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ABSTRACT

Aims. This is the first paper of a series aiming at investigating galaxy formation and evolution in the giant-void class of the
Lemaître-Tolman-Bondi (LTB) models that best fits current cosmological observations. Here we investigate the luminosity func-
tion (LF) methodology, and how its estimates would be affected by a change on the cosmological model assumed in its computation.
Are the current observational constraints on the allowed cosmology enough to yield robust LF results?
Methods. We used the far-infrared source catalogues built on the observations performed with the Herschel/PACS instrument and
selected as part of the PACS evolutionary probe (PEP) survey. Schechter profiles were obtained in redshift bins up to z ≈ 4, assuming
comoving volumes in both the standard model, that is, the Friedmann-Lemaître-Robertson-Walker metric with a perfect fluid energy-
momentum tensor, and non-homogeneous LTB dust models, parametrized to fit the current combination of results stemming from the
observations of supernovae Ia, the cosmic microwave background, and baryonic acoustic oscillations.
Results. We find that the luminosity functions computed assuming both the standard model and LTB void models show in general
good agreement. However, the faint-end slope in the void models shows a significant departure from the standard model up to red-
shift 0.4. We demonstrate that this result is not artificially caused by the used LF estimator which turns out to be robust under the
differences in matter-energy density profiles of the models.
Conclusions. The differences found in the LF slopes at the faint end are due to variation in the luminosities of the sources that depend
on the geometrical part of the model. It follows that either the standard model is over-estimating the number density of faint sources
or the void models are under-estimating it.

Key words. galaxies: luminosity function, mass function – galaxies: distances and redshifts – infrared: galaxies –
cosmology: theory – galaxies: evolution

1. Introduction

The luminosity function (LF) is an important observational tool
for galaxy evolution studies because it encodes the observed dis-
tribution of galaxies in volumes and luminosities. However, a
cosmological model must be assumed in its estimation, render-
ing it model dependent. On the other hand, the precision of the
current constraints on the cosmological model might arguably
be enough to yield an LF that has the same shape in all mod-
els allowed by the observations. To investigate this assertion,
it is necessary to compute the LF considering one such alter-
native model, and perform a statistical comparison with the LF
obtained assuming the standard model.

The currently favoured theory for explaining the shape and
redshift evolution of the LF is that the dark matter haloes grow
up hierarchically by merging, and that baryonic matter trapped
by these haloes condense to form galaxies. Astrophysical pro-
cesses (gas cooling, high redshift photoionization, feedbacks),

are then responsible for reproducing the shape of the luminosity
function of galaxies starting from the dark matter halo mass
function (Benson et al. 2003). The usual approach in the context
of the standard model is either to use semi-analytical models to
parameterize these processes (e.g. Neistein & Weinmann 2010),
or to use empirical models (e.g. Yang et al. 2003; Skibba & Sheth
2009; Zehavi et al. 2011) to allocate galaxies as a function of
halo mass, both built on a dark matter hierarchical merger tree
created by simulations, like the Millennium simulation (Springel
et al. 2005; Boylan-Kolchin et al. 2009).

It has been well-established by observations made at
many different wavelengths (some recent examples include
van der Burg et al. 2010; Ramos et al. 2011; Cool et al. 2012;
Simpson et al. 2012; Patel et al. 2013; Stefanon & Marchesini
2013), and particularly in the IR (Babbedge et al. 2006; Caputi
et al. 2007; Rodighiero et al. 2010; Magnelli et al. 2011; Heinis
et al. 2013), that the LF shows significant evolution with redshift.
In practice the LF is traditionally computed using the comoving
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volume, which does not stem directly from the observations,
but rather is derived from it assuming a cosmological model
with a well-defined metric that translates redshifts into dis-
tances. The effects of the expanding space-like hypersurfaces
can, therefore, be successfully factored out of the observations
up to the limits where the assumed cosmological model holds.
The last remark is of special importance, because Mustapha
et al. (1997) proved that any spherically symmetric set of ob-
servations, like redshift surveys, can be fitted simply by spa-
tial non-homogeneities in a more general cosmological model
that assumes a Lemaître-Tolman-Bondi (LTB) line element and
a dust-like energy-momentum tensor, regardless of any evolution
of the sources. As a consequence, the reported redshift evolution
of the LF could, in principle, be caused by a non-homogeneity
on the cosmology at the scale of the observations. It is, therefore,
crucial for galaxy evolution theories and past-lightcone studies
(e.g. Ribeiro & Stoeger 2003; Albani et al. 2007; Rangel Lemos
& Ribeiro 2008; Iribarrem et al. 2012; Helgason et al. 2012;
Datta et al. 2012) that the underlying cosmological model be
well-established by independent observations.

Results from many independent cosmological observations
fit together in a coherent picture under the cold dark matter
model with a cosmological constant (ΛCDM; e.g. Komatsu et al.
2009), which is now adopted as the main cosmological model.

One of the key observational results in selecting the ΛCDM
parametrization for a Friedmann-Lemaître-Robertson-Walker
(FLRW) perfect fluid model is the dimming in the redshift-
distance relation of supernovae Ia, first obtained independently
by Riess et al. (1998) and Perlmutter et al. (1999). This has led to
the re-introduction of the cosmological constant Λ in Einstein’s
field equations, and the further interpretation of it as an exotic
fluid, dark energy, accelerating the expansion of the Universe.

Despite the many empirical successes of the standard model,
understanding of the physical nature of dark energy is still lack-
ing. This has encouraged many authors to investigate viable al-
ternatives to it, like modified gravity (Tsujikawa 2010), the effect
of small-scale spatial non-homogeneities of the matter content
in the estimation of the cosmological model parameters (Busti
& Lima 2012), often called the backreaction effect on cosmol-
ogy (Clarkson et al. 2011; Clarkson & Umeh 2011; Clifton et al.
2012; Wiegand & Schwarz 2012), or non-homogeneous cosmo-
logical models (Célérier 2007; Bolejko et al. 2011a; Ellis 2011).

Many recent works have advanced our understanding of non-
homogeneities and, particularly, of LTB models. From practical
questions like those related to possible dimming or brightening
of point-like sources due to the narrowness of their observed
beams, compared to the typical smoothing scales in standard
model simulations (Clarkson et al. 2012), or the possibility of
accounting for the anomalous primordial Lithium abundances
(Regis & Clarkson 2012), passing through the development of
the models themselves (e.g. Hellaby & Alfedeel 2009; Alfedeel
& Hellaby 2010; Meures & Bruni 2012; Humphreys et al. 2012;
Nishikawa et al. 2012; Bull & Clifton 2012; Valkenburg et al.
2012; Wang & Zhang 2012; Hellaby 2012), to several tests and
fits to different observations (e.g. February et al. 2010; Bolejko
et al. 2011b; Hoyle et al. 2013; Bull et al. 2012; de Putter et al.
2012), much has been done to establish non-homogeneity as a
well-grounded modification of the standard cosmology. Despite
the recent interest in these models, to date no work has aimed at
studying galaxy evolution on non-homogeneous cosmologies.

By restricting the available models to those which are well
constrained by a wealth of observations, we focus on two ques-
tions: Given that the current observations still allow a cer-
tain degree of freedom for the cosmological model, are these

constraining enough to yield a robust LF estimation, or are our
statistical conclusions still dependent on the model? And how?

To address these questions, one needs at least two different
cosmological models, in the sense of a set of equations that are
a solution to the Einstein field equations, both parametrized to
fit the whole set of available observations. Therefore, for the
purpose stated above, the parametrization of Garcia-Bellido &
Haugbølle (2008) for the LTB dust model is sufficient.

We started from the far-infrared (FIR) LF which has been
recently established by (Gruppioni et al. 2013), using combined
data obtained on the PACS (Poglitsch et al. 2010), and SPIRE
(Griffin et al. 2010) instruments aboard the Herschel (Pilbratt
et al. 2010) space telescope, as part of two surveys, the PACS
Evolutionary Probe (PEP; Lutz et al. 2011), and the Herschel
Multi-tiered Extragalactic Survey (HerMES; Oliver et al. 2012).
We used this sample because of its wide range of observations
spanning from UV to the FIR and because it is the most com-
plete one in terms of wavelength coverage. In future works we
intend to investigate the effect on LF when changing the under-
lying cosmology as a function of wavelength. The depth of the
survey, or the relative depths at different wavelengths may also
play a role.

Gruppioni et al. (2013) have used the PEP datasets to de-
rive evolutionary properties of FIR sources in the standard cos-
mology. We aim at using the same catalogues and methodology
used by Gruppioni et al. (2013) to assess them in alternative cos-
mologies. We computed the rest-frame monochromatic 100 μm
and 160 μm, together with the total IR LFs in the void models de-
scribed in Zumalacárregui et al. (2012). We then compared the
redshift evolution of the luminosity functions in both standard
and void models.

Although the present work uses both the standard and al-
ternative cosmological models, it does not aim at model selec-
tion, that is, making a comparison of the models themselves. It is
common to assume that works which deal with alternative cos-
mologies always have the goal of testing the models directly.
However, this is not always the case.

This work is not about testing alternative cosmologies. Since
the beginning of observational cosmology it has been clear that
testing a cosmological model using galaxy surveys is extremely
difficult because of the degeneracy between the intrinsic evolu-
tion of the sources and the relativistic effects caused by the un-
derlying cosmology. Our understanding of galaxies is still far
from allowing us to treat them as standard candles. Besides,
the data used in this work come from a survey not nearly wide
enough to compute meaningful angular correlation functions.
The luminosity functions computed here depend, by definition,
on the cosmological model assumed in its computation, and
therefore cannot yield any independent conclusion about which
model is the best fit. This is not the goal here.

Instead, by acknowledging that the computation of the lumi-
nosity functions depends on the cosmological model, we aim to
assess how robust the luminosity function results are if the ef-
fective constraints on the cosmological model, like the Hubble
diagram of a survey of standard candles like the Supernovae
(SNe) Ia, or the power spectrum of the cosmic microwave back-
ground, are imposed. In other words, this work’s main inter-
est is galaxy evolution models, and their possible dependency
on the cosmological model but, not the cosmological models
themselves.

Two recent papers have noteworthy similarities with the
present work. Keenan et al. (2012) uses the near-infrared lumi-
nosity function of galaxies in the 0.1 < z < 0.3 redshift range
to probe the central underdensity predicted by the void models.
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By assuming the standard model line element, the authors argue
that the presence of a local underdensity would lead to an over-
estimation of the normalization of their LFs. Marulli et al. (2012)
discuss the effect of the cosmology dependence of the distance-
redshift relation on the clustering of galaxies. Apart from having
different goals, as stated above, the present work differs from
the ones above in that it assumes the LTB void models in all the
steps of the computation of its results.

The paper is divided as follows: in Sect. 2 we describe the
dataset extracted from the PEP multi-wavelength catalogs, and
discuss the method used for the estimation of the LFs in both
cosmologies. In Sect. 3.1 we briefly describe the parameteriza-
tion of the void models used, and obtain expressions for the lu-
minosity and the comoving distances in those models. In Sect. 4
we present the LF computed in both cosmological models, as
well as analytical fits to them. In Sect. 5 we perform quantita-
tive comparisons of the LFs and their evolution in the different
models. We present our conclusions in Sect. 6.

2. Luminosity functions

In this section we present and discuss the main results and equa-
tions in deriving the LFs that are susceptible to a change if the
underlying cosmology is modified.

2.1. The PEP multi-wavelength samples

We started from the multi-wavelength catalogues described in
Berta et al. (2011). The sources in these catalogues were blind
selected in the following fields (effective areas): GOODS-N
(300 arcmin2), GOODS-S (300 arcmin2), COSMOS (2.04 deg2),
and ECDF-S (700 arcmin2), as part of the PEP survey in the 100
and 160 μm filters of Herschel/PACS. The number of sources
detected and the 3-σ flux limits of this dataset are, in the
100 and 160 μm passbands, respectively: 291 sources down
to 3.0 mJy, and 316 sources down to 5.7 mJy for GOODS-N;
717 down to 1.2 mJy, and 867 sources down to 2.4 mJy for
GOODS-S; 5355 sources down to 5.0 mJy, and 5105 sources
down to 10.2 mJy for COSMOS; and finally, 813 sources down
to 4.5 mJy, and 688 sources down to 8.5 mJy for ECDF-S. For
each of these fields, in each band individually, incompleteness
corrections for the number counts were computed by the authors
using simulations.

The semi-empirical spectral energy distribution (SED) mod-
els of Gruppioni et al. (2010) that expand on the models of
Polletta et al. (2007) were used to fit the photometry of the ob-
jects using the LePhare code (Arnouts et al. 1999; Ilbert et al.
2006). The code has an output for each successfully fit source of
a file with synthetic AB magnitudes mν in the wavelength range
of the combined optical/NIR + FIR models. From this, we com-
pute the spectral density of flux f (ν) as

f (ν) = 10(23.9−mν)/2.5. (1)

Sources without a redshift determination were removed from
the catalogues, but no further redshift-based selection rule
have been applied. In the GOODS-N redshift completeness is
100% within the ACS area (Berta et al. 2010), with 70% of
the redshifts there being spectroscopic. These figures are 100
(80)% for the GOODS-S, within the MUSIC (Grazian et al.
2006; Santini et al. 2012) area; 93 (40)% for the COSMOS;
and 88 (25)% for the ECDF-S fields. Non-detections in the
100 and 160 μm filters were also removed. Our final combined
samples have 5039 sources in the 100 μm band (183 in the

GOODS-N, 468 in the GOODS-S, 3817 in the COSMOS, and
578 in the ECDF-S fields); and 5074 sources in the 160 μm
band (197 in the GOODS-N, 492 in the GOODS-S, 3849 in the
COSMOS, and 547 in the ECDF-S fields). Approximately 40%
of these sources were best fit by typical spiral SED templates,
7% of those were best fit by starburst templates, another 7% were
found to be luminous IR galaxies, and 46% were best fit by ob-
scured, or low-luminosity AGN templates. For a more complete
description of the dataset used in this work, see Gruppioni et al.
(2013).

We computed the rest-frame total IR luminosity of each
source using its best fit SED f (ν) by means of

LIR = 4π (1 + z) dL(z)2
∫ 1000 μm

8 μm
f (ν)dν. (2)

While, the rest-frame luminosity related to the observed flux fR
at a given band R can be obtained with

LR = 4π νR kR fR dL(z)2, (3)

where dL is the luminosity distance in a particular cos-
mological model, νR is the filter’s effective frequency at
the observer’s frame (corresponding to wavelengths approxi-
mately 100 and 160 μm for the PACS bands considered in the
present work), and kR is the k-correction between the observed
frame flux fR in the R band and its rest-frame flux, at redshift z.

Because this paper deals with more than one underlying met-
ric, it is important to note that, even though the relation be-
tween the cosmological redshift and the cosmological distances
depend on the metric, thus affecting, for example, maximum
redshift estimates, the redshift itself, and its effect on the SED
of the sources, is directly measurable. Therefore, even though
the rest-frame luminosities themselves depend on the cosmolog-
ical model, the k-correction values depend only on the redshift
measurements. It is when translating the measured redshift to
an actual distance that a metric for the underlying spacetime is
needed.

2.2. k-corrections

In the following discussion, all quantities are written in fre-
quency units. Primes are used to mark quantities evaluated at the
source’s rest frame. We follow closely the derivation in Hogg
et al. (2002), but write the resulting k-correction in terms of
fluxes instead of magnitudes.

The effect of the expansion of the metric over the frequencies
of the light arriving from each source is

ν′ = (1 + z)ν, (4)

where ν′ are rest-frame frequencies measured by an observer in a
comoving frame with the source and ν are observed frequencies
measured by an observer that is receding in relation to the source
at a redshift z.

Fitting a SED template to the measured photometry for a
given source yields a model for its observed spectral density of
flux f (ν) over a range of observed-frame frequencies. With that
in hand, one can then compute the spectral density of flux fR as
measured by a given filter R(ν) in the observed-frame by means
of the dimensionless convolution (to ensure f (ν) and fR are both
written in the same units)

fR =
∫

f (ν) R(ν)
dν
ν
· (5)
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To correctly account for the expansion effects when comput-
ing the rest-frame spectral density of flux f ′R on the same pass-
band R, one must first redshift the filter function R(ν) f (ν) in
the observed-frame back to the source’s rest-frame frequencies
f (ν′). Given the source’s measured redshift z, this can be done
by means of Eq. (4), which yields R(ν′) = R[(1 + z)ν]. The rest
frame R(ν′), can then be convolved with the observed frame f (ν)
to yield the spectral density of flux measured by the passband R
at the source’s rest frame as

f ′R =
∫

f (ν) R[(1 + z)ν]
dν
ν
· (6)

Once f ′R is obtained, the k-correction expressed in terms of den-
sities of fluxes is then

kR =
fR
f ′R
· (7)

We note that a similar expression is used by Blanton & Roweis
(2007), based on the derivation for the k-correction expressed in
terms of magnitudes given in Hogg et al. (2002).

Next, we describe the use of the 1/Vmax estimator, (Schmidt
1968), in the computation of the LF of the samples.

2.3. 1/Vmax estimator

The 1/Vmax (Schmidt 1968; Johnston 2011) estimator for the LF
has the advantage of not assuming a parametric form in its calcu-
lation. It also yields directly the comoving number density nor-
malisation. Recent results from Smith (2012) show that large-
scale density variations can introduce systematic errors in the
subsequent fitting of the parameters. Since we are dealing with
different cosmological models that predict different density pa-
rameter evolutions, it is important to check how dependent the
method itself is on the cosmology. We report in Appendix A how
we built mock catalogues to check the effects of density varia-
tion, similar to what is done in Takeuchi et al. (2000), and check
that this methodology is adequate for the purpose of the paper.

To compute the LF values using this method, we started by
dividing each sample in redshift intervals Δz with centre val-
ues z̄, and in luminosity bins ΔL with centre values L̄. For each
source in each (z̄,L̄) bin, we computed the maximum redshift at
which it would still be included in the survey. Given the corre-
sponding flux limit for the field where the source was detected
( fR,lim; Berta et al. 2011), its measured flux at that filter R ( fR)
and its redshift (z) the highest redshift at which that source would
still be included (ζ) can be obtained by means of the following
relation1,

fR,lim =

[
dL(z)
dL(ζ)

]2

fR. (8)

If the maximum redshift for a given source is outside the redshift
interval it originally belongs to, we use the upper limit of this
interval zh as the maximum redshift instead. That is,

zmax = min(zh, ζ). (9)

The maximum comoving volume Vmax enclosing each source is
then

Vmax =
∑

k

S k

3

∫ zmax

zl

wk(z) r(z)2 dr
dz

dz, (10)

1 Since we are dealing with two observed-frame quantities, there is no
need to include any k-corrections in the Eq. (8).

where the sum is over the k fields where the source would have
been included; S k is the area of the field where the source was
detected, zl the lower limit of the redshift interval at which the
source is located, and wk(z) the incompleteness correction for
effective area of the source, corresponding to its computed flux,
as a function of the redshift.

Although these corrections are computed from local simu-
lations (z = 0), and, therefore, they do not assume any cosmo-
logical model, the computed flux of each source as a function
of the redshift depends on its luminosity distance, which may
change with the cosmological model assumed. In addition to this
implicit effect, the radial comoving distance r and its redshift
derivative dr/dz also depend explicitly on the cosmology.

For each luminosity bin centred around L̄ in each redshift
interval centred around z̄, we computed the 1/Vmax estimator for
the luminosity function in that bin φz̄,L̄ as

φz̄,L̄ =
1

(ΔL)L̄

Nz̄,L̄∑
i=1

1
Vi

max
, (11)

where (ΔL)L̄ is the length of the luminosity bin centred on L̄,
and Nz̄,L̄ the number of sources inside that luminosity bin and
redshift interval.

Assuming Poisson uncertainties, the error bars δφ can be es-
timated simply by

δφz̄,L̄ =
1

(ΔL)L̄

√√√Nz̄,L̄∑
i=1

(
1

Vi
max

)2

· (12)

Next, we briefly recall the properties of the void models used in
the computation of the LF, with a few key results needed in the
interpretation of the results.

3. LTB/GBH dust models

Garcia-Bellido & Haugbølle (2008, henceforth GBH) have
shown that an LTB dust model could be parametrized to fit
successfully and simultaneously many independent observations
without the inclusion of a cosmological constant. The extra dim-
ming of distant SNe Ia, compared to their expected observed
fluxes in a flat, spatially homogeneous Einstein-de Sitter (EdS)
universe is then understood not as being caused by an acceler-
ation of the expansion rate, but rather as an extra blueshift of
the incoming light caused by a non-homogeneous matter distri-
bution in the line of sight. This so-called void model is charac-
terised by an effective under-dense region of Gpc scale around
the Milky Way, as opposed to the average spatial homogene-
ity supposed to hold at that scale by the standard model. In this
under-dense region, both the matter density profile ΩM and the
transverse Hubble constant H0 are functions of the radial coordi-
nate r. At high enough redshifts however, the model is made to
converge to an EdS-like solution, making the non-homogeneity a
localized property of the model and naturally reconciling it with
the observed degree of isotropy in the cosmic microwave back-
ground radiation maps. The use of a pressure-less (dust) energy-
momentum tensor, as opposed to the perfect fluid one allowed
in the standard model, is required in order to obtain an exact
solution for Einstein’s field equations assuming the LTB line el-
ement. At early ages (high redshifts), radiation dominated the
Universe’s energy budget, and the pressure term was relevant,
but as discussed before, at these scales, the LTB model is made
to converge to the EdS solution by the GBH parameterization. At
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later ages (low redshifts), radiation pressure is negligible, and
so the use of a dust energy-momentum tensor is well justified.
Geometrically, the LTB dust model is an analytical solution for
Einstein’s field equations, and arguably the simplest way to re-
lease the spatial homogeneity assumption present in the standard
model of cosmology.

Spatial homogeneity is, nevertheless, a symmetry assump-
tion that greatly simplifies the model. Removing it will unavoid-
ably increase the degrees of freedom of the model. Because
of this, even the most constrained parameterizations of the
LTB models still show an increased number of free parameters
compared to the standard model. Since the quality of the com-
bined fits to the observations these alternative models can pro-
duce is similar to that produced by the standard model, any anal-
ysis that penalizes a greater degree of freedom of a model, like
those used in Zumalacárregui et al. (2012) and de Putter et al.
(2012), will disfavour such parameterization of the LTB model
in comparison to ΛCDM.

3.1. Distances and comoving volume

Two quantities involved in the computation of the LF are affected
by a change in the cosmology, the luminosity of the sources
as computed in Eq. (3) through a change in the dL(z) relation,
and their enclosing comoving volume as computed in Eq. (10)
through a change in both r(z) and dr/dz relations. The aim is,
therefore, to obtain these last three relations in the constrained
GBH (hereafter CGBH, see below) model, that is the giant-void-
GBH parameterization of the LTB dust model, with best-fit pa-
rameters from Zumalacárregui et al. (2012).

For comparison, we list the corresponding equations in the
ΛCDM standard model. Throughout this work, where these
comparisons are made we use the index Λ on the left-hand side
to identify an equation computed in the standard model, and V
to identify those obtained in the CGBH model.

We start by writing the Lemaître-Tolman-Bondi line element
dsV in geometrized units (c = G = 1) as

ds2
V = −dt2 +

A′(r, t)2

1 − k(r)
dr2 + A(r, t)dΩ2, (13)

where dΩ is the spherical solid angle element, A(r, t) the angu-
lar diameter distance, and k(r) an arbitrary function that can be
reduced to the Friedmann-Lemaître-Robertson-Walker line ele-
ment dsΛ,

ds2
Λ
= −dt2 +

a(t)2

1 − k r2
dr2 + a(t)2r2dΩ2, (14)

by the suitable choice of homogeneity conditions, A(r, t) = a(t) r
and k(r) = κ r2, where κ is the spatial curvature parameter and
a(t) is the scale factor, both in the FLRW metric.

Because of the higher degree of freedom in the LTB metric
Eq. (13), some extra constraining conditions must be imposed.
One of these conditions is that the big-bang hypersurface be con-
stant in time coordinate, or that the big-bang event occur simul-
taneously for all observers. This eliminates one degree of free-
dom of the model. The class of cosmological models with an
LTB metric, a pressure-less (dust) content distributed according
to an under-dense matter profile ΩM(r) around the Galaxy, and
simultaneous big-bang time is known as CGBH, that is, a con-
strained case of the GBH void model.

The free parameters in the CGBH model are the expansion
rate at the centre of the void Hin, and the parameters that char-
acterize the matter density profileΩM(r): the underdensity value

Fig. 1. Upper panel: present-time (t = t0) matter density parameters
in the standard (ΛCDM, black line) and the void (GBH) cosmologi-
cal models (red and cyan lines). Lower panel: redshift evolution of the
dimensionless matter density parameters in the standard (ΛCDM) and
the void (GBH) cosmological models. The dotted vertical lines delimit
the lowest redshift interval considered in the computation of the LF at
which the faint-end slopes are fit.

at the centre of the void Ωin, the size of the underdense region
R, and the width of the transition ΔR between the underdense
interior and the assymptotic Einstein-de Sitter density Ωout at
very large scales. Zumalacárregui et al. (2012) consider both the
case of an assymptotically flat universe (Ωout = 1) and that of an
open universe (Ωout ≤ 1; hereafter OCGBH), which they show
to allow for a better fit to the cosmic microwave background ra-
diation (CMB).

The matter density profile ΩM(r) is written in the GBH
model as a function of the fit parameters as

ΩM(r) = Ωout + (Ωin −Ωout)

(
1 − tanh[(r − R)/2ΔR]

1 + tanh[R/2ΔR]

)
, (15)

whereas the present-time transverse Hubble parameter H0(r) is

H0(r) = Hin

⎡⎢⎢⎢⎢⎢⎢⎢⎣ 1
Ωk(r)

− ΩM(r)
Ωk(r)3/2

sinh−1

√
Ωk(r)
ΩM(r)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , (16)

withΩk(r) = 1−ΩM(r) the curvature parameter inside the under-
dense region needed to close the Universe. In the standard model
both the matter density parameter and the Hubble parameter do
not depend on the radial coordinate. In all the standard model
computations done in this work we use ΩM = 0.27, ΩΛ = 0.73,
and H0 = 71 km s−1 Mpc−1 as obtained in Komatsu et al. (2011).
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Figure 1 shows the comparison of the evolution of the matter
density parameter in the standard and in the void cosmologies.

With these definitions, the angular diameter distance A(r, t)
can be computed in parametric form as

A(r, t) =
ΩM(r)

2[1 −ΩM(r)]3/2
[cosh(η) − 1] A0(r), (17)

where A0(r) is the angular diameter distance at t = t0, and the
parameter η advances the solution given r, t, H0(r), andΩM(r) as
follows:

sinh(η) − η = 2
[1 − ΩM(r)]3/2

ΩM(r)
H0(r) t. (18)

Once the angular diameter distance dA(z) = A[r(z), t(z)] is
computed, we can use the very general reciprocity theorem
(Etherington 1933),

dL = (1 + z)2dA = (1 + z)dG, (19)

to compute the luminosity distance dL(z) in the void models con-
sidered here. In the equation above, dG is the galaxy area dis-
tance that reduces to the comoving distance in FLRW models.
We still need to obtain the r(z) and t(z) relations in this cosmol-
ogy. We start with the radial null-geodesic equation, which can
be written by making ds2 = dΩ2 = 0, yielding

dt
dr

∣∣∣∣∣
V

= − A′(r, t)√
1 − k(r)

, (20)

where the minus sign is set for incoming light. The correspond-
ing standard model equation reads

dt
dr

∣∣∣∣∣
Λ

= − a(t)√
1 − κr2

· (21)

In the LTB metric, the time coordinate-redshift relation can be
obtained to the first order in wavelength starting from the redshift
definition, (e.g. Enqvist & Mattsson 2007)

dt
dz

∣∣∣∣∣
V

= − 1
1 + z

A′

Ȧ′
, (22)

whereas the correspondingΛCDM relation can be written as

dt
dz

∣∣∣∣∣
Λ

= − 1
1 + z

a
ȧ
· (23)

The last two equations allow us to write the radial coordinate r
in terms of the redshift z, by solving the expression

dr
dz

∣∣∣∣∣
V

=
1

1 + z

√
1 − k(r)

Ȧ′
· (24)

where k(r) can be written in terms of the formerly defined quan-
tities as

k(r) = −Ωk H2
0 (r) r2. (25)

Similarly, we can write, again for comparison,

dr
dz

∣∣∣∣∣
Λ

=
1

1 + z

√
1 − κr2

ȧ
· (26)

It is worth noting that the comoving distance r is not, in general,
equal to the galaxy area distance dG related to the luminosity
distance through the reciprocity theorem in Eq. (19).

The usual comoving-to-luminosity distance relation, dG =
(1 + z) dA = r, is only valid in the FLRW metric, for which the
following relations holds,

(1 + z)Λ =
a0

a(t)
, (27)

dA,Λ = r a(t), (28)

where a(t) is the usual scale factor, and a0 its value at present
time (t = 0). The last equation is valid only if we set a0 = 1.
As a consequence, an LTB model with its luminosity distance-
redshift relation constrained to fit the Hubble diagram for SNe Ia
could still yield comoving distances, and therefore volumes, sig-
nificantly different from those obtained in the standard model.

The additional constraint imposed by the measurements of
the baryonic acoustic oscillations (BAO) (e.g. Percival et al.
2010; Reid et al. 2012) appears to pin down the comoving dis-
tance quite effectively up to intermediate redshifts, and it turns
out that the difference in these distances computed in theΛCDM
and the GBH models is never larger than 10% at z = 1. However,
r computed in the CGBH model at z = 5 is approximately 12%
smaller, and ≈17% in the open CGBH model.

The non-linear nature of the equations relating distances to
volumes and luminosities, in particular for high-redshift sources,
must also be considered. At redshift z = 0.4, for example, the
luminosity distances computed in the void models CGBH and
OCGBH respectively, are 4.90% and 0.92% shorter then the
standard model distances, whereas the comoving distances in
the void models are 4.88% and 0.96% shorter when compared to
the standard model value. Such differences correspond to an ex-
tra dimming in luminosities equal to 10.04% in the CGBH model
and 1.85% in the OCGBH model. The corresponding reduction
in volumes is 15.35% and 2.84% for the CGBH and OCGBH
models.

When compared to the standard model, these non-linearities
can make small discrepancies in luminosity and comoving dis-
tances caused by the central underdensity in GBH models and
can result in non-negligible differences in the shape of the LF.

This can be understood by looking at Fig. 2, where the lu-
minosity distance and the comoving distance are plotted against
the redshift.

For any given redshift z′, consider the differences ΔdL(z′)
and Δr(z′) between the distances computed in the standard
model and those in the void models. Both differences depend
on the redshift and do not, in general, cancel out or even yield a
constant volume-to-luminosity ratio as a function of the redshift.
As a result, the number of sources in each luminosity bin might
change because of differences in the luminosities.

Additionally, the weight 1/Vmax that each source adds to the
LF in that bin will not be the same, leading to a LF value in
that luminosity bin in the void model that is different from the
one in the standard model, even if the sources inside the bin are
the same. Figure 2 shows the comoving volume element in the
different cosmologies adopted here.

Such differences in the estimated value for the LF in each
luminosity bin will not, in general, be the same. As a conse-
quence, not only the normalization but also the shape of the LF
might change from one cosmology to another.

4. Results

We computed the rest-frame monochromatic and total IR lumi-
nosity LF for sources in the combined fields, blind selected in
the 100 μm and 160 μm bands, using the non-parametric 1/Vmax
method, both in the standard model and the GBH void models.
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Table 1. Rest-frame 100 μm 1/Vmax luminosity function assuming the ΛCDM cosmological model.

Average redshift
Luminosity [L�] 0.2 0.6 1.0 1.5 2.1 3.0

5.0E+07 (4.6 ± 3.3) × 10−2

1.3E+08 (4.9 ± 3.6) × 10−2

3.2E+08 (1.3 ± 0.6) × 10−2

7.9E+08 (2.1 ± 0.6) × 10−2

2.0E+09 (1.1 ± 0.2) × 10−2

5.0E+09 (6.4 ± 0.7) × 10−3 (2.9 ± 2.9) × 10−3

1.3E+10 (4.3 ± 0.4) × 10−3 (3.7 ± 1.5) × 10−3 (1.8 ± 1.8) × 10−4

3.2E+10 (2.01 ± 0.09) × 10−3 (3.4 ± 0.4) × 10−3 (4.4 ± 1.8) × 10−4 (7.9 ± 7.6) × 10−6

7.9E+10 (8.3 ± 0.5) × 10−4 (2.3 ± 0.2) × 10−3 (1.3 ± 0.2) × 10−3 (6.5 ± 3.8) × 10−5

2.0E+11 (1.0 ± 0.2) × 10−4 (5.2 ± 0.2) × 10−4 (1.3 ± 0.2) × 10−3 (8.0 ± 1.9) × 10−4 (8.1 ± 3.9) × 10−5

5.0E+11 (1.7 ± 0.7) × 10−5 (8.2 ± 0.7) × 10−5 (3.8 ± 0.4) × 10−4 (3.9 ± 0.6) × 10−4 (6.9 ± 3.8) × 10−4 (1.2 ± 0.6) × 10−4

1.3E+12 (6.8 ± 2.0) × 10−6 (4.4 ± 0.4) × 10−5 (9.3 ± 0.9) × 10−5 (3.1 ± 1.2) × 10−4 (5.2 ± 4.1) × 10−4

3.2E+12 (1.9 ± 0.8) × 10−6 (1.1 ± 0.2) × 10−5 (7.7 ± 2.6) × 10−5 (4.8 ± 1.5) × 10−5

7.9E+12 (3.7 ± 2.6) × 10−7 (4.8 ± 1.3) × 10−6 (3.3 ± 1.0) × 10−6

2.0E+13 (1.7 ± 1.2) × 10−6

Notes. Units are dex−1 Mpc−3.

Fig. 2. Upper panel: luminosity (solid lines) and comoving distances
(dotted lines) versus the redshift in the standard (ΛCDM) and the void
(GBH) cosmological models. Up to redshift z ≈ 1 distances in the con-
strained, flat void model (CGBH) follow very closely their standard
model counterparts, but even in the case of the best-fit parameters in
Zumalacárregui et al. (2012) yield increasingly different distances with
the redshift. Lower panel: comoving volume elements in the standard
(ΛCDM) and the void (GBH) cosmological models. The quantities in
the void models adopted here evolve with the redshift in a similar way
to the standard model up to redshift approximately 0.6, then their values
become consistently lower than in the ΛCDM model.

The LF values are listed in Tables 1−12, up to redshifts z ≈ 3 for
the monochromatic LFs and up to z ≈ 4 for the total IR ones.

We use the same binning in luminosity and redshift as in
Gruppioni et al. (2013). The average values for the redshift in-
tervals are 0.2, 0.6, 1.0, 1.5, 2.1, and 3.0, for the monochromatic
LFs, and 0.2, 0.4, 0.5, 0.7, 0.9, 1.1, 1.5, 1.9, 2.2, 2.8, and 3.6 for
the total IR LFs. The effective wavelengths will be 60 and 90 μm
in the rest-frame LF. Because of the lack of enough 1/Vmax LF
points to fit a Schechter function in the higher redshift bins, our
analyses of the monochromatic luminosity functions are limited
to intervals z̄ ≤ 3. As a consistency check we compared our re-
sults for the standard model with those of Gruppioni et al. and
the agreement is excellent.

The monochromatic and the total luminosity LFs are shown
in Figs. 3−6 for the three cosmologies considered in this paper.
When comparing the values in each luminosity bin it is clear that
in void cosmologies the density is lower at the lowest luminosi-
ties. While at redshift larger than 0.8 the incompleteness at low
luminosities does not allow any firm conclusion to be drawn, in
the two lowest redshift bins the void models show LF values up
to an order of magnitude lower than their ΛCDM counterpart
at L ≤ 1010 L�.

The resulting differences in the LF computed in the differ-
ent models show up at the faint luminosity end of the luminos-
ity functions. We use the Schechter analytical profile (Schechter
1976),

ϕ(L) =
φ∗

L∗

( L
L∗

)α
e−L/L∗ = ϕ∗

( L
L∗

)α
e−L/L∗ , (29)

and fit it to the 1/Vmax points over the (z̄,L̄) bins, where φ∗ is
the comoving number density normalisation, L∗ the character-
istic luminosity and α the faint-end slope, using the IDL rou-
tine MPFITFUN (Markwardt 2009) based on the Levenberg-
Marquardt algorithm (Moré 1978). For each best-fit parameter,
its formal 1-σ uncertainty is obtained by taking the square root
of its corresponding element in the diagonal of the 3 × 3 covari-
ance matrix of the fitting procedure (see also Richter 1995).

Since we are primarily interested in checking possible
changes in the LF caused by the underlying cosmologies, we
chose to use the classical Schechter function instead of the dou-
ble exponential function (Saunders et al. 1990). The latter fits the
FIR LF bright-end better, but the Schechter function has fewer
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Table 2. Rest-frame 100 μm 1/Vmax luminosity function assuming the CGBH cosmological model.

Average redshift
Luminosity [L�] 0.2 0.6 1.0 1.5 2.1 3.0

5.0E+07 (2.8 ± 1.6) × 10−3

1.3E+08 (3.6 ± 3.1) × 10−3

3.2E+08 (1.8 ± 0.8) × 10−3

7.9E+08 (3.8 ± 1.3) × 10−3

2.0E+09 (3.6 ± 0.9) × 10−3

5.0E+09 (2.7 ± 0.4) × 10−3 (2.2 ± 2.2) × 10−4

1.3E+10 (2.3 ± 0.2) × 10−3 (8.1 ± 2.5) × 10−4 (3.8 ± 3.8) × 10−5

3.2E+10 (1.4 ± 0.1) × 10−3 (2.6 ± 0.4) × 10−3 (4.3 ± 2.6) × 10−4 (7.6 ± 7.1) × 10−6

7.9E+10 (5.6 ± 0.4) × 10−4 (1.8 ± 0.2) × 10−3 (1.1 ± 0.2) × 10−3 (1.2 ± 0.8) × 10−4

2.0E+11 (5.7 ± 0.9) × 10−5 (5.1 ± 0.3) × 10−4 (1.1 ± 0.1) × 10−3 (7.2 ± 2.1) × 10−4 (1.5 ± 0.6) × 10−4 (1.6 ± 1.6) × 10−5

5.0E+11 (1.0 ± 0.4) × 10−5 (8.2 ± 0.7) × 10−5 (3.5 ± 0.4) × 10−4 (3.6 ± 0.5) × 10−4 (5.8 ± 2.1) × 10−4 (7.5 ± 5.3) × 10−4

1.3E+12 (5.9 ± 1.7) × 10−6 (4.7 ± 0.4) × 10−5 (7.8 ± 0.6) × 10−5 (2.2 ± 0.8) × 10−4 (7.2 ± 2.7) × 10−5

3.2E+12 (2.2 ± 0.9) × 10−6 (1.2 ± 0.2) × 10−5 (7.0 ± 2.1) × 10−5 (5.3 ± 2.2) × 10−5

7.9E+12 (3.8 ± 1.4) × 10−6 (2.4 ± 1.2) × 10−6

2.0E+13 (5.4 ± 3.9) × 10−7

Notes. Units are dex−1 Mpc−3.

Table 3. Rest-frame 100 μm 1/Vmax luminosity function assuming the OCGBH cosmological model.

Average redshift
Luminosity [L�] 0.2 0.6 1.0 1.5 2.1 3.0

5.0E+07 (2.2 ± 1.6) × 10−3

1.3E+08 (4.8 ± 3.8) × 10−3

3.2E+08 (1.9 ± 1.0) × 10−3

7.9E+08 (6.0 ± 1.8) × 10−3

2.0E+09 (3.2 ± 0.5) × 10−3

5.0E+09 (3.1 ± 0.4) × 10−3 (3.1 ± 2.6) × 10−4

1.3E+10 (2.7 ± 0.2) × 10−3 (1.6 ± 0.4) × 10−3 (4.7 ± 4.7) × 10−5

3.2E+10 (1.5 ± 0.2) × 10−3 (2.8 ± 0.4) × 10−3 (7.1 ± 3.4) × 10−4 (9.7 ± 9.1) × 10−6

7.9E+10 (5.4 ± 0.4) × 10−4 (2.0 ± 0.2) × 10−3 (1.5 ± 0.3) × 10−3 (2.0 ± 1.1) × 10−4 (4.0 ± 2.4) × 10−5

2.0E+11 (5.4 ± 0.9) × 10−5 (5.1 ± 0.3) × 10−4 (1.3 ± 0.2) × 10−3 (1.0 ± 0.3) × 10−3 (5.6 ± 2.5) × 10−4 (9.1 ± 6.0) × 10−5

5.0E+11 (1.1 ± 0.5) × 10−5 (7.2 ± 0.7) × 10−5 (2.9 ± 0.3) × 10−4 (3.3 ± 0.5) × 10−4 (3.7 ± 0.9) × 10−4 (8.5 ± 6.5) × 10−4

1.3E+12 (6.0 ± 1.9) × 10−6 (4.3 ± 0.5) × 10−5 (7.5 ± 0.6) × 10−5 (2.7 ± 0.9) × 10−4 (1.2 ± 0.4) × 10−4

3.2E+12 (1.4 ± 0.8) × 10−6 (8.8 ± 1.7) × 10−6 (4.2 ± 1.3) × 10−5 (3.3 ± 1.6) × 10−5

7.9E+12 (1.1 ± 0.7) × 10−6 (3.2 ± 1.5) × 10−6

2.0E+13

Notes. Units are dex−1 Mpc−3.

Table 4. Rest-frame 160 μm 1/Vmax luminosity function assuming the ΛCDM cosmological model.

Average redshift
Luminosity [L�] 0.2 0.6 1.0 1.5 2.1 3.0

5.0E+07 (4.9 ± 2.8) × 10−2

1.3E+08 (6.6 ± 4.3) × 10−2

3.2E+08 (6.7 ± 3.2) × 10−3

7.9E+08 (1.7 ± 0.5) × 10−2

2.0E+09 (1.2 ± 0.2) × 10−2

5.0E+09 (5.2 ± 0.6) × 10−3 (6.8 ± 3.3) × 10−3 (5.4 ± 5.4) × 10−5

1.3E+10 (3.0 ± 0.3) × 10−3 (2.7 ± 0.4) × 10−3 (1.8 ± 0.8) × 10−4 (1.8 ± 1.3) × 10−5 (1.5 ± 1.5) × 10−5

3.2E+10 (1.45 ± 0.07) × 10−3 (2.1 ± 0.2) × 10−3 (8.4 ± 1.5) × 10−4 (5.9 ± 2.3) × 10−4 (3.5 ± 1.8) × 10−5 (2.2 ± 1.8) × 10−5

7.9E+10 (2.3 ± 0.3) × 10−4 (7.0 ± 0.4) × 10−4 (1.1 ± 0.1) × 10−3 (9.6 ± 3.7) × 10−4 (1.2 ± 0.3) × 10−4 (3.5 ± 1.3) × 10−5

2.0E+11 (2.6 ± 0.9) × 10−5 (1.13 ± 0.08) × 10−4 (3.4 ± 0.4) × 10−4 (2.8 ± 0.4) × 10−4 (2.0 ± 0.5) × 10−4 (1.2 ± 0.7) × 10−4

5.0E+11 (3.0 ± 1.3) × 10−6 (5.0 ± 0.6) × 10−5 (8.6 ± 1.1) × 10−5 (1.2 ± 0.5) × 10−4 (6.1 ± 2.2) × 10−5

1.3E+12 (2.1 ± 0.9) × 10−6 (9.7 ± 1.6) × 10−6 (6.3 ± 1.9) × 10−5 (2.2 ± 0.6) × 10−5

3.2E+12 (5.8 ± 3.4) × 10−7 (6.0 ± 1.6) × 10−6 (5.5 ± 3.0) × 10−6

7.9E+12 (7.8 ± 3.5) × 10−7 (1.1 ± 0.5) × 10−6

2.0E+13

Notes. Units are dex−1 Mpc−3.
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Table 5. Rest-frame 160 μm 1/Vmax luminosity function assuming the CGBH cosmological model.

Average redshift
Luminosity [L�] 0.2 0.6 1.0 1.5 2.1 3.0

5.0E+07 (2.3 ± 1.4) × 10−3

1.3E+08 (3.5 ± 2.6) × 10−3

3.2E+08 (7.8 ± 2.8) × 10−4

7.9E+08 (2.6 ± 1.0) × 10−3

2.0E+09 (5.3 ± 1.4) × 10−3

5.0E+09 (2.7 ± 0.4) × 10−3 (4.4 ± 1.8) × 10−4 (4.5 ± 4.5) × 10−5

1.3E+10 (2.4 ± 0.2) × 10−3 (2.3 ± 0.3) × 10−3 (2.9 ± 1.4) × 10−4 (1.5 ± 1.1) × 10−5 (2.0 ± 2.0) × 10−5

3.2E+10 (1.0 ± 0.1) × 10−3 (1.6 ± 0.2) × 10−3 (7.2 ± 1.2) × 10−4 (3.5 ± 1.2) × 10−4 (7.1 ± 2.9) × 10−5 (5.3 ± 2.8) × 10−5

7.9E+10 (1.8 ± 0.2) × 10−4 (6.5 ± 0.4) × 10−4 (1.1 ± 0.1) × 10−3 (5.7 ± 1.4) × 10−4 (1.5 ± 0.4) × 10−4 (2.8 ± 1.2) × 10−5

2.0E+11 (1.6 ± 0.5) × 10−5 (1.18 ± 0.08) × 10−4 (3.3 ± 0.4) × 10−4 (2.3 ± 0.3) × 10−4 (2.9 ± 0.7) × 10−4 (1.0 ± 0.4) × 10−4

5.0E+11 (4.1 ± 1.5) × 10−6 (5.1 ± 0.6) × 10−5 (7.2 ± 1.0) × 10−5 (1.2 ± 0.6) × 10−4 (5.6 ± 1.7) × 10−5

1.3E+12 (2.4 ± 1.0) × 10−6 (1.0 ± 0.2) × 10−5 (7.8 ± 2.6) × 10−5 (1.6 ± 0.5) × 10−5

3.2E+12 (2.9 ± 2.9) × 10−7 (4.3 ± 1.1) × 10−6 (2.2 ± 0.8) × 10−6

7.9E+12 (8.8 ± 4.4) × 10−7 (8.1 ± 4.1) × 10−7

2.0E+13

Notes. Units are dex−1 Mpc−3.

Table 6. Rest-frame 160 μm 1/Vmax luminosity function assuming the OCGBH cosmological model.

Average redshift
Luminosity [L�] 0.2 0.6 1.0 1.5 2.1 3.0

5.0E+07 (2.9 ± 1.8) × 10−3

1.3E+08 (4.7 ± 3.1) × 10−3

3.2E+08 (5.3 ± 2.4) × 10−4

7.9E+08 (3.7 ± 1.2) × 10−3

2.0E+09 (6.3 ± 1.6) × 10−3

5.0E+09 (3.0 ± 0.4) × 10−3 (9.7 ± 2.8) × 10−4 (2.0 ± 1.5) × 10−4

1.3E+10 (2.6 ± 0.2) × 10−3 (2.6 ± 0.4) × 10−3 (3.3 ± 1.2) × 10−4 (1.9 ± 1.4) × 10−5 (2.5 ± 2.5) × 10−5

3.2E+10 (1.08 ± 0.06) × 10−3 (2.0 ± 0.2) × 10−3 (1.1 ± 0.2) × 10−3 (6.2 ± 1.8) × 10−4 (1.0 ± 0.4) × 10−4 (8.2 ± 3.6) × 10−5

7.9E+10 (1.3 ± 0.2) × 10−4 (6.6 ± 0.4) × 10−4 (1.1 ± 0.1) × 10−3 (5.7 ± 1.5) × 10−4 (2.2 ± 0.5) × 10−4 (4.9 ± 2.2) × 10−5

2.0E+11 (1.5 ± 0.5) × 10−5 (1.07 ± 0.09) × 10−4 (3.4 ± 0.4) × 10−4 (3.0 ± 0.4) × 10−4 (4.1 ± 1.1) × 10−4 (1.2 ± 0.4) × 10−4

5.0E+11 (6.8 ± 6.8) × 10−7 (4.0 ± 0.5) × 10−5 (7.0 ± 0.7) × 10−5 (7.2 ± 1.3) × 10−5 (5.0 ± 1.5) × 10−5

1.3E+12 (1.1 ± 0.2) × 10−5 (9.5 ± 3.2) × 10−5 (1.7 ± 0.6) × 10−5

3.2E+12 (2.9 ± 1.0) × 10−6 (2.5 ± 0.9) × 10−6

7.9E+12 (5.5 ± 3.9) × 10−7 (7.8 ± 4.5) × 10−7

2.0E+13

Notes. Units are dex−1 Mpc−3.

free parameters that allows it to fit higher redshift intervals where
the number of data points is small.

First we check for any variation of the α parameter with red-
shift, and find that it is consistent with no evolution. We test the
incompleteness using the Ve/Va tests (Avni & Bahcall 1980). A
given (z̄,L̄) bin is considered complete by this test if its Ve/Va
value is 1/2. We find that the 1/Vmax LF points do not suffer
from significant incompleteness at z̄ = 0.2, where the Ve/Va
values in the lowest luminosity bins of the monochromatic lu-
minosity functions are 0.6 ± 0.1 and 0.5 ± 0.1 for the rest-frame
100 and 160 μm, respectively. These values become 0.15 ± 0.09
and 0.22±0.03 at z̄ = 1, and 0.12±0.05 and 0.11±0.04 at z̄ = 3.

This is because at higher redshifts the flux limit of the obser-
vations corresponds to increasingly different luminosity limits,
depending on the SED of the sources, leading to an incomplete-
ness in the lower luminosity bins that is dependent on the galaxy
type (Ilbert et al. 2004). Because of this we chose to fix the α pa-
rameter to its value in the lower redshift interval in the fits pre-
sented in Tables 13−16.

5. Discussion

In Figs. 3−6 we plot the 1/Vmax LF estimations in the three dif-
ferent cosmologies, together with the best-fit Schechter profiles

for each of them. As can be seen in the four figures, the faint-end
number densities in the void models are lower then the standard
model ones.

If there was a direct correlation between the matter density
parameter in the cosmology, and its estimated number density of
sources selected in the FIR, then at the lowest redshift bin we
should see higher number densities in the void models, since the
ΩM(z) in those models are bigger in that redshift range than the
standard model value (more on that in Appendix A, Fig. 1).

The difference in the number densities at the lower redshift
interval for the different cosmologies does not follow the same
relation as the matter density parameters ΩM(z). In addition,
it shows a dependence on the luminosity, which is more pro-
nounced at the fainter end in both the monochromatic and the
total IR LFs.

This dependence produces significant differences in the
faint-end slopes of the computed luminosity functions. This can
only be attributed to the different geometrical parts of the cos-
mological models studied here, since the matter content, as dis-
cussed above, would only shift the normalization of the LF in-
dependently of the luminosity of the sources.

In Table 17 we present the best fit values of α for each
dataset/model combination. Simple error propagation allow us
to write the uncertainty of the difference Δα between the
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A. Iribarrem et al.: Void-cosmology systematics on the FIR LF

faint-end slopes in the standard model (αΛ) and the void models
(αV) as

δ(Δα) =
√

(δαΛ)2 + (δαV)2. (30)

The significance level of this difference can then be obtained
by computing Δα/δ(Δα). For the monochromatic 100 μm lumi-
nosity functions, the difference between the α computed assum-
ing the standard model and the α computed in the GBH models
studied here is 6.1-σ, as compared to its propagated uncertainty.
For the monochromatic 160 μm luminosity functions, this value
is 3.2-σ. For the total-IR 100-μ selected luminosity functions,
these values are 2.9-σ for the difference between ΛCDM and
CGBH models, and 3.1-σ, for the ΛCDM-OCGBH difference.
Finally, for the same differences in the total-IR 160 μm selected
dataset, the significances are 3.1-σ and 3.4-σ, respectively.

Could this difference be caused by a limitation of the 1/Vmax
method used here? As we show in Appendix A, the matter den-
sity parameters in both the ΛCDM and GBH models do not af-
fect the performance of this LF estimator significantly. When
the same input LF and matter density are assumed, the 1/Vmax
method obtains values within their error bars for all cosmolog-
ical models considered. This indicates that the change in the
slopes is caused by how the luminosities are computed from the
redshifts in the different metrics.

To check this assertion, we investigate the effects of both lu-
minosity and comoving volume separately on the shape of the
LF. Starting from the 1/Vmax results for the LF in the interval
0 < z < 0.4, assuming the standard cosmological model, we
compute alternative LFs using the same methodology, but as-
suming either the luminosity distance of one of the void models
and keeping the comoving distance of the standard model, or
the luminosity distance of the standard model and the comoving
distance of one of the void models. This allows us to assess how
each distance definition affect the LF individually. The results
are plotted in Fig. 8 for the rest-frame 100 μm monochromatic
luminosity dataset.

From these plots it is clear that the luminosity is the main
cause of change in the shape of the LF. What remains to be in-
vestigated is whether the number density in a given luminosity
bin is lower in the void models because of a re-arranging of the
number counts in the luminosity bins, or because of a possible
change in the maximum volume estimate of the sources in each
bin. From this inspection, it turns out that the number counts in
all three models are all within their Poisson errors, and therefore
the number densities in the void models are lower because the
maximum volumes in them are larger.

Looking at Eq. (10), we identify two parameters that can in-
troduce a dependency of the maximum volume of a source on its
luminosity, the incompleteness corrections wk(z) and the upper
limit of the integral zmax.

The incompleteness correction wk(z) for each source depends
on the observed flux that the source would have at that red-
shift, which is affected by the luminosity distance-redshift re-
lation assumed.

More importantly however, at the higher luminosity bins,
the zmax of most of the sources there assumes the zh value for that
redshift interval, which does not depend on the luminosity of the
source. This renders the Vmax of the high luminosity sources ap-
proximately the same, apart from small changes caused by the
incompleteness corrections wk, as discussed above. At the lower
luminosity bins, on the other hand, it happens more often that the
zmax of a source assumes its ζ value, which in this case depends
on its luminosity, as is clear from Eq. (8).

In order for that equation to hold, given that fR and fR,lim are
fixed, the dL(z)/dL(ζ) ratio must be the same for all cosmolo-
gies. Since the redshift z of each source is also fixed, then it
follows that the ζ value that makes the dL(z)/dL(ζ) ratio hold in
the void models must be higher then in the standard model (see
Fig. 2). This, in turn, accounts for the larger maximum volumes
and lower number densities at the low luminosity bins in the void
models.

From the discussion above we conclude that a change in the
luminosity distance – redshift relation changes the zmax of the
low luminosity sources, which in turn changes the maximum
volumes, and finally, the fitted faint-end slope. However, from
Fig. 2, it is not obvious that such small differences in the dL(z)
relation for the different cosmological models could cause such a
significant change in the faint-end slopes, especially at low red-
shifts. It is useful to remember here that the LF is a non-linear
combination of quantities that depend, from a geometrical point
of view, on the luminosity distance (through the luminosities of
the sources) and on the comoving distances (through their en-
closing volumes). Even if the observational constraints on the
luminosity-redshift relation, and the additional ones stemming
from BAO results, yield both dL(z) and r(z) that are quite ro-
bust under changes of the underlying cosmological models, such
small differences in the distances could pile up non-linearly and
cause the observed discrepancies in the faint-end slope.

This appears to be the case here, at least in the low redshift
interval where we can fit the faint-end slopes with confidence.
Rather then following the trend of the matter density parameter,
the number densities at those redshifts seem to be predominantly
determined by their enclosing volumes (even if at low redshift
the differences in the distance-redshift relations in the different
cosmologies is quite small).

Looking at how the distances in Fig. 2 have increasingly dif-
ferent values at higher redshifts, it would be interesting to check
if the faint-end slopes in the different cosmologies at some point
start following that trend. Unfortunately, at higher redshifts the
incompleteness caused by different luminosity limits for differ-
ent populations does not allow us to draw any meaningful con-
clusion about the faint-end slope of the derived LFs. As it is, all
that can be concluded is that the standard model LF would be
over-estimating the local density of lower luminosity galaxies if
the Universe’s expansion rate and history followed that of the
LTB/GBH models.

We proceed to investigate the robustness with respect to the
underlying cosmology of the redshift evolution of the other two
Schechter parameters, the characteristic luminosity L∗ and num-
ber density φ∗. Figure 7 presents the redshift evolution of these
parameters that we model by means of the simple relations

L∗(z) ∝ 10(1+z)A (31)

φ∗(z) ∝ 10(1+z)B. (32)

We use a least-squares technique to fit such evolution func-
tions to their corresponding Schechter parameter results (Richter
1995). Table 18 lists the best-fit values for the evolution param-
eters A and B in the different datasets/cosmologies.

The listed uncertainties for the evolution parameters are the
formal 1-σ values obtained from the square root of the corre-
sponding diagonal element of the covariance matrix of the fit.
We find no evidence of a significantly different evolution of ei-
ther L∗ or φ∗ in the void models considered. The monochromatic
luminosities, especially the number density of sources in the
rest-frame 160 μm, show some mild evidence of being affected
by the geometrical effect discussed above, but the evolution pa-
rameters in the total IR are remarkably similar. We also note that
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Fig. 3. Luminosity functions derived in the standard (ΛCDM) (black dots) and the void (GBH) cosmological models (red and cyan dots). We also
show the best-fit Schechter profiles to the rest-frame 100 μm 1/Vmax corresponding to effective wavelengths of 60 μm.

Fig. 4. As Fig. 3 for the rest-frame 160 μm 1/Vmax luminosity functions. Here the effective wavelength is 90 μm.
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A. Iribarrem et al.: Void-cosmology systematics on the FIR LF

Fig. 5. Schechter profile fits to the rest-frame total IR luminosity functions computed from the PACS 100 μm 1/Vmax band, assuming the standard
(ΛCDM) and the void (GBH) cosmological models.

Fig. 6. Schechter profile fits to the rest-frame total IR luminosity functions computed from the PACS 160 μm 1/Vmax band, assuming the standard
(ΛCDM) and the void (GBH) cosmological models.
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Table 13. Best-fitting Schechter parameters for the rest-frame 100 μm 1/Vmax luminosity functions.

ΛCDM CBGH OCBGH
z̄ ϕ∗ L∗ ϕ∗ L∗ ϕ∗ L∗

0.2 (2.2 ± 0.2) × 10−3 (7.8 ± 0.7) × 1010 (2.7 ± 0.2) × 10−3 (5.2 ± 0.4) × 1010 (3.0 ± 0.3) × 10−3 (4.8 ± 0.4) × 1010

0.6 (1.8 ± 0.1) × 10−3 (1.81 ± 0.09) × 1011 (2.2 ± 0.1) × 10−3 (1.49 ± 0.06) × 1011 (2.5 ± 0.2) × 10−3 (1.36 ± 0.06) × 1011

1.0 (1.02 ± 0.09) × 10−3 (4.7 ± 0.2) × 1011 (1.5 ± 0.1) × 10−3 (3.7 ± 0.2) × 1011 (1.5 ± 0.1) × 10−3 (3.5 ± 0.2) × 1011

1.5 (4.1 ± 0.5) × 10−4 (9.9 ± 0.7) × 1011 (3.5 ± 0.4) × 10−4 (9.1 ± 0.8) × 1011 (4.6 ± 0.6) × 10−4 (7.4 ± 0.7) × 1011

2.1 (4.8 ± 1.4) × 10−4 (2.0 ± 0.2) × 1012 (5.6 ± 1.3) × 10−4 (1.6 ± 0.2) × 1012 (5.6 ± 1.2) × 10−4 (1.3 ± 0.1) × 1012

3.0 (2.8 ± 1.4) × 10−4 (2.0 ± 0.4) × 1012 (1.5 ± 0.5) × 10−4 (2.0 ± 0.3) × 1012 (2.2 ± 0.7) × 10−4 (1.9 ± 0.3) × 1012

Table 14. Best-fitting Schechter parameters for the rest-frame 160 μm 1/Vmax luminosity functions.

ΛCDM CBGH OCBGH
z̄ ϕ∗ L∗ ϕ∗ L∗ ϕ∗ L∗

0.2 (3.9 ± 0.4) × 10−3 (3.1 ± 0.3) × 1010 (2.4 ± 0.2) × 10−3 (3.3 ± 0.2) × 1010 (2.4 ± 0.2) × 10−3 (3.0 ± 0.1) × 1010

0.6 (2.3 ± 0.2) × 10−3 (7.2 ± 0.3) × 1010 (2.2 ± 0.2) × 10−3 (6.9 ± 0.3) × 1010 (2.5 ± 0.2) × 10−3 (6.2 ± 0.3) × 1010

1.0 (9.0 ± 0.8) × 10−4 (2.0 ± 0.1) × 1011 (1.12 ± 0.10) × 10−3 (1.65 ± 0.09) × 1011 (1.6 ± 0.1) × 10−3 (1.35 ± 0.06) × 1011

1.5 (3.9 ± 0.5) × 10−4 (3.7 ± 0.3) × 1011 (3.8 ± 0.4) × 10−4 (3.4 ± 0.2) × 1011 (3.5 ± 0.5) × 10−4 (3.4 ± 0.3) × 1011

2.1 (7.9 ± 1.5) × 10−5 (1.5 ± 0.2) × 1012 (2.1 ± 0.3) × 10−4 (8.3 ± 0.6) × 1011 (1.7 ± 0.3) × 10−4 (7.7 ± 0.8) × 1011

3.0 (3.8 ± 1.2) × 10−5 (2.1 ± 0.5) × 1012 (1.0 ± 0.2) × 10−4 (7.9 ± 1.1) × 1011 (9.3 ± 2.3) × 10−5 (8.4 ± 1.3) × 1011

Table 15. Best-fitting Schechter parameters for the rest-frame total IR 1/Vmax luminosity functions in the PACS 100 μm band.

ΛCDM CBGH OCBGH
z̄ ϕ∗ L∗ ϕ∗ L∗ ϕ∗ L∗

0.2 (9.9 ± 2.2) × 10−4 (1.6 ± 0.3) × 1011 (1.3 ± 0.2) × 10−3 (1.2 ± 0.2) × 1011 (1.9 ± 0.4) × 10−3 (8.7 ± 1.4) × 1010

0.4 (1.6 ± 0.2) × 10−3 (1.9 ± 0.2) × 1011 (2.0 ± 0.2) × 10−3 (1.7 ± 0.1) × 1011 (2.3 ± 0.2) × 10−3 (1.6 ± 0.1) × 1011

0.5 (1.4 ± 0.2) × 10−3 (2.9 ± 0.3) × 1011 (1.8 ± 0.2) × 10−3 (2.6 ± 0.2) × 1011 (2.3 ± 0.2) × 10−3 (2.2 ± 0.2) × 1011

0.7 (1.9 ± 0.3) × 10−3 (3.6 ± 0.4) × 1011 (1.5 ± 0.2) × 10−3 (4.0 ± 0.4) × 1011 (3.7 ± 0.5) × 10−3 (2.5 ± 0.2) × 1011

0.9 (6.4 ± 0.8) × 10−4 (8.7 ± 0.7) × 1011 (1.0 ± 0.1) × 10−3 (7.1 ± 0.5) × 1011 (1.5 ± 0.2) × 10−3 (5.7 ± 0.4) × 1011

1.1 (4.8 ± 1.0) × 10−4 (1.3 ± 0.2) × 1012 (9.7 ± 1.8) × 10−4 (9.1 ± 1.1) × 1011 (1.3 ± 0.2) × 10−3 (8.0 ± 0.8) × 1011

1.5 (3.9 ± 0.5) × 10−4 (2.0 ± 0.1) × 1012 (4.0 ± 0.5) × 10−4 (1.8 ± 0.1) × 1012 (5.9 ± 0.7) × 10−4 (1.5 ± 0.1) × 1012

1.9 (9.2 ± 2.1) × 10−5 (5.1 ± 0.7) × 1012 (2.4 ± 0.5) × 10−4 (3.5 ± 0.4) × 1012 (3.2 ± 0.8) × 10−4 (3.3 ± 0.5) × 1012

2.2 (8.4 ± 2.0) × 10−5 (5.9 ± 0.7) × 1012 (1.7 ± 0.4) × 10−4 (4.4 ± 0.5) × 1012 (3.1 ± 0.7) × 10−4 (3.5 ± 0.4) × 1012

2.8 (2.2 ± 0.8) × 10−4 (6.3 ± 1.1) × 1012 (2.8 ± 1.0) × 10−4 (5.2 ± 0.9) × 1012 (2.0 ± 0.8) × 10−4 (5.4 ± 1.1) × 1012

3.6 (3.8 ± 3.0) × 10−6 (2.4 ± 1.5) × 1013 (5.0 ± 5.9) × 10−6 (2.3 ± 2.6) × 1013 (1.4 ± 0.9) × 10−5 (1.2 ± 0.7) × 1013

Table 16. Best-fitting Schechter parameters for the rest-frame total IR 1/Vmax luminosity functions in the PACS 160 μm band.

ΛCDM CBGH OCBGH
z̄ ϕ∗ L∗ ϕ∗ L∗ ϕ∗ L∗

0.2 (1.1 ± 0.2) × 10−3 (1.6 ± 0.3) × 1011 (1.8 ± 0.3) × 10−3 (1.0 ± 0.2) × 1011 (2.5 ± 0.5) × 10−3 (7.9 ± 1.2) × 1010

0.4 (1.6 ± 0.2) × 10−3 (2.0 ± 0.2) × 1011 (2.0 ± 0.2) × 10−3 (1.8 ± 0.1) × 1011 (2.3 ± 0.2) × 10−3 (1.6 ± 0.1) × 1011

0.5 (1.3 ± 0.2) × 10−3 (2.9 ± 0.3) × 1011 (2.0 ± 0.2) × 10−3 (2.4 ± 0.2) × 1011 (2.6 ± 0.3) × 10−3 (2.1 ± 0.1) × 1011

0.7 (9.8 ± 1.2) × 10−4 (5.1 ± 0.5) × 1011 (1.3 ± 0.1) × 10−3 (4.4 ± 0.3) × 1011 (1.5 ± 0.2) × 10−3 (4.0 ± 0.4) × 1011

0.9 (5.1 ± 0.6) × 10−4 (1.01 ± 0.09) × 1012 (1.1 ± 0.1) × 10−3 (7.0 ± 0.5) × 1011 (1.7 ± 0.2) × 10−3 (5.5 ± 0.3) × 1011

1.1 (5.0 ± 0.8) × 10−4 (1.3 ± 0.1) × 1012 (1.1 ± 0.1) × 10−3 (8.6 ± 0.7) × 1011 (1.4 ± 0.2) × 10−3 (7.7 ± 0.6) × 1011

1.5 (3.2 ± 0.3) × 10−4 (2.2 ± 0.1) × 1012 (4.2 ± 0.4) × 10−4 (1.8 ± 0.1) × 1012 (5.6 ± 0.6) × 10−4 (1.5 ± 0.1) × 1012

1.9 (7.8 ± 1.1) × 10−5 (5.7 ± 0.6) × 1012 (2.2 ± 0.3) × 10−4 (3.6 ± 0.3) × 1012 (2.6 ± 0.4) × 10−4 (3.2 ± 0.4) × 1012

2.2 (9.6 ± 1.6) × 10−5 (5.6 ± 0.6) × 1012 (1.9 ± 0.3) × 10−4 (4.0 ± 0.4) × 1012 (3.1 ± 0.5) × 10−4 (3.1 ± 0.4) × 1012

2.8 (8.1 ± 2.4) × 10−5 (9.0 ± 1.5) × 1012 (1.9 ± 0.4) × 10−4 (5.8 ± 0.6) × 1012 (1.9 ± 0.4) × 10−4 (5.5 ± 0.6) × 1012

3.6 (1.4 ± 0.6) × 10−5 (1.0 ± 0.3) × 1013 (3.3 ± 1.2) × 10−5 (6.4 ± 1.2) × 1012 (4.9 ± 1.6) × 10−5 (5.8 ± 0.9) × 1012

assuming an open or flat CGBH model makes no significant dif-
ference to such parameters. It seems that they are more strongly
affected by the intrinsic evolution of the sources, and the secular
processes and merging history of galaxy formation than by the
expansion rate of the Universe.

Physically speaking, in terms of tracing the redshift evo-
lution of different galaxy populations using the FIR data in
the present work, the marginally significant difference in the

faint-end slopes, together with the evolution parameters for the
characteristic number densities and luminosities, can be under-
stood as follows: assertions about the number density of FIR
low-luminosity galaxies, broadly related to populations that are
poor in dust content, are still systematically affected by model-
dependent corrections due to survey flux limits in the construc-
tion of the LF. That is, there might be less of these galaxies
in the local Universe (z ≈ 0.3) than what we expect based on
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Fig. 7. Upper panel: redshift evolution of the characteristic luminosity
L∗ on the four datasets of the present work. Lower panel: redshift evo-
lution of the characteristic luminosity φ∗ on the same datasets.

Table 17. Faint-end slope values.

Dataset ΛCDM CGBH OCGBH

L100 μm 0.42 ± 0.04 0.03 ± 0.05 0.03 ± 0.05
L160 μm 0.25 ± 0.06 0.00 ± 0.05 0.00 ± 0.05
LIR,100 μm 0.67 ± 0.06 0.38 ± 0.08 0.33 ± 0.09
LIR,160 μm 0.61 ± 0.07 0.26 ± 0.09 0.2 ± 0.1

the underlying standard model. On the other hand, evolution
of the FIR high-luminosity end, broadly related to populations
with high dust content, is well constrained by the flux limits
of the PEP survey where the underlying cosmological model is
concerned.

6. Conclusions

In this work we have computed the FIR luminosity functions for
sources in the PEP survey, observed at the Herschel/PACS 100
and 160 μm bands. We computed both monochromatic and total
IR luminosities assuming both the ΛCDM standard and GBH
void cosmological models, with the aim of assessing how robust
the luminosity functions are under a change of observationally
constrained cosmologies.

We conclude that the current observational constraints
imposed on any cosmological model by the combined set

Fig. 8. Upper panel: effect of the luminosity distance − redshift rela-
tion on the shape of the LF. The black points were computed using the
1/Vmax method, assuming both dL(z) and r(z) relations stemming from
the standard model, while the blue and red points kept the r(z) relation
for the ΛCDM model, changing only the dL(z) relation for that in the
listed void model. The effect of the dL(z) relation on the shape of the LF
is clear, especially at the lower luminosity bins. Lower panel: effect of
the comoving distance − redshift relation on the shape of the LF. The
black points were computed using the 1/Vmax method, assuming both
dL(z) and r(z) relations stemming from the standard model, while the
blue and red points kept the dL(z) relation for the ΛCDM model, chang-
ing only the r(z) relation for that in the listed void model. The effect of
the r(z) relation on the shape of the LF is found to be much less relevant
than that of the dL(z) relation.

Table 18. Comoving number density and characteristic luminosity evo-
lution parameters.

Dataset Model A B

ΛCDM (5.2 ± 1.0) × 10−1 (−3.3 ± 0.6) × 10−1

L100 μm CGBH (5.6 ± 1.0) × 10−1 (−4.5 ± 0.8) × 10−1

OCGBH (5.5 ± 0.9) × 10−1 (−4.2 ± 0.7) × 10−1

ΛCDM (6.8 ± 0.8) × 10−1 (−7.6 ± 0.6) × 10−1

L160 μm CGBH (5.4 ± 0.9) × 10−1 (−5.8 ± 0.8) × 10−1

OCGBH (5.4 ± 0.9) × 10−1 (−5.8 ± 0.8) × 10−1

ΛCDM (6.4 ± 0.5) × 10−1 (−6.6 ± 1.0) × 10−1

LIR,100 μm CGBH (6.4 ± 0.4) × 10−1 (−6.3 ± 0.9) × 10−1

OCGBH (6.3 ± 0.5) × 10−1 (−6.1 ± 0.7) × 10−1

ΛCDM (5.8 ± 0.7) × 10−1 (−5.9 ± 0.5) × 10−1

LIR, 160μm CGBH (5.6 ± 0.7) × 10−1 (−5.1 ± 0.3) × 10−1

OCGBH (5.6 ± 0.7) × 10−1 (−5.1 ± 0.3) × 10−1
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of SNe + CMB + BAO results are enough to yield robust es-
timates for the evolution of FIR characteristic luminosities L∗

and number densities, φ∗.
We find, however, that estimations of the faint-end slope of

the LF are still significantly dependent on the underlying cos-
mological model assumed, despite the above-mentioned obser-
vational constraints. In other words, if there is indeed an un-
derdense region around the Milky Way, as predicted by the
GBH models, causing the effective metric of the Universe at Gpc
scale to be better fit by an LTB line element, then assuming the
spatial homogeneous ΛCDM model in the computation of the
LF would yield an over-estimated number density of faint galax-
ies, at least at lower redshifts (up to z ≈ 0.4).

To answer the original questions posed: the characteristic
number density and the characteristic luminosity parameters of
the FIR luminosity functions derived here are made robust by
the present constraints on the cosmological model. The faint-
end slope, however, still shows significant differences among the
cosmologies studied here.

We show that these differences are caused mainly by slight
discrepancies in the luminosity distance − redshift relation, still
allowed by the observations. The 1/Vmax methodology studied
here is a necessary way to compute the LF using a flux-limited
survey like PEP. This methodology, as we show, is not biased by
the kind of under-dense regions proposed by the alternative cos-
mologies studied here. On the other hand, the necessary volume
corrections intrinsic to the method are still dependent enough
on the underlying assumptions about the geometry and expan-
sion rate of the Universe at Gpc scale to yield significant (≈3-σ)
discrepancies in their results. In other words, the systematic dis-
persion in the values of the low luminosity LF points, caused by
the (arguably still) remaining degree of freedom in the choice
of the underlying cosmological model, combined with the cur-
rent flux limits, is still significantly larger than the statistic un-
certainty assumed in the computation of the error bars of those
points, causing the differences in the LF values to be larger than
the combination of their computed uncertainties.

Surveys with lower flux limits would allow lower FIR-
luminosity sources to be fully accounted for, reducing the
marginally significant dependency of the FIR LF on the cosmo-
logical model still detected here.
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Appendix A: Mock catalogues

In this appendix we test whether the 1/Vmax LF estimator is re-
liable for studying Gpc scale voids like the ones proposed by
the GBH models, embedded in an LTB dust model. We follow
the general approach by Takeuchi et al. (2000) who made use
of mock catalogues that were built assuming a non-central and
small void with a radius of 1.6 Mpc at a distance of 0.8 Mpc,
and at a limiting redshift of z = 0.1. Our mock catalogues are
built using the matter density distributions in the GBH models,
as shown in Fig. 1. In addition, the redshift range of our interest
is four times larger since we want to test the validity of the esti-
mator in the interval Δz = [0.01, 0.4] where we fit the faint-end
slope of the luminosity functions.

Mock catalogues were built by reproducing the detection
limits and SED distributions in the GOODS-S and COSMOS
fields in the PACS 100 and 160 μm filters, as listed in Gruppioni
et al. (2013). We chose these two fields to better represent the
whole of the data used in this work: GOODS-S is the field with
the lowest flux limits in the PEP survey, while COSMOS is the
one with the widest effective area.

Naively, one might decide to use the matter density distri-
butions in Fig. 1 to randomly assign comoving distances to the
sources in the mock catalogue. However, given the large redshift
interval we aim to cover in our simulations, the redshift evolu-
tion of the density profiles must be fully considered.

For each of the present-time, rest-frame (z = 0) matter den-
sity profiles ΩM(r), defined in a constant time coordinate hyper-
surface, and fit by both the standard model and the void models
(see Fig. 1), we compute the corresponding redshift evolution,
ΩM(z), defined in the past lightcone of the same cosmological
model. In the FLRW spacetime, the dimensionless density pa-
rameters ΩM and ΩM(z) are related as follows:

ΩM(z) = ΩM

[
H0

H(z)

]2

a(z)−3, (A.1)

where H(z) is the Hubble parameter at redshift z, carried over
from the definition of the critical density ρc = 3H2

0 /8πG,
and a(z) the scale factor, both as functions of the redshift.
Similarly, following the definition of ΩM(r) used in GBH and
Zumalacárregui et al. (2012), one may write an analogue equa-
tion in the void-LTB models as

ΩM(z) = ΩM[r(z)]

{
H⊥0[r(z)]

H⊥[t(z), r(z)]

}2

a⊥[t(z), r(z)]−3, (A.2)

where H⊥[t(z), r(z)], and a⊥[t(z), r(z)] are now the transverse
Hubble parameter and scale factor, respectively. Figure 1 shows
the redshift evolution of the density parameters in the three mod-
els considered in the present work. We note, however, that there
is an ambiguity in the definition of Eq. (A.2) due to the fact that
the LTB geometry possesses radial expansion rates and scale
factors that are in general different from their transverse coun-
terparts. For the purpose of building mock catalogues that are
consistent with the void-LTB parametrizations used in this work
we chose to use the transverse quantities because those were the
ones used in Zumalacárregui et al. (2012), from where the best-
fit parameters used in this work were taken.

Next, we randomly assign (a) redshifts using a probability
distribution based on one of these ΩM(z) profiles; (b) rest-frame
luminosities, based on an input Schechter LF with parameters
L∗ = 1011 L�, φ∗ = 10−3 dex−1 Mpc−3, and α = −1/2; and (c) a
representative empirical SED from the Poletta templates, drawn
from the same distributions reported in Gruppioni et al. (2013).
In this way we can test first the validity of the 1/Vmax estimator
itself for the purposes of the present work, and then the possible
effects of the different predicted density profiles on the values of
the LF.

Having assigned a redshift, a luminosity and a SED for
each Monte Carlo (MC) realisation, we proceed to compute
k-corrections and fluxes, using the luminosity distance-redshift
relation consistent with the cosmology assumed for the redshift
assignment. We include the source in the mock catalogue if its
observed flux is larger than the detection limit of the field. We
repeat this process until we have a catalogue with a number of
selected MC realisations equal to the number of sources in the
redshift interval Δz = [0.01, 0.4] for a given field.

A15, page 18 of 20



A. Iribarrem et al.: Void-cosmology systematics on the FIR LF

Fig. A.1. Results for the 1/Vmax LF estimator, computed from mock
catalogues assuming a constant density profile ΩM = 0.27 (ΛCDM),
and the underdense profiles of Eq. (15) for the GBH void models
(Fig. 1). Source luminosities in the mock catalogues are drawn from
the Schechter LF (here shown by a green dashed line, with parameters
L∗ = 1011 L�, ϕ∗ = 10−3 dex−1 Mpc−3, and α = −1/2). Flux limits and
SED are taken from the results of Gruppioni et al. (2013) for the PEP
survey dataset in the GOODS-S field.

Fig. A.2. Same as Fig. A.1, but assuming the redshift evolution of the
matter density profiles in both the standard (ΛCDM) and the void-LTB
models as in Fig. 1.

We then compute the 1/Vmax LF following the same method-
ology described in Sect. 2.3, using 100 mock catalogues built
as described above. To assess the goodness-of-fit of the 1/Vmax
LF versus the input Schechter profile, we compute the one-sided
Kolmogorov-Smirnov (KS) statistic of the normalised residuals
against a Gaussian with zero mean and unit variance. We plot
the 1/Vmax points computed using the mock catalogues against
the input Schechter LF used in their build-up in Figs. A.1−A.3
The KS statistic for each mock/input comparison is given in
parentheses in the plots. The smaller this value, the closer the
normalised residuals are to a Gaussian with zero mean and unit
variance.

We find that the matter density parameter profiles of interest
do not change the LF results significantly, as can be seen by
comparing different panels in a figure. We note what appears
to be a general bias towards under-estimating the characteristic
luminosity L∗ in agreement with the Smith (2012) results.

Fig. A.3. Same as Fig. A.2, but for the PEP survey dataset in the
COSMOS field.

Comparison between the 1/Vmax LF results for the GOODS-
S mock catalogues built using either the present-time den-
sity profiles (Fig. A.1) or the appropriate redshift evolution
(Fig. A.2), shows that the method successfully takes into consid-
eration the redshift distortion in the matter distribution, yielding
points in both cases that recover the input LF profile qualitatively
close to each other, with respect to their KS statistics.

Comparison between the mock catalogues for the GOODS-S
(Fig. A.2) and COSMOS (Fig. A.3) fields built using the redshift
evolution of the density parameter in the different cosmological
models shows that the 1/Vmax estimator fares slightly better in
the deeper GOODS-S field than the wider COSMOS field.

Summing up, even if the method is not perfectly robust un-
der a change in the cosmological model, the variations caused
by a change in the underlying cosmology in the results obtained
with the 1/Vmax estimator are not enough to explain the signifi-
cant differences in the shape of the LF at the considered redshift
interval, Δz = [0.01, 0.4].
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