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ABSTRACT

Far-infrared imaging surveys of Galactic star-forming regions with Herschel have shown that a substantial part of the cold interstellar
medium appears as a fascinating web of omnipresent filamentary structures. This highly anisotropic ingredient of the interstellar
material further complicates the difficult problem of the systematic detection and measurement of dense cores in the strongly variable
but (relatively) isotropic backgrounds. Observational evidence that stars form in dense filaments creates severe problems for automated
source extraction methods that must reliably distinguish sources not only from fluctuating backgrounds and noise, but also from the
filamentary structures. A previous paper presented the multi-scale, multi-wavelength source extraction method getsources based
on a fine spatial scale decomposition and filtering of irrelevant scales from images. Although getsources performed very well in
benchmarks, strong unresolved filamentary structures caused difficulties for reliable source extraction. In this paper, a multi-scale,
multi-wavelength filament extraction method getfilaments is presented that solves this problem, substantially improving the robustness
of source extraction with getsources in filamentary backgrounds. The main difference is that the filaments extracted by getfilaments
are now subtracted by getsources from detection images during source extraction, greatly reducing the chances of contaminating
catalogs with spurious sources. The getfilaments method shares its general philosophy and approach with getsources, and it is an
integral part of the source extraction code. The intimate physical relationship between forming stars and filaments seen in Herschel
observations demands that accurate filament extraction methods must remove the contribution of sources and that accurate source
extraction methods must be able to remove underlying filamentary structures. Source extraction with the new version of getsources
provides researchers not only with the catalogs of sources, but also with clean images of filamentary structures, free of sources, noise,
and isotropic backgrounds.

Key words. stars: formation – infrared: ISM – submillimeter: ISM – methods: data analysis – techniques: image processing –
techniques: photometric

1. Introduction

In a previous paper (Men’shchikov et al. 2012, hereafter referred
to as Paper I), we described the multi-scale, multi-wavelength
source extraction method getsources. Developed primarily for
large far-infrared and submillimeter surveys of star-forming re-
gions with Herschel, getsources can also be applied to other
types of astronomical images.

Instead of following the traditional approach of extracting
sources directly in the observed images, getsources analyzes fil-
tered single-scale decompositions of detection images over a
wide range of spatial scales. The algorithm separates the peaks
of real sources from those produced by the noise and back-
ground fluctuations and constructs wavelength-independent sets
of combined single-scale detection images preserving spatial
information from all wavebands. Sources are detected in the
waveband-combined images by tracking the evolution of their
segmentation masks across all scales. Source properties are mea-
sured in the observed (background-subtracted and deblended)
images at each wavelength. Based on the results of an initial
extraction, detection images are flattened to produce more uni-
form noise and background fluctuations in preparation for the

� Appendices are available in electronic form at
http://www.aanda.org

second, final extraction. The method has been thoroughly tested
on many simulated benchmarks and real-life images obtained
in the Herschel Gould Belt (André et al. 2010) and HOBYS
(Motte et al. 2010) surveys. The overall benchmarking results
(Men’shchikov et al., in prep.) have shown that getsources con-
sistently performs very well in both the completeness and relia-
bility of source detection and the accuracy of measurements.

The wealth of high-sensitivity far-infrared images obtained
with Herschel over the past three years have demonstrated that
a substantial part of interstellar medium exists in the form of a
fascinating web of omnipresent filamentary structures (see, e.g.,
Men’shchikov et al. 2010, for illustrations). This anisotropic
component further complicates the very difficult problem of the
systematic detection and measurement of dense cores in the
strongly variable backgrounds of molecular clouds. The obser-
vational evidence that stars form in dense, cold filaments (e.g.,
André et al. 2010; Men’shchikov et al. 2010) creates severe
problems for automated source extraction methods that must
find as many real sources as possible from the images in sev-
eral photometric bands, reliably distinguishing them not only
from fluctuating backgrounds and noise, but also from the fil-
amentary structures. The latter tend to “amplify” insignificant
background or noise fluctuations that fall on top of them, con-
fusing source extraction algorithms. The benchmarking results
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Fig. 1. Main processing blocks of getsources and getfilaments. For a
complete extraction, both methods require two runs (left): the initial
and final extractions (red blocks; the preparation and flattening steps
are shown in blue; cf. Paper I). A more detailed presentation of the pro-
cessing steps (right) shows that both algorithms would have had lots of
identical actions, if conceived and coded separately. The getfilaments
algorithm is essentially localized in only the cleaning and combining
steps of getsources (highlighted in yellow). In practice, getfilaments is
an integral part of the source extraction code, activated by a single con-
figuration parameter of getsources.

(Men’shchikov et al., in prep.) suggest that source extraction
methods that do not take the presence of filaments into account
always tend to create significant numbers of spurious sources
along the filaments.

Although getsources showed very good results in the bench-
marks, it still created some spurious sources in simulated im-
ages with strong unresolved filamentary structures. In order to
improve the performance of getsources in the observed fila-
mentary backgrounds, a multi-scale, multi-wavelength filament
extraction method getfilaments has been developed that solves
this problem and substantially improves reliability of source ex-
traction. The main idea behind the new approach is to care-
fully extract filaments (i.e., separate their intensity distribution
from sources and largely isotropic backgrounds) and subtract
them from the original images before detecting and measuring
sources. Depending on the accuracy of the reconstructed inten-
sity distribution, this procedure removes filamentary structures
from observed images or (at least) greatly reduces their con-
tribution. The absence of filaments in detection images makes
source extraction results much more reliable, practically elimi-
nating spurious sources.

The getfilaments algorithm was developed within the frame-
work of the multi-scale and multi-wavelength approach of get-
sources (Paper I) as an integral part of the source extraction
method. Both getfilaments and getsources can be described by
the processing blocks shown in Fig. 1. The filament extraction
method is essentially localized in only the cleaning and com-
bining steps of getsources. As the getfilaments algorithm adds
only a relatively small number of image manipulations to the
original version of the source extraction method, there is no
need in creating a separate code for the extraction of filaments.

Moreover, the intimate physical relationship between forming
stars and filaments seen in Herschel observations demands that
accurate filament extraction methods must remove the contribu-
tion of sources and, conversely, accurate source extraction meth-
ods must be able to remove underlying filamentary structures.

This paper follows conventions and definitions introduced
in Paper I. The term noise is used to refer to the statistical in-
strumental noise including possible contributions from any other
signals that are not astrophysical in nature, i.e. which are not
related to the emission of the areas in space one is observing.
The term background refers to the largely isotropic astrophys-
ical backgrounds, whereas the term filaments describes signif-
icantly elongated structures1. Filaments are anisotropic in the
sense that their profiles and widths are very dissimilar in differ-
ent directions.

Explicit distinction is made between the morphologically-
simple (convex, not very elongated) sources of emission de-
fined by source extraction methods and objects of specific as-
trophysical nature. In its present state, getsources does not know
anything about the nature or true physical properties of the ob-
jects that produced the emission of significant peaks detected as
sources. Like most of the other existing methods, it can only de-
tect sources (that are possibly harboring our objects of interest)
and determine their apparent two-dimensional intensity distribu-
tions above the variable background, filaments, and noise, mea-
suring their apparent properties at each wavelength as accurately
as possible.

2. Extracting filamentary structures: getfilaments

The fundamental problem in extracting filaments (or sources)
is that all spatial scales in the images are mixed together and
the intensity of any pixel contains unknown contributions from
different components2. Following the approach formulated in
Paper I, getfilaments analyzes decompositions of original im-
ages (in each waveband) across a wide range of spatial scales
separated by a small amount (typically ∼5%). Each of the “sin-
gle scales” contains non-negligible signals from only a relatively
narrow range of spatial scales, mostly only from those structures
that have widths (sizes) similar to the scale considered. In ef-
fect, this automatically filters out their contributions on irrele-
vant (much smaller and larger) spatial scales. An immediate ben-
efit of such filtering is that one can manipulate entire single-scale
images and use thresholding to separate filaments from other
structures (sources, background, and noise).

2.1. Simulated filament

The getfilaments algorithm is illustrated below using simulated
images of a straight filament, a string of sources, a simple

1 A quantitative definition of filaments will be formulated below (see
Sect. 2.4.2), based on the areas of connected pixels occupied by struc-
tures in decomposed single-scale images. Being consistent with an intu-
itive idea of filaments, that formal definition results in filament lengths
that are at least several times larger than their widths.
2 There is a method that separates structural components on the ba-
sis of the wavelet, curvelet, and ridgelet decompositions (MCA, mor-
phological component analysis, Starck et al. 2004). Several tests have
shown that getfilaments gives results similar to those obtained with
MCA. To make more detailed quantitative comparisons and conclu-
sions, however, one has to perform an extensive benchmarking study
of both methods.
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Fig. 2. Profiles of the simulated filament (Sect. 2.1) used to illustrate the
getfilaments method. The filament has the inner half-width R0 = 37′′
(at half-maximum) and the outer power-law profile Iλ(r) ∝ r−1 (blue).
Gaussian-shaped sources (cyan) and background (green) have FWHM
sizes of 30′′ and 4000′′ , respectively. Random pixel noise (black) was
convolved to a resolution of 18′′ (FWHM) and scaled to have a standard
deviation σnoise = 1.25 MJy/sr (dashed). Three profiles sample the full
simulated image (Fig. 3) across the top of the filament (brown), just be-
low its midpoint (magenta), and through the position of the uppermost
source (red).

background, and a moderate-level noise3 (Figs. 2, 3), resem-
bling the filaments observed with Herschel (e.g., Arzoumanian
et al. 2011; Palmeirim et al. 2013). The filament profile, shown
in Fig. 2, adopts the functional form (Moffat 1969) used in get-
sources to define deblending shapes (Paper I):

Iλ(r) = IP

(
1 + f (ζ) (r/R0)2

)−ζ
, (1)

where IP is the peak intensity, r the radial distance from the
filament’s crest (in the orthogonal direction), R0 the filament’s
half-width at half-maximum (HWHM), ζ a power-law expo-
nent, and f (ζ) = (21/ζ − 1) normalizes the profile width to R0
for all values of ζ. The function defined by Eq. (1) has Gaussian
shape in its core, smoothly transforming into a power-law profile
Iλ(r) ∝ r−2 ζ for large distances r � R0.

The parameters of Eq. (1) were fixed at IP = 100 MJy/sr,
R0 = 18.′′75, and ζ = 0.5. To simulate a 250μm Herschel image,
the model filament (Fig. 2) was convolved to an angular reso-
lution of 18′′ (full width at half maximum, FWHM), preserving
its peak intensity and yielding an image of the filament with a
width of D0 = 75′′ (FWHM) and a power-law profile Iλ(r) ∝ r−1

at large distances (Fig. 3a). A string of identical Gaussian-shaped
sources, with an intrinsic FWHM size of 24′′, were convolved to
the same angular resolution of 18′′, scaled to have the same peak
intensity of 100 MJy/sr, and placed along the lower half of the fil-
ament (Fig. 3b). An isotropic background was modeled as a large
Gaussian (4000′′ FWHM), normalized to 10 MJy/sr (Fig. 3c).
A noise image was created by assigning random values to each

3 Simplicity of the simulation does not restrict the general applicability
of getfilaments. Extensive experimentation has shown that the method
works very well for complex, real-life filamentary fields. Numerous
tests have been performed on several ground-based (sub-) millimeter
images and on a dozen of multi-wavelength Herschel observations. See
also Appendices B and C for illustrations based on very complex and
realistic numerical simulations.

Fig. 3. Simulated image and its components (Sect. 2.1). (a) Straight
filament with the profile displayed in Fig. 2, normalized to ĨP = 100.
(b) Identical Gaussian sources with an intrinsic FWHM size of 24′′ ,
convolved to 18′′ resolution and normalized to IP = 100. (c) Isotropic
Gaussian background with a size of 4000′′ (FWHM), normalized to
IP,b = 10. (d) Random instrumental noise with σnoise = 1.25. (e) Full
simulated image IλO (≡IλD) with S/N = 80 and resolution of 18′′ .
Three horizontal lines indicate the locations and direction of the pro-
files shown in Fig. 2. Each panel’s dimensions are 600 × 2820 pixels
(0.◦33 × 1.◦57), pixel size Δ = 2′′.

pixel, convolving the resulting image to the resolution of 18′′,
and scaling it to have the standard deviationσnoise = 1.25 MJy/sr
(Fig. 3d). The simulated components were added together to pro-
duce the “observed” 250μm image of the filament with a signal-
to-noise ratio S/N = 80 (Fig. 3e). Dimensions of all images are
4800 × 4800 pixels (2.◦66 × 2.◦66, pixel size Δ = 2′′), although
only the central area of 600 × 2820 pixels, centered on the fila-
ment, is shown in this paper.

As in Paper I, images will be denoted by capital calligraphic
characters (e.g.,A,B,C) to make a clear distinction between the
images and various other parameters; all symbols and definitions
are listed in Appendix A. Below, the filament extraction method
(illustrated in Fig. 1) is described in full detail4.

2.2. Preparing observed and detection images

The first step in the filament (source) extraction (Fig. 1) is to con-
vert the original images Iλ at all wavelengths λ to the same grid
and align them across wavebands, producing the observed im-
ages. This is done by resampling all images to the same (finest)
pixel size (using SWarp, Bertin et al. 2002).

Both getfilaments and getsources distinguish between the
actual observed images and detection images (denoted as IλO
and IλD, respectively). Most of the processing is done on detec-
tion images and, as the name suggests, they are used when de-
tecting sources or filaments; observed images are used mostly
for measuring and visualizing of sources. In simple cases,
both IλO and IλD can be the same. Like getsources (Paper I),

4 The preparation and decomposition steps are essentially identical to
those described in Paper I and, therefore, Sects. 2.2, 2.3 can safely be
skipped by those familiar with getsources.
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Fig. 4. Spatial decomposition (Sect. 2.3). Single scales IλD j of the sim-
ulated image IλD (Fig. 3) are shown for j = 18, 32, 46, 60, 74, NS = 99,
fS = 1.079, S 1 = 5.′′56, S NS = 9609′′ . The scales S j are separated by a
factor of 3 to illustrate the spatial decomposition; negative areas sur-
rounding the filament are the direct consequence of the subtraction in
Eq. (2). Scale sizes S j are visualized and annotated here and in all sub-
sequent similar figures.

getfilaments uses convolution IλD = Gλ ∗ IλO, where Gλ is a
smoothing Gaussian with its FWHM size chosen to slightly de-
grade (by ∼5%) the image resolution Oλ. This suppresses pixel-
to-pixel noise in real-life images IλO (on spatial scales smaller
than the observational beam size Oλ) and small-scale artifacts
that would otherwise become enhanced in decomposed images.

The last part of the preparation is to create the observational
masksMλ with pixel values of either 1 or 0 that define the ar-
eas in the original images that one is interested in. They exclude
from processing all pixels of IλO and IλD in which the mask
has zero values. In the simplest case of a perfect (simulated) im-
age,Mλ has values of 1 in all pixels. Very noisy areas (usually
closer to edges) can affect the cleaning and detection algorithms
and one needs to exclude them using carefully-prepared obser-
vational masks. The mask imagesMλ should not have isolated
holes: all zero pixels must be connected to each other and to the
image edges.

2.3. Decomposing detection images in spatial scales

The spatial decomposition is done by convolving the original
images with circular Gaussians of progressively larger sizes and
subtracting them from one another (Fig. 4):

IλD j = G j−1 ∗ IλD − G j ∗ IλD ( j = 1, 2, . . . ,NS), (2)

where IλD is the detection image (Sect. 2.2), IλD j are its “single-
scale” decompositions, and G j are the smoothing Gaussian
beams (G0 is a two-dimensional delta-function). The beams have
FWHM sizes S j = fS S j−1 in the range 2Δ <∼ S j <∼ S max, where Δ
is the pixel size, fS > 1 is the scale factor, and S max is the maxi-
mum spatial scale considered. The number of scales NS depends
on the values of fS (typically ≈ 1.05) and S max. The value of
S max is determined by the maximum sizes of filaments (sources)
in the extraction and its upper limit is the size of the image along

its smallest dimension. For large values of fS, the single scales
actually contain mixtures of wide ranges of scales, where faint
small-scale structures become completely diluted by the contri-
bution of irrelevant (much larger) scales. Smaller values of fS
ensure better spatial resolution of the set of single scales, just
like fine mesh sizes better resolve structures in numerical meth-
ods. For values fS that are too close to unity, images on scales j
and j + 1 become almost identical5.

Equation (2) implicitly assumes that the convolved images
are properly rescaled to conserve their total flux; therefore, the
original image can be recovered by summing up all scales:

IλD =
NS∑

j=1

IλD j + GNS ∗ IλD. (3)

Before convolution, the images IλD are expanded from the edges
of the areas covered by the observational masksMλ towards the
image edges and the entire images are expanded on all sides by
a large enough number of pixels (2 S j/Δ) to avoid undesirable
border effects. Both expansions are performed using the pixel
values at the edges of the masks and images, respectively, and
extrapolating them outwards in four main directions (horizontal,
vertical, and two diagonals). After convolution, the images are
reduced back to their original size.

The single-scale decomposition of Eq. (2) filters out emis-
sion on all irrelevant scales and thus IλD j reveal structures with
a much higher contrast than IλD does. The decomposition nat-
urally selects filaments (sources) of specific widths, which be-
come most visible in the images containing similar scales. The
negative areas surrounding bright filaments in Fig. 4 are the di-
rect consequence of the successive unsharp masking in Eq. (2),
i.e., the subtraction of an image convolved with a larger smooth-
ing beam from the one convolved with a smaller beam.

2.4. Cleaning single scales of noise, background,
and sources

Before one can use the single-scale detection images IλD j for
filament extraction, they must be cleaned of the contributions of
noise, background, and sources to make sure that most (if not
all) non-zero pixels belong to real filamentary structures.

2.4.1. Iterative cleaning algorithm

As in Paper I, single-scale cleaning is done by the global in-
tensity thresholding of IλD j. Unlike the original images IλO
or IλD that often have a very strong and highly variable back-
ground, the entire single-scale images are “flat” in the sense
that signals on considerably larger scales have been removed
or greatly suppressed (see Fig. 4). Another advantage of this
single-scale cleaning is that the noise contribution depends very
significantly on the scale. For example, the small-scale noise
gets heavily diluted on large scales, where extended sources be-
come most visible. In effect, in the reconstructed clean images
IλD C =

∑
j IλD j C, one can see large structures better (deeper)

than in IλD.
Paper I described an iterative cleaning algorithm that auto-

matically finds (on each scale) a cut-off level separating signifi-
cant signals from those of the noise and background. On the first
scale ( j= 1), it computes the cut-off (threshold) �λ j = nλ jσλ j,
where σλ j is the standard deviation over the entire image

5 In the current implementation of the method, the minimum value of
fS is set to 1.03, whereas the maximum value of NS is 99.

A63, page 4 of 15

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201321885&pdf_id=4


A. Men’shchikov: A multi-scale filament extraction method: getfilaments

Fig. 5. Single-scale removal of noise and background (Sect. 2.4). The
same set of spatial scales (Fig. 4) is displayed in the single-scale images
IλD j C, cleaned of noise and background with an iterative procedure de-
scribed in full detail in Paper I. Noise fluctuations visible in Fig. 4 have
been removed by zeroing pixels with Iλ j < �λ j.

IλD jMλ, and nλ j is a variable factor having an initial value of
nλ1 = 6. Then the procedure masks out all pixels with the values
|Iλ j| ≥ �λ j and repeats the calculation of σλ j over the remain-
ing pixels, estimating a new threshold, which is generally lower
than the one in the previous iteration. The procedure masks out
bright pixels again and iterates further, always computing σλ j at
|Iλ j| < �λ j, outside the peaks and hollows, until �λ j converges
(δ�λ j < 1%) to a stable threshold (see Paper I).

Having obtained the single-scale thresholds�λ j distinguish-
ing between the significant and insignificant signals, one can cre-
ate clean single-scale images IλD j C, where all faint pixels with
Iλ j < �λ j are zeroed. This (ideally) leaves non-zero only those
pixels that belong to significantly bright structures (sources, fila-
ments). The resulting clean single-scale images of the simulated
filament are illustrated in Fig. 5.

When sources are being extracted, �λ j is the deepest
level that getsources can descend to (2.5σλ j ≤ �λ j ≤ 6σλ j,
cf. Paper I). At fainter levels, there is no reliable way of dis-
tinguishing between sources and peaks produced by noise and
background fluctuations, while there is a real danger of creating
spurious sources. In the case of filaments considered in this pa-
per, it is possible to use the fact that filaments are substantially
elongated structures (as opposed to sources that are not very
elongated, Sect. 1) and analyze much fainter signals. Numerous
tests have shown that �̃λ j = σλ j is a good choice for detecting
filaments. Very faint filaments are only found in the intermedi-
ate range of intensities (�̃λ j to �λ j), where they are strongly
eroded by noise and background fluctuations, as well as altered
by sources. Considerably brighter filaments that rise well above
the source detection threshold�λ j (Fig. 5) are much less affected
by fluctuations at the σλ j level.

2.4.2. Cleaning algorithm for detecting filaments

Paper I has emphasized great benefits of detecting sources in
single-scale images: the spatial decomposition of Eq. (2) is based

Fig. 6. Single-scale detection of filaments (Sect. 2.4). The images of
spatial scales from Fig. 4 are shown here below the intensity threshold
�̃λ j = σλ j for detection of filaments. The filament’s base is clearly visi-
ble in the single scales, although the latter are strongly contaminated by
noise and background fluctuations.

on convolution and the latter acts as a natural selector of scales
in decomposed images (cf. Sect. 2.3). As a consequence, re-
solved isolated circular sources with a FWHM size A would
have their maximum peak intensity in single-scale images with
smoothing beams S j ≈ A. Indeed, convolving with small beams
(S j 
 A) would have almost no effect on the source, whereas
using extended beams (S j � A) would greatly dilute the source.
At both these extremes, spatial decomposition produces decreas-
ing peak intensities, while creating the strongest signal for the
sources with sizes A ≈ S j. Completely unresolved sources are
the brightest on spatial scales S j <∼ Oλ. In effect, sizes of all sig-
nificant structures seen in single-scale images are very similar to
the size S j of the smoothing beam.

Lengths L of filaments are significantly greater (at least sev-
eral times) than their widths W, which makes their single-scale
properties quite different from those of sources, allowing one to
distinguish them from the contributions of all other components
(noise, background, and sources). The spatial decomposition of
Eq. (2) selects the filaments with widths similar to the smooth-
ing beam (W ≈ S j), whereas their greater lengths (L� S j) are
mostly unaffected by the convolution. This means that filaments
occupy much larger areas in single-scale images than any contri-
bution from sources and fluctuations of noise or largely isotropic
backgrounds.

When clipped at the filament detection threshold �̃λ j = σλ j,
the single-scale images with intensities Iλ j ≤ �̃λ j clearly display
the base of filamentary structures (Fig. 6). The structures can
also be seen in a much simpler way (as mask images) when one
zeroes all pixels with intensities Iλ j < �̃λ j (Fig. 7). The low level
of thresholding leads to strong contamination by noise peaks (in
general, also by background fluctuations and sources) that have
to be removed before the images could be used for filament ex-
traction. Such cleaning is a simple procedure based on the com-
parison of the area of connected non-zero pixels with the area of
the smoothing beam.
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Fig. 7. Single-scale masking of filaments (Sect. 2.4). The images of spa-
tial scales from Fig. 4 are shown here exactly on the intensity threshold
�̃λ j = σλ j for detection of filaments, and all lower level signals were set
to zero. The simulated filament is clearly visible on all scales, as is the
abundant contamination of the images by noise. Noise-free black zones
that appear to surround the filament are the consequence of the negative
areas seen in Figs. 4 and 6.

As illustrated in Fig. 7, non-filamentary (insignificantly elon-
gated) structures always occupy relatively small areas, when de-
composed into single-scale images and considered above the
threshold level �̃λ j. The decomposition of Eq. (2) naturally se-
lects structures with characteristic scales similar to S j, filtering
out both much smaller and much larger scales. Above the level
�̃λ j, sufficiently bright filaments connect relatively large areas
of pixels, because it is the filament width that becomes similar to
the decomposition scale S j. The longer dimension of filaments
is practically unaffected by the convolution at S j and thus stays
almost the same over a much wider range of scales (cf. Fig. 4).

Cleaning of the single-scale images of noise, background,
and sources is done with the TintFill algorithm (Smith 1979)6

used in getsources for detecting sources (Paper I). The algorithm
finds clusters of pixels connected to each other by their sides
and fills all the pixels with a new value7. To remove connected
clusters from images, the new value is set to zero.

Distinguishing between the real filamentary structures and
smaller peaks of non-filamentary nature, in order to remove the
latter from single-scale images, getfilaments employs a lower
limit N min

Πλ j on the number of connected pixels NΠλ j that are al-
lowed to remain in the clean images of filaments:

N min
Πλ j = f̃ NB π

(
3O6
λ + S 6

j

)2/6
Δ−2, (4)

where Oλ is the observational beam size, S j the smoothing (de-
composition) beam, Δ the pixel size, NB the number of cleaning
beam areas (NB = 30), and f̃ a shape factor defined in Eq. (5)
below (assume f̃ = 1 for a moment). Clusters of pixels with

6 Available at
http://portal.acm.org/citation.cfm?id=800249.807456
7 Identification of distinct connected regions in similar algorithms is
also known as connected-component labeling.

Fig. 8. Single-scale masks of filaments (Sect. 2.4). The images of spa-
tial scales from Fig. 7 are shown here at their base level as the nor-
malized filament masksMλ j after the removal of relatively small clus-
ters of pixels of non-filamentary nature (including noise, background,
and sources) with NΠλ j < N min

Πλ j . In the five images displayed, struc-
tures with less than 1.31 × 103, 8.15 × 104, 6.85 × 105, 5.76 × 106, and
5.65 × 107 pixels have been removed (cf. Fig. 7).

NΠλ j < N min
Πλ j are removed from the decomposed images on each

spatial scale (see Fig. 8).
The combination of two beams in Eq. (4) defines the effec-

tive cleaning beam designed to change smoothly and rapidly be-
tween the regimes of small and large spatial scales. On small
scales, the cleaning beam becomes almost constant (approaching
1.2Oλ), which is necessary to offset enhanced noisiness of small-
scale images and minimize the chances of false detections. This
raises the effective beam substantially above S j on small scales
(S j <∼ Oλ), which may lead to removal of small real filaments.
To recognize filaments in small-scale structures better, one can
examine shapes of the latter in addition to their areas.

The shape factor f̃ in Eq. (4) is designed to fine-tune N min
Πλ j

depending on various shapes of structures. To quantify them,
getfilaments employs images of masks (Fig. 7), defining an el-
lipse for each cluster of connected pixels by computing their
major and minor sizes (a, b) from intensity moments (e.g.,
Appendix F in Paper I). Simple, relatively straight filaments
can be quantified by their elongation Ẽ, which is defined as
the ratio a/b. However, most of the actual filaments observed
with Herschel are curved, warped, twisted, or shaped irregularly
otherwise, reflecting complex dynamical (possibly violent) pro-
cesses that created them. Elongation Ẽ alone cannot be used to
quantify strongly curved, not very “dense” clusters of connected
pixels that meander around (e.g., a spiral structure). To describe
such a filament, one can define sparsity S̃ as the ratio of the el-
liptical area πab to the total area occupied by all non-zero pixels
belonging to the filament. Although Ẽ may well be very close to
unity for sparse clusters of connected pixels, a high value of S̃
for such structures would indicate that they are filaments.

The above considerations, along with some experimentation,
led to the following empirical definition of the shape factor:

f̃ =
(
Ẽ max

{
S̃ , 1
})−1

exp
(
20 (1.2 − Ẽ) + 1

)
. (5)
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Fig. 9. Single-scale intensities within filament masks (Sect. 2.4). The
images of spatial scales from Fig. 4 are shown here in pixels with
Iλ j > �̃λ j. Roughly representing the intensity distribution of clean fil-
aments, such images do not take negative areas into account, and they
are contaminated by the emission of bright sources.

The elongation Ẽ and sparsity S̃ lower the value of f̃ , hence the
required number of connected pixels in Eq. (4) for structures that
are increasingly elongated and sparse. Besides, the exponential
factor in Eq. (5) raises a steep barrier for structures with Ẽ <∼ 1.3.

With the shape factor defined in Eq. (5), the simple area con-
dition of Eq. (4) works very well for all simulated and Herschel
images tested. The cleaning procedure of getfilaments removes
non-filamentary structures (noise and background fluctuations,
sources), revealing clean filaments, such as the ones shown as
(normalized) mask imagesMλ j in Fig. 8. The masks define the
maximum area of single-scale filaments at their base level, al-
lowing reconstruction of their intensity distribution (Sect. 2.4.3).

The above method of detecting real filamentary structures
in single-scale images produces very few (if any) spurious fila-
ments and only for strongly-variable backgrounds. Even if a few
spurious filaments are found, they are practically always quite
faint and should not present any real problem since they can
be easily removed, if necessary. Experience shows that the fila-
ment threshold �̃λ j = σλ j is a good choice: decreasing it to even
lower levels would result in more spurious filaments. Indeed, at
progressively lower levels, small-scale noise or background fluc-
tuations merge into longer, randomly-oriented elongated chains,
similar to the white structures within the noise on the smallest
spatial scales in Fig. 6. Some of them would have NΠλ j > N min

Πλ j
and thus contaminate clean images of filaments with faint spuri-
ous structures.

After applying the cleaning procedure to IλD j (Fig. 4), one
can derive intensity distributions within the filament masks on
each spatial scale (Fig. 9) and determine their full intensities
by summing up all scales. However, one has to overcome sev-
eral complications to properly reconstruct the intrinsic intensity
distribution of filaments. On one hand, it is necessary to in-
clude negative areas of single-scale filaments (Fig. 4) resulting
from the spatial decomposition of Eq. (2), as accumulating only
positive intensities would incorrectly give substantially wider
filaments. On the other hand, observed intensity distributions

are very often altered by the bright sources spatially associ-
ated with filaments (Figs. 3–5). To include negative areas and
remove practically entire contribution of sources, getfilaments
reconstructs clean filament intensities ĨλD j C in a more elaborate
way.

2.4.3. Reconstructing intrinsic intensities of filaments

The cleaning algorithm described in Sect. 2.4.2 detects all fil-
amentary structures that exist in decomposed single-scale im-
ages IλD j, by separating the filamentary component of the
images from all other structures of non-filamentary nature that
are outside the filament masks. The problem is that the filaments
in ĨλD j C are still contaminated by the noise and background fluc-
tuations and by the sources that are inside their masks (Fig. 9).
Substantial work is required to reconstruct full intrinsic intensity
distribution of filaments, removing all non-filamentary peaks.
In real-life observations, individual filaments and different seg-
ments of a filament usually have significantly varying intensi-
ties. This further complicates the problem, since getsources and
getfilaments process entire images and neither individual fila-
ments nor their parts.

Removing sources from filaments in each single scale, get-
filaments splits images IλD j between their maximum and �̃λ j by
a number of intensity levels l, spaced by a factor of 1.05. At each
level, the filament reconstruction procedure works on a sequence
of differential images

δI+λD j l = IλD j l+ 1 − IλD j l (6)

from the bottom to the top, starting with �̃λ j at l = 1. Clusters of
connected pixels with NΠλ j < N min

Πλ j are removed from the images
using the TintFill algorithm, producing clean images δI+λD j l C.
This cleaning in the process of reconstruction of the intrinsic
intensities of filaments is essentially the same as the procedure
used above for obtaining clean masks of filaments, with the only
difference being that the decomposition beam S j in Eq. (4) is re-
placed by min {S j, 1.8 Oλ}. The latter softens the degree of clean-
ing of the differential images on spatial scales larger than 3 Oλ, as
the noise and background fluctuations and sources usually make
smaller contribution to the filaments on large spatial scales. This
softening of the cleaning allows an accurate reconstruction of
the intrinsic filament profiles including their faintest outskirts on
the largest scales.

The above approach worked very well in all benchmarks and
real-life images where it has been tested. It was found to become
less accurate only in a model image that simulated the limiting
case of extremely large sources on top of comparably wide fil-
aments, in which case the filament intensities under the source
were overestimated and the source intensities were underesti-
mated by up to ∼30%. This is related to the fundamental diffi-
culty of distinguishing between components on very large scales
(approaching the image size), where signals from the compo-
nents blend together so much that it is impossible to separate
them without any additional assumptions. One may consider this
case unrealistic, since all observed images tested were very far
from displaying such combinations of sources and filaments.

Clean images δIλD j l C are summed up further with those
from all lower levels. When all levels have been processed
and accumulated, the resulting images (Fig. 10) contain re-
constructed positive intensity distributions of all filamentary
structures present in IλD j, with most of the peaks from noise,
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Fig. 10. Reconstructed positive areas in single-scale images of filaments
(Sect. 2.4). The images of spatial scales from Fig. 4 are shown here
in pixels with Iλ j > �̃λ j after the removal of small structures (sources)
from the filament (cf. Figs. 4, 9). This gives a relatively good approx-
imation to its intrinsic intensity distribution of filaments; however, the
images do not take the negative areas into account.

background, and sources removed:

Ĩ+λD j C =

N+L∑

l= 0

δI+λD j l C, (7)

where N+L is the number of levels and the l = 0 base-level clean
differential image is obtained from IλD j by only taking pixels
with Iλ j ≤ �̃λ j.

The negative areas around decomposed filaments also re-
quire a careful treatment. They cannot be taken directly from the
decomposed images (Fig. 4), because the latter are non-locally
affected by the negative areas produced by sources and other
peaks of non-filamentary nature. To obtain the clean negative
areas of the filaments, the algorithm multiplies the single-scale
images by −1 and applies the same cleaning procedure described
above for the positive areas. It splits the images −IλD j between
their maximum and �̃λ j by a number of intensity levels

δI−λD j l = −
(
IλD j l+1 − IλD j l

)
, (8)

starting with �̃λ j at l = 1, and produces clean images δI−λD j l C
by removing small clusters of connected pixels. All processed
levels are accumulated, which gives reconstructed negative areas
(Fig. 11) produced by all filamentary structures present in IλD j,
with most of the negatives from noise, background, and sources
removed:

Ĩ−λD j C =

N−L∑

l= 0

δI−λD j l C, (9)

where N−L is the number of levels and the l = 0 base-level clean
differential image is obtained from I−λD j by taking only pixels
with Iλ j ≤ �̃λ j.

Fig. 11. Reconstructed negative areas in single-scale images of fila-
ments (Sect. 2.4). The images of spatial scales from Fig. 4 are shown
here in pixels with Iλ j < − �̃λ j after the removal of small clusters with
large negative values around bright non-filamentary peaks (sources)
within the filament (cf. Figs. 4, 6). The images are shown here with
positive values (multiplied by −1) for better visibility.

Fig. 12. Reconstructed clean single-scale filaments (Sect. 2.4). The im-
ages of spatial scales from Fig. 4 are shown here as ĨλD j C after the
removal of noise and background fluctuations. Reconstructed positive
and negative areas from Figs. 10 and 11 have been added together to
produce the images.

The reconstructed positive and negative components are
slightly convolved using a small Gaussian beam with a size of
0.1 max {S j,Δ}. The convolution is beneficial for avoiding abrupt
intensity jumps to zero below �̃λ j and it does not alter the fila-
ment intensity distribution above �̃λ j because of the small beam.
After computing the clean positives and negatives, one can easily
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Fig. 13. Single-scale skeletons (Sect. 2.4). Red and yellow pixels belong
to a clean reconstructed filament, whereas the blue pixels have been set
to zero during the cleaning. The filament is measured at each pixel in
the four main directions to determine the direction where the filament
has the smallest half-maximum width. Along those directions (indicated
by short straight lines), the brightest pixels (marked by yellow color)
belong to the filament’s crest and define the skeleton.

obtain their intensity distributions on each scale (Fig. 12):

ĨλD j C ≡ Ĩ+λD j C − Ĩ−λD j C, (10)

where all significant contributions of non-filamentary compo-
nents have been removed. Reconstruction of the full intrinsic in-
tensity distribution of all significant filaments detected in IλD on
all spatial scales reduces to

ĨλD C =

NS∑

j=1

ĨλD j C + GNS ∗
NS∑

j=1

ĨλD j C, (11)

where the second term is an estimate of the contribution of the
clean filaments to the largest scales (S > S max) that are always
left out of the single-scale decomposition (cf. Eqs. (2), (3)).

To improve the quality of measurements, image flattening,
and final extraction (Sects. 2.6, 2.7), the full reconstructed fila-
ments ĨλD C are subtracted from the original detection images
IλD and measurement images IλO, producing their filament-
subtracted counterparts IλD FS and IλO FS.

2.4.4. Deriving skeletons of filaments

For studying properties of filaments, it is useful to determine
their skeletons, i.e., the lines of connected pixels tracing fila-
ments’ crests. While at the cleaning step, getfilaments creates
single-scale skeletons S̃λD j C using a simple algorithm illustrated
in Fig. 13. At each pixel of the reconstructed filament ĨλD j C,
half-maximum widths of the latter in four main directions (two
image axes and two diagonals) are analyzed to find the direction
of the narrowest intensity profile. The brightest pixel of the pro-
file in that direction defines the skeleton pixel, the value of which
is set to 1. Since the skeletons S̃λD j C are obtained independently
on each scale, their location may somewhat fluctuate between
scales. To reduce the influence of that uncertainty on accumu-
lated skeletons, the skeleton width is increased to three pixels.
This means that each pixel of the skeleton shown in Fig. 13 will
eventually spread its value over all eight surrounding pixels.

Full skeletons S̃λD C accumulated over all scales are obtained
by summation, similarly to Eq. (11). Such skeletons contain de-
tailed information on their significance, as the value of any non-
zero pixel is proportional to the number of spatial scales, where
the pixel belongs to the skeleton. Using the same algorithm, get-
filaments creates another version of skeletons, tracing the crests
of the skeletons S̃λD C, instead of those of the filaments ĨλD j C.
The skeletons S̃′λD C are one-pixel wide and their pixel values
are equal to 1. They are further used to produce the segmenta-
tion images of filamentary structures, where all pixels belonging
to a filament have the value of the filament’s number (see, e.g.,
Figs. B.1f, C.1f in Appendices B, C).

2.5. Combining clean single scales over wavelengths

The cleaning algorithm outlined in Sect. 2.4 is applied to the
single-scale detection images IλD j independently for each wave-
length λ. Combining information across several wavebands in
the process of source extraction with getsources significantly im-
proves the source detection and measurement qualities (Paper I).
There are similar benefits of combining filaments obtained in-
dependently at each wavelength, because the robustness of the
detection of filamentary structures (their significance) increases
with the number of wavebands where the structures appear.
Since only monochromatic images of the simulated filament are
used in this paper, the combination of filaments over wavebands
is not illustrated here.

The positive component Ĩ+λD j C of filamentary structures, pro-
duced by getfilaments (Sect. 2.4), is subtracted from the clean
decomposed images IλD j C created by getsources for each spa-
tial scale, which improves the reliability of source detection in
filamentary backgrounds. In practice, the subtraction is done just
before getsources produces combined detection images ID j C
and I′D j C (Sect. 2.4 in Paper I).

For an overview of filamentary structures in all wavebands
in multi-wavelength extractions, getfilaments accumulates clean
filaments ĨλD C over all detection wavelengths, creating a com-
bined image ĨD C. Similarly, the images of skeletons S̃λD C are
accumulated over all bands in a combined image S̃D C. Although
no such combined images are directly involved in either source
or filament extraction, they provide cumulative views of the fila-
ments’ appearance and their significance across wavelengths that
are useful when studying filamentary structures.

2.6. Detecting, measuring, and visualizing sources

Source detection, measurements, and visualization in getsources
(Fig. 1; Paper I) are practically unaffected by getfilaments, ex-
cept that the filament-subtracted versions of the respective im-
ages are used to improve the source detection and measurement
qualities. An additional benefit of the filament extraction is that
linear scanning artifacts or radial spikes of the diffraction pattern
that may be contaminating observed images are also detected as
(spurious) filaments and removed.

Sources are detected in the filament-subtracted single-scale
detection images ID j C FS, which greatly reduces the chances of
creating spurious sources in strongly filamentary backgrounds.
Measurements of the sources’ properties are also performed in
the filament-subtracted images IλO FS, which considerably im-
proves the interpolation and subtraction of backgrounds, because
the latter become largely isotropic. The visualization step pro-
duces a number of additional images, where the sources are
overlaid on the images of filaments and skeletons, useful when
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studying various objects and processes associated with filamen-
tary structures (not only forming stars, but also galaxies or their
clusters; cf. Appendices B, C).

2.7. Flattening background and noise fluctuations

The Herschel images of Galactic regions display highly variable
backgrounds; standard deviations of the combined background
and noise fluctuations (outside of sources) sometimes differ by
orders of magnitude between various areas of a large image IλD.
Any global thresholding method would have difficulty handling
such images, because the thresholds would not be equally good
for all areas. This is why getsources employs a special approach
(Fig. 1; Paper I): completing an initial source extraction, then
flattening detection images based on the local intensity fluctua-
tions outside sources, and then performing the final source ex-
traction using flattened images.

With getfilaments, the flattening procedure for detection im-
ages remains essentially the same as described in Paper I, ex-
cept that the scaling (flattening) image IλF is computed from the
filament-subtracted detection images IλD FS. The images Fλ now
include the footprints of both sources and filaments, to avoid any
possibility that imperfect extraction of filaments in the initial ex-
traction would affect the accuracy of flattening. The flattened
filament-subtracted images are used in getsources throughout
the final extraction, replacing the original detection images IλD
that were used in the initial extraction.

3. Extraction results

Results of both initial and final extractions of filaments and
sources in the simulated image (Fig. 3e), used to illustrate get-
filaments in this paper, are shown in Figs. 14, 15. The power-
law filament is extracted quite well already after the initial run.
Away from the ends of the filament, the reconstructed filament
is slightly overestimated owing to imperfect cleaning and sepa-
ration of the isotropic background (Fig. 14b). Closer to the ends
of the filament, where the background intensity becomes lower,
the filament is somewhat underestimated in the initial extrac-
tion. After the final run, the filament profile is very accurate, as
is demonstrated by the profiles f1, f7 in Fig. 15. Although a small
fraction of the background ended up in the filament, maximum
deviations from the true model filament intensity distribution are
still within 5% of its peak.

Only at the locations of sources in the original image, the de-
viations increase to about 20% levels, due to imperfect separa-
tion of the sources in the process of the filament reconstruction,
as indicated by the profiles f1–f3 in Fig. 15. The accuracy level
depends on the relative properties of sources, filaments, back-
ground, and noise. Maximum deviations are expected in the most
difficult cases when the sources have size and brightness similar
to those of the filament in which they are embedded, as in the
present simulation. The more sources and filaments are dissimi-
lar in their widths, the easier it is to separate them; the brighter a
component is, the better it can be extracted and the less accurate
the extraction of the fainter components.

Without any background (see below), the final extraction
brings substantial improvements to the faint outskirts of the fila-
ment intensity profile. However, in the presence of the relatively
bright background, it also leads to a slight increase in the back-
ground emission incorporated into the filament (Fig. 14c). There
is a fundamental difficulty in separating contributions of struc-
tural components on the largest scales, since their contributions

Fig. 14. Reconstruction of the simulated filament (Figs. 2, 3) ob-
tained in the final extraction. (a) Intensity distribution of the clean
reconstructed filament. (b) Residuals after the subtraction of the true
model filament from the reconstructed filament. (c) Residuals after the
subtraction of the reconstructed filament from the original simulated
image. (d) Extracted sources, filament- and background-subtracted.
(e) Skeleton, integrated over single scales, shown in those pixels that
belong to it in more than 5 spatial scales.

blend together and become very similar. The power-law intensity
profile Iλ(r) ∝ r−1 of the simulated filament makes the problem
especially difficult. For steeper (e.g., Gaussian) filaments, the re-
construction and separation of all components are much more
accurate.

Intensities of the extracted sources (Fig. 14d) are also some-
what affected by the process of separation: their profiles along
the filament are slightly overestimated due to the emission from
the filament, whereas in the orthogonal direction, they are some-
what underestimated (cf. profiles s1, s2 in Fig. 15). Despite the
differences, the fluxes measured by getsources are sufficiently
accurate, considering large total uncertainties involved in source
extraction and measurements in highly structured and variable
backgrounds8. The peak intensities of 19 sources were overesti-
mated by ∼1–7%, whereas their total fluxes were underestimated
by ∼10–20%. The variations in the accuracies of the fluxes are
mainly caused by noise fluctuations, while their average lev-
els are the consequence of the imperfection of the separation
of the sources from the filament. Separating structural compo-
nents from each other will always be a source of additional un-
certainties, because the components are completely blended to-
gether, and their intrinsic intensity distributions are fundamen-
tally unknown.

Extracting sources in filamentary images without first re-
moving the filaments gives much less accurate results. To

8 Total uncertainties include all possible sources: different sizes and
complex shapes of observational beams, calibration, image reduction,
map making, background subtraction, complex web of filamentary
structures, noise and background fluctuations, dust opacities, optical
depth effects, as well as the assumptions necessary to interpret the
unknown three-dimensional reality on the basis of the observed two-
dimensional images.
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Fig. 15. Profiles of the components of the simulated image (Figs. 2, 3) obtained in the initial and final extractions (left and right, respectively).
Orthogonal profiles of a model source (the second one from the bottom in Fig. 14d) are labeled s1 and s2; the narrower one (red) cuts through the
source in a direction perpendicular to the filament, whereas the wider one (blue) is the source profile along the filament. Profiles f1 to f7 show cuts
through the reconstructed filament (Fig. 14a) at 7 equidistant locations from its bottom to the top. The first three profiles (f1–f3) pass through the
locations of the 2nd, 8th, and 14th sources; all other profiles (f4–f7) display the upper half of the filament, unaffected by sources.

demonstrate the difference, another getsources extraction was
performed on the simulated image (Fig. 3e), with getfilaments
turned off. On average, the sources were found to be substan-
tially (by 60%) elongated along the filament. The peak intensi-
ties and total fluxes were overestimated by ∼30% and ∼100%,
respectively. Local uncertainties of the fluxes were overesti-
mated by almost an order of magnitude. The reason for the er-
roneous results is very simple: the sources were not separated
from the filament and the fluxes and local intensity fluctuations
include the signal from the filament. As is clear from Fig. 2, foot-
prints of the model sources reach radial distances of 40′′, where
the filament intensity drops to 45 MJy/sr, by more than a factor
of two. Assuming that the true source footprints are determined
correctly, the background subtraction is to be done at that level
of intensities, effectively incorporating the upper half of the fila-
ment into the sources. Along the filament, however, the baseline
for background subtraction lies at 100 MJy/sr, the peak intensity
of the filament. For such anisotropic “background” as the fila-
ment is, any approach to background subtraction that does not
closely approximate the filament profile is bound to give inaccu-
rate results.

The simulated filamentary image (Fig. 3e) was made rel-
atively simple to demonstrate all features of the getfilaments
method as clearly as possible; however, with four structural com-
ponents it is not very simple (see much more complex cases in
Appendices B, C). To illustrate the filament extraction with get-
filaments in the most straightforward case, a simplified version
of the filament image was created that combines just two of the
components, the filament and noise (Fig. 3a, d). The intensity
distribution and residuals of the extracted filament are displayed
in Figs. 16 and 17. Only the results of the final extraction are
presented because those of the initial run would appear almost
indistinguishable. The small deficit visible in the reconstructed
image and profile can be approximated by just a constant value
of ∼1 MJy/sr. This minor discrepancy is caused by the difficul-
ties in recovering the entire signal on the largest scales close to
image size.

Compared to the simple simulation created for this paper,
images obtained from complex three-dimensional simulations or
Herschel observations are much more challenging for extracting
and studying filamentary structures. Filaments in the interstellar

Fig. 16. Results of the final extraction for a simplified version of the
simulated image (Figs. 2, 3) with only noise but without background
and sources. (a) Intensity distribution of the clean reconstructed fila-
ment. (b) Residuals after the subtraction of the true model filament from
the reconstructed filament. (c) Residuals after the subtraction of the re-
constructed filament from the original simulated image.

medium appear to be very complex structures with greatly vary-
ing shapes, intensities, and profiles at different locations along
their crests. Often they blend together with crowds of sources
and with highly structured, bright, and variable backgrounds, as
well as with other nearby filaments9. In multi-wavelength obser-
vations, the same filamentary area may appear quite differently
owing to the contribution of structures with different tempera-
tures and to optical depth effects. Unknown orientations of ob-
served filaments in three-dimensional space greatly complicate
their detailed studies and increase total uncertainties of results.

9 Note that getfilaments does not attempt to deblend overlapping fila-
ments, whereas getsources does deblending for overlapping sources: in
contrast to filaments, sources can be reasonably approximated by sim-
ple deblending shapes.
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Fig. 17. Profiles of the reconstructed filament for a simplified version of
the simulated image (Figs. 2, 3) with only noise but without background
and sources, obtained in the final extraction. Profiles f1 to f7 show cuts
through the extracted filament (Fig. 16a) at 7 equidistant locations from
its bottom to the top.

4. Conclusions

Herschel observations have demonstrated that the interstellar
medium is highly structured on all spatial scales and that its
significant fraction emerges in omnipresent filamentary struc-
tures. Filamentary backgrounds present serious complications
for source extraction methods since the filaments tend to am-
plify insignificant background or noise fluctuations that fall on
top of the structures and thus create spurious sources. This
paper describes the filament extraction method getfilaments,
which shares the general multi-scale and multi-wavelength phi-
losophy and approach with the source extraction method get-
sources (Paper I). Although both methods were designed pri-
marily for use in large far-infrared and submillimeter surveys of
star-forming regions with Herschel, they are applicable to other
types of images.

Instead of tracing filaments directly in the observed images,
getfilaments analyzes highly filtered decompositions of original
images over a wide range of spatial scales (Sect. 2.3). The al-
gorithm identifies filaments on each spatial scale as significantly
elongated structures and reconstructs their full intrinsic intensity
distributions, which are practically unaffected by sources and
largely isotropic backgrounds (Sect. 2.4). Additionally, it deter-
mines single-scale and accumulated skeletons of the filaments,
tracing the crests of their intensity distributions. Furthermore,
it produces segmentation images of the filamentary structures,
where each filament is identified by its sequential number. For
an overview of all filaments, getfilaments creates combined im-
ages of clean filaments and their skeletons over all wavebands
(Sect. 2.5). Based on the results of the initial extraction, detec-
tion images are flattened to produce much more uniform fluctu-
ations of noise and non-filamentary background in preparation
for the second, final extraction (Sect. 2.7).

Because it is incorporated into getsources, the getfilaments
method brings substantial improvements to source extraction

in filamentary backgrounds. Extraction of sources is also es-
sential for an accurate reconstruction of the intrinsic intensity
distribution of filaments. The intimate physical relationship be-
tween forming stars and filaments seen in Herschel observations
demands that accurate filament extraction methods remove the
contribution of sources, and conversely, accurate source extrac-
tion methods must be able to remove underlying filamentary
structures. The images of clean filaments are now subtracted
by getsources from the original images during source extrac-
tion, significantly improving the robustness of the method and
reducing the chances of spurious sources contaminating extrac-
tion catalogs. An important benefit of the improved source ex-
traction method is that, in addition to the catalogs and images
of sources, it provides researchers with clean images of the fila-
mentary structures that are the birthplace of stars.

Both getsources and getfilaments methods have been thor-
oughly tested using many simulated benchmark images and real-
life observations. The source and filament extraction code is au-
tomated, very flexible, and easy-to-use. The latest version of the
code with an installation guide and a quick start guide will soon
be freely available upon request and downloadable from a web
page10.
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Appendix A: List of symbols

For the convenience of readers, this section lists and defines all
symbols introduced in Sect. 2 of this paper (images are denoted
by capital calligraphic characters):

Fλ images of source footprints in measurement iterations
G j smoothing Gaussians in successive unsharp masking
Gλ smoothing Gaussians used to create detection images
ID j C clean detection images combined over wavelengths
ID j C FS filament-subtracted combined detection images
I′D j C clean detection images combined over wavelengths
Iλ original observed images produced by a map-maker
IλDF flattened detection images for the final extraction
IλD detection images: either IλO or transformed IλO
IλD FS filament-subtracted detection images
IλD j single-scale decompositions of the images IλD
IλD j C single-scale images cleaned of noise and background
ĨλD j C filaments cleaned of sources, noise, and background
Ĩ+λD j C positive component of reconstructed filaments ĨλD j C

Ĩ−λD j C negative component of reconstructed filaments ĨλD j C

IλD C full images of sources reconstructed from IλD j C

ĨD C image of filaments combined over wavelengths
ĨλD C full images of filaments reconstructed from IλD j
IλF scaling image smoothed by convolution
IλO measurement images: Iλ resampled to pixel Δ
IλO FS filament-subtracted measurement images
Mλ observational mask images defining areas of interest
Mλ j mask of a single-scale filament
S̃D C image of skeletons combined over wavelengths
S̃λD j C skeletons of clean single-scale filaments
S̃λD C full accumulated skeletons of clean filaments
S̃′D C wavelength-combined skeletons S̃′λD CS̃′λD C skeletons tracing crests of the full skeletons S̃λD C
a major size of a filament mask
A major FWHM size of a source
Amax
λ maximum FWHM sizes of sources to be extracted

b minor size of a filament mask
D0 filament width: FWHM of the inner Gaussian core
Ẽ elongation of the clusters of connected pixels
f̃ empirical shape factor of filamentary structures
fS scale factor defining relative spacing between scales
f (ζ) width normalization factor of a simulated filament
I∗λ j minimum peak intensity of detected filaments
Iλ j pixel intensity in a single-scale detection image
Iλ(r) intensity profile of a simulated filament
IP peak intensity of a simulated filament
j running number of a decomposed spatial scale
l running number of an intensity sub-level
L length of a filament
nλ j variable number of standard deviations σλ j in �λ j

NB number of cleaning beam areas
N±L number of intensity levels in filament reconstruction
NS number of spatial scales in the image decomposition
N min
Πλ j minimum value of NΠλ j for cleaning filaments

NΠλ number of pixels in a cluster of connected pixels
Oλ observational angular resolution: FWHM beam size
r radial distance from the peak of a filament
R0 filament radius: HWHM of the inner Gaussian core
S j spatial scale: FWHM of a smoothing Gaussian beam
S max largest spatial scale in a single-scale decomposition
S̃ sparsity of the clusters of connected pixels
W width of a filament

δI±λD j l differential images in filament reconstruction
Δ pixel size (same for all images in an extraction)
λ wavelength (central wavelength of a waveband)
�λ j iterated cleaning thresholds (cut-off levels)
�̃λ j filament detection thresholds (=σλ j)
σλ j standard deviation in a single-scale image
σnoise standard deviation of simulated random noise
ζ power-law exponent of a simulated filament

Appendix B: Filaments in MHD simulations

This section illustrates application of getfilaments to images ob-
tained from three-dimensional magnetohydrodynamic (MHD)
simulations of the formation of molecular clouds in colliding
flows of warm diffuse gas (Hennebelle et al. 2008). Gravity,
atomic cooling, photoelectric heating on dust grains, and ini-
tially uniform magnetic field were included in the simulations.
Two opposite flows of diffuse neutral gas with the initial density
of 1 cm−3 and velocity of 13.35 km s−1 were set up to collide
in the YZ plane of the computational box. On a time scale of
a few million years, a dense gas phase (102–104 cm−3) devel-
oped under the influence of cooling, ram pressure, and gravity.
All details of the simulation (labeled as Slower Flow) and corre-
sponding images can be found on their web site11.

A snapshot of the column density in the YZ plane corre-
sponding to a time of 9.737 Myr from the start of the simulation
was cut to a size of 1000 × 1000 pixels. The image was arbitrar-
ily assigned a 2′′ pixel size; the image values were scaled to a
maximum of 100 (in arbitrary units) and some noise at a level
of 0.5 has been added. The resulting image was convolved to a
5′′ resolution.

The filamentary structures clearly visible in the original col-
umn density image (Fig. B.1a) are cleanly and almost fully ex-
tracted (Fig. B.1b), leaving only low-level filamentary residuals
in the filament-subtracted image (Fig. B.1c). The latter shows
mostly compact density enhancements (sources, intersections of
the filaments) but no significant filamentary structures. An im-
age of filaments reconstructed only up to a spatial scale of 20′′
(Fig. B.1d) reveals the web of thin filaments that are largely
diluted in panel b by the contribution of much larger scales.
Although large filaments may appear as regular and smooth en-
tities, many of them become heavily substructured on smaller
scales. The composite image of the filaments (Fig. B.1e) uses
the red, green, and blue colors to make the large, medium, and
small-scale structures more visible. The segmented image of
skeletons (Fig. B.1f) traces and numbers the crests of the fila-
ments. All these images, as well as many other images and multi-
wavelength catalogs of sources automatically produced by get-
sources and getfilaments, can be very useful for detailed studies
of the properties of the filaments in the interstellar medium and
their relationship with star formation.

Appendix C: Filaments in cosmological simulations

This section illustrates application of getfilaments to images ob-
tained from the Horizon MareNostrum simulation of the forma-
tion of galaxies at high redshifts (Ocvirk et al. 2008; Devriendt
et al. 2010) performed on the MareNostrum supercomputer at
the Barcelona Supercomputer Center. Galactic winds, chemical
enrichment, ultraviolet background heating, radiative cooling,
star formation, and supernovae feedback were included in this

11 http://starformat.obspm.fr/starformat/projects
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Fig. B.1. Filaments in MHD simulations of colliding flows (Hennebelle et al. 2008). The upper panels display the original image of column densi-
ties (a), extracted filaments on all spatial scales (b), and filament-subtracted image (c). The lower panels show the filaments partially reconstructed
up to 20′′ scale (d), 3-color (red, green, blue) composite image of the filaments partially reconstructed up to 2000′′ , 160′′ , and 10′′ scales (e), as
well as the segmentation image of skeletons that appear on more than 5 spatial scales (f). Pixel values in panel (f) represent the skeleton number.

large-scale and high-resolution simulation with up to five levels
of adaptive mesh refinement. Impressive networks (cosmic web)
of filamentary structures linking clusters of galaxies have been
created and visualized in the simulation.

One of the images of a piece of the Universe corresponding
to a redshift of 2.5 was downloaded from the project’s web site12,
converted from JPG to FITS format using the ImageMagick util-
ity, and reduced in size to 1000×1000 pixels. As in Appendix B,
the image was arbitrarily assigned a 2′′ pixel size, scaled to a
maximum of 100 (in arbitrary units), and added with pixel noise
at a level of 0.5. The resulting image was also convolved to a
5′′ resolution.

The filament extraction results on cosmological scales
are similar to those presented in Appendix B. The fascinating
cosmic web visible in the original image (Fig. C.1a) is quite well

12 http://www.projet-horizon.fr

extracted on all spatial scales (Fig. C.1b), with low filamentary
residuals in the filament-subtracted image (Fig. C.1c) that shows
mostly compact peaks (galaxies, clusters of galaxies). An image
of filaments reconstructed up to a spatial scale of 20′′ (Fig. C.1d)
reveals thin filaments that are substantially diluted in panel b
by the contribution of all larger scales; many large filaments are
also substructured on smaller scales. The composite image of the
filaments (Fig. C.1e) makes the large, medium, and small-scale
structures more visible by combining the red, green, and blue
colors on the same image. The segmented image of skeletons
(Fig. C.1f) traces and numbers the crests of the filaments. Such
images, as well as other images and multi-wavelength source
catalogs produced by getfilaments and getsources, can readily
be used for further studies of the cosmic web and the properties
and formation processes of galaxies and their clusters.
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Fig. C.1. Filaments in the MareNostrum simulation of the formation of galaxies. The upper panels display the original image (a), extracted
filaments on all spatial scales (b), and filament-subtracted image (c). The lower panels show the filaments partially reconstructed up to 20′′
scale (d), 3-color (red, green, blue) composite image of the filaments partially reconstructed up to 2000′′ , 160′′ , and 10′′ scales (e), as well as the
segmentation image of skeletons that appear on more than 5 spatial scales (f). Pixel values in panel (f) represent the skeleton number.
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