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Abstract
We suggest that the dynamical spontaneous symmetry breaking reported in a
turbulent swirling flow at Re = 40 000 by Cortet et al (2010 Phys. Rev. Lett.
105 214501) can be described through a continuous one parameter family
transformation (amounting to a phase shift) of steady states. We investigate a
possible mechanism of emergence of such spontaneous symmetry breaking in a
toy model of out-of-equilibrium systems. We show that the stationary states are
solutions of a linear differential equation. For a specific value of the Reynolds
number, they are subject to a spontaneous symmetry breaking through a zero-
mode mechanism. The associated susceptibility diverges at the transition, in a
way similar to what is observed in the experimental turbulent flow. Overall,
the susceptibility of the toy model reproduces the features of the experimental
results, meaning that the zero-mode mechanism is a good candidate to explain
the experimental symmetry breaking.

1. Introduction

Spontaneous symmetry breaking is a classical phenomenon in statistical and particle physics.
From a macroscopic point of view, this loss of symmetry coincides with the loss of stability of
the solution which respects the symmetries of the Hamiltonian (or evolution) operator of the
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problem and the emergence of a new set of stable solutions individually breaking the symmetry.
Nevertheless, the set of solutions itself respects the broken symmetry to respect Curie’s
symmetry principle. Spontaneous symmetry breaking is also present in out-of-equilibrium
systems, such as forced-dissipative flows. In the case where the dissipation is large, and the
fluctuations very small, spontaneous symmetry breaking is well described through classical
bifurcation theory [1–3] starting from linear or nonlinear perturbations of the so-called ‘basic
state’, the stationary laminar solution of the Navier–Stokes (NS) equation at low Reynolds
number [4].

When the fluctuations are much higher, and the symmetry breaking occurs over a turbulent
background, however, tools are often missing to model the transition. This is the case for
example when the symmetry breaking occurs for the mean state of a turbulent flow. This flow is
stationary by construction, but differs from an usual basic state in the sense that it is solution of
the ensemble time-averaged NS equation, differing from the plain NS equation via a Reynolds
stress tensor. This Reynolds stress represents the influence of all the degrees of freedom of
the flow onto its average, and can, in general, only be computed via full solution of the NS
equation. Therefore, the problem of instability of a mean turbulent flow cannot currently be
tackled analytically or is too demanding numerically, unless a prescription (parameterization)
of the Reynolds stress is provided. In the case of the plane Couette turbulent flow, for example,
this was attempted by Tuckerman et al [5] via the K −� closure model.

In the present paper, we explore a new way to tackle the problem using tools inspired
from statistical physics applied to a well-controlled laboratory model of spontaneous symmetry
breaking, such as the von Kármán (VK) flow. In this system, the flow is inertially forced by
two counter-rotating impellers with blades, providing the necessary energy injection to set the
system out-of-equilibrium. This energy is naturally dissipated through molecular viscosity, so
that, for well controlled forcing protocols, statistically steady states can be established, that
may be seen as the out-of-equilibrium counterpart of the equilibrium states of classical ideal
systems [6, 7]. Changing the forcing protocol for the VK flow leads to various transitions
with associated symmetry breaking. In the sequel, we focus on the special case of parity
symmetry breaking that has been reported in [8, 9]. For exact counter-rotation (zero relative
rotation) of the impeller, the VK set up is exactly isomorphic to O(2) [10]. Increasing the
relative rotation between the two impellers, one induces symmetry breaking of the parity with
respect to the vertical axis. Studying the flow response to this symmetry breaking for a Reynolds
number ranging from Re = 102 (laminar regime) to Re ' 106 (fully developed turbulent flow),
Cortet et al observe a divergence of the flow susceptibility around a critical Reynolds number
Rec ≈ 40 000. This divergence coincides with intense fluctuations of the order parameter near
Rec corresponding to time-wandering of the flow between states which spontaneously and
dynamically break the forcing symmetry.

In this paper, we investigate a possible mechanism of emergence of such spontaneous
symmetry breaking in a toy model of an out-of-equilibrium system, derived from its equilibrium
counterpart by adding forcing and dissipation. We show that the steady states of this model are
subject to a spontaneous symmetry breaking through a zero-mode mechanism. We discuss how
this model can be tuned to get qualitative agreement with the phase transition observed in the
VK experiment. We then show that the observed intense fluctuations of the order parameter near
Rec in the VK flow can be described through a continuous one parameter family transformation
(amounting to a phase shift) of steady states that obey a Langevin equation.
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2. A toy model of steady states in a turbulent out-of equilibrium system

Our goal is to build a simple model describing the steady states of an out-of-equilibrium system,
that can the be mapped to an experimental VK turbulent flow. Our starting point is therefore the
NS equations

∂u
∂t

+ u · ∇u = −
1

ρ
∇ p + ν∇2u + f, (1)

where u is the solenoidal velocity field, p the pressure, ρ the fluid density, ν its kinematic
viscosity (that plays the role of control parameter in the sequel) and f a symbolic representation
of the forcing whether it is described by a body force or through boundary conditions. In a
steady state, where dissipation and forcing equilibrate on average, the total flow average energy
E =

∫
d3x u2/2—where u2 denotes the time-average of u2—is conserved and satisfies

∂t E =

∫
d3x

(
fi u j − ν∂ j ui∂ j ui

)
≡ F +D = 0. (2)

In some special situations, the NS equations have an interesting equilibrium counterpart,
that is amenable to tools of classical statistical physics. This is the case when the flow is invariant
by any rotation around a fixed axis, like in the VK flow we consider here. In such a case,
the equilibrium counterpart is described by the axisymmetric Euler equations, the equilibrium
of which can be derived using constrained extremalization problems based on conservation
laws [11–13]. To describe the VK flow and obtain a toy model of its out-of-equilibrium steady
states, we now adapt the constrained mean energy minimization procedure of Naso et al [12]
to include forcing and dissipation through a procedure suggested by Verkley and Lynch [14] in
the framework of Jaynes maximum entropy principle. The equilibrium model of Naso et al [12]
can be described through only three fields [11]: uθ , ωθ and φ, where uθ is the azimuthal velocity
ωθ is the azimuthal component of the vorticity, and φ is the streamfunction associated with the
poloidal component of the velocity

u = uθ êθ + ∇ ×
(
φêθ

)
. (3)

The axisymmetry provides a simple relation between φ and ωθ
1(φ êθ)= −ωθ êθ , (4)

allowing the definition of a scalar operator L. Equation (4) can thus be expressed as

Lφ = −ωθ . (5)

This model is based on only three ideal invariants: the total energy E = 〈ωθφ + u2
θ〉/2, the total

angular momentum I = 〈ruθ〉 and the helicity H = 〈ωθuθ〉, where 〈·〉 means spatial average.
These integral constraints can be used to build a general Arnold energy–Casimir functional
A = E −α I −µH , the critical points of which provide the equilibria of the axisymmetric Euler
equation [12]. In the out-of-equilibrium axisymmetric situation, the conservation of the energy
necessitates balance of forcing and dissipation terms, i.e. F +D = 0 (see equation (2)), with D
and F given by

D = ν

∫
d3x

(
uθ1uθ −ω2

θ

)
,

F =

∫
d3x

(
fσuθ + fξωθ

)
.

(6)
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To take into account this constraint, we follow Verkley and Lynch [14] and introduce a Lagrange
parameter ζ to build a new Arnold functional as

AVK
= E −α I −µH − ζ (D +F) . (7)

The critical points of this functional satisfy{
uθ = Bφ + D(ν) ωθ + F,

ωθ = Buθ + Cr − D(ν)1uθ + G,
(8)

where we have introduced for simplicity B = 1/µ, C = −α/µ, D(ν)= 2ζν/µ= D0ν and
F = −D0 fξ/ et G = −D0 fσ . This set of linearly coupled equations defines our toy model
equation for describing the steady states of the out-of-equilibrium system. In that respect, D
is the control parameter characterizing the distance to equilibrium: for D = 0, the steady states
are the equilibria states of the axisymmetric Euler equation [12]. As |D| is increased, the forcing
and dissipation contribution grows and steady states deviate from the equilibrium solutions.

3. Zero-mode analysis

3.1. Zero-mode mechanism in equilibrium

In equilibrium systems, the spontaneous symmetry breaking occurs via a zero-mode mechanism
that can be easily understood if we consider a general system for which equilibrium is governed
by a linear evolution operator Oε

Oεφ = h, (9)

where ε is a control parameter and h represents an external driving field. Assuming for
simplicity that Oε can be described by a matrix, with discrete spectrum, we can simply describe
the solution of the previous equation as

φ(ε)=O−1
ε h (10)

if the kernel of Oε is empty. We then see that the equilibrium field follows the forcing
symmetries and the susceptibility χ = δφ/δh|h=0 is finite. In the case where the kernel of Oε is
non-empty, the solution becomes

φ(ε)=O+
ε h + k, (11)

where k is a zero-mode—element of the kernel—ofOε andO+
ε the pseudo-inverse ofOε . In that

case, the susceptibility diverges like χ ∼ 1/ det(Oε) and the field φ(ε) follows the symmetry of
the kernel of Oε as h → 0. The range of values of ε for which the kernel of Oε is non-empty
therefore corresponds to the situation with spontaneous symmetry-breaking solutions ofOε with
diverging susceptibility. Despite being intrinsically an equilibrium result, we will see that this
model still applies for VK flows, where non-symmetric forcing conditions will play the role of
the symmetry-breaking parameter h.

3.2. The von Kármán case

We now proceed to the zero-mode analysis of equation (8). For this, we need to specify both the
system geometry and the forcing. We consider a cylindrical geometry enclosed in the volume
delimited above and below by surfaces z = z− and z+, and radially by 06 r 6 R. We will first
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consider the general case, for which φ = 0 at r = R but φ 6= 0 at z = z±. All velocity fields
respecting the axisymmetry can be decomposed on the natural base φm of the Bessel–Fourier
functions

φ =

∞∑
m=0

cmφm =

∞∑
m=0

Nm J1

(
λmr

R

) (
am eiqz + a∗

m e−iqz
)
, (12)

where the cm are complex coefficients and λm is the mth zero of the J1 function. The complex
amplitude of the mth mode is am ,Nm is a normalization constant and q is the axial wavenumber.
The φm also verify

Lφm =

(
q2 +

λ2
m

R2

)
φm = K 2

mφm. (13)

The set of q will be specified by the forcing scenario: as we will see in the next section, the set
for a body force scenario and for the boundary conditions scenario differ.

3.3. Body force

Without loss of generality, we can set z− = 0, z+ = 2L and assume that φ = 0 at the boundaries.
It is easy to verify that the q selected by such conditions are of the form qn = nπ/(2L), n being
a positive integer. We therefore have to perform our projection on the φmn eigenfunctions

φmn =Nm J1

(
λmr

R

)
sin
(nπ z

2L

)
(14)

with the normalization constant

Nm =

√
2

J 2
2 (λm)

. (15)

These eigenfunctions are orthogonal with respect to the scalar product defined through the
spatial average 〈 〉

〈 f g〉 ≡
1

L R2

∫ R

0

∫ 2L

0
rd rdz f (r, z)g(r, z). (16)

The mode (m, n) corresponds to m cells in the r -direction and n cells in the z-direction.
We shall distinguish two kinds of modes, according to their properties regarding the symmetry
R with respect to the plane z = L . The odd (even) eigenmodes are such that Rφmn = −φmn

(Rφmn = φmn) and correspond to n even (odd). We then proceed by decomposing all our
fields onto the eigenfunctions through (uθ , ωθ , F,G)=

∑
(s, x, f, g)mnφmn. We can then

recast equation (8) into m × n independent linear subsystems

Mmn

(
smn

xmn

)
=

(
fmn + C 〈rφmn〉

gmn

)
, (17)

where

Mmn =

(
1 −(D + BK −2

mn )

−(B + DK 2
mn) 1

)
(18)
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and K 2
mn = (λm/R)2 + q2

n . Furthermore, it may be checked that the corresponding solutions are
actually minimizing the functional AVK:

2B AVK
=

∑
m,n

(smn xmn)[Amn]

(
smn

xmn

)
+ Gsn + Fxn + 2C〈rφmn〉 (19)

with

Amn =

(
B + DK 2

mn −1

−1 D + BK −2
mn

)
. (20)

To ensure the existence of such minima, the matrix Amn must verify Tr(Amn)> 0 and
Det (Amn)> 0, yielding{(

1 + DB−1K 2
mn

)2
> K 2

mn B−2,(
1 + DB−1K 2

mn

) (
1 + K −2

mn

)
> 0.

(21)

Due to the symmetry properties of the modes, the C parameter contribution vanishes for n even.
The zero-modes are obtained when the determinant of any Mmn subsystem is zero, occurring
when

D2K 4
mn + 2B DK 2

mn + B2
− K 2

mn = 0, (22)

i.e. for discrete set of values D = Dmn

D±

mn =
−B ± |Kmn|

K 2
mn

. (23)

The only stable solution is Dsign(B)
mn due to equation (21). The corresponding zero-mode has the

symmetry properties of the mn Beltrami mode.

3.4. Forcing through boundary conditions

We now consider that the flow is forced only through boundary conditions so that F = G =

C = 0. Without loss of generality, we can assume z± = ±L and that φ = 0 at the radial boundary
and φ(±L , r)= φ±(r) at z±. Eliminating uθ and ωθ = −Lφ in equation (8), we obtain a single
equation for φ as

D2L2φ + (1 − 2B D)Lφ + B2φ = 0. (24)

This relation constrains the value of q, the axial wavenumber, through the values of K ,
determined by

D2 K 4
− (1 − 2B D)K 2 + B2

= 0 (25)

and the existence of minima of AVK in terms of the fields φ, uθ and ωθ is ensured by the
following conditions:{(

1 + DB−1K 2
)2
> K 2 B−2,(

1 + DB−1K 2
) (

1 + K −2
)
> 0.

(26)

From equation (25), we get the identity

(1 + (D/B)K 2)2 = (K/B)2. (27)

6
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Using equation (26) leads to the selection of the solution so that

B D =
|K/B| − 1

(K/B)2
, (28)

that can be seen as the dispersion relation of the system. Due to orthogonality of the
eigenfunctions, the coefficients am must satisfy the following properties to ensure that φ respects
the boundary conditions:

<(am) cos (q L)= +
1

4N 2
m

〈
J1

(
λmr

R

)
(φ+ +φ−)

〉
, (29)

=(am) sin (q L)= −
1

4N 2
m

〈
J1

(
λmr

R

)
(φ+ −φ−)

〉
, (30)

λm being as before a zero of J1.

4. Response to an imposed symmetry breaking

We now study the response to the system to a weak symmetry breaking, focusing on the VK-type
Rπ symmetry breaking, obtained by breaking the symmetry with respect to the mid-plane z0 =

(z− + z+)/2. These asymmetries, characterized by an amplitude h 6= 0, will be used to obtain
detailed information on the spontaneous symmetry breaking process occurring in our perfectly
symmetric model, as would an external magnetic field to understand the ferro-paramagnetic
transition observed—for example, in the mean-field Ising model—at zero magnetic field. Both
points of view (presence and absence of an external field) will be reconciled for vanishing
asymmetries, or, in other terms, h → 0.

In the non-equilibrium case, the Rπ symmetry of the system is achieved by choosing
forcing or boundary conditions that are odd with respect to z0. The weak symmetry breaking is
then obtained by introducing a small even component in the forcing (that may include non-zero
C values) or boundary conditions depending on our scenario. In the equilibrium system, the
Rπ symmetry is respected only for C = 0; the weak-symmetry-breaking is obtained through a
small increase of C ∝ h, the amplitude of the symmetry breaking. In both equilibrium and non-
equilibrium cases, we will consider the kinetic angular momentum I of the flow: this simple
quantity qualifies as a symmetry-breaking order parameter due to its antisymmetry under Rπ
symmetry.

4.1. Body force

When F and G are both odd, all the (m, 2n + 1) modes of f and g vanish. A—small—imposed
symmetry breaking field h will therefore be expressed as fm,2n+1 ∝ h, gm,2n+1 ∝ h for one
(or more) couple of values of m and n. As long as D 6= Dmn, the matrix Mmn is invertible
and the solution fields s and x will be linear in f and g, hence proportional to h. For
vanishing symmetry breaking field, I → 0 : the Rπ symmetry of the system is not spontaneously
broken.

At D = Dmn the solution is a superposition of an odd function, the even mode, with
amplitude h, and the Beltrami mode φmn, with arbitrary amplitude. If this mode is odd (n even),
no spontaneous symmetry breaking occurs in the limit h → 0. If this mode is even (n odd), the

7
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solution has an even component even in the limit of h = 0, and spontaneous symmetry breaking
occurs, with non-zero value of the order parameter I , proportional to the amplitude of the
eigenmode. The occurrence of this phenomenon depends on the value of B, that plays the role
of a temperature, and on the value of D that controls the distance to equilibrium. At equilibrium,
D = 0, and the spontaneous symmetry breaking can only occur for a discrete set of temperature
B = Km(2n+1), as already noted in [12]. Out-of-equilibrium, D 6= 0 and the symmetry breaking
can occur at any temperature.

4.2. Forcing through boundary conditions

For a perfectly symmetric boundary forcing, we have to choose φ± = ±φ∗. The weak symmetry
breaking can thus be parameterized by φ+ +φ− ∝ h. In such a case, the boundary condition
specified by equations (29) and (30) leads necessarily to <(am)∝ h, except for the q such
that cos q L = 0, hence q = qn, and D = Dm,2n+1 similarly to the previous section. So, for
D 6= Dm(2n+1), the solution is a superposition of sin (odd in z). At D = Dm(2n+1), there is one
coefficient am with real part different from zero, with arbitrary amplitude. This provides, for
D = Dm(2n+1), a spontaneous symmetry breaking, associated with a diverging susceptibility
when D → Dm(2n+1) (see section 5.2.3). At D = Dm(2n+1), and performing the spatial average,
we see that I ∝ <(am)R/L , that can conveniently be written

I ∝
R

L
|am| sin(ψm), (31)

where ψm is the phase of the symmetry breaking eigenmode. In our system, the boundary
conditions cannot specify simultaneously the amplitude and the phase of the symmetry breaking
mode: for any given value of the parameter D at the transition, there is a family of symmetry
breaking modes φm , labelled through a continuous parameter that we can choose as their phase
ψm , so that

φm = J1

(
λmr

R

)
cos ((2n + 1)π z/2L +ψm) . (32)

An illustration of different members of this family corresponding to M = 1, for different values
of ψm is provided in figure 1. When ψ1 = 0, the solution is odd and does not break the system
symmetry. As |φ1| increases, the mode looses its parity symmetry, and I becomes non-zero.

4.3. Summary

In both cases, the occurrence of the spontaneous symmetry breaking occurs when D = Dm(2n+1),
and is governed by the amplitude of the mode proportional to cos(2n + 1)z/2L , where z spans
from −L to L . This breakdown can be parameterized by the phase of the symmetry breaking
mode ψm (in the case of forcing through boundary conditions), or its amplitude am (in the case
of the body forcing).

The occurrence of the transition when the system is continuously driven out-of-equilibrium
with |D| increasing from |D| = 0 depends on the value of B, that plays the role of a temperature.
When B 6 K11, the first symmetry breaking transition occurs for negative values of B D,
while when B > K11 the first transition occurs for positive values of B D. This is illustrated in
figure 2.

8
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Figure 1. Theoretical symmetry breaking mode (1, 1) computed from equation (32) for
three different phases: (a) ψ1 ≈ −π/4, (b) ψ1 ≈ 0 and (c) ψ ≈ π/4. The projection of
this axisymmetric velocity field is displayed for two azimuth values—separated by π
radians—and correspond respectively to positive and ‘negative’ values of r .

0 1 2 3 4 5
−1

−0.5

0

0.5

K/ B

B
D

Figure 2. Dispersion relation and determination of the spontaneous symmetry breaking
process. The vertical solid lines represent the values of K11/B at h = 0.7 and R = 1, for
two different values of B: left solid line, B = 1 and right solid line, B = 5. The thick
blue line displays B D(K ), given by equation (28). Their intersections yield the D11
where zero-modes appear and the first spontaneous symmetry breaking solution occurs.

5. Mapping to experiments

5.1. Calibration of the parameters

We have derived our toy model of out-of-equilibrium starting from an equilibrium model of
the Euler equation for an axisymmetric flow, the ideal limit of a force-free VK flow with no
dissipation. The equilibrium model was derived using well accepted principles of statistical
mechanics. The toy model is just a convenient empirical generalization, based on Jaynes
maximum entropy principle along the lines sketched in [14]. After suitable calibration of the
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Figure 3. Comparison between the modelled (line) and experimental (◦) azimuthal
velocity boundary condition at θ = 0, Re = 5145. Left panel: at the bottom disc. Right
panel: at the top disc.

parameters, it can nevertheless be mapped into the real experimental VK flow to provide useful
interpretation of the observations, as will now be demonstrated.

The symmetry group of this experimental system is isomorphic to O(2) [10] for an exact
counter rotation of the impellers stirring the fluid. These impellers, of radius Ri = 0.975R,
are located at z = ±L and rotating at a constant frequency f , following the scenario of
section 3.4. The aspect ratio of the experiment is therefore 2L/R = 1.4. The control parameter is
Re = 2πR2 f/ν. A diverging susceptibility of the experiment to a small asymmetry θ , associated
with a phase transition, is achieved at Rec ∼ 40 000 or 90 000 depending on the selected
order parameter [8, 9]. No further transition is obtained as the Reynolds number is increased,
until at least Re ∼ 400 000. This suggests the following parameter calibration: the forcing is
approximated by two antisymmetric boundary conditions for the azimuthal velocity at z = ±L:
u± = ±U (r), with U (r) given by

U (r)= 0.5U∗ (tanh ((r − r∗)/h∗)− 1) , (33)

where U∗ = Eff2πR f , h∗ = 0.08, r∗ = 1.1Ri . For θ = 0, this shape models a smooth rotation of
frequency f , over a size of the order of the disc radius Ri and with efficiency Eff. This efficiency
measures the maximum azimuthal velocity attained near the impeller, and was measured
as Eff = 0.5 for the type of impellers considered here [15]. The quality of this modelling
can be evaluated by comparison with the experimental azimuthal velocity profile at the disc
location obtained using the SPIV. This is done in figure 3, for Re = 5000. We see that the
agreement is reasonable; however, we can see in these results that the forcing conditions are not
perfectly symmetric. We have checked that this synthetic forcing remains compatible with the
experimental data for any Reynolds number in the range Re ∈ [103, 106], with the parameters
set to the values described above. The boundary condition in uθ can then be mapped into a
boundary condition on φ using the mode decomposition of equation (12) and the stationary
condition of equation (8), so that

φ± = (B + DK 2)−1u±. (34)

From the analysis of steady states of a VK flow at very large Reynolds number [6, 7],
we get B = −4.5< 0. From the definition of D, we get D ∝ 2ζ B/Re. Assuming ζ 6 0, B D
is negative, D is positive and the only transitions occurs for Dmn, given by equation (23). For
2L/R = 1.4, we have K11 = 4.44, K13 = 7.75 and K23 = 7.37, so that B obeys −|K12|6 B 6
−|K11|. Therefore, for any Kmn 6= K11, Kmn/|B|> 1, and the corresponding zero-modes are

10
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Figure 4. Top: global angular momentum I (t) as a function of time for an experiment
performed at Re ∼ 43 000. Green lines are PIV data sampled at 15 Hz, and black lines
correspond to 1 Hz low-pass filtered data. Eye-guide lines have been drawn: blue, at
I0 = ±0.04; black, at I (t) to trace the time-average. The insets show the local-time
average (over 50 frames) corresponding velocity field. On the bottom, we have displayed
the symmetry breaking phase ψ(t); black, computed from I (t); red: computed from a
Langevin model (see text for details). The horizontal black line traces the time average
of ψ .

associated with positive values of B D (see figure 2). Hence, this assumption on ζ implies that
a single transition occurs for D = D11, suggesting to map D and Re through D = D11 Rec/Re.
With explicit expressions both for B and D, we can evaluate K for any Reynolds number using
equation (25) (or using figure 2 for a graphical determination of K ).

5.2. Comparison with experiments

5.2.1. Experimental phase transition. In the experiment, the phase transition occurs at Re ∼

40 000 [9]. It is traced by large fluctuations in time of the order parameter I (t)= 〈ruθ(t)〉,
where uθ(t) is the instantaneous azimuthal velocity field, as measured through a stereoscopic
particle image velocimetry. An example is provided in figure 4, where one observes excursions
of I (t) away from 0, till values that can reach I = ±I0 = ±0.04, the amplitude of the symmetry
breaking. During these excursions, the velocity field spontaneously breaks the symmetry, as
illustrated in figure 4, where the velocity field averaged over 50 step times is shown: depending
on the time around which the average is done, the velocity field presents a shear layer shifted
downwards or upwards, and bears strong similarities with one of the member of the family
breaking solutions φ1 illustrated in figure 1. From the phase measurements, one can compute
the instantaneous phase of the symmetry breaking, through ψ = arcsin(I/I0). This phase is
shown in figure 4 and also displays large fluctuations away from zero.

11
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Figure 5. Test of the model for the turbulent VK experiment: thick solid line, K versus
Re after the mapping of section 5. The thin solid red line indicates K11. Its intersection
with K (Re) occurs at Re ≈ 40 000. The three couples of insets show the comparison
between theoretical velocity fields (right), computed using the out-of-equilibrium toy
model, and experimental velocity field(left) at Re = 5000, 43 000 and 200 000. The
colour codes the azimuthal field, the arrows indicate the ur , uz field. The red dashed
lines correspond to the z = 0 plane.

5.2.2. Velocity fields. A first test of the mapping can be obtained by comparing time-averaged
(over 1500 frames) experimental velocity fields and theoretical velocity fields. These fields are
calculated using the values of B and D of section 5.1 to obtain corresponding values of K and
q (following equation (13)). Finally, equations (29) and (30) define the projection coefficients
am which are used to reconstruct φ and u using equation (12) and the stationary condition of
equation (8). This is done in figure 5, for different Reynolds numbers, one below the transition,
one above the transition, and one at the transition. In the last case, the amplitude of the symmetry
breaking mode has been chosen as <(a1)= I0 sin(ψ), where I0 and the time average ψ have
been computed from figure 4. One sees that the agreement is quite remarkable.

5.2.3. Susceptibility to symmetry breaking. A second test of the model is provided by the
susceptibility to symmetry breaking. Computing the velocity fields as a function of θ for
different Reynolds numbers using equations (12) and (29) with f± = f (1 − ±θ), one indeed
observes that the toy model response to symmetry breaking is quite different depending on
whether the Reynolds number is far (e.g. Re = 3000) or close (e.g. Re = 30 000) to its critical
value. As can be seen in figure 6, the velocity field experiences a limited symmetry breaking at
Re = 3000, with the central shear layer being progressively shifted towards the slowest impeller.
In contrast, at Re = 30 000, the velocity change with increasing θ is quite abrupt, resulting in
an almost complete change towards a one-cell pattern (nearly antisymmetric velocity field) as
soon as θ = 0.1. A quantitative estimate of this observation is provided by the variations of
the quantity I (computed from the model velocity fields) as a function of θ . The results are
presented in figure 7. One observes a linear increase of I with θ , with a slope depending on
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Figure 6. Velocity fields as computed from the toy model, at increasing θ . The colour
codes the azimuthal field, the arrows indicate the ur , uz field. Upper panel: at Re =

3000. Lower panel: at Re = 30 000. From left to right: θ = 0, 0.1 and 0.2. The arrows
for the last two panels have been rescaled with a factor 0.1 for better readability.

the Reynolds number: it is increasing until Re ∼ 40 000 and decreasing after that value, in
agreement with the observed behaviour in the experiment [9]. The resulting susceptibility to
symmetry breaking, χ , can then readily be obtained through a fit of I (θ), providing the result
displayed in figure 7. One indeed observes a divergence of ξ at Re = Rec, with a behaviour than
can be fitted, like in the experiment, by a simple law: χ = A±/|T − Tc|, with T = 1/log (Re)
and A± is a coefficient depending on whether the fit is performed before (A−) or after (A+)
Tc. Here, we have used A− = 0.007 and A+ = 0.014. Note that this corresponds to A+ = 2A−,
a relation already observed in the experiment. This divergence observed in the experiment
is about one magnitude larger than what is observed in the toy model, meaning that there
is additional room for improving the model to make it best fit the experiment. However, the
susceptibility of the toy model reproduces quite well the features of the experiment, meaning
that the zero-mode mechanism is a good candidate to explain the experimental symmetry
breaking.

5.2.4. Langevin model for the fluctuations of the kinetic momentum. The observed
spontaneous symmetry breaking fields recalled in figure 4 are very similar to one of the members
of the family breaking solutions φ1. The intense fluctuations of the order parameter I , or
equivalently of the phase of the symmetry breaking can therefore be viewed as a continuous time
drift in between the different members of the symmetry breaking family, with a velocity given
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Figure 7. (left) I as a function of θ in the toy model, at Re = 3000 (triangles pointing
downwards), Re = 30 000 (squares), Re = 50 000 (circles) and Re = 80 000 (triangles
pointing upwards). The colour of the symbol codes log(Re). (right) Black diamonds,
χ as a function of Re in the toy model, deduced from the left panel. The lines are
critical-like fits χ = A±1/|T − Tc| where T = 1/log(Re) and A− = 0.07 (dashed line)
and A+ = 0.14 (dashed-dotted line).

by dφ/dt . From figure 4, we observe that this velocity is quite fluctuating. This observation is
in agreement with the fact that phase transition are always associated to fluctuations becoming
very relevant, both in the zero-mode directions and in the transversal direction. Focusing on the
dynamics along the zero-mode direction, we see that the simplest way to model it is through a
Langevin equation, of the type{

∂tφ = vG + ζ,

ζ(t)ζ(t ′)= Qδ(t − t ′),
(35)

where vG is the phase velocity and ζ is a delta-correlated noise of amplitude Q. For vG = 0.7 f
and Q = 3π , the corresponding φ is shown in figure 4 and qualitatively matches the observed
behaviour of the phase.

In this framework, the phase transition in the experiment could therefore be interpreted as
a zero-mode symmetry breaking, with a mode that travels at a phase velocity vG with noisy
disturbances caused by small scale velocity structures.

6. Discussion

In this paper, we have built a toy model of an out-of-equilibrium system, generalized from the
corresponding equilibrium system to include forcing and dissipation following a suggestion
by Verkley and Lynch [14]. This procedure is based on Jayne’s interpretation of statistical
mechanics as a principle of insufficient reason. The corresponding model displays spontaneous
symmetry breaking, through a zero-mode mechanism. We have shown that the model can be
simply mapped to a real VK experiment, by calibrating three parameters: the efficiency of
the impeller Eff, the temperature B and the critical Reynolds number Rec. Once these three
parameters have been specified, all features of the experimental spontaneous symmetry breaking
can be reproduced in a quantitative way and the time dynamics of the fluctuations of the order
parameter can be interpreted through a Langevin equation. The detail of the model can also be
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adapted to reproduce the observations of de la Torre and Burguete [16] for example by inserting
a three-well potential in the first line of equation (35) like in [17].

From the point of view of statistical mechanics, this provides interesting open questions
regarding the modelling of out-of-equilibrium system: is the empirical procedure suggested by
Verkley and Lynch [14] to go from equilibrium to out-of-equilibrium correct? In the specific
case of axisymmetric flows, we note that it leads to a regularization of the equilibrium model
by including bounds on the phase space, which would otherwise be infinite [13], and on the
vorticity fluctuations that are diverging in the equilibrium model. Other ways to limit the phase
space are possible, for example by considering Casimir invariants of higher degrees [13].
It would be interesting to compare the corresponding regularized equilibrium models with
experiments, to test whether the toy model we built here is the optimal one, and whether the
agreement is purely fortuitous.

From the point of view of turbulence, the open question is how to compute the three
calibrated parameters from general principles. Another question concerns the generality of
the zero-mode mechanism evidenced here. Does this mechanism work in other turbulent
systems, like the stripe formation in the plane Couette flow [18–21], the mean flow reversals
in rotating Rayleigh–Bénard convection [22, 23] or even spontaneous transitions observed in
natural systems (zonal to blocked pattern transition in northern hemisphere winds [24] patterns,
Kuroshio currents [25])?

Finally, we observe that the fluctuations of the order parameter near Rec in the VK flow can
be described through continuous phase shifts of steady states. The corresponding set of solutions
becomes then invariant under vertical translational symmetry. Such symmetry occurs only in
an ideal system, composed of an infinite cylinder with neither forcing nor vertical boundary
conditions. We are thus faced with a case where the turbulent system undergoes a bifurcation
that statistically restores the symmetry of the ideal, unforced system at large scale. This is then
a variant of the H1 symmetry restoration hypothesis of [26], albeit for the large scales.
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