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ABSTRACT

Context. Filaments are ubiquitous in the interstellar medium, as recently emphasized by Herschel, yet their physical origin remains
elusive
Aims. It is therefore important to understand the physics of molecular clouds to investigate how filaments form and which role play
various processes, such as turbulence and magnetic field.
Methods. We used ideal magnetohydrodynamic (MHD) simulations to study the formation of clumps in various conditions, including
different magnetization and Mach numbers as well as two completely different setups. We then performed several analyses to compute
the shape of the clumps and their link to velocities and forces using various approaches.
Results. We found that on average, clumps in MHD simulations are more filamentary than clumps in hydrodynamical simulations.
Detailed analyses reveal that the filaments are in general preferentially aligned with the strain, which means that these structures
simply result from the stretch induced by turbulence. Moreover, filaments tend to be confined by the Lorentz force, which therefore
leads them to survive longer in magnetized flows. We show that in all simulations they have a typical thickness equal to a few grid
cells, suggesting that they are primarily associated to the energy dissipation within the flow. We estimate the order of magnitude of the
dissipation length associated to the ion-neutral friction and conclude that in well UV shielded regions it is about 0.1 pc and therefore
could possibly set the typical size of non-self-gravitating filaments.
Conclusions. Filaments are ubiquitous because they are the results of the very generic turbulent strain and because the magnetic field
helps to keep them coherent. We suggest that energy dissipation is playing a determining role in their formation.
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1. Introduction

After more than three decades of research, the evidence for the
filamentary structure of the molecular clouds seen through their
CO emission has become clear (e.g. Ungerechts & Thaddeus
1987; Bally et al. 1987). The far-IR all-sky IRAS survey (Low
et al. 1984) also revealed the ubiquitous filamentary structure of
the diffuse interstellar medium (ISM), and discovered the cirrus
clouds, i.e., the filamentary structure of the ISM.

Thanks to its unprecedented sensitivity and large-scale map-
ping capabilities, the satellite Herschel has now provided a
unique view of these filamentary structures of cold dust (e.g.
Miville-Deschênes et al. 2010; Ward-Thompson et al. 2010;
André et al. 2010). One of the main and intriguing findings is
the very wide range of column densities – a factor of 100 be-
tween the most tenuous (NH2 = 2 × 1020 cm−2) and most
opaque (NH2 ∼ 1023 cm−2) of the observed filaments in several
fields, contrasting with a narrow range of filament thickness (be-
tween 0.03 and 0.2 pc) that is barely increasing with the central
column density (Arzoumanian et al. 2011). The present study is
largely motivated by this result, though as described below, it is
too early to conclude.

While the filamentary nature of molecular clouds is prob-
ably linked to their turbulence, the exact mechanism by
which this happens remains to be understood. In many pub-
lished numerical simulations, filaments are clearly present (e.g.

� Appendices are available in electronic form at
http://www.aanda.org

de Avillez & Breitschwerdt 2005; Heitsch et al. 2005; Joung &
MacLow 2006; Padoan et al. 2007; Hennebelle et al. 2008; Price
& Bate 2008; Banerjee et al. 2009; Inoue et al. 2009; Nakamura
& Li 2008; Seifreid et al. 2011; Vázquez-Semadeni et al. 2011;
Federrath & Klessen 2013), but again the exact reason of their
formation mechanism is not very clearly analyzed. Based on the
evidence for higher velocities in the outer part of the filaments,
Padoan et al. (2001) proposed that filaments form through the
collision of two shocked sheets. Another explanation invokes
instabilities in self-gravitating sheets (e.g. Nagai et al. 1998).
Although it is clear that since filaments are denser than their
environment, some compression must necessarily occur, it is im-
portant to understand the conditions in which the filament forma-
tion happens in greater detail. An important question, in partic-
ular, is the origin of the elongation. Is the elongation produced
by the contraction along two directions, as would happen in a
shock or in a converging flow? Or is the elongation the result
of the stretching of the fluid particles along one direction? The
purpose of this paper is to investigate these questions.

The paper is organized as follows. In the second part we de-
scribe the analysis that we performed on the clumps and the fil-
aments formed in the numerical simulations. We also describe
the various runs that we carried out to understand the filament
origin. In the third section, we present a simple but enlighten-
ing preliminary numerical experiment that clearly demonstrates
that the mechanism we propose can actually work. In the fourth
section we show the numerical simulations and present the
clump statistics, such as their aspect ratio, length, and thickness
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distributions. In the fifth section we analyze the link between
the filament orientation, the velocity field, and the forces. The
sixth section provides a more detailed discussion of the filament
thickness as well as simple orders of magnitude which suggest
that ion-neutral friction could possibly explain their thickness.
The seventh section concludes the paper.

2. General analysis and numerical simulations

2.1. Structure analysis

We perform numerical simulations relevant for the diffuse and
moderately dense ISM. The mean density we consider reaches
from 5 cm−3 to about 100 cm−3 while the highest densities ex-
ceed a few 103 cm−3.

2.1.1. Definitions

The first difficulty when discussing clouds is to define them. To
identify structures in this work, we followed a simple approach.
The first step was to choose a density threshold (two of them
are used through the paper, nthres = 50 and 200 cm−3) and to
clip the density field. Then using a friend-of-friend analysis, the
connected cells were associated to form a clump. Subsequently,
the structure properties can easily be computed. The structures
obtained through this process are called clumps. In many oc-
casions we also refer to filaments. Filaments as clumps are not
well-identified objects, and although it could be easy to adopt an
arbitary criterion such as an aspect ratio higher than some values,
this would not yield much information. When we use the word
filament simply to refer to a clump that is sufficiently elongated
for instance by a factor of about 5 or more.

2.1.2. Inertia matrix

To estimate the shape of a structure, it is convenient to compute
the inertia matrix and its eigenvalues and eigenvectors. The in-
ertia matrix is a three by three matrix defined as Ii j =

∫
xix jdm,

where xi are the coordinates of the cells belonging to the struc-
ture associated to its center of mass. The three eigenvectors give
the three main axes of the structure, which correspond to the
symmetry axes if the structure, admits some, while the eigenval-
ues represent the moment of inertia of the structure with respect
to the three eigenvectors. From the inertia momentum, Ii, we can
obtain an estimate of the structure size μi =

√
Ii/M, where M is

the structure mass. In the case of filaments, for example, the
eigenvector associated with the highest eigenvalue tends to be
aligned with the main axis of the filament while the two other
eigenvectors tend to be perpendicular to the filament axis. In the
following, we refer to the eigenvector associated to the highest
eigenvalue as the main axis. We also quantify the aspect ratio of
structures by computing the ratio of eigenvalues. We consider
in particular μ1/μ3 and μ2/μ3, the ratios of the smallest over
the largest structure size and the intermediate over the largest,
respectively.

One of the difficulties with this approach is that thin but
curved filaments will have moments of inertia that reflect the
curvature instead of the effective thickness. For this reason, we
use a second method to characterize their shape.

2.2. Strain tensor

The strain tensor is another useful quantity that we used to per-
form our analysis. It was obtained by considering the velocity

difference between two fluid particles located in r and r + dr.
One obtains vi(r + dr) − ui(r) = ∂ juidr j, where summation over
repeating indices is used. The three by three matrix, ∂ jui, can
be splitted into its anti-symmetric part Ai, j = (∂ jvi − ∂iv j)/2,
which describes the rotation of the fluid element and its sym-
metric part S i, j = (∂ jvi + ∂iv j)/2, which describes the shape
modification of the fluid element and is called the infinitesimal
strain tensor. The trace S i,i, which is equal to the divergence
of u, describes the change of volume. The symmetric part can
be diagolized leading to three eigenvalues, si, where we assume
that s3 > s2 > s1. The eigenvector associated to the highest
eigenvalue, s3, describes the axis along which the fluid particle
is mostly elongated, below we call it the strain. In principle since
the divergence of the fluid is non-zero, all eigenvalues could be
negative, which would then correspond to a global contraction.
In practice, this is almost never the case at the scale of the clump
in our simulations. The two other eigenvectors associated to the
two other eigenvalues correspond to the directions along which
the shape of the fluid particle is either stretched or compressed,
depending on their signs.

Computing the strain tensor is not straightforward since
it requires one to take the velocity gradients between cells.
Moreover, because of the numerical diffusion, the gradients at
the scale of the mesh are artificially smoothed. To limit this prob-
lem, we smoothed the simulation by a factor three, computing
the mean density-weighted velocity within the smoothed cells.
Then we computed all velocity gradients using simple finite dif-
ferences and computed the mean gradients by summing over all
cells that belong to the structure. Finally, we used these values
to compute S i j.

2.2.1. Simple skeleton-like approach

Another useful approach is determining an average line charac-
teristic of the clump shape. This type of algorithm has been de-
veloped in the context of Cosmology to reconstruct the filaments
that lead to the so-called skeleton (Sousbie et al. 2009). Here we
follow a simpler approach which is well-suited for our analysis.
The first step is to select the direction (x, y or z) along which the
structure is the longest. Then, we can subdivide it into a number
of slices, nsl, of a given length in the selected direction. Each
slice, i, can itself be divided into nsr connecting regions, that
is to say, regions in which all cells are connected to each other
through their neighbors. Each of these subregions, j, belongs to a
different branch within the structure. Then the center of mass, G j

i
of each of these subregions within each slice can be computed,
leading to an ensemble of points G j

i . For each of them we look
for the nearest neighbor, G j

i of G j
i belonging to the slices i − 1

or i + 1. Finally, we calculate the vector u j
i = ±G j

iG j
i /G

j
iG j

i ,
which gives the local direction of the branch to which G j

i be-

longs. The sign is then chosen to insure u j
i .X > 0, where X rep-

resents the selected axis, x, y or z. Connecting all G j
i to their

respective neighbors, we obtain a curve that represents the mean
local direction. Figure 1 shows an example of a clump extracted
from the fiducial magnetohydrodynamic (MHD) simulation pre-
sented below. The white cells represent the position of G j

i . They
follow closely each branch of the clump. The two arrows repre-
sent the clump main axis (computed with the inertia matrix as
explained above) and the strain (computed with the strain ten-
sor). Note that the clump is quite filamentary and that the main
axis represented by the vertical arrow follows the filament direc-
tion well.
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Fig. 1. Column density and velocity field for one of the clumps formed
in the MHD simulations. The white points represent the local mass cen-
ter Gi j and constitute the skeleton of the clump. The upward pointing
arrow represents the filament main axis as computed with the inertia
matrix. The downward pointing arrow represents the main direction of
the strain as computed with the strain tensor.

Once the u j
i are known, it is an easy task to estimate the

distance, rM , from a given filament cell to the skeleton. Since
any cell belonging to the structure is associated to a subregion,
one can calculate rM = |G j

i M × u j
i |, where M is the cell cen-

ter. We made use of the vectors u j
i to compute various quantities

as the mean component of various forces. The mean radius is
then defined as rc = ΣrMdm/Σdm, where dm is the mass within
the cell and where the sum is taken over all clump cells. We
stress that the thickness, rc calculated by this definition measures
the thickness of the clump substructures and not the mean size
of the clumps, which would take into account the distance be-
tween the various branches. This is particularly clear in Fig. 1,
where the distance between the branches is on the order of a
few pc while in most regions of the clump, the size of the indi-
vidual branches is typically ten times smaller.

2.3. Description of numerical simulations

2.3.1. Code and resolution

We used the Ramses code (Teyssier 2002; Fromang et al. 2006)
to perform the simulations. Ramses uses adaptive mesh refine-
ment and solves the ideal MHD equations using the Riemann
HLLD solver (Miyoshi & Kuzano 2005). It uses the constraint
transport method to ensure that divB is maintained to be zero.
The cooling corresponds to the standard ISM cooling (e.g.
Wolfire et al. 1995) as described in Audit & Hennebelle (2005)
and includes Lyman α, C+, and O lines. The heating is due to the
photo-electric effect on small dust grains. We carried out simu-
lations with have a based grid of 5123 cells. Then, depending
on the simulations, we either added one or two other AMR lev-
els, leading to an effective resolution in the most refined areas
of 10243 to 20483 cells. The refinement criteria is based on den-
sity. Any cell with a density higher than 50 cm−3 is refined
to a resolution of 10243 and when it is allowed, cells denser
than 200−3 are refined to resolution 20483. The high-resolution
run allows us to check for numerical convergence and to verify

by comparison with the coarser runs that the AMR does not in-
troduce any major bias.

2.3.2. Initial conditions

Our initial conditions for the fiducial simulations consisted of a
uniform medium in density, temperature, and magnetic field on
which a turbulent velocity field has been superimposed. This was
generated using random phases and presents a power spectrum
of k−5/3. No forcing was applied and the turbulence therefore
decayed. The initial density was equal to 5 cm−3 and the initial
temperature T = 1600 K, leading to a pressure of 8000 K cm−3

typical of the ISM. The magnetic field was initially aligned along
the x-axis and has an intensity of about 5 μG (or 0 in the hydro-
dynamical case). The initial rms velocity was equal to 10 km s−1.
Since these simulations have no energy injection, the turbulence
decayed in a few crossing times, which is thus an important
quantity to estimate. This is not straightforward however since
it is evolving with time. The total velocity to be considered is
the sum of the rms velocity and the wave velocity (sound and
Alfvén waves). Initially both were about 3−4 km s−1 but they
rose to about 10 km s−1 in the diffuse gas when the gas broke
up into the warm and cold phase, leading to a total velocity of
about 20 km s−1. Thus we estimate the crossing time to be of the
order of 2−3 Myr. It is worth stressing that the crossing time at
the scale of the clumps is obviously much shorter, thus probably
their properties set up much quicker than a box crossing time.

We performed several runs. The run to be considered fidu-
cial has an effective resolution of 10243 cells and is magne-
tized. The initial velocity dispersion was 10 km s−1, which cor-
responds to a typical Mach number with respect to the cold gas
of about M = 10 since its sound speed is about 1 km s−1. To
investigate the effect that the magnetic field has on the medium
structure, we performed an hydrodynamical run at the same res-
olution. Next we explored the influence of the Mach numberM
by dividing the initial velocity amplitude by 3 and then by 10.
We refer to these two runs as Mach M = 3 and 1, respec-
tively, keeping in mind that this corresponds to the initial rms
velocity. Then, to investigate the influence of the resolution, we
repeated the fiducial run (magnetized and M = 10) with an
effective resolution of 20483 cells. To compare this simulation
with the fiducial run, we have identified the clumps at the same
resolution which means that cells with an effective resolution
of 20483 were smoothed before performing the analysis. Below
the results are given for these 5 simulations. To show that they
do not strongly depend on time evolution, we also present all
statistics at two different time steps of the hydrodynamical run,
one after about 1/2−1 crossing times and one at about 1.5−2.
To verify that no spurious effect was introduced by the magnetic
field initially aligned with the mesh, we repeated the simulation
with 5 μG and M = 10 but tilt the initial magnetic field with
respect to the mesh by 45◦. The corresponding result is shown
in Appendix A, no significant difference with the aligned case
is seen.

Finally, to verify the robustness of our results, we also used
another very different type of setup, namely converging flow
type simulations that include self-gravity. These simulations are
very similar to those presented in Hennebelle et al. (2008) and
in Klessen & Hennebelle (2010). They consist of imposing from
the x-boundaries two streams of warm neutral medium with ve-
locities of about ±20 km s−1, density of 1 cm−3, and temperature
of 8000 K. The magnetic field is initially uniform and oriented
along the x-axis. Unlike the decaying simulations, no velocity
field is initially imposed in the computational box. Moreover
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the turbulence which develops is sustained by the energy due to
the incoming flow. The mean density is also typically ten times
higher in the colliding-flow simulations. Four simulations of this
type were performed. Three simulations had an effective resolu-
tion of 10243 cells one of which is hydrodynamical, one has an
initial magnetic field of 2.5 μG and one has 5 μG. The fourth
one is identical to the intermediate resolution simulation with
2.5 μG but has an effective resolution of 40963 cells. In spite of
these important differences between the decaying and colliding
simulations, the conclusions we inferred remain unchanged. All
the trends that were inferred in the decaying runs were recovered
in the colliding-flow runs. Therefore, for the sake of conciseness
we present the corresponding results in Appendix B.

3. Simple preliminary numerical experiment

Before proceeding to the complex turbulent simulations, we
present two simple numerical simulations that illustrate some of
the conclusions that will be drawn later. It consists of a spherical
cloud with a strong initial shear that therefore is prone to form a
filament. More precisely, a spherical cloud of density 100 cm−3,
temperature 100 K, and radius 0.5 pc was placed in the mid-
dle of the computational box and was embedded into a diffuse
and warm medium of density 1 cm−3 and temperature 8000 K.
The total box size is 20 pc. A transverse velocity gradient along
the x-axis of 1.5 km s−1 pc−1 is initially imprinted through the
box. Finally, a turbulent velocity field with a total rms disper-
sion of 5 km s−1 was superimposed in the box. The reason of
superimposing this velocity field is to create self-consistent per-
turbations that disturb the forming filament. Two such simula-
tions were performed, the first one was purely hydrodynamical
while the second had a magnetic field of 1 μG, initially uniform
and oriented along the x-axis and therefore perpendicular to the
initial main component of the velocity field.

Figure 2 shows the column density for three snapshots of
the hydrodynamical simulation. As is clear from the figure, the
initially spherical cloud is stretched and evolves in a filament
because of the shear. At the same time the nonlinear fluctua-
tions induced by the surrounding medium perturb the cloud and
very likely trigger the growth of various instabilities (such as the
Kelvin-Helmholtz instability). The complex pattern displayed
in the three snapshots is the result of the uniform shear and
the turbulent fluctuations present in the surrounding medium.
After 1.6 Myr the third panel shows that the filament is totally
destroyed and broken up into many cloudlets. Note that the same
simulations were repeated without turbulence superimposed ini-
tially. The filament in this case was more stable except that it
broke in two parts.

Figure 3 shows the magnetized run. The early evolution of
the dense cloud is initially similar. A filament forms due to
the initial shear,. However, the late evolution is quite different.
Although it is subject to strong fluctuations induced by the sur-
rounding turbulent medium, the filament remains much more co-
herent. The reason for this is that initially the cloud is threated
by a magnetic field, the pieces of fluid are connected to each
other through the field lines. Moreover, the shear that tends to
form the filament amplifies the magnetic field and it makes its
influence stronger. Indeed, as the filament is getting stretched,
the magnetic field is amplified along the y-axis and becomes
largely parallel to the filament at the end of the simulation.
This behavior agrees well with the studies of the development
of the Kelvin-Helmholz instability that have been performed
by various teams (e.g. Frank et al. 1996; Ryu et al. 2000). In
these studies it has been found that even weak magnetic fields

Fig. 2. Formation of a filament from a spherical cloud in the pres-
ence of shear, vy(x). The column density for three snapshots is dis-
played. Hydrodynamical case. The filament quickly fragments in many
cloudlets.

significantly modify the evolution of flows making it much more
stable. Stronger fields, on the other hand, can completely stabi-
lize the flow against this instability.

This simple experiment suggests a scenario for filament for-
mation. The gas is compressed by converging motion but at
the same time, the fluid particle possesses solenoidal modes
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Fig. 3. Same as Fig. 2 for the MHD case. A weak magnetic field (1 μG)
along the x-axis initially permeates the cloud. The filament remains
much more coherent than in the hydrodynamical case.

inherited from the turbulent environment that tends to stretch it.
Without a magnetic field, the pieces of fluid can easily move
away from each other. When a magnetic field is present, the
pieces of fluid are tightly connected to each other and the fila-
ment remains coherent for longer times.

4. Clump geometry

4.1. Qualitative description of decaying-turbulence
simulations

Figures 4 and 5 show one snapshot at roughly one crossing time
for the hydrodynamical and MHD cases. Column density (top
panels) and density (bottom panels) together with velocity fields
are shown. The column density was obtained by simple inte-
gration through the box, the density corresponds to the value in
the z = 0 plane. As expected strong density contrast develop in
both cases due to the large rms Mach numbers (about 3 initially
to 1 in the WNM and 10 in the CNM). This is partly because
of the 2-phase structure and partly because of the supersonic
motions. The hydrodynamical and MHD cases present obvious
differences however. Overall, the hydrodynamical case appears
to be less filamentary than the MHD case, in which very high
aspect ratio structures can be seen both in the column density
and in the density. Some filamentary structures are also visi-
ble in the hydrodynamical case but they have lower aspect ra-
tios. Moreover, as seen from the density and velocity fields, it
is often the case that the velocity field is perpendicular to the
elongated structure, suggesting that shocks are triggering them.
Indeed, these structures are mainly sheets as shown below.

It is important to stress that at the beginning of our calcula-
tions which we recall started with uniform density and a veloc-
ity field constructed with ramdon phases, more high aspect ratio
structures formed in the hydrodynamical phase. However, this
is a transient phenomenon due to our somewhat arbitrary initial
conditions. These clumps quickly re-expanded which led to the
type of morphology seen in Fig. 4. This visual impression that
the MHD simulations are more filamentary is clearly visible in
various other works (Padoan et al. 2007; Hennebelle et al. 2008;
Federrath & Klessen 2013).

Beyond this visual impression, it is important to carefully
quantify the aspect ratio, which is the purpose of the following
section.

4.2. Axis ratio of clumps

Here we attempt to quantify the clump aspect ratio using two
different methods, the inertia matrix and the skeleton approach.

4.2.1. Aspect ratio calculated with the inertia matrix

As explained in Sect. 2.1.2, the inertia matrix was computed
for all clumps and the aspect ratio was estimated as the quan-
tity
√

I1/I3 = μ1/μ3, where I1 and I3 are the lowest and highest
eigenvalues.

Figures 6 and 7 display the distribution of μ1/μ3 for the hy-
drodynamical and MHD simulations and for two thresholds, 50
(upper panels) and 200 cm−3 (lower panels for Fig. 6 and middle
panel for Fig. 7). Clearly, the aspect ratios in the MHD simula-
tions are lower by a factor of �1.5−2 than the aspect ratios in the
hydrodynamical simulations. The threshold has only a modest
influence on the resulting distribution.

The bottom panel of Fig. 7 shows that the Mach number
has only a modest influence on this result. There are only small
differences between M = 10 and 3 runs (solid and dotted
lines, respectively). The differences are more pronounced in the
M = 1 run but this could be due to the lack of statistics. The
peak is possibly shifted toward slightly higher values, but stays
below 0.2−0.3.
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Fig. 4. Column density, density, and velocity fields for one snapshot of the decaying turbulence experiment in the hydrodynamical case.
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Fig. 5. Column density, density, and velocity fields for one snapshot of the decaying turbulence experiment in the MHD case.
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Fig. 6. Distribution of the aspect ratio, μ1/μ3 of the clumps (threshold
50 cm−3: upper panel and 200 cm−3: lower panel) in the hydrodynam-
ical simulation at time t = 1.52 Myr (dotted lines) and t = 3.37 Myr
(solid lines).

It is worth stressing that in all cases, most of the clumps have
an aspect ratio lower than 0.3 and a good fraction of them have
an aspect ratio lower than 0.2 and even 0.1. These last can be
called filaments.

4.2.2. Triaxial clumps

The aspect ratio of the highest over lowest eigenvalues only par-
tially describes the clump geometry. It is necessary, for a more
complete description, to investigate the distribution of the two
ratios μ1/μ2 and μ2/μ3. Figure 8 displays the normalized bidi-
mensional histograms for the hydrodynamical and MHD simu-
lations using the density threshold of 200 cm−3. The two dis-
tributions present significant differences. The clumps from the
hydrodynamical simulation tend to cover the μ1/μ2−μ2/μ3 plane
more uniformly. In particular, most of the points are located in
a region with μ1/μ2 � 0.2−0.6 and μ2/μ3 � 0.3−0.8. These
clumps can be described as ribbons or/and sheets. More quan-
titatively, we find that the fraction of clumps with μ2/μ3 be-
tween 0.2 and 0.8 and μ1/μ2 between 0.3 and 0.7 is 62%, of
which about half have μ2/μ3 lower than 0.5. The number of
clumps with μ2/μ3 lower than 0.3 and μ1/μ2 higher than 0.4 is
only about 11%. In the MHD simulation, the values μ1/μ2 � 0.5
and μ2/μ3 � 0.25 are more typical. Such objects can be de-
scribed as ribbons and/or filaments. The most important dif-
ference are the absence of spheroidal (μ1 � μ2 � μ3) clumps
and the scarcity of sheet like clumps (μ1 � μ2 � μ3) in the
MHD simulations. More quantitatively, the fraction of clumps
with μ2/μ3 between 0.2 and 0.8 and μ1/μ2 between 0.3 and 0.7
is 52%, of which about 75% have μ2/μ3 lower than 0.5. The
fraction of sheet-like or spheroidal-like objects (μ2/μ3 > 0.5)
is therefore twice as low as in the hydrodynamical simulation.
The number of filamentary clumps with μ2/μ3 lower than 0.3

Fig. 7. Distribution of the aspect ratio, μ1/μ3 of the clumps in the
MHD simulations. The bottom panel shows the distribution for the
threshold n = 50 cm−3 and for 3 Mach numbers (solid line:M = 10,
dashed line: M = 3, dotted line: M = 1). The middle and top pan-
els show the distribution at two different thresholds (middle: 50 cm−3,
bottom: 200 cm−3) for the fiducial simulation (magnetized, M = 10:
solid line) at time 1.81 Myr and the high-resolution simulation at time
2.26 Myr (dotted line).

and μ1/μ2 higher than 0.4 is about 30% which is three times
more than in the hydrodynamical simulation.

Since sheet-like objects are produced by shocks, this clearly
suggests that while shocks are important and numerous in the
hydrodynamical simulations, they play a less important role in
the MHD simulations. This is expected because the magnetic
field certainly reduces their ability to compress the gas.

4.2.3. Aspect ratio calculated from skeleton approach

To verify the trends inferred for the clump aspect ratio, we also
calculated it using the skeleton approach and the definitions
given in Sect. 2.2.1. The results for the two snapshots of the
hydrodynamical and MHD simulations are presented in Figs. 9
and 10. As can be seen, the trends are very similar to what has
been inferred from the inertia matrix and the distributions are
generally quite comparable. In particular, the clumps tend to be
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Fig. 8. Normalized bidimensional histogram displaying μ1/μ2 as a func-
tion of μ2/μ3. Top panel: hydrodynamical simulation at time 3.37 Myr.
Bottom panel: MHD simulation at time 1.81 Myr.

more elongated in the MHD case than in the hydrodynamical
case. One difference is the tail of few weakly elongated clumps
(aspect ratio 0.5−1) however that is not apparent in the inertia
matrix approach. This is likely due to the difference in the defi-
nition between the two methods.

The nice similarity of the distributions obtained with two
completely different methods suggests that the two methods are
indeed reliable however.

4.3. Length and thickness

We now turn to the study of the clump characteristic scales. The
length is defined as the sum over all G j

iG j
i within the clumps.

This gives the sum of the length of all the branches which be-
long to the clumps and is therefore longer than the largest dis-
tance between two points in the clump. The thickness is defined
as explained in Sect. 2.2.1, that is to say, as the mean distance
between the clump cells and the clump local direction (defined
by u j

i ).

4.3.1. Clump length

Figures 11 and 12 show the length distribution for the hydrody-
namical and MHD simulations, respectively. The distributions

Fig. 9. Same as Fig. 6 for the distribution of the aspect ratio, R/L of the
clumps (threshold 50 cm−3: upper panel and 200 cm−3: lower panel)
in the hydrodynamical simulation at time t = 1.52 Myr (dotted lines)
and t = 3.37 Myr (solid lines).

are similar. They peak at about L � 0.5 pc and decrease with
size for lower values. This is very similar to the behavior of the
clump mass spectra (e.g. Hennebelle & Audit 2007; Audit &
Hennebelle 2010) and is a clear consequence of the numerical
diffusion induced by the finite size of the mesh. The compari-
son between the fiducial simulation (top panel of Fig. 12) and
the high-resolution run shows that these peaks tend to shift to-
ward the smaller size although the extraction was performed at
the same physical resolution as explained previously. At longer
length, L, the distribution is close to a power law. This is more
obvious for the M = 10 simulations than for the M = 3
and 1 cases (bottom panel of Fig. 12), probably because there are
fewer clumps in these simulations and the statistics are poorer.
Typically, we obtain N = dN/d log L ∝ L−1 for the thresh-
old 200 cm−3. The exponent is slightly shallower for the thresh-
old 50 cm−3. Apart from the fact that turbulence generally tends
to generate power laws, it is worth to understand the origin of
this exponent better.

First of all, recalling that the mass spectra of clumps were
found to be dN/d log M ∝ M−αN+1 with αN � 1.8 by various au-
thors (Hennebelle & Audit 2007; Heitsch et al. 2008; Dib et al.
2008; Audit & Hennebelle 2010; Inoue & Inutsuka 2012). This
exponent is consistent with the value inferred by Hennebelle
& Chabrier (2008) for turbulent clumps. Anticipating what we
show in the next section, the thickness of the clumps, rc, stays
roughly constant, i.e., is peaking toward a nearly constant value
with a narrow distribution. But the mass of clumps is propor-
tional to L × r2

cρ, thus since rc is found to be roughly constant
and the mean density in most of the clumps is on the order of the
density threshold, one finds that the mass of the clumps is pro-
portional to their length M ∝ L (we recall that L is the integrated
length through all branches). Consequently, it is not surprising to
find that dN/d log L ∝ L−1, which is close enough to the clump
mass spectrum.
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Fig. 10. Same as Fig. 7 for the distribution of the aspect ratio, R/L of the
clumps. The bottom panel shows the distribution for the threshold n =
50 cm−3 and for 3 Mach numbers (solid line:M = 10, dashed line:M =
3, dotted line:M = 1). The middle and top panels show the distribution
at two different thresholds (middle: 50 cm−3, bottom: 200 cm−3) for the
fiducial simulation (magnetized, M = 10: solid line) at time 1.81 Myr
and the high-resolution simulation at time 2.26 Myr (dotted line).

4.3.2. Clump thickness

Figures 11 and 12 show the thickness distribution for the hy-
drodynamical and MHD simulations, respectively. The distribu-
tions of the hydrodynamical and MHD simulations at Mach 10
are similar. They peak at about �0.1 pc for both thresholds
(with a small shift toward higher values for the lowest thresh-
old 50 cm−3). This is similar to the behavior displayed by the
length distribution, which also presents a peak, though shifted
toward higher values. The higher resolution simulation (middle
and top panels of Fig. 12) again show a systematic trend toward
lower values. This is again consistent with the peak being a con-
sequence of the numerical diffusion.

Unlike for the length distribution however, there is no power-
law tail, instead, the whole distribution is a narrow peak (full
width at half maximum of about 0.4). Thus we conclude that
the thickness of the clumps (which also represents the thickness
of filaments when only the very elongated ones are selected) is

Fig. 11. Same as Fig. 6 for the length distribution of the clumps.

largely due to the finite resolution of the simulations. This in
turns means that to physically describe the interstellar filaments
down to their thickness, realistic dissipative processes should be
consistently included (see the discussion section). We recall that
the numerical algorithm used in this work is very similar to most
methods implemented in other codes used in the study of the
ISM and beyond. This conclusion is therefore not restricted to
the present work only, but seemingly affects the simulations per-
formed with solvers which do not explicitly treat the dissipative
processes. Note that if instead of the mean radius, the distribu-
tion of all local radii is plotted, one finds that it typically extends
to values about 3−4 times higher though most of the points are
still close to a few grid points.

The thickness of the clumps presents some dependence
on the Mach number, as shown in bottom panel of Fig. 12.
However, changing the Mach number by a factor 10 leads to
a shift of the size smaller than a factor 2. This contradicts the
explanation that the interstellar filaments are entirely determined
by shocks. A velocity perturbation at scale L has a typical ampli-
tude V = V0(L/L0)0.5, as suggested by Larson relations (Larson
1981; Falgarone et al. 2009; Hennebelle & Falgarone 2012). The
Rankine-Hugoniot conditions then lead to a density enhance-
ment ρs/ρ � (V/Cs)2 = (V0/Cs)2 × (L/L0) and to a thick-
ness Ls/L = ρ/ρs = M2. As can be seen, the thickness is
expected to vary with M2 which we do not observe in these
simulations instead, a more shallow dependence on the Mach
number is observed. This does not mean that compression has no
effect at all. Indeed since these structures are denser than the sur-
rounding medium, compression does occur. However, the very
reason that these structures are elongated does not seem to be
compression only.

5. Links between geometry, velocity, and forces

Next, we would like to understand why the clumps tend to have
such a low aspect ratio, or in other words, why there are so
many filaments in the simulations. So far, we have seen that the
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Fig. 12. Same as Fig. 7 for the length distribution of the clumps.

MHD simulations tend to be more filamentary than the hydrody-
namical ones and that the aspect ratio does not strongly evolve
with the Mach number. There is only a weak trend for it to de-
crease when M increases (bottom panel of Fig. 7). These two
facts do not straighforwardly agree with the earlier proposition
that filaments are due to the collision of two shocked sheets (e.g.
Padoan et al. 2001) and suggest that the process entails other as-
pects than mere compression. Indeed, in this scenario, one would
expect high Mach number flows to be more filamentary, but be-
cause the magnetic field renders the collisions less supersonic,
it is unclear why magnetized simulations would be more fila-
mentary. On the other hand, the simple numerical experiment
presented in Sect. 3 suggests that the filaments could simply be
fluid particles that have been stretched by the turbulent motions.
The most important difference with the shock scenario is that fil-
aments are not born as elongated objects, but they become elon-
gated as time elapses.

In this section we investigate whether the mechanism by
which filaments form is indeed the stretch of the fluid particles
induced by turbulence. It should be kept in mind that shocks or
convergening motions, must play a role at some stage because
the gas within the filaments must accumulate. The question is
then how to estimate their respective influence.

Fig. 13. Same as Fig. 6 for the thickness distribution of the clumps.

5.1. Alignment between strain and filament axis

To investigate whether the filaments are indeed particle fluids
that have been stretched by the turbulent motions, we studied
the correlation between the eigenvector associated to the highest
eigenvalue of the inertia matrix which we later call the filament
axis, and the eigenvector of the highest eigenvalue of the strain
tensor, which gives the direction along which the clumps are
stretched. More precisely, we studied the distribution of cosα,
where α is the angle between these two eigenvectors. Indeed, if
the two eigenvectors tend to be aligned, this will be clear evi-
dence that filaments are stretched by the velocity field.

Figures 15 and 16 show results for the two density thresh-
olds. Clearly in all cases there are more clumps for which cosα
is close to −1 or 1 than clumps for which cosα is close to 0. In
other words, there is a trend for the filament axis and the strain
to be aligned. This clearly shows that the primary cause of the
existence of filaments, that is to say the existence of elongated
clumps, is the stretching of the fluid particles induced by the
turbulent motions. This does not imply that shocks may not be
also forming filaments, in particular intersection between two
shocked layers as it has been previously suggested. However,
this cannot be the dominant mechanism because in such config-
urations, one would expect the filament axis and the strain to be
randomly distributed.

A comparison between Figs. 15 and 16 also reveals that the
trend is clearly more pronounced for MHD simulations than for
hydrodynamical ones. For example, there are about 8−10 times
more objects having | cosα| = 1 than objects with cosα = 0
in the MHD case. In the hydrodynamical case, this ratio is
about 3−5. Again since the MHD simulation is more filamentary
that the hydrodynamical one, this is not consistent with the dom-
inant origin of filaments being due to shocks since magnetic field
tends to reduce the effective Mach number. Finally, we see that
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Fig. 14. Same as Fig. 7 for the thickness distribution of the clumps.

in lower Mach simulations (dotted and dashed lines in the bot-
tom panel in Fig. 16), this trends is also present albeit reduced.

5.2. Comparison between strain and divergence

The correlation between the strain and the filament axis suggests
that strain is an important, if not the dominant reason for fila-
ments within the ISM. However, the clumps are regions of high
densities where the gas has been accumulated. Therefore it is
important to understand the respective role of the compressive
and the straining motions. For this purpose, we studied the ratio
distribution of the divergence and the strain, rds, calculated as
described in Sect. 2.2. This quantity allows us to directly esti-
mate whether the structure is globally contracting or expanding
and whether this global change of volume dominates or is dom-
inated by the change of shape described by the strain.

Figure 17 shows results for the hydrodynamical simulation
for the two thresholds (50 cm−3 upper panels and 200 cm−3 lower
panels). The distribution of rds is pretty flat and extends between
about −1.2 and 1.2. It is roughly symmetrical with respect to 0,
particularly for the lowest density threshold. This indicates that
the contribution of compressive and solenoidal motions for the
dynamics of the clumps is similar though most clumps have a

Fig. 15. Same as Fig. 6 for the distribution of cosα (the angle between
the main axis and the strain) in the clumps.

mean strain larger than their divergence (but few clumps have a
small rds). For our highest threshold, the number of expanding
clumps is lower than the number of contracting clumps.

Figure 18 shows results for the MHD simulation. The gen-
eral trends are qualitatively similar to the hydrodynamical sim-
ulations except for the important fact that the distributions are
much less symmetrical with respect to zero. There are fewer
expanding than contracting clumps. This suggests that the mag-
netic field tends to confine the clumps and hinders their reexpan-
sion with the latter being generally dominant over the former.

5.3. Confinement by Lorentz force

To verify that the Lorentz force is indeed reducing the clump
expansion, we computed the mean component of the Lorentz
force in the direction perpendicular to the local direction of the
clumps. To accomplish this, given a cell center M, we first com-
puted the position of M′ defined by GM′ = (u j

i .GM)u j
i , that is

to say, M is projected onto the local axis in M′ (u j
i is defined as

explicited in Sect. 2.2.1). The component of the force perpen-
dicular to the local direction of the clump (u j

i ) is thus simply
F(M).MM′/|MM′|. The total contribution is thus obtained by
summing over the whole structure
∫

F(M).MM′/|MM′|dm∫
dm

· (1)

The result is displayed in Fig. 19 for the two density thresholds.
As can be seen, there are structures that the Lorentz force tends
globally to confine (integrated component is negative) and struc-
tures that it tends to expand. However, it is clearly skewed to-
ward the negative values and in most cases the Lorentz force
tends to confine the structure and maintain the coherence of
the clumps. More quantitatively, we find that depending on the
run parameters and thresholds, the fraction of clumps for which
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Fig. 16. Same as Fig. 7 for the distribution of cosα (the angle between
the main axis and the strain) in the clumps.

the integrated component of the Lorentz force is negative is be-
tween 55 and 65%.

For comparison, it is interesting to investigate the effect of
the pressure force. The corresponding distribution is plotted in
Fig. 20. As expected, the pressure force tends almost always to
expand the structure. We also see from the amplitude that the
Lorentz force largely dominates over the pressure force.

These results agree well with the results inferred from the
divergence of strain ratio, rds and also with the simple numerical
experiment presented in Sect. 3. The magnetic force tends to
prevent the clump re-expansion because the magnetic field lines
permeate through the clumps and connect the fluid particles.

6. Discussion

The role played by two important processes, namely non-ideal
MHD effects and gravity, has not been included or investigated
in this work and requires at least some discussions.

Fig. 17. Same as Fig. 6 for the ratio distribution of the divergence and
strain in the clumps.

6.1. The role of dissipative processes

Although our simulations seem to roughly agree with the
Herschel observations about the constancy of the filament in-
ferred by Arzoumanian et al. (2011), it is important to keep
in mind that this thickness is most likely set up in the present
simulations (and in any similar simulation) by the numerical
diffusion, which operates at the scale of a few computing cells
(here about 0.05 pc for the fiducial run). Therefore, although en-
couraging, this resemblance must be taken with the greatest care
at this stage. Moreover, our filaments were selected using a den-
sity threshold that is also different from that of Arzoumanian
et al. (2011).

Nevertheless, the conclusion that the thickness of the fila-
ments, at least in the way we defined them, is set up by a dis-
sipative process is intriguing and leads to the obvious question
of which dissipative mechanism could actually produce a scale
similar to a size of 0.1 pc. The only known dissipative mecha-
nism in the interstellar medium, that leads to comparable scales
is the ion-neutral friction as investigated by Kulsrud & Pearce
(1969).

We recall that when ion-neutral friction is taken into consid-
eration, the induction equation can be written as

∂t B + ∇ × (B × u) = ∇ ×
(

1
4πγadρρi

((∇ × B) × B) × B
)
, (2)

where γad is the ion-neutral friction coefficient, whose value is
about γad � 3.5 × 1013 g−1 s−1 (e.g. Shu et al. 1987).

Although the right-hand side has not the standard form of
a diffusion, it is a second order term that dissipates mechanical
energy into heat. We can easily compute a magnetic Reynolds
number associated to this equation as

Re,m =
V(l)l
ν
, (3)
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Fig. 18. Same as Fig. 7 for the ratio distribution of the divergence and
strain in the clumps.

where ν = B2/(4πγadρρi). As is done in standard approach of
turbulence, we assume that the energy flux, ε = ρV(l)3/l, is con-
stant through the scales. Thus we can write

Re,m =
ε1/3ρ−1/3l4/3

ν
· (4)

Estimating ε at the integral scale, L0, we obtain

Re,m =

(
ρ0

ρ

)1/3 V0

L1/3
0

4πγadρρi

B2
l4/3. (5)

The smallest scale that can be reached in a turbulent cascade
is typically obtained when the Reynolds number is equal to
about 1. This leads for ldiss, the dissipation length, the follow-
ing expression:

ldiss =

⎛⎜⎜⎜⎜⎜⎝ L1/3
0

ρ1/3
0 V0

⎞⎟⎟⎟⎟⎟⎠
3/4 (

B2

4πγadρ2/3ρi

)3/4

· (6)

The impact of non-ideal MHD processes on the density
field can be clearly seen in the simulations performed by

Fig. 19. Mean value of the Lorentz force radial component (see text)
within the clumps (threshold 50 cm−3: upper panel and 200 cm−3: lower
panel) for the high-resolution MHD simulation at time t = 2.26 Myr
(dotted line) and the fiducial run at time 1.81 Myr (solid line).

Fig. 20. Same as Fig. 19 for the mean value of the pressure force radial
component (see text) within the clumps.

Downes & O’Sullivan (2009, 2011). These authors have run sim-
ilations of molecular clouds at a scale of 0.2 pc. Figure 1 of
these two papers display the density field in the ideal MHD case
and in the non-ideal MHD one. Clearly, many small-scale fila-
ments are seen in the ideal MHD simulation, which evidently are
very close to the numerical resolution. This is very different from
what is seen in the non-ideal MHD simulations, in which only
large scale-structures (bigger that the cell size) are produced.
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Interestingly, the large-scale patern is unchanged, but the small
scales are completely differents. These simulations demonstrate
that indeed non-ideal MHD processes have a very strong impact
on the clump structure.

To estimate the dissipation length we used typical values for
the diffuse interstellar medium. The values of V0, ρ0 = mpn0
and L0 are linked through the Larson relations (Larson 1981).
We chose as fiducial values V0 = 2.5 km s−1, ρ0 = 100 cm−3

and L0 = 10 pc. Typical magnetic fields are about 5 μG in the
diffuse gas and 10−20 μG in the molecular gas for densities of
a few 103 cm−3. The ionization is also important and varies sig-
nificantly.

In the molecular gas the ionization is about 10−6−10−7

(Le Petit et al. 2006; Bergin & Tafalla 2007) and the ion
density ρi can be approximated as C

√
ρ, where C = 3 ×

10−16 cm−3/2 g1/2. Using this expression, a density of 103 cm−3

and a magnetic field of 20 μG, we obtain ldiss � 0.2 pc, which is
entirely reasonable. Note that assuming that the magnetic field
increases as

√
ρ (e.g. Crutcher 1999), we find that the density

dependence is extremely shallow, seemingly suggesting that this
scale could indeed be representative of a broad range of condi-
tions. These numbers as well as the analysis are similar to the
results presented in McKee et al. (2010).

In the diffuse gas, which has a density of only a few
100 cm−3, the ionization is about 10−4−10−5 (e.g. Wolfire et al.
2003), which leads for a density of 200 cm−3 and a magnetiza-
tion of 5 μG to ldiss � 3 × 10−3−2 × 10−2 pc, that is to say, much
lower values.

It is important to stress that these numbers remain indica-
tive only at this stage and should not be directly interpreted as
the sizes of the structures, which can certainly be different by a
factor of a few. Nevertheless, a clear consequence of these es-
timates is that the filaments are probably much thinner in the
weakly shielded gas (Av < 1), in particular in the HI and at the
periphery of molecular clouds.

6.2. Influence of gravity

Gravity can also play an important role in the formation of mas-
sive filaments. Indeed, gravity is well known to amplify ini-
tial anisotropies (Lin et al. 1965) and has been found in vari-
ous studies to play an important role in triggering the formation
of self-gravitating filaments (Hartmann & Burkert 2007; Peretto
et al. 2007). Indeed, in these studies gravity acts to amplify the
initial elongation of a clump that could have been induced by
turbulence.

It is therefore likely that gravity can play a significant role
in the formation of the most massive filaments and maybe even
for setting the width of the marginally self-gravitating ones, as
recently advocated by Fischera & Martin (2012; see also Heitsch
2013).

The nature of this elongation is quite different from what has
been studied here. It is a selective contraction along two direc-
tions instead of a stretching along one direction. We stress, how-
ever, that gravity is self-consistently included in the collision-
flow calculations presented in Appendix B, and that as discussed
there the results are very similar to what has been found for the
more diffuse ISM studied in the paper. Thus it is seems that
except probably for very dense filaments (e.g. integral-shaped
Orion or DR21 filaments), gravity does not modify the picture
very significantly.

7. Conclusion

We have performed a series of numerical simulations to study
the formation of clumps in the turbulent ISM, paying particular
attention to the reason that causes the elongation. We ran both
hydrodynamical and MHD simulations and varied the Mach
number. To verify the robustness of our results, we used two
different setups, decaying turbulence and colliding-flows. To
quantify the structure properties, we first extracted the clumps
using a simple clipping algorithm. We then computed and diag-
onalized the inertia matrix and the strain tensor. We also devel-
oped a skeleton-like approach, which allowed to infer the mean
thickness and to compute whether forces tend to expand or con-
fine the structures. We found that in all simulations most of the
clumps are significantly elongated and the main axis of the struc-
ture tends to be aligned with the strain, particularly in MHD sim-
ulations. The proportion of filamentary objects is higher in the
MHD simulations than in the hydrodynamical ones, in which
a significant fraction of the clumps are sheets rather than fila-
ments. While the pressure force tends to expand the clumps as
expected, the Lorentz force tends on average to confine them,
allowing the filaments to remain longer. In all simulations, irre-
spective of the magnetic intensity and Mach number, we found
that the thickness of the clumps, that is to say the mean thickness
of all the clump branches, is always close to a few computing
cells seemingly suggesting that in the ISM dissipative processes
are responsible of setting its value. Performing simple orders of
magnitude, we find that the ion-neutral friction in regions of suf-
ficient extinction leads to values that are close to what has re-
cently been inferred from Herschel observations (Arzoumanian
et al. 2011). In unshielded regions such as HI or in the outskirts
of molecular clouds where the ionization is higher, this would
imply that the filament thickness should be at least ten times
lower.
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Appendix A: Results of decaying turbulence
with a magnetic field tilted with respect
to the mesh

Because we found in this paper that the clumps are more fila-
mentary in magnetized flows, it is important to verify that no
obvious numerical artifact is producing this effect. We therefore
repeated one of the runs (decaying turbulence with 5 μG and one
level of AMR) with a magnetic field initially tilted to 45◦ with
respect to the mesh. Figures A.1 and A.2 show the bidimensional
distribution μ1/μ2 vs. μ2/μ3 and the histogram of cos(α), the co-
sine of the angle between the filament axis and the strain, respec-
tivelly. As can be seen, they are very similar to the corresponding
results shown for the untilted case.

Fig. A.1. Normalized bidimensional histogram displaying μ1/μ2 as a
function of μ2/μ3 for the decaying turbulence simulation with inclined
magnetic field at time 1.32 Myr.

Fig. A.2. Distribution of cosα (the angle between the main axis and
the strain) in the clumps for the decaying turbulence simulation with
inclined magnetic field at time 1.32 Myr.

Appendix B: Results of colliding flow simulations

Here we present the results obtained for the colliding-flow sim-
ulations. These simulations are described in Sect. 2.3.2. The
purpose of this appendix is to demonstrate that the results ob-
tained in the paper are not a consequence of a particular choice
of initial and boundary conditions. We used time steps that rep-
resent a similar evolution. For the four runs, significant masses

Fig. B.1. Distribution of aspect ratio, μ3/μ1 of the clumps (threshold
500 cm−3). Solid line: high-resolution intermediate magnetization run
at time 12.94 Myr. Dotted line: standard resolution intermediate mag-
netization run at time 16.82 Myr. Dashed line: highly magnetized run at
time 18 Myr. Dot-dashed line: hydrodynamical run at time 15.1 Myr.

Fig. B.2. Same as Fig. B.1 for the distribution of aspect ratio, R/L of the
clumps (threshold 500 cm−3).

Fig. B.3. Same as Fig. B.1 for the length distribution of the clumps.

of gas (typically 104 M� of gas denser than 100 cm−3) were
accumulated, and at several places, collapse has proceeded or is
still proceeding. We restrict our attention to the most important
quantities that were studied namely the clump aspect ratio com-
puted using the inertia matrix and the skeleton-like approach,
the length and thickness of the clumps, the cosine of the angle
between the clump axis, and the strain and the divergence over
strain ratio. In the six plots the solid line represents the high-
resolution intermediate magnetization run, the dotted line is the
standard resolution intermediate magnetization one, the dashed
line represents the highly magnetized run while the dot-dashed
line displays the hydrodynamical simulation.
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Fig. B.4. Same as Fig. B.1 for the thickness distribution of the clumps.

Figures B.1 and B.2 show very similar trends with Figs. 6,
7, 9 and 10. In particular, in the hydrodynamical simulation the
clumps have larger aspect ratios than in the MHD simulations.

The length and the thickness of the clumps are very similar
to what has been inferred in the decaying simulations. The peaks
are also located at the same position of about 0.5 pc for the length
and 0.1 pc for the thickness.

In Fig. B.5 the trends of the filament axis and the strain to
be preferentially aligned is also clear. As for the decaying tur-
bulence simulations, it is more pronounced for the magnetized
than for the hydrodynamical runs.

Figure B.6 is also very similar to the trends inferred in
Figs. 17 and 18 that were discussed previously.

Fig. B.5. Same as Fig. B.1 for the distribution of cosα (the angle be-
tween the main axis and the strain) in the clumps.

Fig. B.6. Same as Fig. B.1 for the ratio distribution of the divergence
and strain in the clumps.
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