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ABSTRACT

Context. Gamma-ray binaries are composed of a massive star and a rotation-powered pulsar with a highly relativistic wind. The
collision between the winds from both objects creates a shock structure where particles are accelerated, which results in the observed
high-energy emission.
Aims. We want to understand the impact of the relativistic nature of the pulsar wind on the structure and stability of the colliding wind
region and highlight the differences with colliding winds from massive stars. We focus on how the structure evolves with increasing
values of the Lorentz factor of the pulsar wind, keeping in mind that current simulations are unable to reach the expected values of
pulsar wind Lorentz factors by orders of magnitude.
Methods. We use high-resolution numerical simulations with a relativistic extension to the hydrodynamics code RAMSES we have
developed. We perform two-dimensional simulations, and focus on the region close to the binary, where orbital motion can be ne-
glected. We model different values of the Lorentz factor of the pulsar wind, up to 16.
Results. We determine analytic scaling relations between stellar wind collisions and gamma-ray binaries. They provide the position
of the contact discontinuity. The position of the shocks strongly depends on the Lorentz factor. We find that the relativistic wind is
more collimated than expected based on non-relativistic simulations. Beyond a certain distance, the shocked flow is accelerated to its
initial velocity and follows adiabatic expansion. Finally, we provide guidance for extrapolation towards more realistic values of the
Lorentz factor of the pulsar wind.
Conclusions. We extended the adaptive mesh refinement code RAMSES to relativistic hydrodynamics. This code is suited to studying
astrophysical objects, such as pulsar wind nebulae, gamma-ray bursts, or relativistic jets, and will be part of the next public release of
RAMSES. Using this code we performed simulations of gamma-ray binaries up to Γp = 16 and highlighted the limits and possibilities
of current hydrodynamical models of gamma-ray binaries.
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1. Introduction

Composed of a massive star and a compact object, gamma-
ray binaries emit most of their power at GeV and TeV ener-
gies. Up to now a handful of such systems have been detected:
PSR B1259-63 (Aharonian et al. 2005b), LS 5039 (Aharonian
et al. 2005a), LSI +61◦303 (Albert et al. 2006), and more re-
cently 1FGL J1018.6-5856 (Fermi LAT Collaboration et al.
2012) and HESS J0632+057 (Bongiorno et al. 2011).

Pulsed radio emission in PSR B1259-63 (Johnston et al.
1992) indicates the compact object is a fast-rotating pulsar, while
the nature of the compact object in the other systems is less cer-
tain. In PSR B1259-63 the high-energy emission probably arises
from the interaction between the relativistic wind from the pul-
sar and the wind from the companion star (Tavani et al. 1994).
It displays extended radio emission showing a structure look-
ing like a cometary tail whose orientation changes with orbital
phases (Moldón et al. 2011a). It is interpreted as the evolution of

? Appendices are available in electronic form at
http://www.aanda.org

a shock as the pulsar orbits around the massive star. The similar-
ities in the variable high-energy emission and the extended radio
emission between PSR B1259-63 and the other detected gamma-
ray binaries suggest the wind collision scenario is at work in all
the systems (Dubus 2006).

These binaries share a common structure with colliding wind
binaries composed of two massive stars. Colliding stellar winds
have been extensively studied in the past few years using nu-
merical simulations (see e.g. Parkin et al. 2011) that have high-
lighted the importance of various instabilities in the colliding
wind region. The Kelvin-Helmholtz instability (KHI) can have a
strong impact, especially when the velocity difference between
the winds is important. Lamberts et al. (2012, hereafter Paper II)
show that it may destroy the expected large scale spiral structure.
However, strong density gradients have a stabilizing effect. For
strongly cooling winds, the shocked region is very narrow and
the non-linear thin shell instability (Vishniac 1994) can strongly
distort it (Lamberts et al. 2011, hereafter Paper I). For highly
eccentric systems, the instability may grow only at periastron,
where the higher density in the collision region leads to en-
hanced cooling (Pittard 2009). A very high resolution is required
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to model this instability, and up to now large scale studies have
been limited by their numerical cost.

Both these instabilities create a turbulent colliding wind re-
gion, and may be responsible for the variability observed in stel-
lar colliding wind binaries. They can distort the positions of
the shocks, thereby shifting the location of particle acceleration.
Strong instabilities also lead to a significant amount of mixing
between the winds (Paper II). This may enhance thermalization
of non-thermal particles and decrease their high-energy emis-
sion. All these effects may be at work in gamma-ray binaries to
affect their structure and emission properties (Bosch-Ramon &
Barkov 2011; Bosch-Ramon et al. 2012).

The first numerical studies of the interaction between pulsar
winds and their environment were performed in the hydrody-
namical limit (van der Swaluw et al. 2003; Bucciantini 2002).
While providing good insight into the overall structure, a rela-
tivistic temperature or bulk motion of the plasma can have sub-
tle effects. For instance, the normal and transverse velocities are
coupled via the Lorentz factor even for a normal shock. The spe-
cific enthalpy of a relativistic plasma is also greater than for a
cold plasma. A relativistic treatment is also necessary for es-
timating the impact of Doppler boosting on emission properties
of the flow. Relativistic simulations have studied the morphology
of the interaction between pulsar winds and supernova remnants
(Bucciantini et al. 2003), the interstellar medium (Bucciantini
et al. 2005), or the wind of a companion star (Bogovalov et al.
2008). Studies have focussed on the impact of magnetization
and anisotropy in the pulsar wind or orbital motion (Vigelius
et al. 2007; Bogovalov et al. 2012). They also provide models
for non-thermal emission from pulsar wind nebulae (Del Zanna
et al. 2006; Volpi et al. 2008; Komissarov & Lyubarsky 2004).

One of our goals is to determine the importance of relativis-
tic effects both on the structure and stability of gamma-ray bi-
naries. We perform a set of 2D simulations of gamma-ray bina-
ries and study the impact of the momentum flux ratio and the
Lorentz factor of the pulsar wind on the colliding wind region.
We also determine the impact of the Kelvin-Helmholtz instabil-
ity on the colliding wind region (Sect. 3). We therefore extend
the hydrodynamics code RAMSES to special relativistic hydro-
dynamics (Sect. 2). We explain the implementation within the
AMR scheme in particular and present some tests (Appendix A)
that validate this new code for relativistic hydrodynamics. We
discuss how our results can be extrapolated to more realistic val-
ues for the Lorentz factor of the pulsar wind (Sect. 4) and con-
clude (Sect. 5).

2. Relativistic hydrodynamics with RAMSES

RAMSES (Teyssier 2002) is a numerical method for multi-
dimensional astrophysical hydrodynamics and magnetohydro-
dynamics (Fromang et al. 2006). RAMSES uses an upwind
second-order Godunov method. The vector of conserved vari-
ables U is averaged over the volume of the cells and fluxes F at
cell interfaces are averaged in time. The updates in time are then
given by

Un + 1
i − Un

i

∆t
+

Fn + 1/2
i + 1/2 − Fn + 1/2

i− 1/2

∆x
= 0, (1)

where the subscript i stands for the index of the cell and n refers
to the time step.

RAMSES uses a Cartesian grid and allows the use of adap-
tive mesh refinement (AMR), which enables the resolution to be
locally increased at a reasonable computational cost.

2.1. Equations of relativistic hydrodynamics (RHD)

Throughout this paper the speed of light is c ≡ 1. In the frame of
the laboratory, the 3D-RHD equations for an ideal fluid can be
written as a system of conservation equations (Landau & Lifshitz
1959).

∂D
∂t

+
∂(Dvk)
∂xk

= 0 (2)

∂M j

∂t
+
∂(M jvk + Pδ j,k)

∂xk
= 0 (3)

∂E
∂t

+
∂(E + P)vk

∂xk
= 0. (4)

These equations can be expressed in compact form

∂U
∂t

+

N∑
k

∂Fk

∂xk
= 0, (5)

where the vector of conservative variables is given by

U =

 D
M j
E

 =

 Γρ
Γ2ρhv j

Γ2ρh − P

 · (6)

The fluxes Fk along each of the N directions are given by

Fk =

 ρΓvk
ρhΓ2v jvk + Pδ jk

ρhΓ2vk

 , (7)

where D is the density, M the momentum density, and E the
energy density in the frame of the laboratory. The subscripts j, k
stand for the dimensions, δ jk is the Kronecker symbol, and h is
the specific enthalpy given by

h = h(P, ρ) = 1 +
γ

γ − 1
P
ρ

=
e + P
ρ

, (8)

and ρ is the proper mass density, v j the fluid three-velocity, P the
gas pressure, and e is the sum of the internal energy and rest
mass energy of the fluid. The Lorentz factor is given by

Γ =
1

√
1 − v2

· (9)

A passive scalar s can be included in the simulations using
S = sρΓ as the conserved variable and F = ρsvΓ to compute
its flux.

An equation of state closes the system of Eqs. (2)–(4). The
most commonly used is the so-called classical equation of state,
where the rest mass energy is removed from the total internal
energy e:

P = (γ − 1)(e − ρ), (10)

where γ is the ratio of specific heats (or adiabatic index), which
is constant and should not be confused with the Lorentz factor Γ.
In the non-relativistic limit γ = 5/3, in the ultrarelativistic limit
γ = 4/3. The sound speed is given by

c2
s ≡

(
∂P
∂e

)
s

= γ
P
hρ
· (11)

This leads to cs < 1/3 in the ultrarelativistic limit and cs < 2/3 in
the non-relativistic limit. The kinetic theory of relativistic gases
(Synge 1957) shows that the ratio of specific heats cannot be
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kept constant when passing from non-relativistic to highly rel-
ativistic temperatures and provides an equation of state that is
valid for all temperatures. Owing to the complexity of the ex-
pressions relating different thermodynamical quantities, approx-
imations have been developed for the implementation in numer-
ical schemes (Falle & Komissarov 1996; Mignone et al. 2005;
Ryu et al. 2006; Mignone & McKinney 2007). This has not been
implemented yet in the relativistic extension of RAMSES that
we present.

The RHD equations have a similar structure to the Euler
equations and can be solved following the same numerical
method and making only localized changes. Still, the strong
coupling of the equations through the presence of the Lorentz
factor and the enthalpy makes the resolution of the equations
more complex. Moreover, in relativistic dynamics, velocities are
bounded by the speed of light, resulting in an important numer-
ical constraint. These changes particularly affect the determi-
nation of the primitive variables, the development of a second-
order scheme (Sect. 2.2), and the AMR framework (Sect. 2.3).

2.2. Second-order numerical scheme

Several steps in the algorithm require the use of the primitive
variables

q =

ρv j
P

 . (12)

In classical hydrodynamics, analytic relations allow a straight-
forward conversion from conservative to primitive variables. In
RHD, there are no such relations, and several methods have been
developed to recover the primitive variables (see e.g. Aloy &
Martí 1999; Noble et al. 2006; Ryu et al. 2006). We use the
method described in Mignone & McKinney (2007), which uses
a Newton-Raphson algorithm to solve an equation on W ′ =
W − D = ρhΓ2 − ρΓ. The details of the computation are given in
Appendix A.1.

The determination of the fluxes F cells in Eq. (1) involves
solving the Riemann problem at the interface between cells.
Different solvers have been developed, and some have been ex-
tended to RHD. We have implemented the relativistic HLL and
HLLC solver in RAMSES. For the HLL Riemann solver, the ex-
pression of the Godunov flux is identical to the non-relativistic
expression (Schneider et al. 1993). However, the computation of
the maximal wavespeeds propagating towards the left and right
is different. In Newtonian hydrodynamics, the wavespeed is the
sum of the sound speed and the advection speed of the flow.
The relativistic composition of velocities couples the velocity
of the flow parallel and perpendicular to the direction of spatial
derivation and all components of the velocity need to be taken
into (Del Zanna & Bucciantini 2002). An HLLC solver was de-
veloped by Mignone & Bodo (2005), whose method we closely
follow.

To reach high enough accuracy in scientific applications,
second-order schemes are, however, necessary. In such cases,
fluxes are determined half a time step ahead of the current time
step. We have implemented the monotonic upstream scheme for
conservation laws (MUSCL) and piecewise linear (PLM) meth-
ods. In both schemes, the update is performed on the primitive
variables, which are determined by a Taylor expansion

qn + 1/2
i±1/2,L,R = qn

i ± ∆qn
i +

dqn
i

dt
∆t
2
· (13)

The subscripts L and R respectively stand for the left-and right-
hand sides of a cell boundary, ∆qn

i are the slopes of the variables

in the cell, computed using a slope limiter, which is not affected
by special relativity, dqn

i is the temporal variation, given by

∂q
∂t

+

N∑
k

A
∂q
∂x

= 0, (14)

where A = ∂F(q)/∂U(q) is the Jacobian matrix of the system.
In classical hydrodynamics, flows in a given direction are not
affected by motions perpendicular to that direction. In RHD all
spatial directions are coupled through the Lorentz transforma-
tion: A is 5 × 5 matrix even for 1D flows (Pons et al. 2000). The
value of A and its equivalents along the y and z directions are
given in Appendix A.3.

In a MUSCL-Hancock scheme (Van Leer 1979), one uses

dq = −A
∂q
∂x

dt (15)

directly to reconstruct the variables. In RAMSES, we have found
that this reconstruction gives satisfactory results with the min-
mod (Roe 1986) slope limiter but fails with the moncen limiter
(van Leer 1977). Therefore we implemented the PLM method,
which works with both limiters.

In the Piecewise Linear Method (Collela 1990), one rewrites
Eq. (14)

∂q
∂t

+

N∑
k

LαλαRα ∂q
∂x

= 0 (16)

with λα the eigenvalues, and (Lα, Rα) the eigenvectors of
the Jacobian matrix. In this case, the slopes are projected on
the characteristic variables, using the left-hand eigenvectors. The
waves that cannot reach the interface between cells in the given
time step are filtered out and do not contribute to the interface
states. One then recovers the primitive variables, multiplying by
the right-hand eigenvectors. The final interface states are then
computed by adding the contributions of all the selected waves:

qn+1/2
i,R = qn

i +
∑
λαi < 0

(
1
2

(
−1 − λαi

dt
dx

)
Lα

i ∂qi

)
· Rα

i (17)

qn+1/2
i,L = qn

i +
∑
λαi > 0

(
1
2

(
1 − λαi

dt
dx

)
Lα

i ∂qi

)
· Rα

i . (18)

The full set of eigenvalues and eigenvectors is given in
Appendix A.3.

Since all directions are reconstructed separately, although
each component is subluminal, nothing guarantees that the norm
of the total velocity remains subluminal. When a superlumi-
nal velocity is obtained, one possibility is to reconstruct Γu and
renormalize the velocity when necessary (Aloy & Martí 1999)
or to reconstruct the Lorentz factor independently (Wang et al.
2008). When superluminous velocities are obtained, we choose
to switch to first-order reconstruction (qi± 1/2,L,R = qi) in all di-
rections, for all variables. No switch occurred in our test simu-
lation of a relativistic jet (see Sect. B.3). It typically occurs once
every 107 updates in our gamma-ray binary simulations with a
Lorentz factor of 7, probably due to the much larger region cov-
ered by the high-velocity flow and its very low pressure (see
Sect. 3.3).

Figure 1 shows the result of a shock tube test for the two dif-
ferent methods. Both methods give comparable results and show
that the code works well on a uniform grid. In this test (Martí &
Müller 2003), ρL = 10, ρR = 1, PL = 13.3 and PR = 10−6 and
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Fig. 1. Density, velocity, and pressure in the laboratory frame at t =
0.45. The thin solid line shows the PLM method, the dashed line the
MUSCL metod, which gives very similar results. The analytic solu-
tion (Giacomazzo & Rezzolla 2006) is given in blue. The resolution is
nx = 256.

there is no initial velocity. The flow is only mildly relativistic in
the dynamical sense but e � ρ in the right-hand state, resulting
in a thermodynamically highly relativistic flow. Figure 2 illus-
trates the differences between a non-relativistic adiabatic index
(γ = 5/3) and the ultrarelativistic adiabatic index (γ = 4/3).
The compression ratio in the shocked region is higher than for
Newtonian hydrodynamics, especially when the gas is thermo-
dynamically ultrarelativistic. The results compare very well with
Fig. 2 in Ryu et al. (2006).

2.3. Implementation within the AMR structure

Mesh refinement is an important tool when modelling a wide
range of spatial structures. Several methods exist and have been
successfully associated with RHD schemes: static mesh refine-
ment (Beckwith & Stone 2011), block-based AMR (Hughes
et al. 2002; Zhang & MacFadyen 2006; Mignone et al. 2012)
or tree-based AMR as in Keppens et al. (2012). Moving meshes
offer another possibility to enable locally increased resolution
(Duffell & MacFadyen 2011).

In RAMSES, cells are related in a recursive tree structure
(Kravtsov et al. 1997) and gathered together in octs of 2N cells
(N is the number of dimensions), which share the same parent
cell. When creating new refined cells or computing the fluxes at
the interface between two levels, the conserved variables need
to be interpolated from level l to level l + 1. The interpolation
is done at second order, using a minmod limiter for the linear
reconstruction. Conversely, since hydrodynamical updates are
only performed at the highest level of refinement, variables need
to be determined at lower levels by computing the average over
the whole oct.

In RHD, the restriction step may lead to failures, when the
energy is strongly dominated by the kinetic energy. In RHD,

Fig. 2. Density, velocity, and pressure in the laboratory frame at t = 0.45
for tests with different adiabatic indices. The black solid line shows
γ = 5/3, the dashed green line shows γ = 4/3, the resolution is
nx = 256.

positive pressure and subluminal velocity are guaranteed when
E2 > M2 + D2 (Mignone & Bodo 2005, see Appendix A for
the demonstration). Although cells at a given level satisfy this
condition, nothing guarantees that E2

oct > M2
oct + D2

oct where the
subscript oct means variables are summed over an oct. The re-
sulting state can be non-physical. We found that this problem
can be bypassed by performing the reconstruction on the spe-
cific internal energy ε (i.e. the temperature) rather than on the
total energy using

ε =
P
ρ

1
γ − 1

, (19)

where P and ρ are computed with the Newton-Raphson scheme
used to computed the primitive variables. After the restriction,
one recovers the total energy using

E = Γ2ρh − P = DhΓ − (γ − 1)
D
Γ
ε, (20)

where

h = 1 + γε and Γ =

√
M2

D2h2 + 1. (21)

This method makes the numerical scheme non-conservative
but guarantees that the pressure is positive and the speed is
subluminal.

Refinement is often based on gradients in the flow vari-
ables: either the density, pressure or velocity. In highly relativis-
tic flows, the velocity does not vary significantly and the vari-
ations in the Lorentz factor may not be captured properly, thus
strongly altering the dynamics of highly relativistic flows. To
avoid this, we have implemented refinement based on the gra-
dients of the Lorentz factor. Figure 3 shows two simulations of
a shock tube test. We reproduced the test by Pons et al. (2000),
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Fig. 3. Density, parallel velocity, transverse velocity, and pressure in the
laboratory frame for two different simulations. In both cases, the coarse
grid is set by nx = 64 with 11 levels of refinement based on pressure gra-
dients. The solid line shows a simulation where additional refinements
occur based on Lorentz factor gradients. The result is superimposed to
the analytic solution (Giacomazzo & Rezzolla 2006) given in blue. The
red dashed line in the upper panel shows the refinement levels, based on
the Lorentz factor gradients.

with ρL = ρR = 1, PL = 103, and PR = 10−2, vx,L = vx,R = 0,
vy,L = vy,R = 0.99 initially. This is a very stringent test, with a
maximum Lorentz factor of 120. In the first case, refinements
are only based on pressure gradients and do not properly capture
the contact discontinuity and positions of the shock. In the other
simulation, refinement is also based on the Lorentz factor. In this
case, the simulation is in very good agreement with the analytic
result. Similar accuracy can also be found by refining according
to both the pressure and density gradients. However, it increases
the computational cost by '15% in this test. This test validates
the implementation within the AMR framework, which is well
adapted for shocks in highly relativistic flows. We estimated the
level in non-conservation by measuring the variation of the total
density, momentum, and energy (in the laboratory frame) at the
end of the test. We found relative errors of 3 × 10−9, 9 × 10−5,
and −6 × 10−8, respectively.

This method is currently implemented in RAMSES and suc-
cesfully passes all the commonly used numerical tests. A few of
them are detailed in Appendix B.

3. 2D simulations of gamma-ray binaries

Pulsar winds have a Lorentz factor of about 104−106 (see e.g.
Kirk et al. 2009, for a review), which is far beyond the reach of

current computer power and numerical schemes. Most present
multidimensional simulations model Lorentz factors of at most
a few 10. Modelling higher Lorentz factors, especially in low-
density or low-pressure environments, require highly sophisti-
cated numerical methods, particularly in 2D and 3D, since spa-
tial directions are strongly coupled. Up to now, there has been
no extensive study of the impact of relativistic effects regarding
the interaction of a pulsar wind with its surroundings.

The following simulations are demanding, not only because
they need high resolution, but also because of the different
timescales involved. The longest dynamical time is set by the
speed of the stellar wind, while the time step in the simulation
is limited by the speed of the pulsar wind. Because vp/v∗ ' 100,
simulating a gamma-ray binaries takes roughly a hundred times
longer than simulating colliding stellar winds. The simulations
in this section typically took between 10 000 and 15 000 CPU
hours to complete.

3.1. Collision with supersonic relativistic winds

We have compared the interaction between a pulsar wind and a
stellar wind to the collision between two stellar winds descried
in Paper I. Similarly to the non-relativistic case, one can deter-
mine the position of the contact discontinuity between the winds.
The standoff point, which is situated at the intersection between
the line-of-centres and the contact discontinuity, is given by the
equation of momentum fluxes

ρphpΓ2
pv

2
p + Pp = ρsv

2
s + Ps, (22)

where the subscript s represents the variables in the stellar wind,
and the variables with subscript p refer to the pulsar. We neglect
thermal pressure in the winds, which gives

ρpΓ2
pv

2
p = ρsv

2
s . (23)

The mass loss rate Ṁ ≡ 4πr2Γρv is constant so the location of
standoff point, where Eq. (22) is realized, is set by the dimen-
sionless ratio

ηrel =
ṀpΓpvp

Ṁsvs
= ηclΓ (24)

where ηcl (Stevens et al. 1992) is the usual definition of the mo-
mentum flux ratio of the winds in the non-relativistic limit. These
equations suggest that we can expect a similar structure to the
one in colliding stellar winds, provided we define the momen-
tum flux ratio of the winds using Eq. (24).

3.2. Numerical setup

We performed 2D numerical simulations of the interaction in a
region extending up to four times the binary separation a. Our
2D setup is cylindrical, as described in Paper I. We neglected
orbital motion in our simulations to enable comparisons with the
analytic estimates and clarify the differences with our previous
non-relativistic results (Paper I). Orbital motion can be neglected
without affecting the dynamics on scales much smaller than the
spiral stepsize S >∼ vsPorb (Paper II). For LS 5039, the gamma-
ray binary with the shortest known period, the step of the spiral
is at least S ' 4 AU, which about 20 times the binary separation
(Moldón et al. 2012).

Since we want to study the impact of relativistic effects, we
do not set the pulsar wind velocity to 'c but keep it as a free
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Fig. 4. Position of both shocks and the contact discontinuity for ηrel = 1,
βp = 0.99 for increasing resolution lmax = 10 (thin dotted line), 11 (thick
dotted line), 12 (dashed line), 13 (solid line). The last two resolutions
give the same result.

parameter. We set ηrel and vp and derive the pulsar’s mass loss
rate

Ṁp = ηrel
Ṁsvs

vpΓp
· (25)

As for the classical case, the winds are initialized in masks fol-
lowing the method described in Lemaster et al. (2007). Density
is determined by mass conservation in the winds, and the veloc-
ity is set to the terminal velocity. As in stellar wind simulations,
we set the Mach numberM = v/cs = 30 at the distance r = a.
We introduce a passive scalar, which is set to one in the stellar
wind and set to nought in the pulsar wind.

To ease comparisons between the different simulations, we
set the adiabatic index γ to 5/3 and kept the parameters of
the stellar wind identical in all simulations. We set Ṁs =
10−7 M� yr−1 and vs = 3000 km s−1, corresponding to typical
values for winds from early type stars (Puls et al. 2008). At this
stage, we use the HLL Riemann solver to numerically quench the
development of the Kelvin-Helmholtz instability at the contact
discontinuity between the winds. We use the MUSCL scheme,
combined with the minmod slope limiter. In most simulations,
the binary is at the centre of a region of size lbox = 8 a, the coarse
grid is set by nx = 64, and the refinement is based on density and
Lorentz factor gradients.

We performed test simulations for ηrel = 1 at different res-
olutions to determine the level of refinement required to reach
numerical accuracy. The Sod test problem (Sect. B.1) suggests
that the higher the Lorentz factor of the flow, the higher the res-
olution needed to obtain a satisfactory simulation. We consider
a simulation provides satisfactory results when the positions of
the discontinuities do not vary with increasing resolution. The
position of the contact discontinuity is set by finding where the
passive scalar equals 0.5. The positions of the two shocks are
given by the minimum and maximum value of the derivative of
the pressure. Figure 4 shows the positions of the discontinuities
for different levels of resolution, for βp = vp/c = 0.99. This
corresponds to Γp = 7.08. For lmax ≥ 12, the positions do not
vary anymore. In comparison, lmax = 9 is sufficient for the non-
relativistic wind in Fig. 4. A much higher resolution is required
to properly model the interaction with a relativistic flow.

3.3. Geometry of the colliding wind region

Figure 5 shows the density map and the Lorentz factor map for
simulations with ηrel = 0.1, 1, 10, and βp = 0.99. We set the

maximal resolution to lmax = 12 and checked that, for ηrel = 0.1
and 10, the positions of the discontinuities do not vary with
higher resolution (see Sect. 3.2). The stellar wind is the dense
flow on the right, the pulsar wind is located on the left. The an-
alytic solution for the contact discontinuity is obtained by com-
bining the relativistic definition of the momentum flux ratio ηrel
(Eq. (24)) with the position of the contact discontinuity derived
by Antokhin et al. (2004) for colliding stellar winds. The so-
lution assumes a thin shell geometry where both shocks and
contact discontinuity are merged in one single layer. The over-
all structure appears similar to what is found for non-relativistic
flows (see e.g Fig. 5 in Paper I). However, relativistic effects have
a non-negligible influence on the structure. For instance, the
symmetry is broken between the cases ηrel = 0.1 and ηrel = 10,
the latter showing a reconfinement shock while the former does
not. The direction of the velocity in the winds is indicated on the
map of the Lorentz factor. Along the line-of-centres, the winds
collide head on, and when getting farther from the binary, the
velocity is mostly parallel to the direction of the shocks. This
corresponds to the shock tube test simulation (Sect. B.1), which
required very high resolution because of the high velocity per-
pendicular to the shock normal (v⊥ = 0.99). The importance of
the velocity transverse to the shock normal is the reason high
resolution is necessary in simulations with increasing Lorentz
factors in the pulsar wind.

To quantify the impact of relativistic effects, we carried out
simulations with ηrel = 1 for increasing values of the pulsar
wind velocity βp = {0.01, 0.5, 0.99, 0.998}. The corresponding
Lorentz factors are Γ = {1.00005, 1.15, 7.08, 15.8}. Figure 6
shows the positions of both shocks and the contact discontinuity
in the different simulations. This plot shows that, on the line-of-
centres, the location of the contact discontinuity is identical in all
simulations and is set by ηrel. At the edges of the box, the contact
discontinuity is not exactly midplane between the winds and is
closer to the pulsar. We checked that, for Mach numbers above
ten, the contact discontinuity stays midplane in non-relativistic
simulations with η = 1 and a different Mach number for each
wind. We interpret the tilt of the CD as the impact of thermal
pressure in the winds. For a given momentum flux ratio, when
the pulsar wind speed is increased, its pressure is decreased, be-
cause we keep a fixed Mach number, while the stellar wind is un-
changed. Thus, the higher the Lorentz factor of the pulsar wind,
the more the thermal pressure from the stellar wind dominates
the pulsar wind pressure. The tilt of the CD is related to our def-
inition of the pressure in the pulsar wind, which decreases with
the Lorentz factor. When we set the pressure in the pulsar wind
equal to the pressure in the stellar wind, both still being small
compared to the ram pressure on the line-of-centres, we find that
the CD is exactly on the axis of symmetry. We consider this case
to be unrealistic because the pulsar wind pressure is expected to
be negligible due to adiabatic expansion (Kirk et al. 2009). The
shape of the shock in the pulsar wind changes with its Lorentz
factor, especially far from the binary axis. In these zones, the ve-
locity is mostly transverse to the shock normal. Unlike the non-
relativistic case, the transverse and normal velocities are tied in
the jump conditions via the Lorentz factor and this has an impact
on the shock location (Taub 1948). The position of the shock in
the stellar wind remains unaffected by the speed of the pulsar
wind. We conclude that the shape of the interaction region is af-
fected by relativistic effects, the reason being that the pressure
and transverse speed influence the relativistic jump conditions
through h and Γ. The numerical tests in Appendix B.2 highlight
that very high resolution is needed to properly model the shock
propagation speed, when there is a high velocity perpendicular
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Fig. 5. Density (upper row) and Lorentz factor (lower row) maps for simulations with ηrel = 0.1, 1, 10 (from left to right) and βp = 0.99. The
pulsar is located at x = −0.5, the star at x = 0.5. The density is given in g cm−2, the arrows show the velocity field.

Fig. 6. Position of both shocks and the contact discontinuity in a simu-
lation with ηrel = 1, in simulations with different values for the velocity
of the pulsar wind : βp= 0.01 (dotted line), 0.5 (dashed line), 0.99 (solid
line) and 0.998 (thick solid line). For β = 0.998 we used a smaller com-
putational box.

to the shock propagation direction. Although we carefully deter-
mined an adequate resolution for our simulations, a numerical
effect proper to relativistic simulations cannot be excluded.

To evaluate the impact of the Lorentz factor on the hydrody-
namics of the shocked region, we followed the hydrodynamical
quantities along streamlines in the shocked pulsar wind. We find
that, for all the values of βp, starting from the shock, the flow
reaccelerates up to its initial velocity. The acceleration tends to
a spherical, adiabatic expansion, with 2πsvpΓp ≡ kṀp ' con-
stant (our simulations are 2D), where s is the curvilinear dis-
tance to the shock. Figure 7 shows the value of k for different
speeds of the pulsar wind, for ηrel = 1. In all cases the shocked

Fig. 7. Mass flow (Ṁp = 2πsvpΓpρp) along a streamline in the shocked
pulsar wind for βp = 0.01 (dotted line), 0.5 (dashed line), and 0.99
(solid line). The mass flow is normalized to the initial mass loss rate of
the pulsar, we use ηrel = 1. The simulations with βp = 0.01 and 0.5 give
the same results.

flow reaches k ≈ 3 on a scale comparable to the binary separa-
tion (increasing with βp). For ηrel = 0.1, we find the same re-
acceleration, although with a higher value of k ' 8. The higher
corresponding mass flow is due to the smaller opening angle of
the shocked pulsar wind.

3.4. Kelvin-Helmholtz instability in gamma-ray binaries

The stellar wind has a velocity of 3000 km s−1, while the pulsar
wind is almost two orders of magnitude faster. Similarly to what
happens for classical flows, at the contact discontinuity between

A79, page 7 of 15

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201322266&pdf_id=5
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201322266&pdf_id=6
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201322266&pdf_id=7


A&A 560, A79 (2013)

Fig. 8. Density (upper panel) and mixing (lower panel) maps for a sim-
ulation with ηrel = 1 and βp = 0.99.

the winds, the KHI is likely to modify the structure of the flow
(Blandford & Pringle 1976; Turland & Scheuer 1976). Bodo
et al. (2004) find analytic solutions to the dispersion relation in
RHD and show that, in the frame of the laboratory, the stability
criteria are the same as in the classical case, provided one uses
the relativistic definition of the Mach number (Mrel = MΓ/Γcs ,
where Γcs is the Lorentz factor of the sound speed). In 2D sim-
ulations, we thus expect the interface between the winds to be
unstable providedMrel >

√
2.

To verify the impact of the KHI on gamma-ray binaries, we
performed a test simulation with ηrel = 1 and βp = 0.99. Radice
& Rezzolla (2012) highlight the importance of an adapted
Riemann solver and a low-diffusivity scheme in the study of the
KHI. We used the HLLC Riemann solver to enable the develop-
ment of the KHI at the contact discontinuity between the winds.
This simulation displays a velocity difference (vp/vs ' 100). In
Paper II, we found that in the classical limit, such a velocity dif-
ference leads to a significant amount of mixing between the wind
and destroys the expected large scale spiral structure.

Figure 8 shows the density map and mixing between the stel-
lar wind and the pulsar wind. The Kelvin-Helmholtz instability
is clearly present in the whole colliding wind region. This is con-
sistent with Fig.7 by Bosch-Ramon et al. (2012). In their simu-
lation, Γp=10, ηrel = .3 and the stellar wind parameters are very
close to ours, making comparison possible. Although orbital mo-
tion is included in their work, it has no impact at the location we
are considering, close to the star. At a distance of about twice the
binary separation, the re-acceleration of the pulsar wind means
that the conditions in the shocked flow are incompatible with
the analytic criterion for the developing the KHI. This suggests
that the eddies present far away from the binary are due to the
advection of eddies formed closer in. The eddies affect the po-
sition of the contact discontinuity but also modify the positions
of both shocks. We find important differences in the position of
the shock in the pulsar wind between two successive outputs,

which indicates variation on a timescale of at most ten days. The
KHI induces some mixing between the winds, although it occurs
mostly in low-density parts of the shocked region.

The overall structure is similar to what we found for col-
liding non-relativistic stellar winds, for η = 1, v1/v2 = 20 (see
Fig. 5 in Paper I) and in a test simulation with η = 1, v1/v2 = 100
(with the same resolution as in the relativistic simulation). Still in
the classical limit, the mixed region covers a larger domain, with
parts of the faster wind crossing the contact discontinuity and
being totally embedded in the slower, denser wind. The mixed
region seems smoother and less broken up in the classical limit.
Comparison between both simulations is not straightforward be-
cause the density jump between both winds is about two orders
of magnitude higher in the relativistic simulation, which proba-
bly decreases the growth of the intsability.

Bosch-Ramon et al. (2012) have simulated the large scale
structure of gamma-ray binaries including orbital motion in 2D.
Their simulations of the short-period binary LS 5039 show
strong instabilities far from the binary, which they partly at-
tribute to the accelerated transonic flow being deflected by the
slower stellar wind and producing an unstable shocked structure.
Whether this effect holds for higher values of the Lorentz factor
and systems with longer orbital periods (such as PSR B1259-63)
is worth investigating further.

4. Discussion: scaling to realistic pulsar winds

The simulations we performed have highlighted some similar-
ities and differences between the interaction of classical stellar
winds and the interaction between a stellar wind and a relativis-
tic pulsar wind. This raises two questions:

– To what extent can simulations in the classical limit provide
information on the structure of gamma-ray binaries?

– How can the results of relativistic simulations be extrapo-
lated to more realistic values for the pulsar wind velocity
(Γp ' 104−6) ?

Pulsar winds are characterized by the spindown power Ėp car-
ried by the wind, which can be estimated from timing of the
pulse period. The corresponding momentum flux ratio can be
expressed as a function of Ėp by noticing that Ėp = ΓṀpc2 and
vp ≈ c so

ηrel =
Ėp

Ṁsvsc

vp

c
≈

Ėp

Ṁsvsc
· (26)

Using this ηrel provides a good indication for the position of
the contact discontinuity between the winds and may be used
to rescale simulations of non-relativistic colliding stellar winds.
Nonetheless, we found that the pulsar wind is more collimated
than expected when we carried out relativistic simulations where
the pulsar wind pressure Pp is lower than the stellar wind pres-
sure Ps, even though both pressures are negligible compared to
the ram pressure term ρΓ2v2 on the line-of-centers (Eq. (22)).
The difference probably occurs because the relativistic jump
conditions are coupled by Γ and h, with the strongest impact
in the shock wings where the speed is mostly transverse to the
shock. In contrast, Bogovalov et al. (2008) find that the location
of the contact discontinuity in their RHD simulations is identi-
cal to the classical case, with η calculated using Eq. (26). We
suspect that they obtain this result because they set the pressure
exactly to zero in both winds. We recover the classical result if
we set the pressure to the same value in both winds.
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Since a realistic pulsar wind has Pp ≈ 0 � Ps , 0, our
results suggest that pulsar winds are more collimated than as-
sumed by extrapolating from classical results. This may have a
significant impact on the interpretation of the radio VLBI maps
of gamma-ray binaries, where the collimated radio emission has
been modelled as synchrotron emission from the shocked pulsar
wind (Dhawan et al. 2006; Moldón et al. 2011a,b, 2012). In par-
ticular, Romero et al. (2007) notes that the collimation angles in
the binary LSI +61◦303 were too narrow compared to the ones
expected in the classical limit. Simulations at higher values of
the Lorentz factor are highly desirable to confirm this and fully
explore the impact of the wind pressure on shock location.

To easy comparison with colliding stellar winds, we assumed
a constant adiabatic index γ = 5/3 in our simulation. While
this is realistic for the stellar wind and (cold) unshocked pulsar
wind, the adiabatic index of the (warm) shocked pulsar wind is
probably close to four thirds. Performing a test simulation with
ηrel = 1, βp = .99, and γ = 4/3 in both winds, we find that
the shocked region in the pulsar wind is about 60% denser than
when γ = 5/3, and slightly narrower. These results are consis-
tent with what we observed in Fig. 2. However, the exact impact
on gamma-ray binaries is not straightforward, since the adiabatic
index transitions from the non-relativistic to the ultrarelativistic
limit. As can be seen in shock tests in Figs. 5–7 of Ryu et al.
(2006), when a relativistic equation of state is used, although
the density jump is confined by the two limiting cases, the exact
hydrodynamical structure is more complex than a simple inter-
mediate between the cases γ = 4/3 and 5/3.

Simulations with moderate values for the Lorentz factors
provide information on the density and velocity structure of the
shocked flow that is useful for calculating emission properties of
the system. We found that the shocked pulsar wind reaccelerates
to its initial Lorentz factor and reaches an asymptotic regime
with 4πs2ρ∗pv

∗
pΓ∗p = kṀp = constant (or equivalently for our

cylindrical 2D geometry 2πsρ∗pv
∗
pΓ∗p = kṀp = constant, with

stars for quantities in the shocked region). We find that k is of
order unity and is related to the opening angle of the shocked
region and seems independent of the Lorentz factor of the pre-
shock flow. Since the shocked wind accelerates up to its initial
(i.e. pre-shock) velocity on a distance of a few times the binary
separation, we have v∗p = vp, and this implies that, asymptoti-
cally, the density in the shocked wind is given by

ρ∗ '
Ėp

4πs2c
k

v2
pΓ2

p
, (27)

where we have used Ėp/c ≡ ΓpṀpvp.
We have verified this relation by measuring the density ra-

tio in the shocked pulsar wind for the simulation with βp = 0.5
and βp = 0.99. Following Eq. (27), we expect ρ0.5/ρ0.99 ' 150.
At the edge of our simulation domain, where s ' 4a, we find
that ρ0.5/ρ0.99 varies between 140 and 155. This method assumes
the flow has reached its terminal velocity. It can be used to es-
timate the density in the shocked pulsar wind for any value of
its Lorentz factor, even using simulations in the non-relativistic
limit. However, it is unable to precisely indicate the properties
of the flow close to the binary. Similar caveats were found by
Komissarov & Falle (1996), who proposed scaling relations to
model non-relativistic equivalents of relativistic jets using the
mass, energy or momentum flux. Equating the momentum flux
leads to the most satisfactory results on the global morphology
of the jet but still underestimates the size of the region with the
highest Lorentz factors (Rosen et al. 1999).

The above ideal picture for the shocked flow is likely to be
affected by the development of instabilities. Analytic work and
simulations indicate that highly relativistic flows are less subject
to the Kelvin-Helmholtz instability. Martí et al. (1997); Perucho
et al. (2004b,a) indicate that cold jets with high Lorentz factors
are more stable than slow, warm jets. In fast flows the timescale
for the growth of the KHI is too long with respect to the dy-
namical time, while in cold flows the sound speed is low and
perturbations propagate too slowly. In those particular systems,
the specific axisymmetric geometry plays a role in the develop-
ment of particular modes of the instability and makes it hard to
directly remap the results to gamma-ray binaries.

Our simulations show that the KHI affects the positions of
the shocks and induces some mixing between the winds. The
most favourable conditions for developing the KHI occur close
to the binary, where the shocked pulsar wind is subsonic and
only mildly relativistic. Since the downstream velocity cannot
be higher than c/3 for ultrarelativistic flows, the conditions for
the developing the KHI are likely to be met in real systems (hav-
ing Γp ' 104−6), at least close to the binary. The presence of
the KHI further may be due to advection alone. Simulations at
higher Lorentz factors are necessary to determine whether the
unstable region is large enough to enable important growth be-
fore the advection phase begins. This is a key aspect since strong
instabilities will induce mixing between the stellar and pulsar
wind, which is likely to thermalize the high-energy particles of
the pulsar wind and thus decrease their high-energy emission.

5. Conclusion and perspectives

We have developed a special relativistic extension to the
adaptive-mesh refinement code RAMSES. We implemented two
different second-order schemes and Riemann solvers. So far,
only the so-called classical equation of state has been imple-
mented, but the code was written in order to make the imple-
mentation of more complex equations of state straightforward.
The code is fully three-dimensional and allows using adaptive
mesh refinement. To model high-velocity flows, we included
the possibility of refining cells according to the gradient of the
Lorentz factor. Our code passes all of the common numerical
tests in 1D, 2D, and 3D, including the most stringent tests with
high Lorentz factors and velocities perpendicular to the flow.

Using this new relativistic code, we performed a 2D study
of the geometry of the gamma-ray binaries, with Lorentz fac-
tors up to 16. The relativistic nature of the pulsar wind changes
the momentum balance between the winds. The position of the
shock in the pulsar wind is affected by the impact of the pre-
shock wind pressure and transverse velocity on the shock. We
found this makes the shocked pulsar wind more collimated than
expected using classical hydrodynamics. This relativistic effect
is strongest where the flow is essentially along the shock, far
from the stagnation point. Comparing simulations with increas-
ing values for the Lorentz factor of the pulsar wind, we find that
the shocked pulsar wind re-accelerates up to its initial velocity
on a scale of a few times the binary separation. We determine
a prescription for the density in the shocked pulsar wind, which
can be used for any value of the Lorentz factor. We find that the
Kelvin-Helmholtz instability develops at the contact discontinu-
ity affects the structure of the shocked region. Still, the exact
understanding of the instability at realistic values of the pulsar
wind Lorentz factor, in the particular geometry of gamma-ray bi-
naries still needs to be confirmed. Our simulations provide clues
do understanding the physics of gamma-ray binaries. However,

A79, page 9 of 15



A&A 560, A79 (2013)

detailed comparison with observations requires including more
complex physical effects.

This code will be part of the next public release of RAMSES.
It is well suited to study many astrophysical flows including
gamma-ray bursts, pulsar wind nebulae, and jets in galactic bi-
naries or active galactic nuclei. As an example, the Lorentz fac-
tor inferred from the prompt emission of gamma-ray bursts is
of order 100, while the afterglow emission is related to a bulk
motion of Γ ' 10 (see Gehrels et al. 2009, for a review) for
a review). Following the fireball model, such systems display a
very wide range of lengthscales, from the progenitor to decela-
ration radius of the forward shock, including the reverse shock
and the structure of the internal shocks. Although the fully con-
sistent study of such systems is still out of reach, the possibility
for adaptive mesh refinement makes RAMSES a useful tool to
model gamma-ray bursts. Our work on gamma-ray binaries can
be easily adapted to simulating pulsar winds interacting with the
interstellar medium or a supernova remnant. In such cases, the
shock occurs further from the pulsar than in gamma-ray binaries,
and the typical size of the interaction region is a few pc. This
increase in length scales makes the use of AMR even more fun-
damental when modelling the structure and instabilities in pulsar
wind nebulae.
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Appendix A: Numerical scheme for RAMSES-RHD

This Appendix provides the Jacobian matrices and their eigen-
structure for reconstructing the primitive variables in the
3D-RHD case. It also explains the recovery of the primitive
variables.

A.1. Recovering the primitive variables

To determine the primitive variables (ρ, v j, P)T, we simplify the
method by Mignone & McKinney (2007), initially developed
for relativistic magnetohydrodynamics. One rewrites the total
energy

E = W ′ + D − P (A.1)

and solves an equation on W ′ = W − D = ρhΓ2 − ρΓ.
To avoid numerical problems in the non-relativistic or ultra-

relativistic limits, one introduces

u2 =
M2

(W ′ + D)2 − M2 = Γ2v2 (A.2)

such that the Lorentz factor is given by

Γ = (1 + u2)1/2. (A.3)

This gives

W ′ =
Du2

Γ + 1
+ Γ2 γ

γ − 1
P, (A.4)

which can be used to replace P in Eq. (A.1). Once W ′ is
found using, say, a Newton-Raphson method, one recovers the
Lorentz factor using Eqs. (A.2) and (A.3), then the density
ρ = D/Γ and finally pressure using Eq. (A.4). We determine W ′
with a precision of 10−10.

The method can be easily adapted to different equations of
state, by simply changing Eq. (A.4). It is well suited to codes
with AMR since an initial guess of the value of W0, which
guarantees the positivity of pressure, can be found analytically
(Mignone & McKinney 2007). This avoids storing values of W ′
between time steps, which can be cumbersome on a changing
grid. One can determine W0, which then gives W ′0 = W0 − D,
rewriting the pressure as

P = W − E =
M2 − v2W2 + 4W2 − 4EW

4W
(A.5)

since M2 ≡ W2v2. Pressure is thus guaranteed to be positive
when

M2 − v2W2 + 4W2 − 4EW > 0. (A.6)

This happens for any W > W+, with W+ the largest of the two
roots of the quadratic equation Eq. (A.6). As v < 1, solving
Eq. (A.6) for v = 1, implies that the corresponding root W+,1 >
W+,v, which guarantees positive pressure. One thus uses W+,1 as
the initial guess to start the Newton-Raphson scheme.

Provided the vector of conservative variables is physical, this
method converges to a physical primitive state. The positivity of
the density can be verified by D > 0. Subluminal velocity is
guaranteed by E2 > M2 + D2. Indeed, using Eq. (6) one has

E2 > M2 + D2 ⇒

( M
v
− P

)2

> M2 + D2. (A.7)

This necessarily implies positive pressure and v < 1. Whenever a
non-physical conserved state occurs, we floor the density to ρ =
10−10 and the pressure to P = 10−20. This occurs roughly once
every 106 updates in our gamma-ray binary simulations. It oc-
curs in the unshocked pulsar wind, where the density and pres-
sure are lowest and the Lorentz factor the highest. It mostly oc-
curs along the line of centers of the binary, since the Cartesian
grid is unable to perfectly model the spherical symmetry of the
wind. The number of failures strongly reduces with resolution.
Beckwith & Stone (2011) note a few failures when pressure is
very low and suggest using the entropy instead of the energy as
conserved variable in those cases. Reconstruction by using the
neighbouring cells is very cumbersome owing to the AMR struc-
ture in RAMSES, so we have not considered this option.

A.2. Computing the time step

The time step is determined by the Courant condition for unsplit
schemes

∆t = CCFL ×min
(

∆x
λx + λy + λz

)
(A.8)

where CCFL is the Courant number and λk is the propagation
speed along direction k determined by

λk = max(|λ+|, |λ−|) (A.9)

with

λ± =
v‖

(
1 − c2

s

)
+

√(
1 − v2) (1 − v2

‖
− v⊥c2

s )

1 − v2c2
s

(A.10)

where v‖ and v⊥ are the velocity parallel and perpendicular to
the direction k. All the simulations in this paper were performed
using CCFL = .8.

Our determination of the time step is more restrictive than
the more commonly used (see e.g. Mignone et al. 2012)

∆t = CCFL ×min
(
∆x
λx
,
∆x
λy
,
∆x
λz

)
· (A.11)

Using the above expression for the time step, we find that the
simulation of the 3D jet (Appendix B.3) shows no failure for
CCFL ≤ .5, which is comparable to other codes (Zhang &
MacFadyen 2006).

A.3. Jacobian matrices of the 3D-RHD equations

This section will only be available online. One has

∂q = −Ax
∂q
∂x

dt − Ay
∂q
∂y

dt − Az
∂q
∂z

dt. (A.12)

Following Font et al. (1994) for a 1D flow with transverse veloc-
ity and the general definition of the enthalpy

∂h
∂x

=
∂h
∂ρ

∂ρ

∂x
+
∂h
∂P

∂P
∂x
≡ χ

∂ρ

∂x
+ κ

∂P
∂x
· (A.13)

With these definitions, the sound speed can be written as

c2
s =

ρχ

h (1 − ρκ)
· (A.14)
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For the classical equation of state, one has

χ = −
γ

γ − 1
P
ρ2 (A.15)

κ =
γ

γ − 1
1
ρ
· (A.16)

The complete Jacobian matrix is given by

Ax =


c11 c12 c13 c14 c15
c21 c22 c23 c24 c25
c31 c32 c33 c34 c35
c41 c42 c43 c44 c45
c51 c52 c53 c54 c55

 . (A.17)

Nc11 = vxN
Nc12 = ρhΓ2(ρκ − 1)
Nc13 = 0
Nc14 = 0
Nc15 = vx(1 − ρκ)
Nc21 = 0
Nc22 = vxΓ

2(ρhκ − h + ρχ)
Nc23 = 0
Nc24 = 0

Nc25 =
1

ρhΓ2

(
ρhΓ2κ

(
1−v2

x

)
− h − hΓ2

(
v2
y+v2

z

)
+ρχΓ2

(
v2
y + v2

z

))
Nc31 = 0
Nc32 = vyρχ

Nc33 = vxN
Nc34 = 0

Nc35 = −
vxvy(−h + ρχ + ρhκ)

ρh
Nc41 = 0
Nc42 = vzρχ

Nc43 = 0
Nc44 = vxN

Nc45 = −
vxvz(−h + ρχ + ρhκ)

ρh
Nc51 = 0
Nc52 = −ρ2hΓ2χ

Nc53 = 0
Nc54 = 0
Nc55 = vxΓ

2(ρχ − h + hρκ)

with N =
(
−h + hρκ + ρχv2

)
Γ2.

The matrix Ay is given by

Nc11 = vyN
Nc12 = 0
Nc13 = ρhΓ2(ρκ − 1)
Nc14 = 0

Nc15 = vy
(
−ρκΓ2 + ρκΓ2v2 + 1

)
Nc21 = 0
Nc22 = vyN
Nc23 = vxρχ

Nc24 = 0

Nc25 =
−(vxvy(−h + ρχ + hρκ))

ρh
Nc31 = 0
Nc32 = 0
Nc33 = vyΓ

2(ρχ − h + hρκ)
Nc34 = 0

Nc35 =
1

ρhΓ2

(
ρhΓ2κ

(
1−v2

y

)
− h − hΓ2

(
v2

x + v2
z

)
+ρχΓ2

(
v2

x+v2
z

))
Nc41 = 0
Nc42 = 0
Nc43 = vzρχ

Nc44 = vyN

Nc45 =
−vxvz(−h + ρχ + ρhκ)

ρh

Nc51 = 0
Nc52 = 0
Nc53 = −ρ2hΓ2χ

Nc54 = 0
Nc55 = vyΓ

2(ρχ − h + hρκ).

Along z one has Az given by

Nc11 = vzN
Nc12 = 0
Nc13 = 0
Nc14 = hρΓ2(ρκ − 1)

Nc15 = vz

(
−ρΓ2κ + ρv2Γ2κ + 1

)
Nc21 = 0
Nc22 = vzN
Nc23 = 0
Nc24 = vzρχ

Nc25 =
−vxvz(−h + ρχ + ρhκ)

ρh

Nc31 = 0
Nc32 = 0
Nc33 = vzN
Nc34 = vyρχ

Nc35 =
−vyvz(−h + ρχ + ρhκ)

ρh

Nc41 = 0
Nc42 = 0
Nc43 = 0
Nc44 = vzΓ

2(ρχ − h + hρκ)

Nc45 =
1

ρhΓ2

(
ρhΓ2κ

(
1−v2

z

)
− h − hΓ2

(
v2

x+v2
y

)
+ρχΓ2

(
v2

x + v2
y

))
Nc51 = 0
Nc52 = 0
Nc53 = 0
Nc54 = −ρ2hΓ2χ

Nc55 = vzΓ
2(ρχ − h + hρκ).
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Fig. B.1. Density, AMR levels (red dashed line), parallel and transverse velocity and pressure in the frame of the laboratory for the shock test with
Γmax = 120. Left panels: uniform grid nx = 512; middle panels: uniform grid nx = 217 = 131072; right panels: nx = 64, lmax = 17. The black solid
line represents the MUSCL method, while the black dashed line represents the PLM method. At high resolution, they give the same result, which
is very close to the analytic solution.

A.4. Eigenstructure

The eigenvalues of Ax are (see e.g. Falle & Komissarov 1996)

λ− = vx

(
1 − c2

s

)
− csΓ

−1ω

1 − c2
s v2

(A.18)

λ0x = vx (A.19)
λ0y = vx (A.20)
λ0z = vx (A.21)

λ+ = vx

(
1 − c2

s

)
+ csΓ

−1ω

1 − c2
s v2

, (A.22)

with

ω =

√
1 − v2

x − cs

(
v2
y + v2

z

)
. (A.23)

The left eigenvectors are given by

L− =

(
0,−

ρΓ

2csω
, 0, 0,

1
2c2

s h

)
(A.24)

L0x =

(
1, 0, 0, 0,−

1
c2

s h

)
(A.25)

L0y =

(
0,

vxvy

1 − v2
x
, 1, 0,

vy

(1 − v2
x)Γ2ρh

)
(A.26)

L0z =

(
0,

vxvz

1 − v2
x
, 0, 1,

vz

(1 − v2
x)Γ2ρh

)
(A.27)

L+ =

(
0,
ρΓω

2cs
, 0, 0,

1
2c2

s h

)
· (A.28)

The right eigenvectors are given by

R− =

(
1,−

csω

ρΓ
,
−vycs(Γωvx+cs)
ρΓ2(1 − v2

x)
,
−vzcs(Γωvx+cs)
ρΓ2(1 − v2

x)
, c2

s h
)T

(A.29)

R0x = (1, 0, 0, 0, 0)T (A.30)
R0y = (0, 0, 1, 0, 0)T (A.31)

R0z = (0, 0, 0, 1, 0)T (A.32)

R+ =

(
1,

csω

ρΓ
,
vycs(Γωvx − cs)
ρΓ2(1 − v2

x)
,
vzcs(Γωvx − cs)
ρΓ2(1 − v2

x)
, c2

s h
)T

· (A.33)

Similarly for Ay one has

λ− = vy

(
1 − c2

s

)
− csΓ

−1ω

1 − c2
s v2

(A.34)

λ0x = vy (A.35)
λ0y = vy (A.36)
λ0z = vy (A.37)

λ+ = vy

(
1 − c2

s

)
+ csΓ

−1ω

1 − c2
s v2

· (A.38)

with

ω =

√
1 − v2

y − cs

(
v2

x + v2
z

)
. (A.39)

The left eigenvectors are given by

L− =

(
0, 0,−

ρΓ

2csω
, 0,

1
2c2

s h

)
(A.40)

L0x =

0, 1, vyvx

1 − v2
y

, 0,
vx

(1 − v2
y)Γ2ρh

 (A.41)
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L0y =

(
1, 0, 0, 0,−

1
c2

s h

)
(A.42)

L0z =

0, 0, vyvz

1 − v2
y

, 1,
vz(

1 − v2
y

)
Γ2ρh

 (A.43)

L+ =

(
0, 0,

ρΓ

2csω
, 0,

1
2c2

s h

)
· (A.44)

The right eigenvectors are given by

R− =

1, −vxcs(Γωvy+cs)

ρΓ2
(
1−v2

y

) ,−
csω

ρΓ
,
−vzcs(Γωvy+cs)

ρΓ2
(
1−v2

y

) , c2
s h

T

(A.45)

R0x = (0, 1, 0, 0, 0)T (A.46)
R0y = (1, 0, 0, 0, 0)T (A.47)

R0z = (0, 0, 0, 1, 0)T (A.48)

R+ =

1, vxcs(Γωvy − cs)

ρΓ2
(
1 − v2

y

) ,+
csω

ρΓ
,
vzcs(Γωvy − cs)

ρΓ2
(
1 − v2

y

) , c2
s h

T

· (A.49)

For Az one has

λ− = vz

(
1 − c2

s

)
− csΓ

−1ω

1 − c2
s v2

(A.50)

λ0x = vz (A.51)
λ0y = vz (A.52)
λ0z = vz (A.53)

λ+ = vz

(
1 − c2

s

)
+ csΓ

−1ω

1 − c2
s v2

, (A.54)

with

ω =

√
1 − v2

z − cs

(
v2

x + v2
y

)
. (A.55)

The left eigenvectors are given by

L− =

(
0, 0, 0,−

ρΓ

2csω
,

1
2c2

s h

)
(A.56)

L0x =

0, 1, 0, vxvz

1 − v2
z
,

vx(
1 − v2

z

)
Γ2)ρh

 (A.57)

L0y =

0, 0, vy(
1 − v2

z

)
Γ2ρh

,
vyvz

1 − v2
z
, 0,

 (A.58)

L0z =

(
1, 0, 0, 0,−

1
c2

s h

)
(A.59)

L+ =

(
0, 0, 0,

ρΓ

2csω
,

1
2c2

s h

)
· (A.60)

The right eigenvectors are given by

R− =

1, −vxcs(Γωvz+cs)

ρΓ2
(
1 − v2

z

) ,
−vycs(Γωvz+cs)

ρΓ2
(
1 − v2

z

) ,−
csω

ρΓ
, c2

s h

T

(A.61)

R0x = (0, 1, 0, 0, 0)T (A.62)
R0y = (0, 0, 1, 0, 0)T (A.63)

R0z = (1, 0, 0, 0, 0)T (A.64)

R+ =

1, vxcs(Γωvz − cs)

ρΓ2
(
1 − v2

y

) ,
vxcs(Γωvz − cs)

ρΓ2
(
1 − v2

y

) , c2
s h

T

. (A.65)

Appendix B: Numerical tests
In this section, we present a set of numerical tests that vali-
date our new relativistic code. Unless stated differently, all the
simulations were performed with Courant number CCFL = 0.8,
the minmod slope limiter in the MUSCL scheme and for the
AMR prolongations, and the HLLC Riemann solver. The adi-
abatic index is set to 5/3. Refinement is based on density and
velocity gradients.

B.1. 1D Sod test

One initially starts with two different media separated by an in-
terface located at x = 0.5. When the simulation begins, the in-
terface is removed and the flow evolves freely following a self-
similar structure. The flow decays into three waves, usually a
rarefaction, a contact discontinuity, and a shock. These tests are
very common because easy to implement and comparisons with
analytic solutions are possible (see Martí & Müller 1994, for pi-
oneering work; and Rezolla et al. 2003, for an elegant version
including transverse velocities).

We reproduce the test of Sect. 2.3, with a maximal Lorentz
factor of 120. Contrary to the Newtonian case, transverse veloc-
ities do impact the shock structure in RHD and reduce the shock
velocity. Several groups have shown that tests with high trans-
verse velocities are very stringent and only show satisfactory re-
sults at very high resolution (Mignone & Bodo 2005; Zhang &
MacFadyen 2006).

Figure B.1 gives the density, parallel, and transverse veloc-
ity and pressure at tend = 1.8 for tests with different resolutions.
The thick black line represents the simulation using the MUSCL
scheme with the minmod limiter while the dashed line represents
the simulation following the PLM method with the moncen lim-
iter. Both methods lead to similar results. The AMR levels are
superposed on the density plots. Refinement is based on the gra-
dients of both the Lorentz factor and pressure. The first simu-
lation has a uniform resolution of 512 cells, which is close to
the resolution used by Mignone et al. (2005). Our simulation is
similar to theirs, with the shock running ahead of its theoretical
position and some inaccuracy in the orientation of the velocity
vector. These discrepancies reduce with increasing resolution.
In the second simulation, the resolution is also uniform but set
to 217 = 131 072 cells. This is the same resolution as Ryu et al.
(2006), and we obtain very good agreement with their results and
the analytic solution. At high resolution, there is no clear dif-
ference between the PLM and MUSCL method. However, such
high resolution is prohibitive in multidimensional simulations.
The last panel shows a simulation with AMR, the coarse level
is set by nx = 64, while the highest level lmax = 17. The result
is in very good agreement with the expected solution. The den-
sity difference between our results and the analytic solution is
lower than one percent, even at the discontinuities. At the end of
the test, the gain of computing time is about a factor 200 com-
pared to the uniform grid. A simulation with the same computing
time, but on a uniform grid would have a resolution of slightly
more than 4096 cells. A test simulation with a uniform resolu-
tion nx = 4096 showed a 40% discrepancy in the density at the
beginning of the shocked region, with respect to the analytic so-
lution. AMR proves to be very helpful tool in the modelling of
highly relativistic flows.

B.2. 2D Inclined shock tube

Two-dimensional tests are important to verify the accuracy of the
coupling between the different components of the four-vectors.
We performed the above Sod tests by inclining the interface
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Fig. B.2. Inclined shock test: density, velocity, pressure and Lorentz fac-
tor along the shock normal. The thick solid lines give the 2D results, the
dot-dashed lines the 1D results from a simulation with the same reso-
lution, and the blue lines give the analytic solution. The resolution is
lower than for the 1D test in Sect. B.1.

between the two media by θ = 21.7◦ with respect to a vertical
line. The value of θ is chosen arbitrarily to avoid any peculiar
alignement with respect to the numerical grid, as could occur for
θ = 45◦ (Radice & Rezzolla 2012). Since the initial separation
between both sides is inclined, for a given y, the initial condi-
tions are shifted by a few cells with repect to the row of cells
just below. The boundary conditions along the y axis follow the
same shift. At the bottom boundary one has

U(i, 1) = U(i − nshift, ny − 2)
U(i, 2) = U(i − nshift, ny − 1)
U(i, 3) = U(i − nshift, ny)

(B.1)

for all the cells with i − nshift = i − (ny × tan θ) > 0. The bound-
ary conditions are periodic along the x axis. The simulations
took 2200 CPU hours.

The simulations should give a comparable result to 1D sim-
ulations with the same resolution. Figure B.2 shows the different
variables in the direction normal to the shock for the second test
using a 12 800×6400 uniform resolution. The given values were
obtained by performing a bilinear interpolation of the 2D sim-
ulation. We overplot the analytic solution and the result from a
1D simulation with the same resolution along the interface be-
tween the flows (ny/ cos θ = 6400 cells). The 2D simulation dif-
fers somewhat from its equivalent 1D simulation. This suggests
that direct comparison between unidimensional and multidimen-
sional simulations is not possible and that, for high Lorentz fac-
tors, multidimensional simulations need a higher resolution to
be numerically accurate.

In both the 1D and the 2D simulations, the position of the
shock is ahead of its theoretical position. The 1D and 2D tests
have shown that this effect weakens at higher resolution.

Fig. B.3. Simulation of the propagation of a 3D relativistic jet
(Γmax = 7.1). From top to bottom: density at t = 20, 30, 40 in a 3D jet
starting from the left boundary of the domain.

B.3. 3D jet

Relativistic jets have become a widespread way to test multidi-
mensional RHD codes. Their complex dynamics show the im-
pact of transverse velocities and display the development of in-
stabilities. In this case, no analytic solution exists, and validation
is done by comparison with former results. We follow the setup
by Del Zanna & Bucciantini (2002){

(ρ, vx, vy, vz, P) = (0.1, 0, 0, 0.99, 0.01) r 6 1, z 6 1
(ρ, vx, vy, vz, P) = (10, 0, 0, 0, 0.01) outside.

The length scale is given by the initial radius of the jet r0 = 1,
the size of the box is 20r0, with lmin = 6 and lmax = 9. This
gives an equivalent resolution of 25 cells per radius, while the
original test was performed with a resolution of 20 cells per ra-
dius. We perform a 3D simulation, while most jets are simulated
using axisymmetric 2D simulations (Lucas-Serrano et al. 2004).
Except at the injection of the jet, we use outflow boundary con-
ditions. The maximum Lorentz factor is 7.1. The evolution of the
density profile is given in Fig. B.3. One can see the typical fea-
tures of relativistic jets: the bow shock with the external medium,
the cocoon of shocked medium, the relativistic beam, and the
Mach disk. The Kelvin-Helmholtz instability develops at the in-
terface between the shocked external medium and the shocked
material from the jet. The overall shape is similar to the simula-
tion by Del Zanna & Bucciantini (2002) although the simulation
with RAMSES-RHD presents a small extension at the head of
the jet. This is due to the carbuncle instability (Peery & Imlay
1988), which arises when cylindrical or spherical phenomena
are simulated on a Cartesian grid. Performed on 16 processors,
this simulation took 320 mono-CPU hours. The same simulation
on a 5123 fixed grid took about 500 h. Owing to the complex
structure inside the jet, AMR is not very efficient in this type of
simulation (Zhang & MacFadyen 2006).
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