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ABSTRACT

Aims. Our aim is to study the thermal and dynamical evolution of protoplanetary discs in global simulations, including the physics of
radiation transfer and magneto-hydrodynamic turbulence caused by the magneto-rotational instability.
Methods. We have developed a radiative transfer method based on the flux-limited diffusion approximation that includes frequency
dependent irradiation by the central star. This hybrid scheme is implemented in the PLUTO code. The focus of our implementation
is on the performance of the radiative transfer method. Using an optimized Jacobi preconditioned BiCGSTAB solver, the radiative
module is three times faster than the magneto-hydrodynamic step for the disc set-up we consider. We obtain weak scaling efficiencies
of 70% up to 1024 cores.
Results. We present the first global 3D radiation magneto-hydrodynamic simulations of a stratified protoplanetary disc. The disc
model parameters were chosen to approximate those of the system AS 209 in the star-forming region Ophiuchus. Starting the simu-
lation from a disc in radiative and hydrostatic equilibrium, the magneto-rotational instability quickly causes magneto-hydrodynamic
turbulence and heating in the disc. We find that the turbulent properties are similar to that of recent locally isothermal global simu-
lations of protoplanetary discs. For example, the rate of angular momentum transport α is a few times 10−3. For the disc parameters
we use, turbulent dissipation heats the disc midplane and raises the temperature by about 15% compared to passive disc models. The
vertical temperature profile shows no temperature peak at the midplane as in classical viscous disc models. A roughly flat vertical
temperature profile establishes in the optically thick region of the disc close to the midplane. We reproduce the vertical temperature
profile with viscous disc models for which the stress tensor vertical profile is flat in the bulk of the disc and vanishes in the disc corona.
Conclusions. The present paper demonstrates for the first time that global radiation magneto-hydrodynamic simulations of turbulent
protoplanetary discs are feasible with current computational facilities. This opens up the window to a wide range of studies of the
dynamics of the inner parts of protoplanetary discs, for which there are significant observational constraints.

Key words. accretion, accretion disks – radiative transfer – magnetohydrodynamics (MHD) – protoplanetary disks –
methods: numerical

1. Introduction

The understanding of planet formation requires a deep insight
into the physics of protoplanetary discs. Recent observations
of young discs in nearby star-forming regions (Furlan et al.
2009; Andrews et al. 2009) have been able to constrain impor-
tant physical parameters, like the disc mass and radial extent, its
flaring index, or the dust-to-gas mass ratio. Our understanding
of these observations is mainly based on 2D radiative viscous
disc models (Chiang & Goldreich 1997; D’Alessio et al. 1998;
Dullemond et al. 2002) that include proper dust opacities and
irradiation by the star. The energy released by the accretion pro-
cess is an important source for determining the structure and the
evolution of the inner disc regions. The magneto-rotational insta-
bility (MRI) is the most likely candidate to drive accretion by an
effective viscosity from magnetic turbulence (Balbus & Hawley
1998). Up to now there has been no global model which com-
bines both magneto-hydrodynamics (MHD) turbulence driven
by the MRI and the radiative transfer including irradiation by the
star and proper dust opacities. The main challenge to perform-
ing these simulations is the computational effort. Global MHD

simulations need high resolutions to resolve the MRI properly
(Fromang & Nelson 2006; Flock et al. 2010; Sorathia et al. 2012)
and the computational cost required to solve additional radiative
transfer equations remains a challenge. The first full radiation
magneto-hydrodynamics (RMHD) of that problem were per-
formed in local box simulations by Turner et al. (2003) using a
flux-limited diffusion (FLD) approach (Levermore & Pomraning
1981). Over the past few years, several accretion disc simu-
lations have been performed using similar numerical schemes
(Turner 2004; Hirose et al. 2006; Blaes et al. 2007; Krolik et al.
2007; Flaig et al. 2009) and have recently included irradiation
heating (Hirose & Turner 2011). More sophisticated radiation
hydrodynamics (RHD) methods, like the two-moment method
(González et al. 2007), are usually very time demanding because
they require large matrix inversion. In this work we develop a ra-
diative transfer method based on the two-temperature grey1 FLD
approach by Commerçon et al. (2011) and the hybdrid FLD ap-
proach (Kuiper et al. 2010) that includes frequency dependent
irradiation by the star. This hybrid scheme accurately captures

1 A grey approach integrates over all frequencies.
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the irradiation energy by the star and performs well compared to
computational expensive Monte Carlo radiative transfer methods
(Kuiper & Klessen 2013). We particularly focus on the serial and
parallel performance of our method. The model we design is es-
pecially suited for global RMHD disc calculations. Our paper is
split into the following parts. In Sect. 2 we describe the RMHD
equations, the numerical scheme, and a performance test. In
Sect. 3 we explain our initial conditions for global RMHD disc
calculations, the iteration method for calculating the disc’s ra-
diative hydrostatic equilibrium, and the boundary conditions. In
Sect. 4 we present the results, followed by the discussion and the
conclusion. In the Appendix we show details of the discretiza-
tion of the FLD method, the numerical developments, and tests.

2. Numerical implementations

2.1. Equations and numerical scheme

In this paper we solve the ideal RMHD equations using the FLD
approximation. We use a spherical coordinate system (r, θ, φ)
which has advantages for the treatment of stellar irradiation by
means of a simple ray-tracing approach and because it is well
adapted to the flared structure of protoplanetary discs. The set of
equations reads

∂ρ

∂t
+ ∇ · [ρu] = 0, (1)

∂ρu

∂t
+ ∇ ·

[
ρuuT − BBT

]
+ ∇Pt = −ρ∇Φ, (2)

∂E
∂t
+ ∇ · [(E + Pt)u − (u · B)B] = −ρu · ∇Φ

−κP(T )ρc(aRT 4 − ER)

−∇ · F∗, (3)

∂tER − ∇ cλ
κR(T )ρ

∇ER = +κP(T )ρc(aRT 4 − ER), (4)

∂B
∂t
+ ∇ × (u × B) = 0, (5)

in which the two coupled equations for the radiation transfer are

∂tρε = −κP(T )ρc(aRT 4 − ER) − ∇ · F∗, (6)

∂tER − ∇ cλ
κR(T )ρ

∇ER = +κP(T )ρc(aRT 4 − ER), (7)

with the density ρ, the velocity vector u, the magnetic field
vector2 B, the total pressure Pt = P + 0.5B2, the gas pres-
sure P = ρkBT/(μgu) with the gas temperature T , the mean
molecular weight μg, the Boltzmann constant kB, the atomic
mass unit u, the gravitational potential Φ = GM∗/r with the
gravitational constant G, stellar mass M∗, r the radial distance
to the star, the total energy E = ρε + 0.5ρu2 + 0.5B2 with
the gas internal energy ρε, the radiation energy ER, the irra-
diation flux F∗, the Rosseland and Planck mean opacity κR
and κP, the radiation constant aR = (4σ)/c with the Stefan-
Boltzmann constant σ = 5.6704 × 10−5 erg cm−2 s−1 K−4, and
c the speed of light. To enforce causality, we use the flux lim-
iter λ = (2 + R)/(6 + 3R + R2) by Levermore & Pomraning
(1981, Eq. (28) therein) with R = |∇ER|/(κRρER). The closure
relation between gas pressure and internal energy is provided
by the ideal gas equation of state P = (Γ − 1)ρε, with the adi-
abatic index Γ. We choose a mixture of hydrogen and helium

2 The magnetic field is normalized over the factor 1/
√

4π.

Fig. 1. Dust absorption opacity over wavelengths.

with solar abundance (Decampli et al. 1978; Bitsch et al. 2013a)
so that μg = 2.35 and Γ = 1.42.

After the MHD step, the method solves the two coupled ra-
diative transfer Eqs. (6) and (7). We neglect in the equations all
terms of the order v/c (Krumholz et al. 2007), including the ra-
diation pressure terms and the radiation force in the momentum
equations since ER � ρε. These approximations are well suited
to our applications (v � c), but not necessarily to other regimes
like the dynamic diffusion (Krumholz et al. 2007). A similar
method was presented in Bitsch et al. (2013b) and Kolb et al.
(2013).

It has recently been shown that frequency dependent irra-
diation is more accurate in the context of protoplanetary discs
for capturing irradiation heating (Kuiper et al. 2010; Kuiper &
Klessen 2013). The irradiation flux F∗ at a radius r is calcu-
lated as

F∗(r) =
∫
Ω

∫
ν

Bν(ν, T∗)
(R∗

r

)2

e−τ(ν,r)ΩdνdΩ, (8)

with the Planck function Bν(ν, T∗), the solid angle Ω, the sur-
face temperature of the star T∗, the radius of the star R∗, the
frequency ν, and the radial optical depth for the irradiation flux

τ(ν, r) =
∫ r

R∗
κ(ν)ρdr. (9)

The irradiation by the star is used as a source term in Eq. (3).
This approximation is valid because of the short penetration time
for stellar rays through the domain compared to the longer hy-
drodynamical timescale.

Figure 1 shows the frequency dependent dust absorption
opacity. The opacity tables are derived for particle sizes of 1 μm
and below (Draine & Lee 1984). We note that for the setup pre-
sented in this paper the temperature stays below the dust evapo-
ration temperature of about 1000 K so that we can neglect the gas
opacities. To calculate the opacity involved in the RMHD equa-
tions we take into account the dust-to-gas mass ratio for small
particles which we define as 1% of the total dust-to-gas mass
ratio εd2g (Birnstiel et al. 2012).

The ideal MHD equations are solved using the PLUTO code
(Mignone 2009). The PLUTO code is a highly modular, mul-
tidimensional, and multi-geometry code that can be applied to
relativistic or non-relativistic (magneto-)hydrodynamics flows.
For this work we chose the Godunov-type finite volume config-
uration which consists of a second order space reconstruction,
a second-order Runge-Kutta time integration, the constrained
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transport (CT) method (Gardiner & Stone 2005), the orbital ad-
vection scheme FARGO MHD (Masset 2000; Mignone et al.
2012), the HLLD Riemann solver (Miyoshi & Kusano 2005),
and a Courant number of 0.3. In this work we neglect the mag-
netic dissipation which would appear at the right-hand side of
Eq. (5). The effect of magnetic dissipation is discussed in the
Conclusion.

To solve Eqs. (6) and (7) we use an implicit method be-
cause the gas velocities are small compared to the speed of light.
The implicit discretized equations in spherical coordinates can
be found in the Appendix A.1. We rewrite the radiative transfer
equations in the matrix form Ax = b where x is the solution
vector. The solution of this system involves a matrix inversion
and is solved by an iterative method to minimize the resid-
ual r = Ax − b until a given accuracy is reached. We use the
Jacobi-preconditioned BiCGSTAB solver based on the work by
Van der Vorst (1992). As a convergence criteria we use the re-
duction of the L2 norm of the residual, ||r||2/||rinit||2 < 10−4.

2.2. Validation of the radiative transfer method

As a validation of our algorithm, we performed the radiation
transfer test for discs described by Pascucci et al. (2004). We
computed the spatial distribution of the equilibrium tempera-
ture of a static disc irradiated by a star using different radia-
tive transfer methods. We compared the results of our method
with the results obtained using the Monte Carlo radiative transfer
code RADMC-3D3 (Dullemond 2012). Following Pascucci et al.
(2004), we used the opacity table of Draine & Lee (1984), a dust-
to-gas mass ratio of 0.01, and frequency dependent irradiation
with 61 frequency bins. The star parameters are T∗ = 5800 K
with R∗ = 1 R� and M∗ = 1M�. The gas density follows

ρ(r, z) = ρ0

(
500 AU

r

)
exp

⎛⎜⎜⎜⎜⎜⎝−π4
(

z
h(r)

)2⎞⎟⎟⎟⎟⎟⎠ , (10)

with

h(r) = 125 AU
( r
500 AU

)1.125
· (11)

We present here the most optically thick disc configuration of
Pascucci et al. (2004) for which ρ0 = 8.321 × 10−18 g cm−3. The
initial temperature is set to 10 K. The domain size ranges from 1
to 1000 AU in radius and from 0 to π in θ. We use a grid with log-
arithmically increasing cell size in radius and uniform in θ. The
overall grid contains 240 × 100 cells. The boundary conditions
of the radiation energy are fixed to 10 K in the poloidal direction
and zero gradient in the radial direction. We solve the radiative
transfer equations with a fixed time-step until we reach thermal
equilibrium. The convergence criterion is |res|2/|resinit|2 < 10−8.
In RADMC-3D we use 2.1 × 1010 photons. We plot the temper-
ature profile over radius and height in Fig. 2. Both profiles agree
very well with the results by RADMC-3D. In Appendix A.2, we
describe a resolution study of this test to determine the order of
the scheme. We also perform an additional diffusion test for our
FLD method, which we present for completeness.

2.3. Serial and parallel performance

An important emphasis of our work was to develop a module
with high computational efficiency. During the development, we

3 www.ita.uni-heidelberg.de/~dullemond/software/
radmc-3d

Fig. 2. Top: θ-temperature profile at a radius of 2 AU. Bottom: radius-
temperature profile at the midplane.

focused on reducing the number of operations per iteration cy-
cle of the implicit method. By increasing the memory usage
we substantially improved the performance of the algorithm.
We performed an analysis of our module for the fiducial disc
model (see Sect. 4). The MHD part takes 76.3%, while the ra-
diation module consumes 22.5% of a full RMHD step. In our
module each matrix vector multiplication per iteration in the
BiCGSTAB method has the main computational cost with 8.2%
from the full RMHD step, followed by the frequency depen-
dent irradiation with 5.9%. In the following we present a weak
scaling test. The number of iterations by the matrix solver was
fixed to 30 which is a typical value for reaching convergence in
our global high-resolution model. We used 323 cells per cpu as
in this model, for which we used 1024 cores. Figure 3 shows
the parallel performance of the RMHD module using an Intel
Xeon 2.27 Ghz system. With 1024 cores we reached a scaling ef-
ficiency of 70.3% which is acceptable given the non-local nature
of the algorithm. Nevertheless, the parallel performance is lower
than the pure Godunov scheme (Mignone et al. 2007). This is
largely due to the important amount of communications inside
the BiCGSTAB method. Here one has to distribute all neigh-
boring cells three times for each core per iteration to compute
the new residual. As the number of iterations strongly depends
on the physical problem, we do not a priori know the serial and
the parallel performance for a given application. We note that
the parallel performance also depends on the ratio between the
number of grid cells to communicate over the grid cells per core.
Reducing the number of cells below 323 per core would result in
reduced scaling performance.
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Fig. 3. Weak scaling of the RMHD method (blue line) compared with
optimal scaling (black line). Units are given in total number of grid cells
per step per second.

3. Initial disc structure and boundary conditions

As an illustration of the possibilities offered by our numerical
implementation of a FLD scheme within the PLUTO code, we
present in the remaining of this paper a series of 3D RMHD
simulations of a fully turbulent protoplanetary disc. In this sec-
tion, we describe the disc model parameters and the iterative
procedure we designed to construct an initial setup that is in hy-
drostatic equilibrium. Boundary conditions in these simulations
turned out to be subtle, so we also detail the set of conditions
we used in this particular case. We caution that finding a proper
set of boundary conditions is delicate and likely to be problem
dependent.

3.1. An iterative procedure

Finding an irradiated disc structure in hydrostatic equilibrium is
not a straightforward task. For a given irradiation source, the disc
temperature depends on the spatial density distribution which it-
self depends on temperature (because of the pressure force). We
thus solved for the hydrostatic disc structure iteratively: assum-
ing a given density in the disc, we calculated the temperature as a
result of disc irradiation using the hybrid FLD module described
above. To calculate the new radiation and temperature field we
used the typical diffusion time for this problem. The diffusion
time can be estimated by Δtdif ∼ 3κρΔx2/c. Using typical values
at 1 AU with solar parameters ρ = 10−10 g cm−3, κ = 1 cm2 g−1,
and Δx = 1 AU, we obtain Δtdif ∼ 106 s. After the tempera-
ture and radiation field have reached equilibrium, a new density
profile is calculated and the algorithm iterates until convergence.

The following input parameters are needed: the surface den-
sity over radius Σ(r), the opacity including the dust-to-gas mass
ratio, and the stellar parameters T∗, M∗, and R∗. The density and
the azimuthal velocity vφ are updated integrating the equations of
hydrostatic equilibrium in spherical coordinates using a second-
order Runge Kutta method. In hydrostatic equilibrium these are,
for the radial and poloidal direction, respectively,

∂P
∂r
= −ρ∂Φ

∂r
+
ρv2φ

r
, (12)

1
r
∂P
∂θ
=

1
tan θ

ρv2φ

r
· (13)

Once ρ(r, θ0) is known for a given value of θ0 (e.g. θ0 =
π/2 for the midplane) and for all r, Eq. (12) can be used to

Fig. 4. Initial temperature distribution for different amounts of small
dust particles (≤1μm), calculated from radiative hydrostatic equilib-
rium. From top to bottom: Σdust(1 AU) = 0.17, 0.017, 0.0017 g cm−2. We
overplot the radial integrated τ = 1 line for the irradiation (black solid
line) and the vertically integrated τ = 1 for the local thermal emission
(red solid line).

calculate vφ(r, θ0). The second equation is then integrated to give
the density field at the next interface θ0 + Δθ/2 for any value
of r, and we can repeat the cycle. Using the mid-point integral
method we reach second-order accuracy. We impose the mid-
plane gas density using

ρ(r, π/2) =
Σ(r)√
2πH
, (14)

where H/r =
√

T̃ r/(GM∗) and T̃ = (kBT )/(μgu). The above
relation is only valid for a constant vertical temperature and
so a Gaussian vertical density profile. We do not expect this
to be the case here since the temperature can vary with dis-
tance to the midplane. However, the bulk of the disc around
the midplane has a constant vertical temperature (see Fig. 4 and
Sect. 3.2 below). Since this is the location where most of the
mass is located, the actual surface density is close to the tar-
geted value with small deviations of 10−3. To reach a higher ac-
curacy, we multiply the density in each grid cell by a constant
factor Σtarget/Σ so that we reach the target value before calcu-
lating the new temperature. We iterate the procedure until both
the temperature and density field have converged to better than
max((T n+1 − T n)/T n, (ρn+1 − ρn)/ρn) ≤ 10−8, where n is the
number of iterations. A validation of this iterative method is pre-
sented in Appendix B by reproducing the passive disc model of
Chiang & Goldreich (1997).
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3.2. Simulation parameters: the case of AS 209

We used the scheme detailed above to calculate the initial disc
structure of the series of simulations presented in Sect. 4. We
chose stellar and disc parameters inspired from those of the cir-
cumstellar disc AS 209 in the Ophiuchus star-forming region, for
which there are a number of observational constraints (Koerner
& Sargent 1995; Andrews et al. 2009; Pérez et al. 2012). Stellar
mass, radius, and surface temperature are well constrained pa-
rameters and we adopted the same values as Andrews et al.
(2009) with 0.9 M�, 2.3 R�, and 4250 K. The gas surface den-
sity Σ in the inner region of AS 209 is nearly a free parameter and
only constrained indirectly by the dust surface density. Andrews
et al. (2009) estimated for this system a total dust surface density
(including all particle sizes) of less than 1 g cm−2 at 1 AU from
the star.

For radiation hydrodynamics, the distribution of the small
particles (≤1 μm) is very important because these particles dom-
inate the opacity at optical, near and mid-infrared wavelengths.
They contain most of the dust surface, which is the controlling
parameter for the opacity. By contrast, most of the dust mass,
almost 99%, is stored in larger particles (Birnstiel et al. 2012).
Roughly speaking, the dust surface density of the small parti-
cles can be estimated to be less than 0.01 g cm−2, using the
parameters by Andrews et al. (2009). We have calculated our
disc structure for three different amounts of small dust parti-
cles: Σdust(1 AU) = 0.17, 0.017, 0.0017 g cm−2. The initial tem-
perature distribution in radiative hydrostatic equilibrium for the
three cases is shown in Fig. 4. In the top panel, Σdust(1 AU) =
0.17 g cm−2 and the disc displays a large optically thick region.
In the bottom panel, where Σdust(1 AU) = 0.0017 g cm−2, we
find a very extended heated upper region while the disc mid-
plane is completely optically thin to its own thermal radiation.
Between these two extrema we chose our fiducial model with
a dust surface density of Σdust(1 AU) = 0.017 g cm−2. In this
configuration (shown in the middle panel in Fig. 4), both an op-
tically thick midplane and an extended optically thin corona fit
within the computational domain. The gas surface density is set
to Σ(r) = 1700 g cm−2(r/1 AU)−0.9, such that it equals the mini-
mum mass solar nebula (MMSN) value at 1 AU, but it displays
a shallower slope than the MMSN suggested by Andrews et al.
(2009), even if those constraints come from larger radial dis-
tances. Assuming again that small particles carry only 1% of
the total dust mass, we obtain a total dust-to-gas mass ratio εd2g

of 10−3 in our fiducial model.
The simulation spans the radial range r = 0.5−1.5 AU, the

poloidal range θ = π/2 ± 0.13, and the azimuthal range φ =
0−π/3. For the fiducial model in initial equilibrium, we obtain
H/r = 0.02 at 0.5 AU which results in ±6.5 scale heights fitting
in the computational domain at its inner boundary. Because of
the disc flaring the value of H/r at the outer radius is larger,
with H/r = 0.03 corresponding to ±4.3 scale heights at the outer
boundary.

3.3. Boundary conditions

Finding suitable boundary conditions for a stable and physi-
cally reasonable global simulation such as presented in this pa-
per is already difficult in ideal MHD. Radiative transfer makes
the problem even more difficult. In this section we describe in
detail the boundary conditions we have designed for that pur-
pose. Straightforward periodic boundary conditions are used for
all variables in the azimuthal direction, so we focus on the radial
and poloidal boundaries.

In the radial direction we extrapolated linearly the density
and azimuthal velocity. Radial and poloidal velocities were all
set to zero gradient. In the case of inflowing gas with a Mach
number of 0.1 or higher, we forced the radial velocity boundary
condition to be reflective. The poloidal and toroidal magnetic
field components were set to follow a 1/r profile, while the radial
magnetic field was calculated to ensure ∇ · B = 0 in the ghost
cells. Temperature was set to zero gradient and we used ER =
aRT 4

0 for the radiation energy density ER with T0 being the initial
radiative hydrostatic equilibrium temperature. In order to avoid
irradiation from directly illuminating the first radial cell of the
computational domain, we set a vertical dependent optical depth
τinit(θ) = κ0(θ)ρ0(θ)(r0 − 6R∗) with the subscript 0 corresponding
to the first cell in the radial direction. Using six stellar radii as
the inner disc edge is a reasonable approximation to absorb most
of the irradiation at the disc midplane, as would be done by the
inner parts of the disc4. Accordingly, the Rosseland opacity at
the radial boundary was modified in the optically thick region
so that κ0ρ0Δr < 0.1. Even if this boundary condition seems
unrealistic it will prevent an artificial pile up of the radiation
energy density near the boundary, and so permits the correct disc
flaring (see Appendix B).

In the poloidal direction we forced the density to drop ex-
ponentially. The velocities are set to zero gradient. In the case
of inflowing poloidal velocities we reflect vθ in the ghost cells.
Tangential magnetic fields are set to zero gradient, while we cal-
culated the poloidal field so as to enforce ∇ · B = 0. The temper-
ature was set to zero gradient and the radiation energy density
was fixed to ER = aRT 4

min with Tmin = 10 K. The temperature in
the poloidal direction has to be small Tmin � Tgas to ensure that
the disc can cool by radiating its energy away.

4. Results

Table 1 summarizes the models we performed and provides an
overview of the integrated angular momentum transport proper-
ties we obtain. Models L3D and L3Dl are low-resolution RMHD
simulations, with (Nr,Nθ,Nφ) = (256, 64, 256). Such a low res-
olution enables long integration times of about 650 inner orbits.
While the dust-to-gas mass ratio in model L3D is equal to our
fiducial value of 10−3, it is reduced by one order of magnitude
in model L3Dl. To save computational time, we interpolate the
results of model L3D after 300 inner orbits on a grid twice as
fine. After this time, the MRI has saturated, and we use the in-
terpolated magnetic fields to restart the simulation, which con-
stitutes model H3D. This represents the fiducial model of the
present paper and is described in detail in the following sec-
tions. In Appendix C we describe the procedure of interpolation
and restarting. To connect with previous work, its properties are
compared with model H3D-ISO which is a locally isothermal
model that uses an azimuthal- and time-averaged temperature
profile calculated from the results of model H3D (see Sect. 4.2).
Finally, we compare our results with a couple of 2D radiative hy-
drodynamic simulations (performed in the disc poloidal plane)
of viscous discs, namely models H2D and H2D∗, that use differ-
ent prescriptions for the viscous stress tensor (see Sect. 4.1.2).
All MHD simulations are initialized with a pure toroidal mag-
netic field with a uniform plasma beta value β = 2P/B2 = 40.
Initial random velocity fluctuations are added to the initial disc
configuration with an amplitude equal to 10−3 of the local speed
of sound.

4 Young stellar objects have dominant magnetic fields inside a few stel-
lar radii, which destroy the disc structure (Günther 2013).
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Table 1. Summary of model parameter.

Model Resolution Radius:θ:φ Method εd2g 〈Trφ〉dyn cm−2 〈α〉 Orbits

L3D 256 × 64 × 256 0.5−1.5:π/2± 0.13:0−π/3 RMHD 10−3 0.037 2.6 × 10−3 0−650
L3Dl 256 × 64 × 256 0.5−1.5:π/2± 0.13:0−π/3 RMHD 10−4 0.062 3.25 × 10−3 0−650

H3D 512 × 128 × 512 0.5−1.5:π/2± 0.13:0−π/3 RMHD 10−3 0.076 4.6 × 10−3 300−600
H3D-ISO 512 × 128 × 512 0.5−1.5:π/2± 0.13:0−π/3 MHD 10−3 0.044 2.5 × 10−3 300−600

H2D 512 × 128 × 1 0.5−1.5:π/2± 0.13:− RHD 10−3 − 4.6 × 10−3 0−200
H2D∗ 512 × 128 × 1 0.5−1.5:π/2± 0.13:− RHD 10−3 − 4.6 × 10−3 0−200

Notes. From left to right: model name; grid resolution; domain size; method; dust-to-gas mass ratio; total accretion stress in cgs units; normalized
accretion stress; inner orbits.

Fig. 5. Snapshot of turbulent rms velocity (left panel) and magnetic field strength (right panel) at the final time of the full RMHD simulation H3D.

Fig. 6. Vertical profile of turbulent rms velocities for model H3D in
units of m s−1 (black) and the corresponding turbulent Mach number
(blue). The space average is calculated over azimuth at 1 AU with a
time average of 100 inner orbits.

4.1. Model H3D

4.1.1. Turbulent properties

We start with a general description of the integrated properties of
the turbulence in model H3D. The turbulent nature of the flow
is best illustrated by Fig. 5 which shows two snapshots of the
gas velocity fluctuations and the magnetic field strength in the
disc. The root-mean-squared (rms) velocities in the disc mid-
plane range from 1 m s−1 up to 100 m s−1. In the corona the tur-
bulent velocities increase above 1000 m s−1. This is consistent
with the azimuthal and time-averaged vertical profile of the gas

Fig. 7. Vertical stress profile for model H3D in units of dyn cm−2 (black)
and normalized using the local pressure (blue). The space average is
calculated over azimuth at 1 AU with a time average of 100 inner orbits.

turbulent velocities shown in Fig. 6 (black curve). When nor-
malized by the local sound speed (blue curve), the plot shows a
local Mach number around 0.15 at the midplane. This is typical
of values obtained in isothermal simulations (Fromang & Nelson
2006; Flock et al. 2010). However, in contrast with such simula-
tions, the turbulent Mach number reaches a peak (with roughly
sonic velocity fluctuations) at around θ− π/2 = 0.07, which cor-
responds to around two pressure scale heights.

The right panel of Fig. 5 shows the magnetic field strength
spatial distribution. In the midplane, it ranges from 0.01 Gauss
up to 5 Gauss. In the corona, the field shows larger and smoother
fluctuations with values below 1 Gauss. In Fig. 7, we plot
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the vertical profile of the accretion stress which is the sum of
Reynolds and Maxwell stresses

〈Trφ〉 =
〈
ρv′φv

′
r − BφBr

〉
, (15)

where v′r,φ is the radial and azimuthal velocity fluctuations and 〈.〉
represents the time average. The black curve corresponds to the
absolute values of the stress (in cgs units). It displays a peak
of ∼0.3 dyn cm−2 at about θ − π/2 ∼ 0.06, a plateau with a
small drop close to the midplane (∼0.1 dyn cm−2), and decreases
in the disc corona. This profile is in qualitative agreement with
results of isothermal local simulations (Simon et al. 2012), as
well as in radiative MHD local simulations (Hirose et al. 2006;
Flaig et al. 2010), and in locally isothermal global MHD simula-
tions (Fromang & Nelson 2006). By normalizing the stress over
the local pressure (blue curve), we also obtain a vertical profile
and absolute α values similar to isothermal simulations (Flock
et al. 2011). The accretion stress α amounts to about 10−3 in the
disc equatorial plane and increases up to a few times 10−1 in the
corona. Table 1 also shows the value of the accretion stress vol-
ume averaged over the entire computational domain. Following
Flock et al. (2011), its normalized value 〈α〉 is defined accord-
ing to

〈α〉 =
〈∫
ρ

(
ρv′φv

′
r

P − BφBr

P

)
dV∫

ρdV

〉
· (16)

The time average is calculated using between 400 and 500
inner orbits. Again, we find typical values of about a few
times 10−3, very similar to transport coefficients measured in lo-
cally isothermal global simulations of turbulent protoplanetary
discs in the last few years. We note that the changes in the tur-
bulence properties over radius remain small during the simula-
tion. Nevertheless, there are regions of increased activity. This is
the case for the region that is about 0.1 AU broad visible in the
3D snapshots close to R ∼ 1 AU at the midplane (Fig. 5), where
turbulent velocities and magnetic fields are larger. These zones
of increased turbulent activity could be connected to long-lived
zonal flows such as those observed in local (Johansen et al. 2009;
Dittrich et al. 2013) and global simulations (Dzyurkevich et al.
2010; Flock et al. 2011) when using an isothermal equation of
state. We now move in the following to the specificities of the
present work that are associated with radiative transfer.

4.1.2. Temperature evolution

The time-averaged vertical temperature profile at 1 AU in model
H3D is shown in Fig. 8 and is compared with the temperature
vertical profile at the start of the simulation (i.e., when the disc is
in hydrostatic equilibrium). As a consequence of turbulent heat-
ing, the disc midplane temperature increases from around 140 K
to 160 K for model H3D. This corresponds to an increase in
the disc pressure scale height of 7%. The temperature profile re-
mains flat in the optically thick part of the disc. The temperature
rises in the upper layers because of the stellar irradiation. We
find a small reduction in the temperature in the upper layers of a
few percentage points (bottom panel in Fig. 8) because the disc
vertical density profile is flattened in the upper layers as a re-
sult of magnetic support (in agreement with previous results; see
e.g. Hirose & Turner 2011). This shields the disc corona from
the incoming irradiation at a given height compared to the initial
model and leads to a small drop in the temperature.

Fig. 8. Top: vertical temperature profile of the RMHD run (black line)
and the viscous RHD runs (green lines) for the high-resolution mod-
els at 1 AU. Model H2D uses a constant alpha. Model H2D∗ uses a
vertical dependence of α ∼ 1/ρ which is more similar to the RMHD
run. Bottom: relative temperature profile compared to the initial passive
disc, for models H2D∗ and H3D. On both panels, the background colour
shows the region of the disc where the gas is optically thin to its own
thermal radiation and to the irradiation by the star. The grey background
colour shows the region where the gas is optically thick to its own ra-
diation. We note that there is also a small region in the disc where the
gas is optically thin to its own radiation but still optically thick for the
irradiation by the star.

We next investigated whether this vertical temperature pro-
file can be accounted for in the framework of standard α-disc
models. We performed an axisymmetric 2D RHD simulation
(model H2D) in the disc poloidal plane using a constant α vis-
cosity ν = αcsH with α = 4.6 × 10−3 and the local sound
speed cs. The 2D model was initialized using azimuthally aver-
aged values of the density, pressure, temperature, azimuthal ve-
locity, and radiation energy density as obtained in model H3D.
The temperature in the 2D viscous RHD model quickly relaxes
into a steady state that is overplotted on the top panel in Fig. 8.
As we see, a classical α disc prescription does not reproduce the
correct midplane temperature. It predicts a midplane temperature
of about T = 180 K, which is higher than that of model H3D and
does not display the flat temperature profile in the optically thick
part of the disc. Here, most of the heat is released at the midplane
vicinity because of the scaling of the viscous stress tensor with
density. By contrast, the turbulent stress tensor in our simula-
tion is rather flat for |θ − π/2| ≤ 0.05 (see Fig. 7) with varia-
tions of only a factor of ∼2. We thus performed an additional 2D
RHD simulation, model H2D∗, that uses a different prescription

A43, page 7 of 14

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201322451&pdf_id=8


A&A 560, A43 (2013)

Fig. 9. Vertical profile of radiation temperature TER = (ER/aR)1/4

(dashed line) and gas temperature (solid line) line at 1 AU. We over-
plot the range of the temperature fluctuations (red dotted line). The
peak of relative temperature fluctuations ΔT/T are around 6−7% at the
τ = 1 line (θ ≈ 0.07) for the irradiation (cf. Fig. 10).

for viscosity5, such that the viscous stress tensor remains con-
stant with height below <±2 scale heights but vanishes above
that location. This α prescription to model the turbulence in 1D
or 2D simulations has been used by Kretke & Lin (2010) and
Landry et al. (2013). The vertical temperature profile we obtain
in that model is also shown in Fig. 8. It shows midplane temper-
ature and vertical profile in much better agreement with the full
3D RMHD model H3D. Besides the gas temperature, one can
define the radiation temperature as TER = (ER/aR)1/4. In Fig. 9
we plot the vertical profile of both temperatures after 480 inner
orbits. In the optically thick midplane, the two temperatures are
well coupled because of the high opacity. In the optically thin
upper layers the two temperatures start to diverge owing to the
irradiation. The radiation temperature stays at the level of the
midplane value. Figure 9 also shows the temperature fluctua-
tions (red dotted line) which are small. The maximum relative
temperature fluctuations are close to the τ = 1 line of the irra-
diation with values between 6 and 7%. In Fig. 10 we plot the
time evolution of the azimuthally averaged total stress Trφ over
height. The blue contour lines show the peak of stress at each
time. They follow the butterfly motions of the mean toroidal field
which is triggered by the MRI dynamo (Gressel 2010). The peak
of relative temperature fluctuations are close to the azimuthally
averaged τ = 1 absorption layer of the irradiation (white line).
It suggests that the peak of relative temperature fluctuations is
triggered by the fluctuations of the τ = 1 surface.

4.1.3. Heating and cooling rates

In this section we take a closer look at the heating and cool-
ing rates in the RMHD model H3D. To do so, we proceeded as
follows: over any given timestep, we recorded the change in in-
ternal energyΔPMHD/(Γ−1) that occurred during the MHD step,
as well as the change in internal energy ΔPrad/(Γ − 1) that oc-
curred during the radiative step. The former captures all dynam-
ical heating and cooling mechanisms, including the advection of
energy or the transfers from kinetic, magnetic, or gravitational
energy into thermal energy (see Eq. (3)). We then summed these
fractional internal energy changes (divided by the timestep Δt
and multiplied by the corresponding cell volume) over a large

5 ν = αmidρmidcsH, with αmid = 10−3, and ρmid being the midplane
density value.

time interval to compute the heating and cooling rates associated
with dynamical and radiative processes. These are respectively
labelled QMHD and QRad. Figure 11 shows meridional snapshots
of both quantities, in the top (QMHD) and bottom (QRad) panels.
Both quantities are azimuthally and time averaged over 40 inner
orbits starting after 380 inner orbits. The plots show that most of
the disc is being heated with a rate of the order of 1013 erg/s that
is mostly released in the disc upper layers, θ− (π/2) ∼ 0.05. This
corresponds to around two pressure scale heights above the disc
midplane. Radiative cooling (bottom panel) roughly balances
that heating, showing that the disc is approximately in steady
state. To investigate how much of that heat can be attributed to
turbulent dissipation, we calculate the expected theoretical heat-
ing rate QStress following Balbus & Papaloizou (1999). Figure 12,
left, shows a meridional snapshot of the turbulent heating QStress

that can be computed according to

QStress = −Trφ
r∂Ω
∂r
· (17)

The vertical profiles of the heating rates, plotted in Fig. 12, right,
show a good correlation between QStress and QMHD. Most of the
disc heating can be attributed to MHD turbulence locally dis-
sipated into heat. In the upper disc layers, the energy is partly
transported away by waves.

4.2. Effect of resolution, equation of state, and dust-to-gas
mass ratio

We have focused so far on the high-resolution model H3D.
However, both the vertical profile of the turbulent stress and the
turbulent velocity depend on several factors, both numerical and
physical.

First, the spatial resolution of the grid is known to be of im-
portance. This is a particularly constraining problem in global
simulations. Recently, the convergence and the effect of resolu-
tion in global adiabatic (Hawley et al. 2013) and locally isother-
mal (Parkin & Bicknell 2013) simulations were investigated. A
convergence study in fully radiative global simulations is diffi-
cult to achieve and would go beyond the scope of this paper. As
a first step in that direction, we nevertheless present the results
of model L3D in which the resolution is reduced by a factor of
two, compared to model H3D. In these low-resolution simula-
tions, there are seven grid cells per pressure scale height. This
is not enough to properly resolve the MRI (Flock et al. 2010;
Sorathia et al. 2012), which leads to a reduction of the total ac-
cretion stress. The normalized total accretion stress α varies be-
tween 4.6× 10−3 for model H3D and 2.6× 10−3 for model L3D.
As shown in Fig. 13, the stress vertical profiles of Trφ in both
models are significantly different. At the midplane the stress in
model L3D drops by one order of magnitude. This is expected,
as in stratified MRI simulation it becomes more difficult to prop-
erly resolve the MRI at the midplane because of its low magne-
tization (Fromang & Nelson 2006; Flock et al. 2011).

Second, the isothermal model H3D-ISO shows a reduced
stress compared to the full RMHD model H3D. It decreases
from 4.6× 10−3 to 2.5× 10−3. This trend of increased turbulence
in radiative models was also suggested by Flaig et al. (2010).
Nevertheless, as shown in Fig. 13, the vertical profile of the
stress has a similar shape for both models.

The last effect we want to discuss is the influence of the
dust-to-gas mass ratio. In model L3Dl, we reduce it by one or-
der of magnitude to 10−4. As shown in Fig. 4, this shifts the
irradiated hotter disc region down to the midplane. In Fig. 14,
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Fig. 10. Time evolution of the azimuthally averaged total stress Trφ over height at 1 AU. We overplot the location of largest stress (blue contour),
largest relative temperature fluctuations (black contour), the vertical location of the τ = 1 position of the irradiation (white contour), and the
vertical location of the τ = 1 position for the local thermal radiation (green contour) for each time bin.

Fig. 11. 2D contour plot of the MHD heating and cooling QMHD (top)
and the radiative heating and cooling QRad (bottom) in units of 1023,
azimuthally and time averaged over 40 inner orbits.

we plot the temperature profiles at 1 AU, averaged over az-
imuth and time between 200 and 400 inner orbits. As the disc
becomes hotter, the sound speed increases and a higher satu-
ration level of the MRI is expected (Balbus & Hawley 1998).
An effect of increased turbulence can be seen by comparing
model L3D (dashed line) and model L3Dl (dashed-dotted line)
in Fig. 13: the vertical profile of model L3Dl shows an overall
larger stress than model L3D. The total normalized stress is in-
creased by 25% (see Table 1), but more important is the position
of the maximum stress. The hotter temperature region has shifted
by Δθ ∼ 0.02 down to the midplane, but the peak stress is still

Fig. 12. Top: 2D contour plot of expected theoretical heating QStress

in units of 1023, azimuthally and time averaged over 40 inner orbits.
Bottom: vertical profile of the MHD heating QMHD (solid line), radia-
tive cooling −QRad (dashed line), and theoretically expected MHD heat-
ing QStress (dotted line).

located at θ− π/2 ∼ 0.05. This result indicates again that the po-
sition of the maximum stress due to MRI is independent of the
vertical temperature profile. This position also seems indepen-
dent of resolution when comparing model L3D and model H3D.

The position of the maximum of the stress is connected to
the plasma beta. The vertical profiles of β for the models L3D
and L3Dl are shown in Fig. 15, using the same time and space
average. Even if the temperature profiles are quite different, the
plasma beta value drops at the same height (θ ∼ 0.05) in both
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Fig. 13. Vertical stress profile in units of dyn cm−2 for the high-
resolution models H3D (solid line), H3D-ISO (dotted line), the low-
resolution models L3D (dashed line), and L3Dl (dashed-dotted line)
with reduced amounts of dust.

Fig. 14. Vertical profile of gas temperature (solid line) and radiation
temperature TER = (ER/aR)0.25 (dashed line) for models L3Dl (red line)
and L3D (black line).

Fig. 15. Vertical profile of plasma beta β = 2P/B2 for models L3D (solid
line) and L3Dl (dashed line).

models. All these results indicate that the vertical shape and
especially the location of the peak of MRI turbulent magnetic
fields are independent of the vertical temperature profile.

5. Conclusion and future work

In this paper, we successfully implemented in the PLUTO code
a FLD method in spherical coordinates, including frequency de-
pendent irradiation by a star. It is well adapted to performing
global simulations of irradiated accretion discs such as proto-
planetary discs. The FLD module has serial performances that
are three times faster than the MHD part even for a mainly opti-
cally thin disc setup. We performed the first global 3D radiation
magneto-hydrodynamics simulations of an irradiated and turbu-
lent protoplanetary disc. The disc parameters were inspired by
that of the system AS 209 in the star-forming region Ophiuchus
(Andrews et al. 2009) for which there are strong observational
constraints. The simulations started from a radiative hydrostatic
disc which becomes MRI unstable, turbulent, and finally devel-
ops into a steady state with typical α values of a few times 10−3,
comparable to published simulations of the same kind that use
a locally isothermal equation of state. We investigated the tur-
bulent properties and compared the disc structure with classical
viscous disc models. Our findings are as follows:

– The vertical temperature profile showed no temperature
peak at the midplane as in classical viscous disc models
(D’Alessio et al. 1998). A roughly flat vertical temperature
profile established in the optically thick region of the disc
close to the midplane. We reproduced the midplane tempera-
ture from the full 3D RMHD run using 2D viscous disc simu-
lations in which the stress tensor is constant in the bulk of the
disc and vanishes in the disc corona. A simple prescription is
given with the turbulent stress being constant in the vertical
direction within two pressure scale heights of the midplane,
and vanishing above. The simple prescription gives a satis-
fying account of the results.

– The main heating in the turbulent discs was dominated by
the Trφ stress tensor. We observed a heating of the order of
1023 erg s−1, mainly released in the disc upper heights.

– The temperature fluctuations in the disc were small and of
the order of 1%. A small increase was observed close to the
transition region where the disc was heated by the irradiation
from the star with fluctuations up to 6%.

– The turbulent magnetic fields reached field strengths of about
1 to 10 Gauss at the midplane. The turbulent velocity of the
gas was around 10 to 100 m/s at the midplane, and up to
1000 m/s in the upper heights of the disc.

We want to point out some limitations of our work. The first is
the distribution and abundance of small dust particles. Indeed,
the latter strongly affects the disc temperature vertical profile
(see Fig. 4). For our model we choose the disc AS 209, which
has a relative low dust abundance compared to other protostellar
systems (Andrews et al. 2009). For the dust surface density we
used 0.017 g cm−2 at 1 AU for grain sizes ≤1 μm. A much larger
amount of small dust particles is difficult to include as it needs a
much larger vertical extent to obtain the optically thin irradiated
region. At the same time such large extents in stratified MHD
turbulent simulation are difficult to perform. In our simulations
we used a fixed dust-to-gas mass ratio. In contrast, a smaller dust
amount over most of the disc height is expected in weakly tur-
bulent discs, e.g. αturb < 10−2 (Zsom et al. 2011; Akimkin et al.
2013). All these points show that the total amount and distribu-
tion of small dust particles is rather uncertain. These simulations
should be thought of as a proof of concept that RMHD simula-
tions of turbulent protoplanetary discs are now feasible given the
current computational resources.
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Another limitation is our use of the ideal MHD approxima-
tion. It is well known that the electron fraction is so low at 1 AU
in protoplanetary discs that dissipation terms (Ohmic resistivity,
ambipolar diffusion, and Hall term) are important (Okuzumi &
Hirose 2011; Bai 2011; Dzyurkevich et al. 2013). These dissi-
pative processes are expected to stabilize the MRI in the bulk of
the disc, producing a laminar dead zone around the equatorial
plane of the disc (Gammie 1996). The presence of a dead zone
and the consequences of the various dissipative processes at play
will mainly affect the vertical profiles of the turbulent stress and
heating rate (Hirose & Turner 2011). These are key aspects of
protoplanetary discs dynamics that should be included in future
simulations performed in the planet forming regions of proto-
planetary discs.

Our current implementation assumes that the gas and dust
temperatures are perfectly coupled. Recent models by Akimkin
et al. (2013) predict photoelectric heating as a dominant heating
source for the gas affected by UV flux. We thus expect that the
gas temperature and even the dust temperature (Akimkin et al.
2011) to be higher in the irradiated regions than presently esti-
mated in our models. Detailed studies of the flow in the corona
(for example, reconnection and heating events) should include
this effect to be meaningful. This would be the purpose of future
developments of our numerical scheme.
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Appendix A: Flux-limited-diffusion method

A.1. Numerical scheme

We discretize Eqs. (6), (7) in spherical coordinates using a finite
volume formulation and a fully implicit scheme

cn
vT
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with the specific heat capacity cv = ρkB/(μgu(Γ − 1)), the ge-
ometrical terms S r

i = r2
i , S θj = | sin θ|, Vr

i =
1
3 (r3

i+1/2 − r3
i−1/2),

Vθj = | cos θ j−1/2 − cos θ j+1/2|, and the irradiation flux F∗.
Equations (A.1) and (A.2) are coupled by linearizing the term
proportional to T 4 that appears in both equations and neglecting
the high-order term (Commerçon et al. 2011)

(T n+1)4 = 4(T n)3T n+1 − 3(T n)4. (A.3)

This approximation is valid if the change in temperature T =
(T n+1 − T n) is small. The maximum change in relative temper-
ature ΔT/T per time-step during our RMHD disc simulations
is always below 0.01. Using this expression we can combine
Eqs. (A.1) and (A.2) and construct the matrix that needs to be
inverted. We note that in this version the scheme is first order in
time because of the first-order backward Euler step, used for the
time integration.

A.2. Test in spherical geometry

A.2.1. Diffusion test

In this section we test the diffusion operator in spherical
coordinates

∂ER

∂t
+ ∇cλ
κρ
∇ER = 0. (A.4)

We set up a domain of r : θ : φ = (0.5−1.5 AU) : (0.507−π/2) :
(0.5−1.5) with different resolutions of 163, 323, 643, and 1283.
We use a logarithmic increasing grid in radius so that Δr ∼
rΔθ ∼ rΔφ. The domain is shifted in the θ direction, to test all
the geometrical terms. As initial conditions we use the Gauss
function

ER(x, t0) =
E0

(4πDt0)3/2
e−(x−x0)2/4Dt0 ,

with E0 = 3.0 × 1047erg, D = c/(3κρ) and the Cartesian posi-
tion vector x. The position x0 is placed at r = 1.0 AU, θ = 1.0,
and φ = 1.0; κ is fixed to 1 cm2g−1 and ρ to 10−10 g cm−3. We set
the flux limiter λ to 1/3, the initial time to t0 = 5000 s, and the
boundary conditions to the analytical value for the given time.
We evolve until tfinal = 55 000 s. The timestep for the 163 model
is set to 500 s which represents a Courant number6 of 0.11. The
timestep is decreased by a factor of 4 each time the resolution
is doubled to keep the Courant number constant. Figure A.1
presents the profile of ER along each direction at low resolu-
tion, left column, and the profile of the relative error in each
direction and resolution, right column. The low resolution run
matches with the analytical profile with relative error around 2%.
We note that this test problem is difficult to handle in spheri-
cal coordinates because of the different grid spacing and espe-
cially because of the change in volume over radius. As this test
problem is time dependent, we observe a first-order convergence
rate which is expected, using a first-order time integration (Jiang
et al. 2012).

A.2.2. Full hybrid scheme

In this second test we repeat the equilibrium setup (see Sect. 2.2)
to determine the order of the full hybrid scheme and to verify the

6 The Courant number for a parabolic problem is defined as Cp =
2ΔtD/(Δx)2.
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Fig. A.1. Left: final profiles of ER (dots) over radius, θ and φ (top to bot-
tom) at low resolution. Overplotted is the analytical value (solid line).
Right: relative error from the analytical profile for the different resolu-
tion runs and as a function of radius, θ and φ.

Fig. A.2. Left: vertical temperature profiles at 2 AU for different reso-
lutions. Right: L2 norm of the relative error (black dots) over the typi-
cal cell size Δr = (rout − rin)/Nr. The dotted line shows the theoretical
second-order scheme slope ∝(Δr)2.

equilibrium temperature at low resolution. We perform a resolu-
tion study using five different resolutions 60 × 25, 120 × 50,
240 × 100, 480 × 200, and 960 × 400. In this test we set the
convergence criteria to |res|2/(NrNθ) < 10−10. Figure A.2, left,
shows the vertical temperature profile at 2 AU for the different
resolutions. Even the lowest resolution (blue dots) matches very
well with the reference solution (black solid line). The temper-
ature profile from the highest resolution is taken as reference
temperature T ref . The order of the scheme can be tested by com-
paring the L2 norm as a function of the grid spacing. We define
the L2 norm as

L2 =

√√√√√√√√√√√ 1
Ncell

Ncell∑⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣T c −
Vc∑

T refdV ref

Vc

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
2

, (A.5)

with the number of cells Ncell for a given coarse resolution, the
temperature and the corresponding volume of the coarse grid
cell T c and Vc, and the temperature and volume of the highest
resolution run T ref and V ref . We average the reference temper-

ature T ref over the given volume
Vc∑

dV ref = Vc of the coarse
resolution. Using this volume average becomes important here
as the method and so the divergence terms are written in the fi-
nite volume approach (see Eq. (A.2)). In Fig. A.2, right, we show
the L2 norm (black dots) overplotted with the theoretical slope
of a second-order scheme. As this test problem is time indepen-
dent, we are able to obtain second-order space accuracy. We note
that the irradiation, the heating source, is only radius dependent
and so is a 1D problem.

Appendix B: Validation of radiative hydrostatic
equilibrium

In this section we test the iterative method presented in Sect. 3.1.
To do so, we compare the hydrostatic disc structure we ob-
tained using that procedure for a given set of disc parame-
ters with the simple model described by Chiang & Goldreich
(1997). The disc parameters, chosen to match that work, are
as follows: T∗ = 4000 K, M∗ = 2.5 M�, R∗ = 2.5 R�, and
Σ = 1000 r−0.5

AU g cm−2, where rAU stands for the distance to the
star in astronomical units. We fix the opacity to 1 cm2 g−1. We
use a logarithmically increasing grid with 384 × 64 cells. The
radial domain extends from 1 to 50 AU and the poloidal domain
covers the range θ = ±0.4. We follow the iteration procedure
presented in Sect. 3.1 to compute the hydrostatic structure of that
disc. The resulting 2D radiative hydrostatic temperature profile
is plotted in Fig. B.1. The black solid line in Fig. B.1 shows the
location of the photosphere.

As mentioned, some of the basic properties of irradiated
discs can be estimated well using the model of Chiang &
Goldreich (1997), the basic physics of which we review here.
The disc is irradiated at the photosphere Hph. The heating at that
location by the incoming irradiation can be written

S heat = κPρσT 4
∗
(R∗

r

)2

ds, (B.1)

where ds = r2 sin θΔθΔφ is the irradiated surface element at the
disc surface. If we assume isotropic blackbody cooling at the
photosphere we can write the cooling as

S cool = κpρσT 4(2r2 sin θΔθΔφ + 2r sin θΔrΔφ)· (B.2)

Since irradiation hits the disc surface with a small angle one
can approximate rΔθ + Δr ∼ Δr (in other words, most of the
cooling is done through disc emission in the vertical direction).
Assuming that heating and cooling balance each other, we find
(see also Chiang & Goldreich 1997, Eq. (1))

Teq =

(
rΔθ

2(rΔθ + Δr)

)1/4

T∗
(R∗

r

)1/2

≈
(

rΔθ
2Δr

)1/4

T∗
(R∗

r

)1/2

·
(B.3)

The term rΔθ/Δr is often called the flaring angle αflare, and can
be expressed as

αflare = r
∂

∂r

(
Hph

r

)
· (B.4)
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Fig. B.1. Final 2D temperature distribution in radiation hydrostatic
equilibrium. The black solid line shows the τ = 1 line for the irradiation.

Using Eq. (B.4), we can calculate the flaring angle of our disc
model and derive the expected equilibrium temperature in our
model using Eq. (B.3). In Fig. B.2 (top panel), we plot the tem-
perature in the corona Tcorona (red dotted line at θ − π/2 = 0.4)
and in the midplane Tmidplane (red solid line), overplotted with the
corresponding blackbody temperature T∗(R∗/r)1/2 (black dotted
line) and the equilibrium temperature Teq (black solid line). The
two curves we obtained using our iterative procedure are in good
agreement with the approximate expressions provided by the
Chiang & Goldreich (1997) model.

In Fig. B.2 (bottom panel), we plot in addition the disc scale
height H/r over radius. When combining Eq. (B.4) with the
Gaussian vertical profile of the disc (in the case of an isothermal
disc), a simple formulae for its radial profile is obtained (Chiang
& Goldreich 1997):

H/r ∝
(

r
R∗

)2/7

· (B.5)

This analytical prediction is compared in the bottom panel in
Fig. B.2 (solid line) with our numerical estimate of the same
quantity. Again, the agreement between the two curves validates
our iterative procedure.

Appendix C: Restarting the H3D model

As mentioned, we restarted our high-resolution model from a
magnetic field configuration after MRI saturation from
model L3D. This requires interpolating the simulation data from
a coarse grid to a refined grid (with refined cells about twice
as small as the coarse cells). In MHD, this is not an imme-
diate procedure if one wants to retain the solenoidal nature of
the magnetic field. In the constraint transport MHD method, the
magnetic fields are located at cell interfaces. Coarse cell inter-
faces are refined, and the magnetic field on the refined surfaces
is simply injected from those coarse cell interfaces. In addition,
new interfaces appear in the refined grid that do not exist in the
coarse grid. At these locations, we perform a linear interpolation
of r2Br, sin θBθ, Bφ and we use that interpolation to reconstruct
the new magnetic field. This ensures ∇ · B = 0 on the refined
grid.

We restart the model first with pure isothermal MHD using
the initial density and temperature profiles derived from hydro-
static equilibrium. We let the system relax for around 1000 steps,
then we take the velocities and the magnetic fields from the re-
laxed state, but the density and temperature profiles again from
the hydrostatic equilibrium. Restarting from this with full radia-
tive RMHD will result after around 10 outer orbits in a new sat-
urated state avoiding the linear MRI phase.

1 10
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]
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Tmidplane

Tcorona
TBlackbody

1 10
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/r

Chiang et al 1997
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Fig. B.2. Top: temperature at the disc photosphere (red dotted line) and
the midplane (red solid line) overplotted with the analytical prediction
(black lines). Bottom: scale height H/r at the midplane (dotted line),
overplotted with the analytical prescription by Chiang & Goldreich
(1997) (solid line).
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