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ABSTRACT

Context. Cosmic ray ion irradiation affects the chemical composition of and triggers physical changes in interstellar ice mantles in
space. One of the primary structural changes induced is the loss of porosity, and the mantles evolve toward a more compact amorphous
state. Previously, ice compaction was monitored at low to moderate ion energies. The existence of a compaction threshold in stopping
power has been suggested.

Aims. In this article we experimentally study the effect of heavy ion irradiation at energies closer to true cosmic rays. This minimises
extrapolation and allows a regime where electronic interaction always dominates to be explored, providing the ice compaction cross
section over a wide range of electronic stopping power.

Methods. High-energy ion irradiations provided by the GANIL accelerator, from the MeV up to the GeV range, are combined with
in-situ infrared spectroscopy monitoring of ice mantles. We follow the IR spectral evolution of the ice as a function of increasing
fluence (induced compaction of the initial microporous amorphous ice into a more compact amorphous phase). We use the number
of OH dangling bonds of the water molecule, i.e. pending OH bonds not engaged in a hydrogen bond in the initially porous ice
structure as a probe of the phase transition. These high-energy experiments are combined with lower energy experiments using light
ions (H, He) from other facilities in Catania, Italy, and Washington, USA.

Results. We evaluated the cross section for the disappearance of OH dangling bonds as a function of electronic stopping power. A
cross-section law in a large energy range that includes data from different ice deposition setups is established. The relevant phase
structuring time scale for the ice network is compared to interstellar chemical time scales using an astrophysical model.
Conclusions. The presence of a threshold in compaction at low stopping power suggested in some previous works seems not to
be confirmed for the high-energy cosmic rays encountered in interstellar space. Ice mantle porosity or pending bonds monitored by
the OH dangling bonds is removed efficiently by cosmic rays. As a consequence, this considerably reduces the specific surface area
available for surface chemical reactions.

Key words. cosmic rays — dust, extinction — ISM: molecules — line: profiles — molecular processes

1. Introduction

Icy mantles covering interstellar dust grains are present in the
molecular clouds of our galaxy. These astrophysical environ-
ments are exposed to cosmic rays and ultraviolet photon irra-
diations, leading to a complex chemical evolution of matter that

* Experiments performed at the Grand Accélérateur National d’lons
Lourds (GANIL) Caen, France. Part of the equipment used in this work
has been financed by the French INSU-CNRS program “Physique et
Chimie du Milieu Interstellaire” (PCMI).

Article published by EDP Sciences

can be simulated in the laboratory for a better understanding of
astrophysical processes. Numerous publications have reported
ion bombardment experiments of interstellar ice analogues (e.g.
Palumbo et al. 2008; Hudson & Moore 2001). However, these
experiments are mainly performed at ion energies of 1 MeV or
below, most of them involving irradiations with protons or light
elements. There have been few experimental simulations of the
irradiation by the high-energy cosmic ray component (just below
or above 100 MeV/u, e.g. Seperuelo et al. 2009). Nevertheless,
there is a clear need to study the interaction of high-energy
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cosmic rays with interstellar ices since their energy deposit on
dust grains and ice mantles is expected to be significant.

Often overlooked with respect to chemical modification by
radiolysis, the physical state of water ice is also extremely im-
portant in many ways for astrophysicists, to allow surface physi-
cists, for example, to perform experiments on realistic surfaces
for a better understanding of interstellar chemistry, and in par-
ticular of hydrogen molecule formation. The physical state of
ice (amorphous, crystalline, metastable) results from the inter-
actions with ions, photons, and surface reactions (e.g. Palumbo
et al. 2010; Accolla et al. 2011). It has been shown experimen-
tally using low-energy ion irradiation that the astrophysically
relevant low-temperature porous amorphous ice phase (called
amorphous solid water, ASW) obtained by accretion of water
molecules at 10-15 K is compacted under keV hydrogen irradi-
ation, and evolves towards a compact non-porous but still dis-
ordered amorphous phase (e.g. Palumbo 2006 and article cita-
tions). When performing the experiment with crystalline water
ice annealed at high temperature (above the cubic to hexagonal
ice phase transition) and cooled down to 10 K, the ice struc-
ture is amorphized toward this same intermediate amorphous
phase when exposed to similar beams (e.g. Baratta et al. 1991;
Fama et al. 2010, and references therein). In this article we focus
on higher energy and heavy swift ion irradiations of water-ice
mantles, complemented by low-energy data. The experiments
are described below (Sect. 2), followed by a description of the
results (Sect. 3) and in particular the amorphous phase com-
paction cross-section dependance in a large energy deposition
range. These measurements are relocated in an astrophysical
context (Sect. 4) and open a discussion. A conclusion is drawn in
Sect. 5.

2. Experiments

Swift ion irradiation experiments were performed at the heavy-
ion accelerator Grand Accélérateur National d’Ions Lourds
(GANIL!, Caen, France). Heavy ion projectiles were deliv-
ered on the IRRSUD, SME, and LISE beam lines between
July 2008 and June 2012 (the details are given in Table 1). These
beams were coupled to the CASIMIR (Chambre d’ Analyse par
Spectroscopie Infrarouge des Molécules IRradiées) facility, a
high vacuum chamber (10~7 mbar range) holding an infrared
transmitting substrate cryocooled at 10 K, on top of which an
amorphous ice film was condensed. Details of the experimental
setup are given in Melot (2003). The ice films are produced by
placing the cold window substrate in front of a deposition line.
The film thickness is chosen to give a high band contrast with
respect to the infrared absorption, without saturating the bands.
The thickness is tailored to allow the ion beam to pass through
the film with an almost constant energy deposition. A Nicolet
FTIR spectrometer (Magna 550) with a spectral resolution of
1 cm™! was used to monitor the infrared film transmittance. The
evolution of the spectra was recorded at several fluences.

3. Results

Low-temperature vapour deposited ice is a non-relaxed solid,
with a high microporosity, as revealed by the OH dangling bonds
(OH-db) infrared signatures (with peak positions around 3695
and 3720 cm™!, Fig. 1). It can adsorb large quantities of gases
because of its open porosity. A variety of names for amorphous

! http://pro.ganil-spiral2.eu
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Fig. 1. Left: OH dangling bond baseline corrected absorbance spectra
for different Ne®* irradiation fluences (from top to bottom: 0, 5, 10, 20,
40, 60, 80, 100, 200, 400, 600, 800, 10°, 2x 10%, 4 x 10°, 6x 10* in
units of 10° ions/cm?). The two bands at about 3720 and 3695 cm™!
correspond to 2- and 3-coordinated water molecules, respectively (see
Sect. 4.3 for details). Right: evolution of the OH-db integrated ab-
sorbance as a function of the fluence (squares) and corresponding fitted
exponential decay law (triangles).

ice are used in the literature to describe various formation path-
ways, but many of them are just similar ice prepared in dif-
ferent ways (Loerting et al. 2011). Our cryo-deposited films
correspond to a microporous amorphous solid water (p-ASW),
whose more generic name can be described by the (microp-
orous) low-density amorphous ice (p-LDA) phase. The p-LDA is
the bulk amorphous phase resulting from the annealing of very
low-temperature vapour deposited cryofilms with a density of
about 0.94 g/cm?.

Upon ion irradiation, the disappearance of the OH-db is
the most visible proof of the ice network change when start-
ing with p-LDA ice. The evolution of the spectra and OH-db
integrated optical depth with fluence are shown in Fig. 1 for
the Ne®* ion experiment. The integration is performed over the
3660 to 3730 cm™' range after a spline baseline, fitted on the
continuum on each side, has been subtracted. The evolution
of the OH-db intensities as a function of the dose? for all the
experiments we performed are shown in Fig. 2. For each ex-
periment, the evolution of the OH dangling bonds integrated
absorbance I with the ion fluence ¢ [ion/;\z] is fitted by an
exponential decay related to the ion effective OH-db destruction
cross section o(Se) [A2): 1 (¢, Se) = Iy. exp(—o(Se)¢). The corre-
sponding energy deposition Se for a given ion is evaluated using
the SRIM code (Ziegler et al. 2010).

The results for the dangling bonds destruction cross sections
are displayed in Fig. 3 as a function of electronic stopping power
Se. Additional measurements have been added for light ions at
lower ion energies: data for 200 keV H* from Palumbo (2006),
for 200 keV He*, kindly provided from the Catania group by
G. Strazzulla (see also Gomis et al. 2004) and for 800 keV H*
by Marla Moore from NASA GSFC in Greenbelt, MD (see also
Moore & Hudson 2000). The OH-dB destruction monitoring as
a function of fluence was not the initial goal for the 200 keV He™*
and 800 keV H* light ions experiments. Therefore, a lower

2 The dose is the dose deposited in the ice in eV/molecule, calculated
using the SRIM/TRIM program, and assuming an amorphous ice den-
sity of 0.94 g/cm?.
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Table 1. Summary of experiments.

Ton Ep“ Eou Ser,? ASe?  Sn/Sey,* Ice film Projected o/ Reference
thickness? range® /measurement

(MeV) (MeV) (eV/A) (%) (x107%) (um) (um) (10* A?) date

H* 0.2 0.183 6.05 -5.5 1.29 0.25 3 0.0413 £0.02 Palumbo (2006)

H* 0.8 0.727 2.57 -6.6 0.93 2.56 20 0.0440f8:8§3 Moore?

He* 0.2 0.153 14.5 13.1 6.96 0.34 2.2 0.0785fg:8§ Strazzulla”

Fe?* 3640 3639 62.85 -0.02 0.42 1.5 3.4x10° 1.6+0.8 This work/29-08-2011

Ne®* 19.6 17.7 143.1 -2.6 1.24 1.35 16.1 53+1.2 This work/08-06-2012

Zn%* 606 604 305.3 0.2 0.64 0.64 160 8.0+14 This work/25-11-2010

Ni'3* 45.8 40.4 464.7 0.6 3.10 1.1 19.3 166 This work/03-07-2008

Ta?** 81 71 793.5 6.1 15.9 1.4 20.3 184 +4.1 This work/22-09-2011

Xe?* 91.5 82 804.2 2.8 6.55 1.1 21.2 32+15 This work/29-08-2008

Notes. @ In: ion energy impinging the ice film, Out: energy calculated after crossing the ice film; ’ Sey, is the electronic stopping power at the ice
film entrance and ASe = 100 X (Ser, — Seouw)/Ser, the difference with the ice film exit electronic stopping power, respectively. The values are based
on SRIM/TRIM calculations for pure ice. The absolute scale errors are dominated by the uncertainty for the density considered for the amorphous
ice (0.94 g/cm?) and the intrinsic uncertainties of the cross sections in SRIM/TRIM. © Sn refers to the nuclear stopping power.  approximate
thickness assuming an integrated absorption cross section of 2 x 107'® cm/molecule for the ice stretching mode.  calculated for a hypothetical
semi-infinite ice target. "’ OH-db destruction (porosity loss) cross section. @ 800 keV H* data provided by Marla Moore from NASA GSFC in
Greenbelt, MD (see also Moore & Hudson 2000). ® 200 keV He", data provided from the Catania group by G. Strazzulla (see also Gomis et al.

2004).
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Fig. 2. Evolution of the integrated optical depth of the dangling bonds
as a function of the dose for the experiments performed (the different
symbols correspond to the various projectiles whose parameters are de-
tailed in Table 1). The dashed line correspond to an exponential decay
law.

sampling at low fluences was used, and sets higher upper lim-
its for the error bars (fixing the maximum cross section).

The OH-db destruction cross section dependence in A2 can
be described by o4 (Se) = oPHIP x S, with oPHIP =
131’:50 A3/eV and B = 1.0 + 0.2. The reverse of the cross-
section slope gives a mean value for the energy density u re-
quired to eliminate the OH-dB, associated with the ice com-

paction. The measurements cover the range u 7.6f1’2 X

1073eV/A3, i.e. about 0.24f8:%4 eV/molecule at a density of
0.94 g/cm?, which is comparable to the hydrogen bonding en-
ergy of ice around 0.2 to 0.3 eV/molecule (e.g. Isaacs et al. 1999;
Brill & Tippe 1967). A dispersion with respect to a 8 = 1 slope
for the cross section is observed. We emphasize that this scat-
ter is most probably dominated by the variety of amorphous ice

produced within each setup, as revealed by the ratio of the initial
OH-db integrated absorbance to another ice mode (e.g. libration,
detailed in a forthcoming section). The extreme lower points
from Catania were measured with an ice layer produced by back-
ground deposition, with a resulting initial porosity higher than
for the GANIL experiments where a deposition line directed to-
ward the substrate was used. This introduces a bias that has to
be taken into account when comparing measurements from dif-
ferent laboratories, but it is also a chance to monitor the mag-
nitude of the dependance on the initial dangling bonds density
and the level of porosity. The errors of the absolute calibrations
of fluences among laboratories that would slightly change the
positions on the diagram are of lower amplitude than this effect.

4. Discussion
4.1. Other measurements of compaction

Infrared absorption spectroscopy was previously used by
Palumbo (2006) to study the effects of ion irradiation on the mi-
croporosity of amorphous water ice. The OH dangling bond was
monitored during irradiation with 200 keV protons at 15 K. The
corresponding timescale for ice compaction by a distribution of
cosmic rays was extrapolated and demonstrated to be shorter (a
few millions years) than the estimated lifetime of dense clouds,
above a few 107 years.

Raut et al. (2007a) used 100 keV Ar* ion irradiation to ex-
plore the difference in ultraviolet-visible spectroscopy, infrared
spectroscopy, and methane adsorption/desorption techniques on
the derived microporous ice compaction. They found that the
decrease in internal surface area of the pores monitored via
the dangling bonds in the infrared precedes the decrease in the
pore volume during irradiation, monitored via the film thickness
through interference fringes. The direct comparison with astro-
physics is, however, difficult, as the 100 keV Ar* should, fol-
lowing SRIM calculations, deposit most of the energy in nuclear
interactions (above 2/3 of it along the track), whereas electronic
energy deposition dominates in the interstellar medium. In addi-
tion, the film thickness (4400 A) is higher than the expected ion
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projected range (by about a factor of 2) and thus the energy de-
position is probably inhomogeneous, rendering the comparison
less straightforward.

In a subsequent study, Raut et al. (2008) used a larger set
of beams and focused on visible light spectroscopy coupled to
a microbalance to further constrain the cross section for com-
paction. The derived cross section, lower than the corresponding
Palumbo extrapolated one, gives more time to ice mantles to re-
sist ion irradiation in space, but compaction still takes place on
timescales comparable to a cloud’s lifetime. However, about half
of the ion beams used by Raut et al. (2008) suffer from a signifi-
cant nuclear stopping power contribution and, thus, several kinds
of interactions are mixed. The use of a 220 keV H* by Raut et al.
and 200 keV H* by Palumbo offers the possibility to compare
the cross section deduced with the two different techniques with
similar stopping power, both dominated by electronic energy de-
position. When the correction factor for the small energy differ-
ence is compensated, the dangling bond disappearance measured
by Palumbo (2006) is about six to ten times faster than the poros-
ity recorded using visible spectroscopy only.

The Palumbo (2006) experiment not only monitored the
OH-db decrease but also the CO adsorption capabilities of the
ice film. This technique, used in parallel to the IR spectra, shows
that open porosity decreases faster than the expected compaction
using the technique based on visible light by Raut et al. (2008).
This open porosity defines the ability of small molecules to dif-
fuse inside the amorphous ice pores, as probed by CO diffusion
in the ice film (Palumbo 2006) and CH4 uptake of the film (Raut
et al. 2007a). The disappearance of OH dangling bonds implies
a considerable reduction of the pores but does not necessarily
imply that the resulting structure is a fully homogeneous com-
pact planar film subsequent to the collapse of the pores. It seems
reasonable that a reorganisation of the ice network at the de-
posited film scale (e.g. monitored by interference fringes and
thickness modifications) will require a slightly higher total en-
ergy input than a local restructuring (that affects the local OH
bonds). However, by monitoring the dangling bonds, we charac-
terise the cross section to decrease the surface area of micro-
porous ice, the most important factor for an efficient surface
chemistry in space. In addition, this cross section is the only
available observable for remote detection of ice porosity. One
may thus use the term of open porosity loss as opposed to the
compaction terminology. The first one may be more adapted to
ice mantles in dense clouds, which are topologically different
from planar thin films.

4.2. The existence of a threshold energy

Raut et al. (2008) suggested the occurrence of a stopping power
threshold of 4 eV/A to trigger the destruction of the open poros-
ity of the ice. The existence of a minimum energy would increase
the weight of the heavier ions in the process. In Sect. 4.3 we in-
clude this possibility to explore the expected variations of the
open porosity decrease rates when considering an energy thresh-
old. However the results presented in Fig. 3 do not seem to con-
firm the existence of a threshold with high-energy ions. The stop-
ping power used to deduce the cross section dependence is the
product of the macroscopic cross section and the average en-
ergy loss per collision, thus —?j—f = UQave, Where 1/u is the mean
free path between collisions and Q,,. the mean single-collision
energy-loss spectrum at a molecular level. The mean free path of
1-10 MeV protons in water amounts to several tens to hundreds

of A. For the distributions of single event energy deposition
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cross sections as a function of the stopping power in eV/A. The
dotted line corresponds to the best fit cross section and the yellow
coloured zone defines the boundaries for the cross section curves

(0O (Se oy 4)) = 1314110 Se[lc'(\’f/%?, see text for details).

with 1 MeV protons, ions, or electrons interacting with water
or amorphous ice, the most probable ionisation (dominant pro-
cess) energy loss is about 20 eV. The direct electronic excitation,
dominated by the plasmon is around 21 eV. Both interactions
are well above the previously mentioned threshold (e.g. Hamm
etal. 1985; Pimblott et al. 1990; Dingfelder et al. 2000; Plante &
Cucinotta 2008). The average energy lost per collision is higher
than these values.

The energy deposition range where the probability distribu-
tion dominates the interactions is higher than the compaction
threshold. It explains the efficient radiolysis of water observed
with high-energy protons (e.g. production of H,O,, Moore &
Hudson 2000), that would be difficult below the suggested stop-
ping power threshold if the energy deposition per molecule was
only a small fraction of an eV.

4.3. OH-db intensity and ice porosity

The higher and the lower frequency OH-db features shown in
Fig. 1 have previously been assigned (Buch & Devlin 1991) to
dangling bonds in 2- and 3-coordinated water molecules, respec-
tively. The intensity of these modes, and the comparison to fun-
damental modes of ice can give some insight into the structure
for the amorphous ice.

The variation in vibrational frequencies and absolute in-
frared absorption intensities in small-sized water clusters
(Moudens et al. 2009, Fig. 5) help in determining the OH-
db intensity. At the frequencies were the OH-db are ob-
served, an intensity of about 50—100 km/mole is expected,
i.e. about 0.83-1.66 x 107'7 cm/OH-db. Water dimer experi-
ments (Kuyanov-Prozument et al. 2010) give 96 km/mole for
the free donor OH-stretch band. These values are close to the
gas phase value of 48 km/mole (Rothman et al. 2009). The
strength of the libration mode (around 800 cm™!) of the wa-
ter ice is about 3.1 x 10717 cm/H,O (Gerakines et al. 1995), i.e
1.55 x 1077 ¢m/OH, almost equal to or at most a factor of two
higher than the OH-db. The ratio of these band integrated ab-
sorbances thus reflects the OH-dB fraction.
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Table 2. Infrared Space Observatory observations.

Source Right Declination SWS Find” TDT¢ Observation
ascension template? (s) date
AFGL 989 0641 10.1 09 29 35.8 1.3 3454 72602619 1997 Oct. 31
W33 A 1814394 -175201.4 1.4 6538 32900920 1996 Oct. 10
181439.0 -175204.0 6 7506 46700801 1997 Feb. 25
S140 2219182 631847.6 1.4 6538 22002135 1996 Jun. 24
2219182 631847.2 6 5270 26301731 1996 Jul. 06
Elias 29 1627 09.3 -243721.1 1.3 3454 26700814 1996 Aug. 09
Elias 16 04 3938.8 261126.8 6 8682 68600538 1997 Oct. 01
RCrAIRS1 190150.7 -36589.9 1.4 6538 52301106 1997 Apr. 22

Notes. ) Infrared Space Observatory, Short Wavelength Spectrometer (SWS) instrument observation template. ” Observation total integration

time. ) Target dedicated time number of the observation.

Most of the experiments of direct ice deposition from wa-
ter vapour on a cold substrate at low temperature presented here
thus have about 0.5 to 1% of OH dangling bonds (the highest
value corresponds to the background deposition, with a poros-
ity of about 0.2). Higher relative intensities of dangling bonds
(and thus higher porosities) can be obtained using experimen-
tal specific procedures, such as high inclination of the substrate
window with respect to the water injection axis (e.g. Stevenson
et al. 1999), or co-deposition with a rare gas that is eventually
subsequently sublimated, leaving the pores free (e.g. Givan et al.
1996).

The relation between the measured porosity and the inte-
grated optical depth of the dangling bonds seems to be al-
most linear, provided that the microporosity dominates. Using
values in Table 1 from Raut et al. (2007b), we find that
the porosity is approximately equal to the integrated optical
depth of the dangling bonds when normalized to 10'® H,O
molecules.

Taking into account the OH-dB profile of Fig. 1, this trans-
lates into

Ton-ap (3695 cm™")

Q

19 X 10_ fporosity f OH’i ﬂmdf/

band
3.9 X 10 fporosity N,0[ 10™® em™]
Wlth 0 Sfi)()rosi[y < 1

Q

Measurements using co-expansion with rare gases (Rowland &
Devlin 1991) produce ice clusters whose size can be estimated
from the ratio of the dangling surface modes to the bulk ice
absorption.

When the situation in space is dominated by background de-
position, i.e. that gas phase accretion contribution dominates, it
leads to an intermediate porosity level (about 0.2). The experi-
ments with the highest initial porosity, obtained by background
deposition and corresponding to this space situation, translate
into cross sections in the lower part of the range (Fig. 3) de-
termined with O'OOHd'b' € [65-130] A3 /eV. The formation of
many species, including water, can proceed directly on the sur-
face of grains (e.g. Oba et al. 2009; Dulieu et al. 2010) and thus
does not enter stricto sensu to this regime. The initial degree of
porosity when ices are produced by surface reactions in space is
thus difficult to set, as they proceed on uneven irregular surfaces,
are hardly reproducible in the laboratory, co-mixed with other
species, are constantly desorbed by various energetic processes
such as photodesorption, cosmic rays sputtering or eventually
chemical reactions and subsequently frozen out (e.g. Hollenbach
et al. 2009).

4.4. Astrophysical implications
4.4.1. Observations

Many articles discuss the presence of OH dangling bonds in
astrophysical environments, but almost none compares them
explicitely to astronomical spectra. There are only scarce ob-
servational constraints, where isolated OH dangling bonds are
not observed (Keane et al. 2001). Many ground-based and
satellite infrared spectra of young stellar objects exhibiting
strong water-ice stretching mode absorption do exist, but the
OH dangling bond spectral region is unobservable from the
ground. The unique satellite that allowed this region to be ob-
served is the Infrared Space Observatory. We retrieved Short
Wavelength Spectrometer data (de Graauw et al. 1996) from the
Infrared Space Observatory database’ for some bright embed-
ded sources with sufficient signal-to-noise ratios. The sources
selected (Table 2) have different degrees of contribution from
crystalline water ice arising in the most central regions of their
surrounding dusty envelopes. Other sources, with higher signal-
to-noise but clearly showing fully crystalline ice were excluded.
In some cases (W33 A and S140), full resolution (SWS06) data
were stitched to the available SWSO01 observation template to
benefit from the increase in signal-to-noise in the dangling bonds
spectral region.

Optical depth spectra for the ice component were ob-
tained from a continuum baseline subtraction of Infrared Space
Observatory and are shown in Fig. 4. They are compared to lab-
oratory spectra of pure H,O and CO; ice, and a H;O:CO, 12:1
mixture. The CO, and a H,0:CO, laboratory spectra are nor-
malised to the CO, column density observed with the antisym-
metric stretching mode at 4.27 um*. The H,O dangling bond
spectrum was normalized with the relation discussed in the pre-
ceeding section, assuming a porosity of 0.2, and integrating the
OH stretching mode. In this way they can be directly compared.
The result of this comparison is that the only absorptions emerg-
ing are combination modes of the CO, component present in the
ice mantles of all these sources (see Keane et al. 2001, for a de-
tailed discussion for S140), and no free OH dangling bonds are
observed at the signal to noise level of the observations. The con-
straints are not always stringent for all the amorphous ice mantle
line of sight observations, but contrast with the CO, combina-
tion modes that are detected. In the sequel, we compare this lack

3 http://iso.esac.esa.int
* Using Aco, = 7.6x107!7 cm molecule™" from Gerakines et al. (1995)
for this mode, corresponding to Aco, = 1.4 X 107'® cm molecule™ for
the v; + v3 mode around 2.7 um.
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Fig. 4. Young stellar objects spectra measured with the Short Wavelength Spectrometer onboard the Infrared Space Observatory, compared to
various laboratory ice mixtures recorded spectra. The optical depth astrophysical spectra are obtained from a continuum baseline subtraction. A
close up on the dangling bond region is plotted in the left part of each panel. These spectra are compared to laboratory spectra of pure H,O and
CO; ice, and a HO:CO, 12:1 mixture. The CO, and a H,O:CO, laboratory spectra are normalised to the CO, column density observed in the
mid-IR. The H,0 dangling bond spectrum was normalized with the relation discussed in the preceeding section, assuming a porosity of 0.2, and

integrating the OH stretching mode. See text for details.

of detection to the results of our calculations of the OH-dB de-
struction timescale.

4.4.2. Open porosity destruction timescale

Our cross section measurements can be used to infer the time
scale 7 for the loss of open porosity of ice mantles. This rate can
be evaluated by integrating the product of this cross section with
the cosmic ray flux over their energy and abundance distribution
following

0 dN
-1 OHd.b.
=4 g E, — E, dE 1
T n EZ fE (E,2) 3 (E.2) ey
where oOH4>[cm?] is the loss of open porosity
cross-section monitored by the OH dangling bonds,

dX(E, Z)[particlescm™2s~! sr™!/(MeV/nucleon)]  the differ-
ential flux of cosmic ray element of atomic number Z, with
a cutoff in energy En;, set at 100 eV. The cross section
oOHdb(E 7) is evaluated by combining the cross section
oOHdb (Se) established experimentally and the calculated
electronic stopping cross section Se using the SRIM code
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(Ziegler et al. 2010) as a function of atomic number Z and
energy per nucleon E. For the differential flux we adopt
the functional form given by Webber & Yushak (1983) also
described in Shen et al. (2004)

dN C Ep°
—(E.Z)= —Y _ 2
dE( .Z) E+Eo 2

where C is a normalisation constant and Ey, a form param-
eter allowing one to account for the low-energy cosmic ray
distribution.

The ionisation rate ({) corresponding to the same distribu-
tion can be calculated, and gives an observable comparison with
astrophysical observations in various environments, essentially
through H** ion observations (McCall et al. 2003; Dalgarno
2006; Geballe & Oka 2010; Indriolo & McCall 2012). Low-
energy cosmic rays are less efficient in penetrating dense clouds,
as diffuse interstellar medium rates are much higher than dense
cloud rates. Indriolo & McCall (2012) have shown (their Fig. 19)
a transition from a mean diffuse medium cosmic ray ionisation
rate of £ = 3.53:8 x 10719571 to ionization rates inferred in dense

clouds a few times 1077 s™!, i.e. approximately an order of mag-
nitude lower. The form parameter E( applied to the differential


http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201321636&pdf_id=4

E. Dartois et al.: Swift heavy ion irradiation of water ice from MeV to GeV energies

Table 3. OH-db destruction rates.

GCR O

Ey=200 E,=400 E, =600 Ey=200 E,=400 E, =600
Z(s™hHe 3.34(-16) 5.89(-17) 2.12(-17) 1.70(-16)  3.00(-17) 1.08(-17)
Eq = 0eV/A?
Light¢ 0.589 0.580 0.576 0.935 0.933 0.932
Z>3 0.411 0.420 0.424 0.065 0.067 0.068
Fe 0.073 0.078 0.080 0.012 0.013 0.014
(My)* 0.14 0.71 1.82 0.25 1.34 3.48
Egq =4 eV/A?
Light¢ 0.122 0.090 0.075 0.534 0.455 0.410
Z>34 0.878 0.910 0.925 0.466 0.545 0.590
Fe 0.179 0.213 0.238 0.101 0.139 0.168
7(My)* 0.33 1.94 5.43 2.09 14.11 42.79

Notes. Calculated with the best fit cross section o°Hd(Se) = 131 x Se(eV/A)!'0. 4.05(—16) means 4.05 x 107'6; @ calculated ionisation rate;
®) adopted cross section stopping power threshold; ) fraction of the OH-db destruction rate induced by H and He ions; @ fraction of the OH-db
destruction rate induced by Li to Ni ions; © OH-db calculated destruction time scale. A destruction time scale of one million years corresponds to

a rate of about 3.17 x 1071 71,

flux of the cosmic rays allows the various observed ionization
rates to be explored. The ionisation rate can be evaluated by re-
placing "4 by the ionisation cross section o;

= 4772 fw oi(E,Z)(1 + (DS(E,Z))%(E,Z)dE 3)
7~ Enin
~4n(l +n) fm op(E)(1 + Og(E p))ﬂdE 4)
Eun S E Y Ey T
where
fk 2
n=S"1z 5)
k=2 o ‘

is the factor to include the heavier elements’ ionisation contri-
bution (77); fr is the fractional abundance of species k, Ay its
number of nucleons, and Z; its charge. The cross section for
ionisation o,(E) is taken as the sum of the proton ionisation
cross section (Rudd et al. 1985) and electron capture at low en-
ergies (Rudd et al. 1983) as in Padovani et al. (2009); ®s(E, Z) is
the secondary electron contribution to the ionisation, taken from
Glassgold & Langer (1973).

Two distributions of cosmic ray abundances are generally
adopted in models: galactic cosmic rays (GCR) and, intriguingly,
solar system (sol. syst.) abundance. The abundance of galactic
cosmic rays adopted for H and He is from Wang et al. (2002), Li
and Be from de Nolfo et al. (2006), and for elements above Be
from George et al. (2009). For the solar system elemental abun-
dances, we use a model distribution given by Lodders (2003)
(Table 6). The distribution of cosmic rays impinging on a cloud
should in principle be closer to the GCR distribution, but both
are used in our modelling for comparison.

Table 3 summarizes the calculations with the determined
open porosity decrease cross section. As expected from the dis-
tribution of elements, the contribution of heavier elements to the
open porosity decrease rate is higher for GCR than for sol. syst.
abundances. The deduced ionisation rates are also better repro-
duced by GCR. The existence of a threshold would not only
further increase the relative heavy ion contribution, but also the
timescale for open porosity disappearance by a factor of about 3

for GCR and up to 10 for sol. syst. distributions, suppressing the
effect of most light elements.

The GCR distribution, combined with the cross section from
the experiments presented in this article reproduces the ionisa-
tion rate and decreases the ice porosity in time scales of 1.4 x 10°
to 2 x 10° years, depending on the adopted low-energy ions
normalisation. This is in agreement with the observational con-
straints discussed above, where isolated OH dangling bonds are
not observed.

5. Conclusion

We have studied the loss of open porosity of amorphous ice films
submitted to high-energy ion irradiations in the MeV to GeV
range. The probe transition of the phase evolution is the number
of OH dangling bonds, i.e. pending water molecule OH bonds
not engaged in a hydrogen bond in the initially porous ice struc-
ture. Combined with previous experiments using lower energy
light ions from other facilities, we evaluated a cross section for
the disappearance of porosity as a function of electronic stop-
ping power in a three-decade range. The relevant phase struc-
turing time scale for the ice network is compared to interstellar
chemical time scales using an astrophysical model including the
expected galactic cosmic ray distribution of abundances.
The main conclusions are:

The experimentally measured variations in the open poros-
ity loss cross section reflect the various initial porosities that
have to be taken into account when comparing different lab-
oratories’ experiments.

— The previously suggested presence of a threshold in com-
paction at low stopping power for high-energy cosmic rays
such as encountered in interstellar space seems not to be
confirmed.

— The galactic cosmic ray distribution of ion abundances re-
produces the ionisation rate observed and provides ice com-
paction time scales in the range from 1.4 x 10° to 2 x
10° years.

— Ice mantle porosity or pending bonds as monitored by the

OH dangling bonds, are removed efficiently by cosmic rays.
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Reactivity favoured by the large surface to volume ratio and
many potential wells as measured using freshly deposited
amorphous ice at low temperature can only be considered
as upper limits to the reactivity encountered in astrophysical
media. The consequence for astrochemistry is that it consid-
erably reduces the specific surface area available for chemi-
cal reactions, lowering the surface chemistry rates.
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