaluation of γij from Eq. (B.1)
may be complicated, but the key point is that it will always be proportional to the overlap 〈ψi|ψj〉.
Hence, we can write it in the form

γij ∝ |〈ψi|ψj〉|2 ∼ |Ci exp(−rij/ξi) + Cj exp(−rij/ξj)|2 , (B.3)

where rij = |ri − rj | is the distance between i and j, and the coefficients Ci and Cj depend on
ξi, ξj and rij . The explicit form of these coefficients will take into account all details concerning
the wavefunction overlap 〈ψi|ψj〉. In 1D the calculation becomes simpler and leads to Eq. (10).
Extending a theory originally developed for lightly doped cristalline semiconductors (where the
decay length is the donor Bohr radius) to Anderson insulators (where the decay length becomes
the localisation length), Ambegaokar et al.[26] have used Eq. (B.2) for describing the hopping
probability. For similar reasons, we use Eq. (10) in our numerical calculations, for both G and S,
taking for ξi and ξj the localisation length of two Anderson localised states.

In order to estimate the difference between taking ξ(µ) or ξ(E) when computing the transition
rates (Eqs.(7) and (11)), we have calculated the typical logarithm of the conductance and the
typical thermopower as functions of the temperature in the two cases: Fig. B1 shows that there
is no qualitative difference between the curves computed using ξ(µ) (full lines) and ξ(E) (dashed
lines). The main effect of taking into account the localisation length energy dependence is that,
according to Eq.(10), all transitions toward the more delocalised states around the band center
are favoured. This leads to a much better conductance especially at low temperatures, where the
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difference could be of several orders of magnitude; on the other hand, the effect on the thermopower
is weaker.
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