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ABSTRACT

Context. Cosmic rays play an important role in dense molecular cores, affecting their thermal and dynamical evolution and initiating
the chemistry. Several studies have shown that the formation of protostellar discs in collapsing clouds is severely hampered by the
braking torque exerted by the entrained magnetic field on the infalling gas, as long as the field remains frozen to the gas.
Aims. In this paper we examine the possibility that the concentration and twisting of the field lines in the inner region of collapse can
produce a significant reduction of the ionisation fraction.
Methods. To check whether the cosmic-ray ionisation rate can fall below the critical value required to maintain good coupling, we
first study the propagation of cosmic rays in a model of a static magnetised cloud varying the relative strength of the toroidal/poloidal
components and the mass-to-flux ratio. We then follow the path of cosmic rays using realistic magnetic field configurations generated
by numerical simulations of a rotating collapsing core with different initial conditions.
Results. We find that an increment of the toroidal component of the magnetic field, or, in general, a more twisted configuration of the
field lines, results in a decrease in the cosmic-ray flux. This is mainly due to the magnetic mirroring effect that is stronger where larger
variations in the field direction are present. In particular, we find a decrease of the cosmic-ray ionisation rate below 10−18 s−1 in the
central 300–400 AU, where density is higher than about 109 cm−3. This very low value of the ionisation rate is attained in the cases
of intermediate and low magnetisation (mass-to-flux ratio λ = 5 and 17, respectively) and for toroidal fields larger than about 40% of
the total field.
Conclusions. Magnetic field effects can significantly reduce the ionisation fraction in collapsing clouds. We provide a handy fitting
formula to compute approximately the attenuation of the cosmic-ray ionisation rate in a molecular cloud as a function of the density
and the magnetic configuration.

Key words. cosmic rays – ISM: clouds – ISM: magnetic fields

1. Introduction

The study of the interaction of cosmic rays (CRs) with the inter-
stellar matter is a multi-disciplinary task that involves the anal-
ysis of several physical and chemical processes: ionisation of
atomic and molecular hydrogen, energy loss by elastic and in-
elastic collisions, energy deposition by primary and secondary
electrons, γ-ray production by pion decay, generation of small-
scale turbulence by streaming instabilities, and the production
of light elements by spallation reactions. CR ionisation activates
the rich chemistry of dense molecular clouds and determines the
degree of coupling of the gas with the local magnetic field, which
in turn controls the ambipolar diffusion timescale and the star-
formation efficiency of a molecular cloud.

In recent years a wealth of observations from the ground
and from space has provided information and constraints on
the flux and the ionisation rate of cosmic rays. Detections of
large abundances of H+3 in diffuse clouds (e.g. Indriolo et al.
2012), observations of OH+ and H2O+ in low H2 fraction re-
gions (Neufeld et al. 2010; Gerin et al. 2010), estimates of en-
hanced values of the CR ionisation rate in a molecular cloud
close to a supernova remnant (Ceccarelli et al. 2011) as well
as the measurement of the γ luminosity of molecular clouds

(e.g. Montmerle 2010) raised the questions about the origin of
the CR flux that generates such a high ionisation rate and how
to reconcile these values with those ones measured in denser
clouds that are more than one order of magnitude lower. A num-
ber of studies approached this problem using different strategies,
analysing the effects of Alfvén waves on CR streaming (Skilling
& Strong 1976; Hartquist et al. 1978; Padoan & Scalo 2005;
Rimmer et al. 2012), magnetic mirroring and focusing (Cesarsky
& Völk 1978; Chandran 2000; Padovani & Galli 2011), or
the possible existence of a low-energy flux of CR particles
able to ionise diffuse but not dense clouds (Takayanagi 1973;
Umebayashi & Nakano 1981; McCall et al. 2003; Padovani et al.
2009).

Disc formation is another integral aspect of star formation.
One of the main concerns is the so-called “catastrophic magnetic
braking problem” that suppresses the formation of a rotationally
supported disc in the ideal MHD limit during the protostellar
accretion phase of a low-mass forming star (Allen et al. 2003;
Galli et al. 2006; Mellon & Li 2008; Hennebelle & Fromang
2008). Given the observational evidence of discs on 100 AU or
even larger scales at least around Class I–II protostars, a num-
ber of possible solutions to the problem of catastrophic magnetic
braking have been invoked, including: (i) non-ideal MHD effects
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such as Ohmic dissipation (Shu et al. 2006; Dapp & Basu 2010)
and Hall effect (Krasnopolsky et al. 2011, Braiding & Wardle
2012a, 2012b); (ii) the possible misalignment between the ro-
tation axis and the magnetic field direction that acts reducing
the braking torque (Hennebelle & Ciardi 2009); (iii) depletion
of the infalling envelope that anchors the magnetic field brak-
ing (Mellon & Li 2009; Machida et al. 2011); (iv) turbulent dif-
fusion of the magnetic field (Seifried et al. 2012; Santos-Lima
et al. 2013).

Mellon & Li (2009) advanced the interesting possibility that
a reduction of the CR ionisation rate, ζH2 , corresponding to a
decrease of the ionisation fraction by a factor ∼√ζH2 , could re-
sult in sufficient ambipolar diffusion to allow the formation of
a rotationally supported disc. They concluded that both a sup-
pression of the CR flux and a low level of magnetisation (mea-
sured by the non-dimensional mass-to-flux ratio λ) were needed
in order to circumvent the magnetic braking problem. Although
they did not perform a detailed exploration of the parameter
space of their models, Mellon & Li (2009) found that a value
of ζH2 = 10−18 s−1 was needed to spin up the gas significantly
during collapse if λ = 4 (but no disc larger than ∼10 AU was
formed in this case), or to form a fully rotationally supported
disc of radius ∼50 AU if λ = 13.3.

Following the suggestion by Mellon & Li (2009), in this pa-
per we focus on the influence of different magnetic field and
density configurations on the CR propagation following the con-
clusions achieved in Padovani et al. (2009, 2011). Our aim is
to show that in the inner regions of a cloud, where the disc is
formed, magnetic and column-density effects can indeed cause
a significant decrease of the interstellar CR ionisation rate and
consequently of the ionisation degree, helping to decouple the
gas from the magnetic field.

The paper is organised as follows. In Sect. 2 we provide a
detailed description of the method used to calculate the CR ion-
isation rate. In Sect. 3 we analyse a semi-analytical model of a
singular isothermal toroid threaded by a toroidal magnetic field
with the purpose of understanding the role of column-density
versus magnetic effects. In Sect. 4 we explore the evolution of
the CR ionisation rate on the initial conditions (mass-to-flux ra-
tio and alignment between rotation axis and magnetic field di-
rection) for a number of numerical simulations. In Sect. 5 we
discuss the variations of the CR ionisation rate in discs and in
Sect. 6 we give a fitting formula to compute the CR ionisation
rate accounting for the magnetic field configuration. In Sect. 7
we summarise our conclusions. Comments on other possible
models of the CR ionisation rate are provided in Appendix A.

2. Method

Cosmic rays, being charged particles, perform an helicoidal mo-
tion around the magnetic field lines and we follow their path
starting from the outer boundary of the computational domain
throughout the core. As it is well known, a charged particle of
mass m and velocity v spiraling along a magnetic field of in-
creasing strength B must increase its pitch angle α (the angle
between the particle’s velocity and the field direction) as a con-
sequence of the conservation of kinetic energy Ekin = (γ−1)mv2

and magnetic moment μ = γmv2 sin2 α/2|B|. In particular, for a
particle starting from the intercloud medium (ICM) with a pitch
angle αICM and a magnetic field strength BICM, the pitch angle is
given by

α = arccos
√

1 − χ + χ cos2 αICM, (1)

where χ = |B|/BICM is the focusing factor (see e.g. Desch et al.
2004 and Padovani & Galli 2011, hereafter PG11). The assump-
tion of energy conservation along the particle’s trajectory is
clearly violated in the presence of collisional losses. In princi-
ple, Eq. (1) should be replaced by an equation for the time evo-
lution of the pitch angle α, including the effect of the magnetic
field as well as the diffusion induced by collisional ionisation
of H2 molecules. In the present study we neglect these aspects,
and while we assume that kinetic energy is conserved along each
individual trajectory, we take into account energy losses glob-
ally by propagating the CR spectrum inside the cloud. We have
verified that this approximation is valid for pitch angles not too
small (that evolve to 90◦ before substantial energy losses occur)
and for proton energies larger than about 10 MeV. For CR pro-
tons of lower energies, our treatment overestimates somewhat
the efficiency of magnetic mirroring. Since the bulk of ionisation
from CR protons at the typical column densities of molecular
clouds is produced by particles in the energy range 1−300 MeV
(Padovani et al. 2009, hereafter PGG09), our approximation is
satisfactory. For CR electrons our approximation is satisfied for
all energies of interest. We also assume that the number of parti-
cles is conserved, ignoring electron capture reactions of CR pro-
tons with H2 and He as well as the α + α fusion reactions that
form 6Li and 7Li, because of the small cross sections (Meneguzzi
et al. 1971).

The column density of H2 passed through by the particle is
given by

N(α) =
∫ �max(α)

0
n(�) d�, (2)

where �max is the maximum depth reached inside the core and
n(�) is the H2 volume density. If the pitch angle α remains
smaller than π/2 along the entire particle’s trajectory, CRs
of sufficient energy can cross the whole core. Vice versa, if
α reaches π/2 at some point inside the cloud, the particle is mir-
rored and it will follow the same field line backwards.

Once the column density is known for each value of the
initial pitch angle αICM ∈ [0, π/2) and for each field line, we
compute the CR ionisation rate ζH2 using the CR propagation
theory developed in PGG09. Since two of their models, those
where the ionisation degree is dominated by CR electrons, are
very similar, we assume three possible trends for the ionisation
rate as a function of the column density, indicated by ζk with
k = L,M, andH , where L = low,M = medium, andH = high
correspond to the models W98+C00, M02+C00, and the aver-
age between the two models W98+E00 and M02+E00 detailed
in PGG09, respectively. PGG09 shows that the decrease of the
CR ionisation rate with increasing penetration in the cloud can
be described by a power-law at column densities N(H2) in the
range ∼1020−1025 cm−2,

ζ(low N)
k ≈ ζ(low N)

0,k

[
N(H2)

1020 cm−2

]−a

, (3)

and by an exponential attenuation for N(H2) � 1025 cm−2,

ζ
(high N)
k ≈ ζ(high N)

0,k exp

[
−Σ(H2)
Σ0,k

]
· (4)

Padovani et al. (2013, hereafter PGG13) give a simple fitting for-
mula which combines in a single expression the low- and high-
column density approximations above,

ζH2
k (α) =

ζ(low N)
0,k ζ

(high N)
0,k

ζ
(high N)
0,k

[
N(α)

1020 cm−2

]a

+ ζ(low N)
0,k

[
exp

(
Σ(α)
Σ0,k

)
− 1

] , (5)
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Fig. 1. CR ionisation rate as a function of the molecular hydrogen col-
umn density for the three models described in the text.

where Σ(α) = μmpN(α)/ cosα is the effective surface density
seen by a CR propagating with pitch angle α, mp the proton
mass, and μ = 2.36 the molecular weight for the assumed frac-
tional abundances of H2 and He. We have used this fitting for-
mula for the three models adopted in this work (see Fig. 1). The
fitting coefficients of Eq. (5) are given in PGG09 and PGG13.

In order to evaluate the ionisation rate along a field line, we
average the contribution of all the particles with different initial
pitch angles over the solid angle

ζH2

k =

∫
ζH2

k (α) dΩα∫
dΩα

=
2π

∫ π/2
0
ζH2

k (α) sinα dα

2π
∫ π/2

0
sinα dα

=

∫ π/2

0
ζH2

k (α) sinα dα. (6)

Finally, to account for magnetic focusing, we multiply ζH2

k by χ.
In the following, we choose as a “fiducial” spectrum the one
corresponding to the case k = M and we neglect the subscript
M. Appendix A shows the results for the other two models k =
L,H .

3. Semi-analytic model

In PG11, we modelled molecular cloud cores as singular isother-
mal toroids, namely scale-free, axisymmetric equilibrium con-
figurations of an isothermal gas cloud under the influence of
self-gravity, gas pressure, and magnetic forces (Li & Shu 1996).
These models are uniquely characterised by the mass-to-flux ra-
tio λ defined by

λ = 2πG1/2 M(Φ)
Φ
, (7)

where G is the gravitational constant, Φ the magnetic flux, and
M(Φ) the mass contained in the flux tube Φ. In this model the
purely poloidal magnetic field threading the core takes the form

B =
1

2π
∇ ×

(
Φ(r, θ)
r sin θ

êϕ

)
, (8)

where Φ(r, θ) is the magnetic flux function. Separation of vari-
ables requires the equilibrium solution to take the self-similar
form

Φ(r, θ) =
4πc2

s r

G1/2
φ(θ), (9)

where cs is the sound speed and φ(θ) is a dimensionless function.

If the core rotates with respect to the ambient medium, a
toroidal component of the magnetic field is expected to arise. We
introduce a time-independent toroidal magnetic field component
by adding a term

Bϕ =
B0

r sin θ
(10)

with B0 constant to the magnetic field. This term is curl-free,
divergence-free, and scales as the poloidal component of the
magnetic field. Additionally, as (∇ × B) × B is unchanged by
this term, the equilibrium equations of the core are independent
of the toroidal component and, therefore, the solutions for the
density and flux functions obtained by Li & Shu (1996) remain
formally valid. We are aware that, in general, one does not ex-
pect the toroidal component of the field generated by the rotation
of the core to be curl-free. Nevertheless, it is very instructive to
look at these idealised configurations with the aim of disentan-
gling column-density from magnetic-field effects in the propa-
gation of CR particles.

Substitution of Eq. (9) into Eq. (8), and the addition of the
toroidal component (Eq. (10)) results in

B(r, θ) =
4πc2

s r

G1/2

[
dφ
dθ

êr − φ êθ + b0φ(π/2) êϕ

]
, (11)

where

b0 ≡ Bϕ(r, π/2)

Bp(r, π/2)
(12)

is the ratio between the strength of the toroidal, Bϕ, and the
poloidal, Bp = (B2

r +B2
θ)

1/2, field in the cloud’s midplane. Notice
that the magnetic field diverges on the polar axis. However, this
is not a problem for our calculations, as the polar axis contains
no mass.

The field lines that cross the midplane at r = R0 and ϕ = ϕ0,
are then be given by

r(θ)
R0
=
φ(π/2)
φ(θ)

(13)

and

ϕ(θ) = b0φ(π/2)
∫ θ

π/2

dϑ
φ(ϑ) sinϑ

+ ϕ0 . (14)

As shown by Fig. 2, the magnetic field lines lie on the surfaces
of nested flux tubes defined by the condition Φ = const., and
their twisting increases as the distance from the axis of symmetry
decreases.

3.1. Column-density versus magnetic-field effects
on cosmic-ray ionisation rate

During the propagation of a CR, the ionisation rate decreases due
to two main factors: (i) CRs lose energy, thus their capability of
ionising hydrogen molecules, because of the increasing column
density “seen” by the particles themselves (PGG09); (ii) mag-
netic mirroring reduces the ionisation rate more than magnetic
focusing amplifies it (PG11). In order to distinguish the origin
of the variation in the ionisation rate during the propagation, we
assume several values for λ and b0 resulting in different density
profiles and magnetic configurations.

We assume three different values for the mass-to-flux ratio
(λ = 8.38, 2.66, and 1.63) that acts modifying the density dis-
tribution as well as the pinching of the magnetic field lines.
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Fig. 2. Magnetic field lines of the λ = 2.66 toroid with b0 = 0 (purely
poloidal, upper plot), b0 = 1 (middle plot), and b0 = 10 (lower plot).
Iso-density contours are shown in grey scales in unit of cm−3 in loga-
rithmic scale, while the magnetic field module is shown in colour scale
in unit of μG. Field line plots are generated using the visualisation soft-
ware package MAYAVI (Ramachandran & Varoquaux 2011).

Fig. 3. Contributions to the ionisation rate as a function of the posi-
tion along the symmetry axis for the model M and a flux tube enclos-
ing 1 M	.

λ = 8.38 corresponds to the case of a “roundish” core, with
a density distribution almost spherically symmetric; when λ =
1.63 the density is distributed in a disc-like configuration; fi-
nally, λ = 2.66 represents the intermediate case. The pinching
of magnetic field lines increases for decreasing λ.

We start assuming b0 = 0 (purely poloidal field) whose ef-
fects on CR propagation are described in PG11, then we in-
crease the toroidal field from b0 = 1 (poloidal and toroidal fields
have comparable strengths) to b0 = 5, 10, and 50. We follow the
propagation of CRs entering the cloud from any direction with
all possible initial pitch angles applying the method described
in Sect. 2. With respect to PG11 we also consider the fact that
the mirrored CRs can still ionise while propagating backwards.
As expected, we find that this contribution to the ionisation is
stronger in the outer part of the cloud, namely in the region also
crossed by CRs which propagate backwards. This further ionisa-
tion is not crucial since these CRs have already passed through
a large column density, losing their ionising power, but now it
is included in the model. Figure 3 shows the order of magnitude
of this contribution for the model M: we plot the trend of the
CR ionisation rate for a flux tube enclosing a mass of 1 M	 in-
cluding all the contributions deriving from mirroring, focusing,
and backward ionisation.

3.2. Dependence of ζH2 on the magnetic field configuration

In order to investigate on the effects of a given magnetic field
configuration on the variations of ζH2 , we assume a mass-to-
flux ratio λ = 2.66 so that the density shape is fixed and we
increase the magnitude of the toroidal component (Fig. 2). We
find that increasing values of b0 correspond to a decrease of
ζH2 , in fact the area with low ionisation rate becomes larger and
larger reflecting the signatures of the magnetic field configura-
tion (Fig. 4). Since B ∝ (r sin θ)−1, the intensity of the magnetic
field increases towards the symmetry axis. Therefore, the focus-
ing factor becomes larger closer to the cloud’s axis, and this ex-
plains the increase of ζH2 in this region.

As b0 increases, the pitch angle α gets closer to π/2 quickly
and the mirroring becomes more and more effective. However,
as we know from PG11, increasing the toroidal component of B
does not change significantly the relative importance of mirror-
ing versus focusing effects, but it increases the effective column
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Fig. 4. CR ionisation rate profiles for the model M in the plane crossing the symmetry axis and perpendicular to the midplane (y = 0). The
mass-to-flux ratio is λ = 2.66 and the strength of the toroidal field b0 increases from left to right.

Fig. 5. CR ionisation rate maps for the model M in the central 0.1 pc
region in the plane y = 0 for λ = 2.66 and increasing b0. Black and
white solid lines show the iso-ionisation rate contours.

density as seen by a CR gyrating around the field. If this in-
crease in N(H2) reaches the regime of exponential attenuation
(N(H2) � 1025 cm−2, see Fig. 1), the effect can be dramatic.
However, this hardly happens in our semi-analytical model,
which is taken as representative of a pc-scale clump of mod-
est column density. Using profiles of density and magnetic field
strength valid for smaller spatial scales taken from simulations
of collapsing clouds, we will show that a reduction of ζH2 of
orders of magnitude can be achieved (see Sect. 4).

Figure 5 shows a zoom in the central region at the core-size
scale of 0.1 pc radius for the model M in order to appreciate
more explicitly the reduction in the ionisation rate: when the
toroidal field is 50 times stronger than the poloidal field compo-
nent, a value of ζH2 lower than the canonical value of 3×10−17 s−1

(≈10−16.5 s−1) is readily reached in the region close to the cloud’s
midplane.

3.3. Dependence of ζH2 on the density profile

To examine the effects of the density configuration on the ioni-
sation rate, we fix a value of the toroidal-to-poloidal ratio and
we vary the mass-to-flux-ratio obtaining density profiles that
span from a “roundish” core to a disc-like configuration (see
Sect. 3.1). The effects of the column density can be promptly
recognised by noticing that the ionisation rate profile follows
the shape of the density profile. In Fig. 6 we superpose the
iso-density contours to the ionisation rate maps. The regions

Fig. 6. CR ionisation rate maps for the model M in the plane y = 0
for a fixed toroidal-to-poloidal ratio b0 = 10 and different values of the
mass-to-flux-ratio. White and black contours represent the iso-density
contours and the labels show log10 [n/cm−3].

where iso-density contours follow the ionisation rate profile re-
veal column-density effects. Conversely, the areas where the
iso-density contours depart from the spatial distribution of ζH2

are representative of magnetic-field effects. In fact, for high
values of λ the column density crossed is larger and ζH2 de-
creases rapidly (see PGG09). Said in a different way, in the
λ = 8.38 model a particle “sees” a larger amount of N(H2) and
it loses more energy than in the flatter λ = 1.63 model where
the density along the field direction increases only close to the
cloud’s midplane.
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Table 1. Parameters of the simulations described in the text (from
Joos et al. 2012): mass-to-flux ratio, initial angle between the mag-
netic field direction and the rotation axis, time after the formation of
the first Larson’s core (core formed in the centre of the pseudo-disc
with n � 1010 cm−3 and r ∼ 10−20 AU), maximum mass of the pro-
tostellar core and of the disc. Last column gives information about the
disc formation.

Case λ αB,J t M� Mdisc Disc ?
[rad] [kyr] [M	] [M	] (Ya / Nb / Kc)

A1 5 0 0.824 – – N
A2 5 0 11.025 0.26 0.05 N
B 5 π/4 7.949 0.23 0.15 Y
C 5 π/2 10.756 0.46 0.28 K
D 2 0 5.702 0.24 – N
E 17 0 6.620 0.43 0.15 K

Notes. (a) A disc with flat rotation curve is formed (Fig. 15 in Joos
et al. 2012). (b) No significant disc is formed (Mdisc < 5 × 10−2 M	).
(c) A Keplerian disc is formed (Fig. 14 in Joos et al. 2012).

4. Numerical models

In this section we describe the ionisation rate maps obtained
from a number of numerical simulations related to a collaps-
ing rotating core performed with the AMR code RAMSES1

(Teyssier 2002; Fromang et al. 2006) and detailed in Joos
et al. (2012). They considered a spherical 1 M	 cloud with an
initial density profile

n(r) =
n0

1 + (r/r0)2
, (15)

where n0 = 7.8 × 106 cm−3 and r0 = 4.68 × 10−3 pc accord-
ing to observations (André et al. 2000; Belloche et al. 2002).
The thermal-to-gravitational energy ratio is about 0.25 and the
rotational-to-gravitational energy ratio is about 0.03. We select a
series of simulations from Joos et al. (2012) varying the mass-to-
flux ratio λ and the angle between the initial magnetic field direc-
tion and the initial rotation axis αB,J. Table 1 lists the parameters.

According to the method described in Sect. 2 we compute
the ionisation rate maps making use of the modelM. For each
case in Table 1, we show the maps of ζH2 in a plane parallel and
perpendicular to the main direction of the magnetic field (always
along the x axis) and containing the density peak, namely the
(z, x) and the (y, z) plane, respectively. Besides, in Figs. 7−12 we
plot the results for the whole computational domain (upper and
middle left plots) and zooming into the inner 1000 AU (upper
and middle right plots) plus a graph showing the magnetic field
line morphology in the central 600 AU (lower plot).

We are aware of the fact that the ionisation rate should be
computed simultaneously to the MHD model. This will be the
subject of a future work, but the results described in this paper
can be considered an important proof of concept that very low
ionisation rate can be achieved in the inner regions of a collaps-
ing cloud.

4.1. Intermediate magnetisation (λ = 5)

We consider a couple of outputs (cases A1 and A2 in Table 1)
for an aligned rotator (αB,J = 0) and super-critical cloud (λ = 5)
in agreement with observations (Crutcher 1999). We choose two

1 RAMSES simulations were analysed using PyMSES (Labadens et al.
2011).

Fig. 7. CR ionisation maps and iso-density contours (black solid lines)
for the case A1 in Table 1. Upper and middle left panels show the en-
tire computational domain while upper and middle right panels show a
zoom in the inner region. Upper panels show a slice of a plane parallel
to the magnetic field direction, while middle panels refer to a slice of
a perpendicular plane. Both planes contain the density peak and labels
show log10 [n/cm−3]. The lower plot shows the magnetic field line mor-
phology in the central 600 AU of the RAMSES data cube. The colour
bar shows the magnetic field module in Gauss units.

different times after the formation of the first Larson’s core in
order to understand the effect of the tangling of magnetic field
lines on CR propagation when a disc is not formed. Unlike the
semi-analytical case (Sect. 3) where the density does not even
achieve 105 cm−3 and the symmetry of the magnetic field con-
figuration is conserved for any toroidal-to-poloidal ratio, in all
the numerical models presented here the central density reaches
the value of about 1013 cm−3 and in general it is higher than
1010 cm−3 in the inner 50−100 AU radius. Besides, the symme-
try of magnetic field lines is broken very soon with time. This
is likely due to the development of the interchange instability
(Krasnopolsky et al. 2012).
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Fig. 8. CR ionisation maps and iso-density contours (black solid lines)
for the case A2 in Table 1. See Fig. 7 for further information.

We know from the semi-analytical model (Sect. 3) that it is
not possible to disentangle column-density from magnetic ef-
fects, but both intervene on the decrease of the ionisation rate.
In Sect. 6 we give an estimate of the relative incidence of these
two effects. As explained in Sect. 3.3, we can interpret the de-
viations between the iso-density contours and ζH2 maps as due
to magnetic imprints. As an instance, in the upper right plot
of Fig. 7 there is a clear departure between the contours at
n = 109 cm−3 and the shape of the region where ζH2 reaches
values of 2−3 × 10−18 s−1 (in yellow in the figure). Another ex-
ample is the upper left plot of the same figure where the region
in red with ζH2 ∼ 1−2 × 10−17 s−1 extends for densities span-
ning from 105 to more than 107 cm−3 in a horizontal “strip” of
about 5000 AU along the z axis. This calls to mind the mag-
netic field configuration (see lower panel of Fig. 7), in fact this
is the region where field lines start to be twisted due to rota-
tion. The middle right panel of Fig. 7 shows that less than 103 yr
after the formation of the first Larson’s core, a central region
with r ∼ 100−200 AU is characterised by ζH2 ∼ 2−4×10−18 s−1.

Fig. 9. CR ionisation maps and iso-density contours (black solid lines)
for the case B in Table 1. See Fig. 7 for further information.

We compute ζH2 for a later-time configuration (case A2) with
the same initial conditions (λ = 5, αB,J = 0). As previously men-
tioned, we lose the symmetry of field lines (see lower panel of
Fig. 8) as well as of the density profile (see upper and middle
right panels of Fig. 8). At large scales (upper and middle left
plots), we notice that the region with ζH2 � 10−17 s−1 is less ex-
tended along the z axis and it is elongated parallel to the x axis
(i.e., parallel to the magnetic field). At small scales (upper and
middle right plots), a flattened structure formed almost perpen-
dicularly to the rotation axis can be noticed. In fact, even if the
disc is not formed, the plane perpendicular to the rotation axis
shows the presence of a “ring” with densities between 108 and
109 cm−3 and average ionisation rate of about 10−18 s−1 circum-
scribing the density peak up to a radius of about 300 AU.

We account for a configuration with the initial rotation axis
twisted by π/4 towards the y axis, while the initial magnetic field
direction is still along the x axis (case B in Table 1). This case
predicts the formation of a disc with a flat rotation curve in the
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Fig. 10. CR ionisation maps and iso-density contours (black solid lines)
for case C in Table 1. See Fig. 7 for further information.

plane perpendicular to the rotation axis. In the central r ∼ 50 AU
region of both the (z, x) and the (y, z) plane, we find a CR ionisa-
tion rate lower than about 10−19 s−1. In the inner 500 AU region
(upper and middle right panels of Fig. 9) we can still identify
a relationship between ζH2 and n, even if the density profile be-
comes more and more irregular and field lines almost lose mem-
ory of their initial configuration (see lower panel of Fig. 9).

Finally, we consider the case of a perpendicular rotator
(αB,J = π/2) so that initially the rotation axis is along the
y axis. In this circumstance (case C in Table 1), a keplerian disc
perpendicular to the rotation axis is predicted. Figure 10 shows
this configuration, namely a face-on view in the (z, x) plane and
an edge-on view of the disc in the (y, z) plane. It is worth noting
in the face-on view (upper right panel of Fig. 10) a large region
of r ∼ 200 AU and n � 109 cm−3 with ζH2 � 10−18 s−1. Here
the ratio between the toroidal component and the total magnetic
field, Bϕ/|B|, is larger than about 0.4. We reach even lower val-
ues, with a minimum of 2×10−21 s−1 in the inner area that has an
extent of a few tens of AU. The CR ionisation rate is so low that

Fig. 11. CR ionisation maps and iso-density contours (black solid lines)
for case D in Table 1. See Fig. 7 for further information.

we can assume the gas to be effectively decoupled with the mag-
netic field. A similar behaviour can be also appreciated in the
edge-on view (lower right panel of Fig. 10). The very low value
of ζH2 found in this collapse region corresponds to the condition
required by Mellon & Li (2009) for the formation of a 10 AU
disc when λ = 4. However, we stress that in this case the forma-
tion of the disc is made possible by the misalignment of the an-
gular momentum and the magnetic field of the cloud, whereas in
the situation considered by Mellon & Li (2009) the two vectors
are aligned and disc formation is enabled by the enhanced am-
bipolar diffusion resulting from the lower value of ζH2 . Finally,
the lower panel of Fig. 10 shows how the rotation perpendicu-
lar to the y axis forces the field lines (initially with a poloidal
configuration along the x axis) to wrap around the rotation axis.

4.2. Strong magnetisation (λ = 2)

We analyse the case of an aligned rotator with strong magnetic
field for a late-time configuration (case D of Table 1). A stronger
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Fig. 12. CR ionisation maps and iso-density contours (black solid lines)
for case E in Table 1. See Fig. 7 for further information.

field is more resistant to line twisting caused by rotation. In fact,
in this case, the poloidal configuration can be still identified af-
ter about 6 kyr from the formation of the first Larson’s core
(see lower panel of Fig. 11). As expected, the effect of magnetic
braking is remarkable and the disc is not formed in the plane per-
pendicular to the rotation axis (see middle right panel of Fig. 11).
In this case we find the ionisation rate to be more uniform and
close to 10−17 s−1, while in the inner 50−100 AU ζH2 is of the or-
der of 10−19 s−1 in the (z, x) plane and 10−18 s−1 in the (y, z) plane.
Density contours in the (y, z) plane reveal high density fluctua-
tions not allowing the formation of large high-density structures.

Since most molecular cloud cores appear to have significant
levels of magnetisation (Crutcher 1999), this case is probably
the most relevant for modelling cloud collapse. Our findings that
the CR ionisation rate is one-two orders of magnitudes below the
interstellar value in a region around the accreting protostar of ra-
dius ∼50−100 AU, could indicate that a centrifugally supported
disc of this size might form even in the strongly magnetised case.

Of course, this question can only be answered by performing
a fully self-consistent dynamical calculation of CR propagation
during cloud collapse.

4.3. Weak magnetisation (λ = 17)

We model the case of weak magnetisation for an aligned rotator
and we consider a late-time configuration (case E in Table 1).
As shown in the lower panel of Fig. 12, since the magnetic field
braking is very weak, rotation is able to strongly twist the field
lines. It is interesting to notice how the contribution to the de-
crease of ζH2 is substantial perpendicularly to the disc plane.
In fact, the upper right panel of Fig. 12 shows a large region
along the x axis where ζH2 � 10−18 s−1. This region is not lim-
ited to the high-density domain (n > 109 cm−3), but it broadens
out along the rotation axis where the magnetic mirroring due to
field line tangling up is very marked. As for case C (Sect. 4.1),
the region with n � 109 cm−3 and ζH2 � 10−18 s−1 is charac-
terised by Bϕ/|B| � 0.4. In the (y, z) plane one can see the pres-
ence of the face-on disc and the rapid decrease of CR ionisation
rate that reaches about 2 × 10−20 s−1 in the inner 1010 cm−3 iso-
density contour. This is compatible with the results of Mellon
& Li (2009) who find that a centrifugally supported disc of ra-
dius ∼50 AU is formed by the collapse of a cloud with λ = 13.3,
close to our value of 17, if ζH2 = 1 × 10−18 s−1, which is exactly
the value that we find in this region. Again, the agreement found
in this case may not be particularly significant, because in clouds
characterised by an initially weak field, the magnetic braking
may result inefficient regardless of the degree of ionisation of
the gas. We stress again that, in order to draw firm conclusions
on the role of CR ionisation in the resolution of the so-called
“magnetic braking problem”, a fully self-consistent calculation
including CR propagation and magnetic diffusion is required. In
Sect. 6 we outline a procedure to include approximate treatment
of CR transport in a MHD simulation.

5. Cosmic-ray ionisation rate at high column
densities

The regime of high column densities, N(H2) > 1025 cm−2, cor-
responding to surface mass densities Σ larger than a few g cm−2,
is interesting for applications to protoplanetary discs, where
the ionisation rate plays a major role in determining the “dead
zones” where the generation of turbulence by the magnetoro-
tational instability is relatively inefficient (see e.g. Sano et al.
2000; Okuzumi & Hirose 2011). In these applications, the
CR ionisation rate is usually assumed to be exponentially at-
tenuated within the disc, with a decay length Σ0 ≈ 96 g cm−2

(Umebayashi & Nakano 1981)2. Umebayashi & Nakano (2009)
propose an empirical formula for the CR ionisation rate as a
function of the depth from the disc surface, assuming a geomet-
rically thin disc and taking into account the fact that CRs pen-
etrate the disc almost isotropically. Their formula in cylindrical
coordinates reads

ζH2 (r, z) ≈ ζ
H2
0

2

⎧⎪⎪⎨⎪⎪⎩exp

(
−Σ
+(r, z)
Σ0

) ⎡⎢⎢⎢⎢⎢⎣1 +
(
Σ+(r, z)
Σ0

)3/4⎤⎥⎥⎥⎥⎥⎦
−4/3

(16)

+ exp

(
−Σ
−(r, z)
Σ0

) ⎡⎢⎢⎢⎢⎢⎣1 +
(
Σ−(r, z)
Σ0

)3/4⎤⎥⎥⎥⎥⎥⎦
−4/3⎫⎪⎪⎬⎪⎪⎭ ,

2 The calculations of PGG09 and PGG13 suggest however that the
attenuation length for protons may be a factor of ∼2 larger than that
derived by Umebayashi & Nakano (1981).
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where ζH2
0 ≈ 10−17 s−1 and Σ+ and Σ− are the vertical gas surface

densities measured from the upper (zup) and the lower boundary
(zlow) of the computational domain, respectively, namely

Σ+(r, z) = μmp

∫ zup

z
n(r, z′) dz′, (17)

and

Σ−(r, z) = μmp

∫ z

zlow

n(r, z′) dz′, (18)

where mp is the proton mass and μ = 2.36 is the molecular
weight. We consider the numerical models described in Sect. 4
that allow the formation of a keplerian disc (case C and E in
Table 1) comparing our CR ionisation rate maps with those ob-
tained by using Eq. (16).

In order to make a consistent comparison, we let CRs prop-
agate along straight lines without including magnetic effects,
computing ζH2 using Eq. (5). This equation gives similar re-
sults to Eq. (16), the small variations being due to the difference
in the assumed attenuation length (see left panels of Fig. 13).
Nevertheless, the picture changes dramatically when consider-
ing the true path of CRs along the field lines with the inclu-
sion of magnetic and focusing effects. In fact, the region with
ζH2 < 10−18 s−1 grows considerably (see right panels of Fig. 13).

This comparison represents the ultimate proof of the role of
magnetic fields on CR propagation. Magnetic effects cannot be
neglected since they set the extent to which CRs can determine
the coupling between magnetic fields and the gas. In the next
Section, we give a new fitting formula for ζH2 that accounts for
the magnetic configuration.

6. Magnetic effects on the reduction
of the CR ionisation rate: a useful fitting formula

In order to compare the relative importance of density and mag-
netic effects on the decrease of ζH2 in the central region of a core
(n � 109 cm−3), we let CRs propagate along field lines without
accounting for mirroring and focusing, we refer to this setting
as the “non-magnetic case”. This is easily done by following
the path of CRs with initial pitch angle αICM = 0. According
to Eq. (1), the pitch angle α during the propagation of the par-
ticle remains equal to zero. We generate CR ionisation maps as
those presented in Figs. 7−12 and then we compute the quan-
tity R defined as the ratio between the rates obtained including
and neglecting magnetic effects as in PG11.

We focus on cases C and E (see Table 1), corresponding to
the cases where a keplerian disc is formed. In these models, the
density reaches values larger than ∼1010 cm−3 inside a region
of a few 100 AU in size. Thus, one can be led to conclude that
magnetic effects may be negligible since CRs have crossed a
large column density so that the regime of exponential attenua-
tion (N � 1025 cm−2) is attained. On the contrary, we find that
even at very high densities the role of magnetic fields in remov-
ing CRs and attenuating ζH2 is substantial. The results are shown
in Fig. 14, where we plot the ratio R of the CR ionisation rate
computed keeping into account the evolution of the pitch angle
to the same quantity computed in the non-magnetic case. We
see that magnetic effects cause a net reduction of ζH2 of a factor
of ∼2 at large scales up to a factor of 3 to 10 in the inner regions.

We give a convenient fitting formula in order to reproduce
the ionisation rate maps without running the full code described
in the paper. When in presence of a magnetic field, the effective
column density, Neff , seen by a CR can be much larger than that

obtained through a rectilinear propagation (see also Sect. 5): the
more complex the morphology of the magnetic field, the larger
is the path covered by a charged particle. If N(H2) is the average
column density seen by an isotropic flux of CRs, Neff has the
form

Neff = (1 + 2π F s) N(H2). (19)

The factor F depends on the ratio between the toroidal and the
poloidal components of the magnetic field, b = |Bϕ/Bp|, as well
as on its module. It reads

F = |B|
10−2 μG

√
b∗

2
, (20)

where

b∗ =
b − bmin

bmax − bmin
, (21)

bmin and bmax being the minimum and the maximum value of b
in the whole data cube, respectively. When the magnetic field
strength is negligible, CRs propagate along straight lines. In
this case F = 0 and Neff = N(H2), otherwise F > 0 and
Neff > N(H2). Comparing the column density seen by a CR eval-
uated with our code and with Eq. (19), we find that it is safe
to approximate the poloidal configuration to a rectilinear path.
This explains why we introduce the dependence of F on b∗. In
fact, b∗ varies between 0 and 1, being equal to 0 for a purely
poloidal configuration. We also find that the higher the density,
the stronger is the role of the magnetic field in increasing Neff .
This justifies the presence in Eq. (19) of the power s that reads

s � 0.7
log10(n/nmin)

log10(nmax/nmin)
, (22)

nmin and nmax being the minimum and the maximum value of
the density in the whole data cube, respectively. The factor 0.7
in Eq. (22) has been introduced to reproduce the CR ionisation
maps in the upper and middle panels of Figs. 7−12. Notice also
that the factorF depends on the local value of the magnetic field,
since b and |B| are computed in a given point, but it also accounts
for the large scale configuration by means of b∗ and s.

Once evaluated the effective column density, the correspond-
ing (effective) CR ionisation rate, ζH2

eff , is obtained by

ζH2

eff = κζ
H2 (Neff), (23)

where ζH2 (Neff) is computed using Eq. (5) after replacing N(α)
and Σ(α) with Neff and μmHNeff , respectively. The factor κ is
given by

κ =
1
2
+

1
π

arctan

(
10 μG
|B|

)
(24)

and it represents the correction for magnetic effects.
Equation (23) gives a correct result within a factor of 3
and it holds for magnetic field strengths smaller than about 1 G.
It can be very helpful for non-ideal MHD simulations so as to
compute diffusion coefficients and it can be also implemented in
chemical models in order to have a more precise description of
the observational results. Figure 15 shows the goodness of the
fit for the inner region of case C in Table 1.

A114, page 10 of 13



M. Padovani et al.: Cosmic-ray ionisation in collapsing clouds

Fig. 13. Comparison between the CR ionisation rate distribution obtained by using the fitting formula (Eq. (16)) from Umebayashi &
Nakano (2009) considering rectilinear propagation, black contours, and Eq. (5), white contours, for rectilinear propagation (left panels) and
following the path of CRs along field lines with the inclusion of mirroring and focusing effects (right panels). The three concentric black con-
tours in all the panels as well as the white contours in the left panels refer to log10 (ζH2/s−1) = −17.5,−18,−21 going inwards. Labels are on a
logarithmic scale and the colour coding shows the density distribution. Upper panels: model C; lower panels: model E of Table 1.

Fig. 14. Maps of the ratio R between the CR ionisation rates in the mag-
netic and non-magnetic case for the case E in Table 1. Left panels show
the entire computational domain while right panels show a zoom in
the inner region. Upper panels show a slice of a plane parallel to the
magnetic field direction, while lower panels refer to a slice of a perpen-
dicular plane. Iso-contours of R are shown in cyan (R = 0.1), yellow
(R = 0.3), orange (R = 0.5), and purple (R = 0.7).

7. Conclusions

In this study we explored the distribution of the CR ionisation
rate in molecular clouds, examining and extending the results

obtained in PGG09 and PG11. We employed a semi-analytical
model in order to understand when the variations of ζH2 can be
attributed to energy losses due to the increasing column density
passed through or to magnetic mirroring and focusing. The main
conclusion is that an increment of the toroidal component, and
in general a more tangled magnetic field, corresponds to a de-
crease of ζH2 because of the growing preponderance of mirror-
ing over focusing. That is to say, large variations of the direction
of field lines cause a rapid increase of the cosmic-ray pitch an-
gle towards the mirroring angle. Conversely, fixing a magnetic
field line configuration while varying the density profile allowed
us to identify the weakening of the ionisation power caused by
energy losses. As expected, moving from a “roundish” core to-
wards a disc-like configuration, the distribution of ζH2 follows
the density profile shape.

In the second part of the paper we analysed a number of nu-
merical simulation outputs related to a rotating collapsing core
following the propagation of cosmic rays at different time steps,
varying the degree of magnetisation and the initial orientation
of the main magnetic field direction with respect to the rotation
axis. Being aware of the fact that the correct manner of deal-
ing with CR propagation should be computing their distribution
simultaneously with the MHD simulation, we believe that our
conclusions represent an important proof of concept. In particu-
lar, in the central 100 AU region, the number density is higher
than 1010 cm−3 and a H2 column density larger than 1025 cm−2

is promptly reached. This actually means entering the exponen-
tial attenuation regime where the CR ionisation rate is indepen-
dent of the CR spectrum assumed and drops below 10−18 s−1.
However, we prove that even in the high-density region, the pres-
ence of a magnetic field can reduce ζH2 up to a factor larger than
10. As for the semi-analytical model, we also conclude that the
morphology of the ζH2 maps depends both on the density profile
and on the magnetic field line configuration.
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Fig. 15. Comparison between the CR ionisation rate evaluated with the
code described in the paper, solid contours, and with Eq. (23), dashed
contours for the case C in Table 1. The grey shaded area shows the re-
gion where the difference among contours is larger than a factor of 3
and the black solid contour refers to the region where |B| = 1 G. Green,
orange, blue, cyan, and red contours are related to log10(ζH2/s−1) =
−17,−17.5,−18,−19, and −20, respectively.

Finally we focused on the morphology of ζH2 in the inner
region where a Keplerian disc is formed. We found that the in-
clusion of magnetic field effects in the calculation of ζH2 brings
to the formation of a large central region of 100 to 200 AU where
the CR ionisation rate is well below the ordinarily used value of
10−17 s−1. This provides support to the hypothesis of Mellon &
Li (2009) according to which the magnetic braking efficiency
can be reduced if ζH2 � 10−18 s−1 allowing the formation of the
disc. In order to test this hypothesis a self-consistent MHD col-
lapse calculation including CR propagation is needed.

We compared our results with those obtained by Umebayashi
& Nakano (2009) in the case of an unmagnetised disc, show-
ing that the exclusion of CRs resulting from magnetic mirroring
deeply affects the CR ionisation rate pattern in the collapse re-
gion. To account for the effects of the magnetic configuration,
we formulated a general fitting expression to approximately
compute ζH2 as a function of the column density, magnetic
field strength, and toroidal-to-poloidal magnetic field ratio. This
empirical expression reproduces quite accurately our numerical
results.

Fig. A.1. CR ionisation rate maps for the model L (left column) andH
(right column) in the plane y = 0 for a fixed toroidal-to-poloidal ra-
tio b0 = 10 and different values of the mass-to-flux-ratio. White and
black contours represent the iso-density contours and the labels show
log10 [n/cm−3].

Non-ideal MHD models predict that magnetic braking be-
comes inefficient at densities n > 1012 cm−3, when magnetic
field diffusion becomes faster than the dynamical evolution
(Dapp et al. 2012). In our models we observe that the drop in ζH2

takes place in some cases even at lower densities (n > 109 cm−3),
resulting in very low ionisation fractions. The consequences of
the reduced CR ionisation rate on the magnetic diffusion coeffi-
cients (ambipolar, Hall, and Ohm) will be the subject in a forth-
coming paper.

Acknowledgements. M.P. thanks Marc Joos and Andrea Ciardi for their help in
accessing RAMSES simulations and Natalia Dzyurkevich for illuminating dis-
cussions about ionisation in discs. M.P. and P.H. acknowledge the financial sup-
port of the Agence Nationale pour la Recherche (ANR) through the COSMIS
project.

Appendix A: Models L andH
For the sake of completeness, we show the CR ionisation rate
ζH2

k obtained adopting the spectra corresponding to the cases
k = L and k = H in Fig. 1. These represent two extreme
behaviours of CR ionisation as a function of column density.
For both cases, we compute the dependence of ζH2

k on the den-
sity profile and the magnetic field configuration for the semi-
analytical cloud models described in Sect. 3. In particular we
show results for λ = 8.38, 2.66, and 1.63 with b0 = 10 (Fig. A.1)
and for λ = 2.66 with b0 = 0, 1, 5, 10, and 50 (Fig. A.2). As
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Fig. A.2. CR ionisation rate profiles for the model L (top row) and H (bottom row) in the plane crossing the symmetry axis and perpendicular to
the midplane (y = 0). The mass-to-flux ratio is λ = 2.66 and the strength of the toroidal field b0 increases from left to right.

expected, the CR ionisation rate for the case k = L is indepen-
dent of the value of the mass-to-flux ratio and the toroidal-to-
poloidal ratio since the exponential regime (N(H2) � 1025 cm−2)
is not attained and ζH2

L is substantially independent of the column
density.

On the other hand, the CR ionisation rate for the modelH is
comparable with that of the modelM described in the main text.
However, as shown in Fig. A.2, even when the toroidal field is
strong (b0 = 50), in the inner region of the toroid below 0.1 pc,
ζH2

H is of the order of 10−16 s−1, about one order of magnitude
higher than the values estimated from observations. For this rea-
son, the modelM has been chosen as the fiducial model.
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