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Abstract 

We describe a new type of hair on supersymmetric black string and black ring 

solutions, which produces the largest known violation of black hole uniqueness, 

parameterized by an arbitrary function and hence an infinite number of con- 

tinuous parameters. The new solutions can have non-trivial density profiles for 

the electric fields along the horizon, and yet have a geometry that is regular, 

although generically not infinitely differentiable, at the horizon. Both neutral 

and charged probes can cross the horizon without experiencing divergent for- 

ces. We also find restricted examples, parameterized by a few arbitrary con- 

tinuous parameters, where the charge densities fluctuate but the metric does not 

and hence is completely differentiable. Our new class of solutions owes its 

existence to a mechanism reminiscent of the Q-ball: in the simplest examples 

the metric has more symmetry than the matter that supports it. 
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1. Introduction 
 

Five- and six-dimensional supergravity theories have a surprisingly rich solution space. The 

construction of smooth, horizonless microstate geometries in these theories has led to a new 

perspective on the microstates of black holes. The simplest class of microstate geometries is 

supertubes [1], in which two types of branes form a bound state that has a non-trivial dipole 

profile of arbitrary shape. In the D1–D5 frame this dipole charge corresponds to a Kaluza- 
Klein monopole, and the resulting smooth geometry is parameterized by several continuous 

functions that depend on the embedding of the world-volume of this monopole in the 
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spacetime [2, 3]. One can imagine superposing several different types of supertubes to obtain 

a black ring [4–6], but if one tries to do this with supertubes that have a non-trivial charge 
profile and obtain a BPS black ring with varying charge densities [7] one finds that the 
horizon becomes singular [8]. Thus, it appears that the horizon of a black ring cannot support 

the kind of non-trivial charge hair that supertubes can possess. 

As a consequence of this, for almost ten years the prevailing lore has been that, while the 

space of black objects in five-dimensional supergravity is much richer than in four dimen- 

sions, the violations of black-hole uniqueness in five dimensions come only from the discrete 

choices of the black-ring dipole charges and that, not only are there no infinite-dimensional 

moduli spaces worth of hair (as one might have expected from supertubes), but there is not 

even a finite-dimensional moduli space of solutions parameterized by a finite number of 

continuous parameters. In this paper we show that this lore is incorrect by explicitly con- 

structing some very hairy black-ring solution that can be coiffured so as to preserve a lot of 

the hair and yet have well-behaved horizons. In particular, we find families of solutions that 

depend upon several continuous parameters for which the metric is C∞ across the horizon. 

More generally, we argue that the hair can be arranged so that the Riemann tensor remains at 

least continuous across the horizon while the hair still depends upon an arbitrary continuous 

function. 

The key idea behind this construction comes from our recent discovery of a new BPS 

object in M-theory—the magnetube [9]. This object has M5 and momentum charges (which 
are magnetic in five dimensions), as well as several electric M2 charge densities that can 

oscillate between positive and negative values along the M5–P common direction. The M2 
charge densities can have non-trivial oscillating profiles along this direction but these density 

profiles can be arranged so that the total energy–momentum tensor they source does not 

oscillate and yet the overall density configuration has an arbitrary functionʼs worth of 
freedom. 

In this paper, we consider putting similar oscillating electric charges on supersymmetric 

black strings and black rings. We will show that, unlike the simple single-species fluctuations 

considered in [7, 8], the profiles of the oscillating species can be chosen such that the first few 

terms in the near-horizon expansion of the metric are independent of the angle around the 

ring. Furthermore, in the simplest example, the metric can be made completely independent of 

this angle, even though the Maxwell fields fluctuate. Thus these solutions are rather remi- 

niscent of Q-balls [10, 11] and hence we dub them ‘O-rings.’ 
The smoothness of the metric at the O-ring horizon is achieved by arranging that the 

energy–momentum tensor of the fields is either independent of, or has much weaker 
dependence upon, the direction in which the other fields fluctuate. The curvatures at the 

horizon then remain finite, and an infalling observer can survive the passage across the 

horizon. The electric fields will oscillate infinitely many times along the trajectory of an 

infalling observer, but since the fields remain finite, the force on a charged particle falling 

across the horizon is also finite, and given the oscillating nature of the fields the integrated 

force is also finite. Thus by ‘coiffing’ a suitably rich variety of hair, in the form of charge 
densities, one can arrange for regularity of the gravitational background. 

Our very hairy black rings provide by far the largest known violation of black-hole 

uniqueness, being regular black objects with an arbitrary continuous functionʼs worth of hair. 
While our solutions are supersymmetric, we do not anticipate obstructions in adapting and 

generalizing our results to non-supersymmetric black rings. It would be very interesting to 

investigate this in detail and determine the possible fluctuation directions that can exploit the 

mechanism underpinning O-rings. 
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∫ 

In section 2 we review the basic supergravity setting for our new class of solutions. Since 

horizon regularity is a ‘near-ring’ issue we start by examining the simplest possible solutions: 
black strings in five dimensions. In section 3 we review the non-oscillating strings (that have a 

3 × S1 base space) and describe, in some detail, the horizon regularity and the adapted 

coordinates allowing continuation across the horizon. In section 4 we find the simplest BPS 

oscillating strings: O-rings in 3 × S1 and derive the constraints on the charge densities for 

smoothness across the horizon. Section 5 contains the solutions for O-rings in 4: there are no 

additional issues of smoothness compared to the O-rings in 3 × S1. In section 6 we consider 

more general classes of O-rings in 4 and perform the computations in the more traditional 
separable black-ring coordinate system. The impatient reader who is familiar with the stan- 

dard description of black rings and does not care about their construction as BPS solutions 

with a Gibbons–Hawking space, could skip directly to this section as it is relatively self- 
contained. Section 7 contains some concluding comments. 

 
2. The supergravity setting of the new BPS solutions 

 
2.1. The supergravity action 

As in [9], we use N = 2 supergravity in five dimensions coupled to vector multiplets, except 

that here we consider more vector multiplets. We will thus follow the conventions of [6, 12]. 

The action of N = 2, five-dimensional supergravity coupled to N U (1) gauge fields is 
  1 ⎛ 1 I  1 I J K ⎞ 

S = 
2κ5 

−g d5x ⎜

⎝ 
R − QIJ Fμν F

Jμν − QIJ ∂μX I ∂ μX J − 
24 

CIJK Fμν Fρσ Aλ  ϵ̄μνρσλ

⎠
⎟, (2.1) 

with I, J = 0 ,..., N . The extra photon lies in the gravity multiplet and so there are only N 

independent scalars. It is, however, convenient to parametrize them by N + 1 scalars XI, 

satisfying the constraint 

1/6 CIJK X I XJ  XK  = 1. (2.2) 

Following standard practice, introduce 

XI ≡ 1/6 CIJK XJ  XK  . (2.3) 

The scalar kinetic term can then be written as 

QIJ = 9/2 XI XJ − 1/2 CIJK XK . (2.4) 

The Chern–Simons structure constants are required to satisfy the constraint 

CIJK CJ′(LM CPQ) K′ δJJ′ δKK′ = 4/3 δI (L CMPQ) . (2.5) 

It is also convenient to define 

C IJK = δII ′ δJJ′ δKK′ CI ′J′K′. (2.6) 

Using the constraint (2.5), one can show that the inverse, QIJ, of QIJ is given by: 

QIJ = 2 X I XJ − 6 C IJKXK , (2.7) 

and one can show that 

1/6 C IJKXI XJ XK = 1/27. (2.8) 

As in [9, 13, 14], we will focus on theories that can be obtained from eleven-dimensional 

supergravity reduced on a T6. The Maxwell fields then descend from the tensor gauge field, 

2 
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I J  K 

(4) 

4 

5 4 

C(3), via harmonic 2-forms on T6 and the structure constants CIJK are given by the intersection 
product of the homology cycles and the XI are moduli of the T6. The restriction to torus 
compactifications is made for simplicity and convenience and it will be evident that rather 

richer classes of O-ring solutions can be obtained from Calabi–Yau compactifications with 
more complicated cohomology and intersection forms. 

 
2.2. The supersymmetry conditions 

We start with the most general stationary five-dimensional metric: 

ds 2 = −Z −2(dt + k)2 + Z ds 2 , (2.9) 

where Z is simply a convenient warp factor. Supersymmetry implies that the metric ds 2 on the 

spatial base manifold, B, must be hyper-Kähler. 

One now defines N + 1 independent functions, ZI, by 

ZI = 3 Z XI , (2.10) 

and then (2.8) implies 

Z =  ( 1/6 C IJKZ   Z   Z   )1/3  
. (2.11) 

It is more convenient to think of the solution as parametrized by the N + 1 independent 

scalars, ZI; the warp factor is then determined by (2.11). 

Supersymmetry requires that the Maxwell potentials all have the form 

A(I) = −1/2 Z −3 CIJK ZJ ZK (dt + k) + B(I) , (2.12) 

where B(I) are purely magnetic components on the spatial base manifold, B. One defines the 

magnetic field strengths accordingly: 

Θ(I ) = d B(I) . (2.13) 

Having made all these definitions, the BPS equations take their canonical linear form [4]: 

Θ(I ) = ⋆4 Θ(I ) , (2.14) 
 

 2 ZI = 1/2 CIJK ⋆4 Θ(J )   ∧ Θ(K )
 (2.15) 

 

dk + ⋆4dk = ZI Θ(I )  , (2.16) 

where ⋆4 is the Hodge dual in the four-dimensional base metric ds 2, and  2 is the (four- 

dimensional) Laplacian in this metric. 
4 (4) 

In section 6 we will take B to be flat 4 written in the canonical black-ring coordinates. 

However, it is very useful for our initial analysis to take the metric on B to be a Gibbons– 
Hawking metric because this will enable us to move easily between the solutions on 3 × S1 

and 4. It will also make subsequent generalizations of our analysis to black rings in Taub– 
NUT [15–17] and to multi-centered solutions relatively straightforward. 

In the next sections, the four-dimensional metric will therefore be of the form: 

ds 2 = V −1 (dψ + )2 + V dy ⃗  · dy ⃗ 

= V −1(dψ +  )2 +  V ( dr 2 +  r 2 ( dθ 2  +  sin2θdϕ2)), (2.17) 
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V 

3 

4 

2 

(4) 

I + 

with  
⃗  ×  ⃗  =  ⃗ V  . (2.18) 

The magnetic potentials that solve the supersymmetry conditions are: 

B I  =  
K I  

(dψ +  ) +  ξ ⃗
I   

·  dy ⃗  +  α I 

 

 
 

(2.19) 
 

with  2 K I =  0, ⃗   ×  ξ ⃗
I  
=  − ⃗ K I, and dα I  =  0. The closed form, α I , is usually set to zero, 

but we will see later that we need to take it to be non-zero in order to have regular gauge 

potentials at the horizon. The functions ZI are 

ZI = CIJK K JK K + LI 

 

(2.20) 

with  2 LI = 0. We will assume that KI and V are independent of ψ, and depend only on the 

coordinates y ⃗ on the base. In a suitable gauge, the last supersymmetry equation is satisfied by  

taking k = μdψ + ω, with 

 

 

and 

1 
 

 

6 V 2 
CIJK K IK JK K + K IL M 

2 V 
(2.21) 

N+1 
I I 

 
 

where 

 

 

and 

D ×  ω⃗  +  V ∂ψ ω⃗  =  V DM −  M DV + ∑ ( K  DL I  −  L I DK  ) . (2.22) 
I =1 

 

 

D⃗  ≡  ⃗  −  ⃗  ∂ψ , (2.23) 

 

 2 M = 0 . (2.24) 

 

2.3. Adding species on the T 4 

From the eleven-dimensional perspective, we are going to add extra Maxwell fields coming 

from three-form potentials with two legs on the T4 defined by (x5, x6, x7, x8) but leave the 

fields on the other T2, defined by (x9, x10) unchanged and supporting only one Maxwell field, 

which we have labelled as A(0). Thus the only non-zero components of the intersection 

product CIJK are 

C0JK =  C‸    =  C‸    , (2.25) 
JK KJ 

and one has [9]: 

⎛
⎜ 

0   1 0 0  ⎞
⎟

 
C‸   =  ⎜ 

1   0 0 0  
⎟ , (2.26) 

IJ 

⎜
⎝ 

0   0
 – 1 0  ⎟

⎠
 

0  0 0 − 1 

which satisfies ĈIJ ĈKL δ
JK  =  δ IL. Observe that (2.11) now implies that the space-time metric 

warp factor, Z, is given by 

1 

2 V 

μ = 
1 

1 
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r 

r 

r 

= I 

2.3.1. IJ ⎛ 1 2 2 ⎞ 

Z 3 = 

2  
Z0 (C‸ Z I  Z J ) =  Z0 ⎜

⎝ 
Z1 Z2 −  

2  
(Z3   +  Z 4 )⎠

⎟. (2.27) 

It is also convenient to define the quadratic combination 

P ≡  C‸
IJ
Z   Z   =  

⎛
⎜ Z  Z   −  

1
 Z 2 +  Z 2  

⎞
⎟. (2.28) 

I J ⎝ 1      2 

2 
( 3 4 )⎠ 

 

Since we are considering black objects, we will work entirely in the five-dimensional 

theory; we do not need to uplift to the higher-dimensional description. 

 

3. String with no oscillation 
 

We will first discuss the simplest solutions: black strings with oscillating species, so that we 
may examine horizon smoothness without the algebra becoming unnecessarily complicated. 

We therefore take the base metric to be simply a flat metric on 3 × S1, which means we set 
V ≡ 1 and  ≡ 0 in the metric (2.17). The string is then aligned along the ψ direction. A 
useful starting point is to review the horizon smoothness of the non-oscillating electrically 

and magnetically charged black string solution [18], which is independent of ψ and is given 

by the harmonic functions: 

K I 
p 

, 
r 

L  = 1 + 
q

 

 

(3.1) 

for I = 0, 1, 2, and KI = 0, LI = 0 for I = 3, 4. The functions in the metric are then 
 

 

 
 

and 

Z = 1 + 
q

 
p2 

, (3.2) 

r 2 

 

μ =  
p3 

+ 
3pq +  

3p 
, (3.3) 

r 3 2r 2 r 

choosing M = 3p so that we can simply solve (2.22) by taking ω = 0. The scalars are all 

constants, XI 
2r 

= 1 for I = 0, 1, 2, XI = 0 for I = 3, 4. 

The metric and gauge fields are clearly finite for r ≠ 0. The solution has a coordinate 

singularity at r = 0, and we want to see how this corresponds to an event horizon. As r → 0, 

the metric is asymptotic to 
 

2 

ds2 ≈  − 
r 4 

dt 2 −  
2r 

dtdψ +  
  3   (q2 −  4p2 )dψ 2  +  

p  
dr 2 +  p2 ( dθ 2  +  sin2θdϕ2) , (3.4) 

p4 p 4p2 r 2 
 

which is singular in the dr direction and degenerate in the dt direction. To see that this is 

simply a coordinate singularity one can use a simple generalization of the Eddington–Finkel- 
stein coordinate system: 

t = v + 
a

 

 
+ b log (r p), 

 
ψ = ψˆ + c log (r p). (3.5) 

+ 
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3  q2 − 4p2 

ψψ ψψ ψψ 

g (0) 

p 

r 

t tψ tψ tψ 

tψ tψ ψψ rr 

4p 

Expand the metric into power series in r: 

g ψ  = r (g (0)  +  rg (1)  +  r 2g (2) ), 

gψψ = g (0) + rg (1) + r 2g (2) , 

g   =
 1 (g (0) + rg (1) + r 2g (2) ). (3.6) 

rr 
r 2 rr rr rr 

To the first few orders in r, the components of interest in the new coordinate system are 

g′ ψ̂  = −2 
⎛
⎜  

 a   
−  

b ⎞
⎟ g   +  2 

c 
g 

r ⎝ r 2
 

r ⎠  tψ r 
ψψ 

=  
1 (2cg (0)  −  2ag (0) ) +  (2cg (1)  −  2ag (1)  +  2bg (0) ) +  … (3.7) 

 
and 

⎛
⎜  

 a 

r ψψ tψ ψψ tψ tψ 

 
b ⎞2 ⎛ a b ⎞ c c2 

 

g′rr = 
⎝ r 2 

− 
r ⎠

⎟   gtt  −  2 
⎝
⎜  

r 2
 

–  
r ⎠

⎟ 

r 
g

tψ 
+ 

r 2 
g

ψψ 
+ g

rr 

=
 1 ( −2acg (0) + c2g (0) + g (0) ) +  

1 ( − 2acg (1) + 2bcg (0) + c2g (1) + g (1) ) 
r 2 tψ ψψ rr r 

tψ tψ ψψ rr 

+ ( −a2p−4 − 2acg (2) + 2bcg (1) + c2g (2) + g (2) ) + … . (3.8) 

There is a potential singularity in g′rψˆ at order r−1 and cancelling this fixes a in terms of c: 

g (0) 

a =   ψψ  c = − 
tψ 

3 c (q2  − 4p2 ). (3.9) 

Then there are potential singularities in g′rr at both order r−2 and r−1, which fix the other two 

parameters c, b, 

c = 
2p2 

 
, b = 

(q3 − 3p2 q)  
. (3.10) 

 

With these choices, the metric near r = 0 reduces to 

ds2 ≈  − 
2c 

dvdr +  f dψ̂ 2  +  2 hdrdψ̂  +  jdr 2 +  p2 ( dθ 2  +  sin2θdϕ2),    (3.11) 
 

where  
f = g (0) ,  h = 2cg (1) − 2ag (1) + 2bg (0) , 

ψψ ψψ tψ tψ 

j = − a2p−4 − 2acg (2) + 2bcg (1) + c2g (2) + g (2) . (3.12) 
tψ tψ ψψ rr 

The determinant of the metric is g ≈  − fc2 p2 sin2θ. The metric is thus completely regular and 

non-degenerate near r = 0. 

We should also  consider the regularity of the  matter fields. For the vector fields, 

A3 = A4 = 0 while 

A0 = A1 = A2 = A = Z −1 (dt + μdψ ) − 
p 

dψ + p cos θdϕ + α . (3.13) 

(Note that the vector field, A here, should not be confused with  in (2.17).) All the 

components are finite at r = 0 in the original coordinates, but we need to consider the 

3 p q2 − 4p2 
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r r 

∫ 

4 I 

r 

0 I 

behaviour in the regular coordinates: 

A =  Z −1 
⎛
⎜ dv −  

 a 
dr −  

b 
dr

⎞
⎟  +  

⎛
⎜ μZ −1 − 

 p ⎞
⎟ 

⎛
⎜ dψ̂  +  

c 
dr

⎞
⎟   +  p cos θdϕ +  α. (3.14) 

⎝ r 2 r ⎠ ⎝ r ⎠ ⎝ r ⎠ 

Now Z ∼ r−2, so the first part is finite, but a constant term in Aψ could produce a 
divergence in Ar in the new coordinates. Indeed μZ −1 − p ≈ q . But this can be cancelled by 

 r 2p 
q 5

 
 

taking advantage of the freedom to introduce a closed form, setting α =  − 2p 
dψ . 

has: 
Then one 

⎛ a b ⎞ ⎛ p q ⎞ ⎛ c ⎞ 
 

A = Z −1 ⎜ dv − dr − dr⎟ + ⎜ μZ −1 − − ⎟ ⎜ dψˆ + dr⎟  + p cos θdϕ , (3.15) ⎝ r 2 r ⎠ ⎝ r 2p ⎠ ⎝ r ⎠ 

which is finite at the horizon, r = 0, in the new coordinates. Thus, this solution describes a 

regular supersymmetric black string with electric and magnetic charges. 

 
4. Oscillating black string 

 
We now add oscillations to the black string solution, promoting the LI, which control the 

electric charges, to functions of ψ. We will not change the magnetic charge functions, so 

K 0 = K1 = K 2 =  
p 

, 

but we now take 

K 3 = K 4 = 0 , (4.1) 

L  = 1 + 
q 

, L  = 1 + 
q

 
FI (ψ , r) 

(4.2)
 

r 

for I =  1, 2, 3, 4. The LI are required to be solutions of  2 L I =  (q +  ρ (ψ ))δ3 (x ⃗). 

Since we are working on a flat base, it is easy to write an explicit integral form for the 

solutions: 

Δψ 
F (ψ , r) = r ρI (ψ ′)dψ ′  . (4.3) 

I 
0 π (r 2 + (ψ − ψ ′)2) 

It is useful to note that if ρI (ψ ) = Re [ρI (z)], where ρI (z) has no poles in the upper-half plane, 

then the result of doing this integral can be written as FI (r, ψ ) = Re [ρI (ψ + ir)] [8]. We will 
subsequently assume that the charge distributions are purely oscillating, so the integral of ρI 

over the circle vanishes; this part carries no net charge. This implies ∫ dψFI = 0 as well. 

Our goal is to suppress as much of the ψ-dependence from the metric as possible and to 

that end we will choose the densities such that the fluctuations cancel in the source term of 

(2.16) and thus the angular momentum vector is ψ-independent. This is achieved by choosing 

the opposite oscillating densities: 

ρ2 (ψ ) = − ρ1 (ψ ) , (4.4) 

which implies that F2 = −F1, exactly as in the magnetube solutions in [9].The functions ZI are 
 

2 

Z  = 1 + 
q 

+  
p 

, Z = 1 + 
q

 
   

± 
F1  

+  
p2 

, Z = 
F3,4 

, (4.5) 
   

0 
r r 2 1,2 

r r r 2 
3,4 

r 

 

 
5 Note this is not a gauge transformation, as ψ is a periodic coordinate, so this addition is changing the holonomy 

around the circle. Thus the solution that is regular at the horizon has some non-trivial holonomy at infinity. 

+ 
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⎝ 
+ ⎟ 

2r 

= = = 

and 

⎛ 1 
 

⎞ ⎛ q p2 ⎞ 
Z 3 =  Z0 ⎜

⎝ 
Z1Z2 − (Z 2 +  Z 2)⎠

⎟  =  ⎜ 1 + + ⎟ 
 

  

2 3 4 ⎝ r r 2 ⎠ 

⎛ ⎞2
 

⎜
⎛ 

F 2 +  
1 (F 2 +  F 2)⎟

⎞ ⎞
⎟ 

 

 

× ⎜ ⎜ 1 + 
q
 

⎜
⎝ 

r 

p2 ⎝ 1 
2 

3 

r 2 ⎠ 
− 

r 2 
⎠ ⎟. (4.6) 

⎟
⎠

 

We can again take 

 
μ = 

 
p3 

+ 
3pq 

 
+  

3p 
, (4.7) 

r 3 2r 2 r 

choosing M = 3p . The choice (4.4) implies that there are no ψ-dependent sources in the 

equation (2.22) for ω, so with this choice for M this equation is again satisfied by taking 

ω = 0. Note that ψ-dependence in the metric only enters through Z. 

In fact, it is possible to find particular solutions with non-trivial ψ-dependence in the 

fields but in which there is no ψ-dependence at all in the metric. For example, if one takes 

 

 
then 

ρ1 (ψ ) = − ρ2 (ψ ) = Q cos (kψ ), ρ3 = ρ4 = Q sin (kψ ), (4.8) 

F = Q cos kψ e−kr, F = F = Q sin kψ e−kr ⇒ F 2 + 
1
 

 
 

F 2 + F 2 = Q2e−2kr, (4.9) 

1 3 4 1 
2 
( 3 4 ) 

and Z and hence the metric will be completely independent of ψ. The non-trivial ψ- 

dependence would appear just in the gauge field and scalars. Thus ∂ is a Killing vector but is 
∂ψ 

not a symmetry of the complete solution. It is in this sense that our solutions are analogous to 

Q-balls [10, 11]. 

More generally, if the source functions are some arbitrary periodic harmonic functions, 

then the FI will decay exponentially at large r and will be non-singular near r = 0, where 

FI (r, ψ ) = Re [ρI (ψ + ir)] ≈ ρI (ψ ) + (r). We can therefore write the combination 

appearing in Z in some power series expansion about r = 0, 

F 2 + 
1 (F 2 + F 2) = F (0) (ψ ) + F (1) (ψ ) r + F (2) (ψ ) r 2 + … (4.10) 

1 
2 

3 4 

where F(0) (ψ ) = ρ 2 + 1 (ρ 2 + ρ 2 ). 
 

1 2      3 4 
 

4.1. Regularity 

4.1.1. The scalars.   The scalars are given by: 

⎜
⎛ 1 2 ⎞

⎟ 

1  3   
 

 

X 0 = ⎝ 
Z1Z2 −  

2 
( Z3   +  Z4  )⎠

 

2 3 
,
 

0 

X1 = 
Z0 Z2 

,
 

Z 2 

X 2 
Z0 Z1 

,
 

Z 2 

X 3 
Z0 Z3 

,
 

Z 2 

X 4 
Z0 Z4 

. (4.11) 

Z 2 

Since Z0 is unchanged, X0 clearly remains finite everywhere and, assuming F 2 + 1 (F 2 + F 2 ) 
1 2 3 4 

is exponentially decaying, we can choose q big enough so that Z is finite everywhere so all the 

2 

4 

Z 
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3q2 − 12p2 − 4F (0) 

p 3q2 − 12p2 − 4F (0) 

r 2 

g (0) 

p 

ψψ 

4p 

scalars are regular for r ≠ 0. As we approach r = 0, X I → 1 for I = 0, 1, 2 and X I → 0 for 

I = 3, 4. 

 
4.1.2. The metric. As before, the metric has an apparent singularity and degeneracy at r = 0. 

As r → 0, we have: 

ds2 ≈  −  
r 4 

dt 2 − 
2r 

dtdψ + 
  1 (3q2 − 12p2 − 4F (0) )dψ 2 

p4 p 4p2 

+  
p2 

dr 2 +  p2 ( dθ 2  +  sin2θdϕ2). (4.12) 

One wants to make the same coordinate transformation (3.5) to attempt to make the 

metric regular at r = 0. It was shown in [8] that in the previous attempt to build hairy black 

rings [4, 7] this coordinate transformation was obstructed, as the leading term in gψψ was ψ 
dependent, so we cannot set a = cg (0) /g (0) as in (3.9) for constant a, c. Similarly here there is 

ψψ tψ 

generically ψ dependence in gψψ ; but we can choose charge densities such that the sum of the 
squares F(0) (ψ ) = ρ 2 + 1 (ρ 2 + ρ 2 ) is a constant. This condition of constant amplitude for 

 1 2      3 4 

the fluctuating densities is familiar from our study of magnetubes [9]. 

Imposing this constraint, we can eliminate the potential singularity in g′rψ 

setting 

 
in (3.7) by 

g (0) 

a =   ψψ  c = − 
tψ 

1 (3q2 − 12p2 − 4F (0) )c . (4.13) 

The leading singularity in g′rr in (3.8) can also be eliminated by setting 

c = 
2p2 

 
. (4.14) 

 

But there is a further obstruction in eliminating the sub-leading singularity. We want to set 
 

b =  
q3 − 3p2 q − F (0)q − F (1)p2 

, (4.15)
 

 

but again F(1) is generically a function of ψ, so we could not satisfy this for constant b. Thus, 
we need to choose the ρI (ψ ) such that both F(0) and F(1) are constants to have a coordinate 
transformation that will eliminate the singularities in the metric at r → 0. We have three free 

functions ρ1, ρ3, ρ4, so there should be an arbitrary functionʼs worth of freedom even after 
satisfying this constraint. We have also seen explicitly above that there are non-trivial 

solutions with constant F(0) and F(1). 

When we restrict to charge densities such that F(0) and F(1) are constants, the metric near 

r = 0 in the new coordinates takes the same general form, 

ds2 ≈  − 
2c 

dvdr +  f dψ̂ 2  +  2 hdrdψ̂  +  j (ψ )dr 2 +  p2 ( dθ 2  +  sin2θdϕ2), (4.16) 

where f , h and j (ψ ) are still given by the same general expressions (3.12), but now the grr 

component j is a function of ψ, as ψ = ψˆ + c log (r /p), so j g (2) involves F(2) (ψ ). In the near-horizon region, finitely many times as 
is some periodic function which oscillates in 

we approach the horizon. Thus, while the components of the metric are all finite at the horizon 

in this new coordinate system, they are not smooth functions of the coordinates there. 
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2p 

2p 

2p 

p 

Remarkably, an explicit calculation of the components of the Riemann tensor reveals that 

all components are finite as r → 0. If we took the approximate metric (4.16) to be the exact 

solution, the only non-zero components of the Riemann tensor are 

R ψˆ ψˆ = − 
1 

∂2 j, 
 

 

Rθϕθϕ = p2 sin2 θ, (4.17) 
r  r 

2 
ψˆ 

which remain finite as r → 0. Keeping sub-leading terms in the expansion in r, radial 

derivatives of j will appear, but they are multiplied by positive powers of r, so that we donʼt 
get any divergences. Geodesics remain at finite values of the coordinates as r → 0 in (4.16), 
so the finiteness of the Riemann tensor components implies that the geodesics can be 

extended beyond r = 0, so that this is a regular horizon for the oscillating black string 

solutions. 

Thus, the solution will have a metric which is regular at r = 0 if we choose the sources 

such that F(0) and F(1) are constants. There should be a free functionʼs worth of solutions 

which satisfy these constraints, so we find black string solutions with a functionʼs worth 
of hair. 

 
4.1.3. The vector fields.   For the vector fields, we have 

⎛ a b ⎞ ⎛ c ⎞ 
 

AI = Z −1X I ⎜ dv − dr − dr⎟ + (Z −1X Iμ − K I) ⎜ dψˆ + dr⎟ + p cos θdϕ + α I , (4.18) ⎝ r 2 r ⎠ ⎝ r ⎠ 

with dαI = 0. Again, these components are all finite in the original coordinate system, but we 

need to check carefully that they are finite in the regular coordinate system as r → 0. For 

I = 0, 

Z −1X 0μ − K 0 ≈ 
q 

, (4.19) 
2p 

so we take α0 = − q dψ as before. For I = 1, 2, 

Z −1X Iμ − K I ≈
 q 

∓ 
ρ

1 
(ψ ) 

. (4.20) 

2p p 

Taking αI = − q dψ will eliminate the first term as before. Since we take the charge 

distributions to be purely oscillating, the new term is actually pure gauge, so it can be 

removed by taking αI =  − q dψ + dβ I (ψ ) 

β I (ψ ). Similarly for I = 3, 4, 

for some suitably chosen periodic functions, 

Z −1X Iμ ≈  − 
ρ

I 
(ψ ) 

, (4.21) 

which can also be eliminated by a gauge transformation. All the vector potentials are then 

finite as r → 0. 

There is a subtlety here similar to the one we saw above in the metric. The Av and Aψˆ 
components vanish at the horizon after we do this gauge transformation, so the surviving 

components at the horizon are Aϕ = p cos θ and Ar. The finite contribution to Ar from the first 

term in (4.18) is independent of ψ, but the contribution from the second term is 

A   ∼  c 
⎛
⎜ 

∂rFI (ψ , r) r=0 –  
qρ

I 
(ψ ) ⎞

⎟. (4.22) 
 

 

r 

⎝ p
 

2p3 ⎠ 

This is bounded, but as ψ = ψˆ + c log (r /p), it will oscillate infinitely many times along 

infalling geodesics which approach the horizon at finite ψˆ . Since it is only the radial 
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r 2 + R2 − 2rR cos θ 

1 

r + R − r1 

component of the gauge field that exhibits this behaviour, it does not lead to a divergent field 

strength; the non-zero components of the field strength at the horizon are 

Fψ̂r  =  ∂ ψ̂ Ar , Fθϕ = p sin θ. (4.23) 

Thus, the electric field is bounded but oscillates infinitely many times along infalling 

geodesics approaching r = 0. Thus, the response of a charged test particle remains bounded, 

and the horizon at r = 0 remains regular6. 

 
5. Oscillating black rings 

 
We now extend the discussion to the most interesting example, an oscillating black ring. As 

we remarked earlier, since the smooth continuation of a solution across the horizon is a local 

issue we expect to encounter only the same issues and constraints as we did for the black 

string, albeit with a slightly higher level of complexity. 

 
5.1. The O-ring solution 

 

To bend our black string solution into a black ring, we want to take the four-dimensional base 

space (2.17) to be flat 4. This is achieved by introducing a single GH centre at r1 = 0 and setting 
V = 1/r1. Note that it is rather straightforward to extend our construction to oscillating rings in 

Taub–NUT or more complicated multi-center solutions, although we will not do it here for 

the sake of simplicity. We will choose coordinates so that the black ringʼs event horizon is 
still at r = 0, and take the centre r1 = 0 to be at r = R, θ = 0. That means 

r 2 = r 2 + R2 − 2rR cos θ. (5.1) 

We have  
V =  

1
 

r1 

 
=

 1 
,
 

 
A =  

r1 + r cos θ − R 
dϕ. (5.2) 

r1 

We take the harmonic functions KI, LI to have the same structure as in the black string 

solution, given in (4.1), (4.2). The LI satisfy  2 L I =  (q +  ρ (ψ ))δ3 (x ⃗), which now implies 
4 I 

4π 

FI (r, θ, ψ ) = r 
0 

G (r, θ, ψ , ψ ′)ρI (ψ ′)dψ ′ (5.3) 

where G is the Page Green function for the GH base [19, 20]. For the single-centred base, this 

Green function is simply 

G = 
1
 sinh U  , (5.4) 

 
 

16π 2r 
cosh U −  cos 

⎛
⎜ 

ψ −  ψ ′ ⎞
⎟ 

⎝ 2 ⎠ 

where 2U = ln r1 + R + r 
. Note that the θ dependence in r1 implies that FI is a function of θ. As 

for the black string, we can do the integral in (5.3) for appropriate sources by contour 
integration, to get 

r ⎡ ⎤ 
 

FI (r, θ, ψ ) =  Re ⎣⎡ ρI (ψ +  iU)⎤⎦ ≈  ρI (ψ ) + Re ⎢⎣
i∂zρI (z)  z=ψ⎥⎦ 

+  ( r 2) (5.5) 

 

 

6 We can see that derivatives of the field strength will diverge at the horizon, so the field is not smooth there, but it is 

sufficiently differentiable to admit a physically meaningful extension through the horizon. 

∫ 

2R 
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r r r 

+ ⎟ ⎜ 1 + + ⎟ 

0 

The functions ZI are now given by: 

Z  = 1 + 
q

 
p2   

,
 

 

r 2 V 

 
Z1,2 = 1 + 

q
 ± 

F1 
+ 

p2   

,
 

 

r 2 V 

 
Z3,4 

F3,4 
, (5.6) 

r 

and so the warp factor appearing in the metric is: 
Z 3 = 

⎛
⎜ 1 2 2   ⎞

⎟ 

Z0 
⎝ 

Z1Z2 −  
2 

(Z3   +  Z 4 )⎠
 

⎛ 
⎛
⎜

 
2 ⎜

⎛ 
F 2 +  

1 (F 2 +  F 2)⎟
⎞ ⎞

⎟ 

= 
q p2 

  

⎞ 
⎜ 

⎛ q p2 ⎞ 
 

 

⎝ 1 
2 

3 4 ⎠ 
⎟

 

r r 2 V ⎠  
⎜
⎝ 

⎝ r r 2 V ⎠ 
−

 
. (5.7) r 2 

⎟
⎠

 

We also have 
 
 

p3 
 

 

r 3 V 2 

 
 

3pq 

2r 2 V 

 
 

3p 

2rV 

 
 
+ M. (5.8) 

As before, this part of the solution does not involve the oscillation. We therefore choose M to 

have the same value as for the non-oscillating black ring, 

M = 
3p R − r 

 
(5.9) 

5.1.1. r 

The one-form is then also the same as for the non-oscillating ring, 

ω = − 
3pR ( r − R cos θ + r1 cos θ) 

+ 
3p 

A
  . (5.10) 

ϕ 2 R r1 2 ϕ 

Again, dependence on the oscillation enters the metric only through Z. 

As before, we can find a simple solution in which the metric is completely independent of 

ψ, by choosing 

ρ1 (ψ ) =  − ρ2 (ψ ) = Q cos (kψ ), 

so that (5.5) gives 

ρ3 = ρ4 = Q sin (kψ ), (5.11) 

F = Q cos kψ e−kU , F = F = Q sin kψ e−kU ⇒ F 2 + 
1

 
 

 

F 2 + F 2 = Q2e−2kU . (5.12) 

1 3 4 1 
2 
( 3 4 ) 

Thus ∂ is a Killing vector. Note that the warp factor is still a function of θ, unlike the black- 
∂ψ 

string solution. The form of U implies that the oscillation now has power-law decay at large r, 

as expected for multipole moments in an asymptotically-flat space. 

More generally, if the source functions were arbitrary, the FI would have power-law 

decay at large r, and one could use equation (5.5) to see that the expansion around r =  0 

becomes 

F 2 + 
1 (F 2 + F 2) = F (0) (ψ ) + F (1) (ψ )r + F (2) (θ, ψ )r 2 + … (5.13) 

1 
2 

3 4 

A key point is that the θ dependence enters only at quadratic order; near r = 0, U ≈ r /2R, so 

the linear term in the expansion of FI is still θ-independent, as indicated in (5.5). 

 
5.2. Regularity 

The regularity analysis near r = 0 now proceeds in much the same manner as it did for the 

black string. 

+ 1 

= + 

μ = + + 
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2 

r 2 

g (0) 

p 

ψψ 

≈ ≈ 

4p 

5.2.1. The metric and scalars.   The scalars take the same form (4.11), and as we approach 

r = 0, X I → 1 for I = 0, 1, 2 and X I → 0 for I = 3, 4. For the metric, we note that as r → 0, 

V 
1 

, 
R 

A 
r 2 

 

2R2 
sin2 θdϕ, ω ≈ − 

3p 
r sin2 θdϕ, (5.14) 

so the cross terms involving ϕ become negligible near r = 0. The metric near r = 0 is then 

ds2 ≈  −   
r 4    

dt 2 − 
2r 

dtdψ + 
  1 (3q2 − 12p2 R − 4F (0) )dψ 2 

p4 R2 p 4p2 

+  
p2 

dr 2 +  p2 ( dθ 2  +  sin2θdϕ2). (5.15) 

If we choose charge densities such that the sum of the squares F(0) (ψ ) = ρ 2 + 1 (ρ 2 + ρ 2 ) is 
 1 2      3 4 

a constant, we can eliminate the potential singularity in g′rψ in (3.7) by setting 

g (0) 

a = ψ ψ c = − 
tψ 

c (3q2 − 12p2 R − 4F (0) ), (5.16) 

and the leading singularity in g′rr in (3.8) can also be eliminated choosing c appropriately. We 

also need to choose sources such that F(1) (ψ ) is also a constant, so that we can eliminate the 

sub-leading singularity in g′rr by choosing b appropriately. 

When we restrict to charge densities such that F(0) and F(1) are constants, the metric near 

r = 0 in the new coordinates takes the same general form, 

ds2 ≈  −  
2c 

dvdr +  f dψ̂ 2  +  2 hdrdψ̂  +  j (θ, ψ )dr 2 +  p2 ( dθ 2  +  sin2 θdϕ2), (5.17) 

where again f , h and j (θ, ψ ) are given as in (3.12), but now j is a function of both θ and ψ, as 

g (2) contains F(2) (θ, ψ ). As before, in the near-horizon region, ψ = ψˆ + c log (r /p), so j is 

some periodic function that oscillates infinitely many times as we approach the horizon. Thus, 

while the components of the metric are all finite at the horizon in this new coordinate system, 

they are not smooth functions of the coordinates there. 

Remarkably, it is still true that the components of the Riemann tensor in the approximate 

metric (4.16) are finite as r → 0 even after including the θ dependence. The leading metric 

now has the Riemann tensor 

R ψˆ ψˆ = − 
1 

∂2 j, R ψˆ θ = − 
1 

∂θ∂ψˆj, 
r  r 

2 
ψˆ r  r 

2
 

R = − 
1 

∂2j, R = − 
1 

∂ j sin θ cos θ, 
rθrθ 

2 
θ rϕrϕ 

2 
θ 

Rθϕθϕ = p2 sin2 θ, (5.18) 

which is finite as r → 0. Including sub-leading terms in the metric, radial derivatives of j 

again appear multiplied by positive powers of r, so we do not get any divergences in the 

Riemann tensor. Geodesics remain at finite values of the coordinates as r → 0 in (4.16), so 

the finiteness of the Riemann tensor components implies that the geodesics can be extended 

beyond r = 0, so that this is a regular horizon for the oscillating black ring solutions. 

Thus, the solution will have a metric that is regular at r = 0 if we choose the sources such 

that F(0) and F(1) are constants. Since these are in general functions only of ψ, this imposes 

two restrictions on our three free source functions, so there should be a free functionʼs worth 

of solutions that satisfy these constraints. Thus we find black ring solutions with a functionʼs 
worth of hair. It is essential that the regularity only requires constancy of F(0) and F(1); 



Class. Quantum Grav. 31 (2014) 165015 I Bena et al 

15 

 

 

V 

2p 

2p 

p 

⎞ 

requiring constancy of F(2), or even higher order terms, which are functions of both θ and ψ in 

general, would overconstrain the sources. 

 

5.2.2. The vector fields. The analysis for the vector fields is essentially identical to that for 

black strings. The fields are: 

⎛ a b ⎞ ⎛ K I ⎞⎛ c ⎞ 
 

AI = Z −1X I ⎜ dv − dr − dr⎟ + ⎜ Z −1X Iμ − ⎟⎜ dψ  ̂ + dr⎟
 

⎝ r 2 
r ⎠ ⎝ V ⎠⎝ r ⎠ 

+ p cos θdϕ + α I . (5.19) 

The components in the new coordinates are made finite by a suitable choice of exact part. For 

I = 0, as r → 0 

Z −1X 0μ − 
K 0 

≈ 
q 

, (5.20) 
2p 

so we take α0 = − q dψ as before. For I = 1, 2, 

Z −1X Iμ − 
K I

 ≈ 
 q  

∓
 

ρ
1 
(ψ ) 

, (5.21) 

V 2p p 

and the divergence of the vector field can be cancelled by a gauge transformation and taking 

αI =  − q dψ + dβ I for a suitable choice of β I (ψ ). Similarly for I = 3, 4, 

Z −1X Iμ ≈  − 
ρ

I 
(ψ ) 

, (5.22) 

which can be eliminated by a gauge transformation involving the choice of β I (ψ ). All the 

vector components are then finite as r → 0. As for black strings, there is a finite Ar component 

that is a function of ψ = ψˆ + c log (r /p),7 which gives an electric field that is bounded but 

oscillates infinitely many times along infalling geodesics. Thus, the response of a charged test 

particle remains bounded, and the horizon at r = 0 remains regular. 

 
6. The solution in canonical ring coordinates 

 
We can easily recast the solutions above in the, perhaps more familiar, black-ring bipolar 

coordinates. This will facilitate the comparison with the singular black ring solution that only 

has two oscillating charge densities [7], and to this end we also modestly generalize the result 

above by using distinct magnetic dipole moments. 

 
6.1. The oscillating solutions 

One can write the 4 spatial base metric of (2.9) in the usual spherical bipolar coordinates: 

 
ds 2  = 

 

 

R2 ⎛
⎜
 

 
 

dy2 + (y2  − 1)dψ 2 + dx2 + (1 − x2) dϕ2⎟. (6.1) 

 (x − y)2 ⎝ y2 − 1 1 − x2 ⎠ 

with −1 ⩽ x ⩽ 1, −∞ < y ⩽ − 1. The ring is located at 

corresponds to y = − 1. 

y = −   while spatial infinity 

 
7 This comes from the linear term in FI, so it is a function just of ψ, and not of θ. 

4 



Class. Quantum Grav. 31 (2014) 165015 I Bena et al 

16 

 

 

ψ 

In these coordinates the magnetic flux sources are very simple: 

Θ(j) = 2 qj (dx ∧ dϕ − dy ∧ dψ ) , j = 0, 1, 2 (6.2) 

and the electrostatic potentials that solve 2.15 have the form [7]: 

Zi = 1 + Qi 
(x − y) − 4q 

j qk (x2 − y2) + π (x − y)Λ (y, ψ ) , 
  

R R2 R i 

{i, j, k} = {0, 1, 2} (6.3) 

Z  =  
   2 π 

(x − y)Λ (y, ψ ) , 
 

i = 3, 4, (6.4) 
i 

R 
i 

where, for later convenience, we have introduced factors of 

harmonic, which means that they satisfy: 

into Λ3 and Λ4. The Λi are 

(y2  − 1) ∂y ((y2  − 1) ∂y Λi ) + ∂2 Λi = 0 , (6.5) 

The Fourier analysis is elementary and the smooth solutions that fall off at infinity have 

expansion: 
∞  ⎛ y + 1 ⎞

n 2
 

Λi (y, ψ ) ≡  ∑ ⎜ ⎟ ( a i cos (n ψ ) +  b i sin (n ψ )) . (6.6) 

 
n=1 

⎝ y − 1 ⎠ 
n n

 

Indeed, if one takes y = − coth ξ then this may be written as the real part of an analytic 

function of z where z ≡ e−ξ+iψ . 

Note that we focus on solutions where the additional potentials, Z3 and Z4, only have a 

fluctuating piece. Moreover, the source in the third BPS equation (2.16) only involves the 

sum 

2 

Λ ≡ ∑ qi Λi . (6.7) 
i=0 

The solution to the third BPS equation (2.16) with generic fluctuations was given in [7], 

however, our purpose here is to minimize, or at least suppress, the ψ-dependence of the 

metric. We will therefore consider charge densities that fluctuate while keeping Λ ≡ 0. We 

also want to try to remove the ψ-dependence from Z, which is given by (2.27) and therefore 

consider a solution where the charge corresponding to Λ0 does not fluctuate and thus Λ0 ≡ 0 

as well8. Thus we have 

Λ0 ≡ 0 , q1 Λ1 + q2 Λ2 ≡ 0 . (6.8) 

With these choices, the angular momentum vector, k, is precisely what it was for the non- 

oscillating black ring: 

k = k1 dψ + k2 dϕ , (6.9) 

where  
k1 = (y2 − 1) ( 1/3C (x + y) + 1/2B) − A (y + 1) , (6.10) 

k2 = (x2  − 1) ( 1/3C (x + y) + 1/2B) , (6.11) 

 
 

8 There may be more general solutions but our purpose here is to exhibit some simple families and leave the 

classification issue for later work. 

2 
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π 2   a ⃗  2 

⎡ 2  2i 

  i 

⎤i     i 

2 

and 

 
A ≡ 2(q + q + q ), 

 
B ≡  

2 (Q q  + Q q + Q  q ), C ≡ − 
24q

0 
q

1 
q

2  
. (6.12) 

 

0 1 2 R 
0  0 1  1 2  2 

R2 

 

Thus the ψ-dependence has almost been eliminated from the five-dimensional metric. 

Indeed, the only such dependence comes from the warp factors (2.27) via (2.28): 

P =  
⎛
⎜ Z  Z   −  

1   
Z 2 +  Z 2 

⎞
⎟. (6.13) 

⎝ 1      2 
2 
( 3 4 )⎠ 

The fluctuating part, P̂ , of P is given by: 

P‸ = 
π 

(x − y) ( Λ + Λ ) +
 π 

(x − y)
2 

( Q Λ + Q  Λ ) 
R 

1 2 
R2 2  1 1   2 

+ 
π 2   

(x − y)2   Λ Λ −    Λ 2 + Λ 2 

 
 

, (6.14) 

R2 ( 1    2 ( 3 4 )) 
where we have used (6.8). 

 
6.2. An elementary example 

Take q1 = q2 and Q1 = Q2, then Λ2 = − Λ1 and 

P‸ = −  
π 2 

(x −  y)2 (Λ 2  +  Λ 2  +  Λ 2 ), (6.15) 

R2 1 3 4 

We can take the fluctuations to be a single Fourier mode: 

⎛ y + 1 ⎞
n 2

 
Λi (y, ψ ) = ⎜ ⎟ ( a i cos (n ψ ) + bi sin (n ψ )) , (6.16) 

and then one has 

⎝ y − 1 ⎠ 
n n

 

P‸ = −   
π 2   

(x −  y)2 (  y + 1 )
n

 

 
 

∑   ⎢( ( a )  +  ( b ) 

2R2 y − 1 ⎣ n n  ) 
i∈{1,3,4} + ( a i)

2   
−  (bi)

2

 cos (2nψ ) + 2 a b sin (2nψ ) . (6.17) 

( n n  ) n    n ⎥⎦ 

Consider  the  a i  and  bi  to  be  vectors,  a ⃗, b ⃗  ∈  3,  then  the  fluctuations  in  the  metric  are 
n n 

completely absent if 

∣a ⃗∣2  =  ∣b ⃗∣2  a ⃗  ·  b ⃗  =  0 . (6.18) 

That is, the coefficients are orthogonal vectors of the same length in 3 and then: 

‸ 
⎛ y + 1 ⎞

n
 

P = − (x − y) ⎜ ⎟ . (6.19) 
R2 ⎝ y − 1 ⎠ 

This is simply a modest extension of the example given in (5.12). Here we have a four- 

parameter family of solutions: a ⃗ can be freely chosen and then b ⃗ is a vector of the same length 

in the plane orthogonal to a ⃗. Thus there is really a three parameter family of hair because 

only  a ⃗| appears in the metric. 
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i i 

1 2 1 2 

1 1 1 1 2 3 3 4 4 

1 1 2 1 1 1 2 1 

0   1   2 0 1 2 0 0 1 1 2 2 1 

There is a simple way to parametrize the solutions of (6.19) by setting 

a ⃗  +  ib ⃗  =  ( i (ζ 2  +  ζ 2 )ζ 2  −  ζ 2 2 ζ1 ζ2 ) . (6.20) 

for any (ζ1, ζ2 ) ∈  2. This automatically satisfies (6.18) and |a ⃗|2  +  |b ⃗|2  =  2(|ζ1|2  +  |ζ2 |2). We 

therefore  see  that  the  solution  space  for  fixed  P̂
  
is S3/ 2 =  SO (3)  where  the 2  action  is 

simply (ζ1, ζ2 ) → − (ζ1, ζ2 ). 
In this example, ∂ is a Killing vector of the metric but not a symmetry of the solution. 

∂ψ 

These solutions resemble therefore Q-balls, in that the oscillations cancel out of the energy– 
momentum tensor and the metric, but the charges rotate around the ring. 

 
6.3. Horizon regularity in general 

We can check horizon regularity exactly as we did earlier. One first makes a change of 

variable u = − 1/y and then tries to continue smoothly through u = 0. We will need the 

expansion, to first order, of the electric field terms, Λi, in the neighborhood of the horizon 

(y = − ): 

Λi (y, ψ ) = Λ (0) (ψ ) + Λ (1) (ψ )y−1 + .... (6.21) 

To remove the singularities one must also allow u-dependent shifts in the angular and time 

coordinates: 

t = v +  
a 

+ b log u ψ = φ + c log u ϕ = φ  + c  log u, (6.22) 
 

u 
1 1 2 2 

where a, b, c1 and c2 are constants to be determined. 
It is convenient to define two quantities: 

Δ  ≡  4π 2  q  
⎛
⎜ q  (Λ (0) )

2   

+  q 
Λ (0) +    Λ (0) 

  

⎞
⎟   +  4π q (q Q – q Q )Λ (0) , (6.23) 

1 1 ⎝ 1 1 
2 ( ( 3 ) ( 4 ) )⎠ 1 1  1 2   2 1 

Δ2  ≡  4π 2  q  (q  Λ (0)  Λ (1)
 + q (Λ (0) Λ (1) + Λ (0) Λ (1) )) 

+ 2π q (q Q1 − q Q2 ) Λ (1)
 – 2π R q ( q – q )Λ (0) . (6.24) 

These quantities are in principle ψ-dependent, but as we will see, smoothness across the 

horizon requires that these quantities are in fact independent of ψ. 

One then expands the metric about u = 0. To remove the u−1 terms proportional to du dφ2 

one must set c2 = − c1. The u−1 terms proportional to du dφ1 can be removed by setting 

a = 
8 q0 q1 q2 

Ω2 c
 

 

 
, (6.25) 

 
where 

R2 1 

Ω ≡      R     ⎣
⎡ 2(q q Q0 Q1 +  q q Q0 Q2 +  q q Q1Q2 ) 

8 q0 q1q2 0   1 0   2 1 2 

– 16 q q q  (q  +  q  +  q ) −  (q 2 Q 2 +  q 2 Q 2 +  q 2 Q 2 ) −  Δ ⎤⎦
1  2  

. (6.26) 

To remove the u−2du2 terms one must set 

c1 = 
1 

. (6.27) 
Ω 

The u−1du2 terms have pieces that are linear in x but these cancel as a consequence of (6.25) 

and (6.27). This is the equivalent in the (x, y) coordinates of the θ-independence of F(0) and 

2 2 
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i i i 

0 1 2 0   1   2 

n n 

F(1) in (5.13). The remaining terms involving u−1du2 can be removed by setting: 

b = −  
1  ⎡

⎢ 
  1    

32q q q  (q  +  q  +  q ) − 4R (q 2 Q   +  q 2 Q  +  q 2 Q +  RQ  Q Q 
 

Ω ⎢⎣ 16 q0 q1 q2   

( 0   1   2 0 1 2 0 0 1 1 
2 2 ) 0     1     2) 

– 
Rq0 Q0 Δ1 +  

  1 
Δ  

⎤
⎥ . (6.28) 

 
 

16q 2q 2q 2 8q q q 
2 
⎥⎦

 

With this change of variables, the metric continues smoothly across u = 0. (If the Δi 

depended on ψ then the change of variables (6.22) would have introduced new singular dψ 

terms coming from the derivatives of Δi.) We have not verified that the other fields and the 

Riemann tensor are finite across the horizon in these coordinates, but this is guaranteed by the 

analysis in section 5. 

Note that if we choose q1 = q2 and Q1 = Q2 then we should recover the same solution as 

in section 5. Indeed, requiring that Δ1 and Δ2 be constant reduces to requiring the ψ-inde- 
pendence of 

∑ 
i∈{1,3,4} 

( Λ (0) (ψ ))2
 and ∑ 

i∈{1,3,4} 

Λ (0) (ψ ) Λ (1) (ψ ) . (6.29) 

This is equivalent to requiring that the following are ψ-independent: 

∑   ( Λ (y, ψ ))2
 

 
and lim 

⎡
⎢ y2  ∂  ∑   ( Λ (y, ψ ))2 

⎤
⎥. (6.30) 

 

 i 

i∈{1,3,4} 

y=−∞ 
y→−∞ ⎢⎣ ∂y   

i∈{1,3,4} 
⎥⎦ 

 

This is precisely the same condition as requiring F(0) and F(1) in (5.13) be independent of ψ. 

Given these two functional constraints, we can ask how big will be the family of hair that 

our solutions can accommodate. We started with four charge density functions constrained by 

(6.8), and thus three unconstrained functions parameterized by the arbitrary Fourier coeffi- 

cients ai and bi , i ∈ {1, 3, 4} in (6.17). Imposing the two extra functional constraints we 

found should then leave, in principle, one functionʼs-worth of hair on the surface of the black 
ring. Although we did not find a simple way to prove that this will always happen, it seems 

very plausible particularly because we can find a simple explicit example (see section 6.2) 

and thus show that the set of solutions is certainly non-empty. We therefore believe our 

analysis provides good evidence that there is a lot of new oscillatory hair intrinsic to black O- 

rings and thus to black rings in M-theory. 

 
7. Conclusions 

 
We have found some very simple BPS black-ring solutions that exhibit whole new varieties 
of hair through charge oscillations. The existence of these O-ring solutions requires that we 

go beyond the usual three-charge, or ‘STU,’ supergravity and couple more vector multiplets. 
It is only in this way that we can sufficiently expand the phase space of solutions to have 
enough freedom to coiffure the hair so as to arrange smoothness across the horizon. 

We have not attempted to provide a complete classification of these new BPS O-ring 

solutions. There are obviously more general possibilities, even within the supergravity models 

that we have considered here. The first step was to make sure that all the fluctuations cancel in 

the source term of (2.16) so that the angular momentum vector remained ψ-independent and 

thus the only ψ-dependence in the metric then comes through the warp factor, Z. With more 

non-zero independent magnetic dipoles there are manifestly many ways to arrange this in the 

i 
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source of (2.16). For simplicity, we also suppressed fluctuations in Z0. Moreover, generic 

Calabi–Yau manifolds give rise to many more vector fields and more complicated intersection 
matrices. There is therefore a very large phase space that could be explored by O-rings in 

string theory. 

In terms of counting solutions we have argued that, even within the limited class con- 

sidered here, there appears to be a whole functionʼs worth of hair, essentially because we have 
three charge density functions and two functional constraints coming from requiring 

smoothness at the horizon. While this is not a formal proof and some subtlety might yet 

appear in a more careful analysis, our construction strongly suggests that such large families 

of very hairy solutions exist. They would give by far the largest known violation of black hole 

uniqueness: an arbitrary function of one variable is parameterized by an infinite number of 

arbitrary Fourier modes, and hence our solution would depend on an infinite number of 

continuous parameters. 

Even if somehow these functional constraints are too strong and do not give a coiffure 

parameterized by an infinite number of continuous parameters, we have explicitly exhibited a 

three-parameter family of hair on BPS O-rings. This in itself provides a substantial enlar- 

gement of the hairiness of black objects. 

One rather surprising aspect of our work is that the curvatures and gauge fields are 

continuous across the horizon. The functional constraints on the charge densities manifestly 

arrange that the metric is continuous and non-degenerate across the horizon. However in the 

coordinates that continue across the horizon, the warp factor, Z, depends upon oscillations 

whose frequency diverges as one approaches the horizon. Of course, as a function of the 

original coordinates, the behavior of Z is completely well-behaved and it is only through 

transforming to the infalling coordinates that one sees such infinite frequencies. This is 

presumably because such an infalling observer rotates around the ring infinitely often before 

crossing the horizon and so sees the charge oscillations with diverging frequency. The sur- 

prise is that in spite of this behavior, the curvature and field strengths are not divergent in 

crossing the horizon and test particles do not encounter infinite fields. The higher level of 

smoothness is evidently related to the fact that the oscillations of the metric are limited 

entirely to the five-dimensional warp factor and that its leading two orders of oscillation have 

been eliminated by the charge density constraints. However, the finiteness of the curvatures 

and gauge fields is still surprising and we hope to investigate this further. 

It seems very plausible that the ideas employed here could be extended to extremal non- 

BPS9 and even non-extremal black rings [24]. Indeed, one of the inspirations for this work 

was the idea that one might hope to find non-BPS microstate geometries that oscillate in the 

manner described here and would ultimately be electrically neutral [21]. One of the other 

inspirations for this work was the Q-ball solutions [10, 11], which are time-dependent and 

thus certainly not BPS. One might hope to find time-dependent O-rings and even time- 

dependent microstate geometries that oscillate in the same manner. The problem with such 

time-dependent solutions within string theory is that such charge densities will generically 

couple to the Maxwell fields and thus emit electromagnetic radiation. It is, or course, possible 

that one might find a way to do this sufficiently coherently so as to suppress the radiation 

within a suitably complicated supergravity phase space. 

 
9 The near-horizon geometry of extremal non-BPS black rings [22] appears to be more complicated than that of BPS 

rings [23], but since the underlying equations are still linear it may be possible to ensure smoothness by suitably 

choosing the oscillating charge distributions. 
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